]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/resolve/resolved-dns-rr.c
Merge pull request #9817 from yuwata/shorten-error-logging
[thirdparty/systemd.git] / src / resolve / resolved-dns-rr.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <math.h>
4
5 #include "alloc-util.h"
6 #include "dns-domain.h"
7 #include "dns-type.h"
8 #include "escape.h"
9 #include "hexdecoct.h"
10 #include "resolved-dns-dnssec.h"
11 #include "resolved-dns-packet.h"
12 #include "resolved-dns-rr.h"
13 #include "string-table.h"
14 #include "string-util.h"
15 #include "strv.h"
16 #include "terminal-util.h"
17
18 DnsResourceKey* dns_resource_key_new(uint16_t class, uint16_t type, const char *name) {
19 DnsResourceKey *k;
20 size_t l;
21
22 assert(name);
23
24 l = strlen(name);
25 k = malloc0(sizeof(DnsResourceKey) + l + 1);
26 if (!k)
27 return NULL;
28
29 k->n_ref = 1;
30 k->class = class;
31 k->type = type;
32
33 strcpy((char*) k + sizeof(DnsResourceKey), name);
34
35 return k;
36 }
37
38 DnsResourceKey* dns_resource_key_new_redirect(const DnsResourceKey *key, const DnsResourceRecord *cname) {
39 int r;
40
41 assert(key);
42 assert(cname);
43
44 assert(IN_SET(cname->key->type, DNS_TYPE_CNAME, DNS_TYPE_DNAME));
45
46 if (cname->key->type == DNS_TYPE_CNAME)
47 return dns_resource_key_new(key->class, key->type, cname->cname.name);
48 else {
49 DnsResourceKey *k;
50 char *destination = NULL;
51
52 r = dns_name_change_suffix(dns_resource_key_name(key), dns_resource_key_name(cname->key), cname->dname.name, &destination);
53 if (r < 0)
54 return NULL;
55 if (r == 0)
56 return dns_resource_key_ref((DnsResourceKey*) key);
57
58 k = dns_resource_key_new_consume(key->class, key->type, destination);
59 if (!k)
60 return mfree(destination);
61
62 return k;
63 }
64 }
65
66 int dns_resource_key_new_append_suffix(DnsResourceKey **ret, DnsResourceKey *key, char *name) {
67 DnsResourceKey *new_key;
68 char *joined;
69 int r;
70
71 assert(ret);
72 assert(key);
73 assert(name);
74
75 if (dns_name_is_root(name)) {
76 *ret = dns_resource_key_ref(key);
77 return 0;
78 }
79
80 r = dns_name_concat(dns_resource_key_name(key), name, &joined);
81 if (r < 0)
82 return r;
83
84 new_key = dns_resource_key_new_consume(key->class, key->type, joined);
85 if (!new_key) {
86 free(joined);
87 return -ENOMEM;
88 }
89
90 *ret = new_key;
91 return 0;
92 }
93
94 DnsResourceKey* dns_resource_key_new_consume(uint16_t class, uint16_t type, char *name) {
95 DnsResourceKey *k;
96
97 assert(name);
98
99 k = new0(DnsResourceKey, 1);
100 if (!k)
101 return NULL;
102
103 k->n_ref = 1;
104 k->class = class;
105 k->type = type;
106 k->_name = name;
107
108 return k;
109 }
110
111 DnsResourceKey* dns_resource_key_ref(DnsResourceKey *k) {
112
113 if (!k)
114 return NULL;
115
116 /* Static/const keys created with DNS_RESOURCE_KEY_CONST will
117 * set this to -1, they should not be reffed/unreffed */
118 assert(k->n_ref != (unsigned) -1);
119
120 assert(k->n_ref > 0);
121 k->n_ref++;
122
123 return k;
124 }
125
126 DnsResourceKey* dns_resource_key_unref(DnsResourceKey *k) {
127 if (!k)
128 return NULL;
129
130 assert(k->n_ref != (unsigned) -1);
131 assert(k->n_ref > 0);
132
133 if (k->n_ref == 1) {
134 free(k->_name);
135 free(k);
136 } else
137 k->n_ref--;
138
139 return NULL;
140 }
141
142 const char* dns_resource_key_name(const DnsResourceKey *key) {
143 const char *name;
144
145 if (!key)
146 return NULL;
147
148 if (key->_name)
149 name = key->_name;
150 else
151 name = (char*) key + sizeof(DnsResourceKey);
152
153 if (dns_name_is_root(name))
154 return ".";
155 else
156 return name;
157 }
158
159 bool dns_resource_key_is_address(const DnsResourceKey *key) {
160 assert(key);
161
162 /* Check if this is an A or AAAA resource key */
163
164 return key->class == DNS_CLASS_IN && IN_SET(key->type, DNS_TYPE_A, DNS_TYPE_AAAA);
165 }
166
167 bool dns_resource_key_is_dnssd_ptr(const DnsResourceKey *key) {
168 assert(key);
169
170 /* Check if this is a PTR resource key used in
171 Service Instance Enumeration as described in RFC6763 p4.1. */
172
173 if (key->type != DNS_TYPE_PTR)
174 return false;
175
176 return dns_name_endswith(dns_resource_key_name(key), "_tcp.local") ||
177 dns_name_endswith(dns_resource_key_name(key), "_udp.local");
178 }
179
180 int dns_resource_key_equal(const DnsResourceKey *a, const DnsResourceKey *b) {
181 int r;
182
183 if (a == b)
184 return 1;
185
186 r = dns_name_equal(dns_resource_key_name(a), dns_resource_key_name(b));
187 if (r <= 0)
188 return r;
189
190 if (a->class != b->class)
191 return 0;
192
193 if (a->type != b->type)
194 return 0;
195
196 return 1;
197 }
198
199 int dns_resource_key_match_rr(const DnsResourceKey *key, DnsResourceRecord *rr, const char *search_domain) {
200 int r;
201
202 assert(key);
203 assert(rr);
204
205 if (key == rr->key)
206 return 1;
207
208 /* Checks if an rr matches the specified key. If a search
209 * domain is specified, it will also be checked if the key
210 * with the search domain suffixed might match the RR. */
211
212 if (rr->key->class != key->class && key->class != DNS_CLASS_ANY)
213 return 0;
214
215 if (rr->key->type != key->type && key->type != DNS_TYPE_ANY)
216 return 0;
217
218 r = dns_name_equal(dns_resource_key_name(rr->key), dns_resource_key_name(key));
219 if (r != 0)
220 return r;
221
222 if (search_domain) {
223 _cleanup_free_ char *joined = NULL;
224
225 r = dns_name_concat(dns_resource_key_name(key), search_domain, &joined);
226 if (r < 0)
227 return r;
228
229 return dns_name_equal(dns_resource_key_name(rr->key), joined);
230 }
231
232 return 0;
233 }
234
235 int dns_resource_key_match_cname_or_dname(const DnsResourceKey *key, const DnsResourceKey *cname, const char *search_domain) {
236 int r;
237
238 assert(key);
239 assert(cname);
240
241 if (cname->class != key->class && key->class != DNS_CLASS_ANY)
242 return 0;
243
244 if (cname->type == DNS_TYPE_CNAME)
245 r = dns_name_equal(dns_resource_key_name(key), dns_resource_key_name(cname));
246 else if (cname->type == DNS_TYPE_DNAME)
247 r = dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(cname));
248 else
249 return 0;
250
251 if (r != 0)
252 return r;
253
254 if (search_domain) {
255 _cleanup_free_ char *joined = NULL;
256
257 r = dns_name_concat(dns_resource_key_name(key), search_domain, &joined);
258 if (r < 0)
259 return r;
260
261 if (cname->type == DNS_TYPE_CNAME)
262 return dns_name_equal(joined, dns_resource_key_name(cname));
263 else if (cname->type == DNS_TYPE_DNAME)
264 return dns_name_endswith(joined, dns_resource_key_name(cname));
265 }
266
267 return 0;
268 }
269
270 int dns_resource_key_match_soa(const DnsResourceKey *key, const DnsResourceKey *soa) {
271 assert(soa);
272 assert(key);
273
274 /* Checks whether 'soa' is a SOA record for the specified key. */
275
276 if (soa->class != key->class)
277 return 0;
278
279 if (soa->type != DNS_TYPE_SOA)
280 return 0;
281
282 return dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(soa));
283 }
284
285 static void dns_resource_key_hash_func(const void *i, struct siphash *state) {
286 const DnsResourceKey *k = i;
287
288 assert(k);
289
290 dns_name_hash_func(dns_resource_key_name(k), state);
291 siphash24_compress(&k->class, sizeof(k->class), state);
292 siphash24_compress(&k->type, sizeof(k->type), state);
293 }
294
295 static int dns_resource_key_compare_func(const void *a, const void *b) {
296 const DnsResourceKey *x = a, *y = b;
297 int ret;
298
299 ret = dns_name_compare_func(dns_resource_key_name(x), dns_resource_key_name(y));
300 if (ret != 0)
301 return ret;
302
303 ret = CMP(x->type, y->type);
304 if (ret != 0)
305 return ret;
306
307 ret = CMP(x->class, y->class);
308 if (ret != 0)
309 return ret;
310
311 return 0;
312 }
313
314 const struct hash_ops dns_resource_key_hash_ops = {
315 .hash = dns_resource_key_hash_func,
316 .compare = dns_resource_key_compare_func
317 };
318
319 char* dns_resource_key_to_string(const DnsResourceKey *key, char *buf, size_t buf_size) {
320 const char *c, *t;
321 char *ans = buf;
322
323 /* If we cannot convert the CLASS/TYPE into a known string,
324 use the format recommended by RFC 3597, Section 5. */
325
326 c = dns_class_to_string(key->class);
327 t = dns_type_to_string(key->type);
328
329 snprintf(buf, buf_size, "%s %s%s%.0u %s%s%.0u",
330 dns_resource_key_name(key),
331 strempty(c), c ? "" : "CLASS", c ? 0 : key->class,
332 strempty(t), t ? "" : "TYPE", t ? 0 : key->type);
333
334 return ans;
335 }
336
337 bool dns_resource_key_reduce(DnsResourceKey **a, DnsResourceKey **b) {
338 assert(a);
339 assert(b);
340
341 /* Try to replace one RR key by another if they are identical, thus saving a bit of memory. Note that we do
342 * this only for RR keys, not for RRs themselves, as they carry a lot of additional metadata (where they come
343 * from, validity data, and suchlike), and cannot be replaced so easily by other RRs that have the same
344 * superficial data. */
345
346 if (!*a)
347 return false;
348 if (!*b)
349 return false;
350
351 /* We refuse merging const keys */
352 if ((*a)->n_ref == (unsigned) -1)
353 return false;
354 if ((*b)->n_ref == (unsigned) -1)
355 return false;
356
357 /* Already the same? */
358 if (*a == *b)
359 return true;
360
361 /* Are they really identical? */
362 if (dns_resource_key_equal(*a, *b) <= 0)
363 return false;
364
365 /* Keep the one which already has more references. */
366 if ((*a)->n_ref > (*b)->n_ref) {
367 dns_resource_key_unref(*b);
368 *b = dns_resource_key_ref(*a);
369 } else {
370 dns_resource_key_unref(*a);
371 *a = dns_resource_key_ref(*b);
372 }
373
374 return true;
375 }
376
377 DnsResourceRecord* dns_resource_record_new(DnsResourceKey *key) {
378 DnsResourceRecord *rr;
379
380 rr = new0(DnsResourceRecord, 1);
381 if (!rr)
382 return NULL;
383
384 rr->n_ref = 1;
385 rr->key = dns_resource_key_ref(key);
386 rr->expiry = USEC_INFINITY;
387 rr->n_skip_labels_signer = rr->n_skip_labels_source = (unsigned) -1;
388
389 return rr;
390 }
391
392 DnsResourceRecord* dns_resource_record_new_full(uint16_t class, uint16_t type, const char *name) {
393 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
394
395 key = dns_resource_key_new(class, type, name);
396 if (!key)
397 return NULL;
398
399 return dns_resource_record_new(key);
400 }
401
402 DnsResourceRecord* dns_resource_record_ref(DnsResourceRecord *rr) {
403 if (!rr)
404 return NULL;
405
406 assert(rr->n_ref > 0);
407 rr->n_ref++;
408
409 return rr;
410 }
411
412 DnsResourceRecord* dns_resource_record_unref(DnsResourceRecord *rr) {
413 if (!rr)
414 return NULL;
415
416 assert(rr->n_ref > 0);
417
418 if (rr->n_ref > 1) {
419 rr->n_ref--;
420 return NULL;
421 }
422
423 if (rr->key) {
424 switch(rr->key->type) {
425
426 case DNS_TYPE_SRV:
427 free(rr->srv.name);
428 break;
429
430 case DNS_TYPE_PTR:
431 case DNS_TYPE_NS:
432 case DNS_TYPE_CNAME:
433 case DNS_TYPE_DNAME:
434 free(rr->ptr.name);
435 break;
436
437 case DNS_TYPE_HINFO:
438 free(rr->hinfo.cpu);
439 free(rr->hinfo.os);
440 break;
441
442 case DNS_TYPE_TXT:
443 case DNS_TYPE_SPF:
444 dns_txt_item_free_all(rr->txt.items);
445 break;
446
447 case DNS_TYPE_SOA:
448 free(rr->soa.mname);
449 free(rr->soa.rname);
450 break;
451
452 case DNS_TYPE_MX:
453 free(rr->mx.exchange);
454 break;
455
456 case DNS_TYPE_DS:
457 free(rr->ds.digest);
458 break;
459
460 case DNS_TYPE_SSHFP:
461 free(rr->sshfp.fingerprint);
462 break;
463
464 case DNS_TYPE_DNSKEY:
465 free(rr->dnskey.key);
466 break;
467
468 case DNS_TYPE_RRSIG:
469 free(rr->rrsig.signer);
470 free(rr->rrsig.signature);
471 break;
472
473 case DNS_TYPE_NSEC:
474 free(rr->nsec.next_domain_name);
475 bitmap_free(rr->nsec.types);
476 break;
477
478 case DNS_TYPE_NSEC3:
479 free(rr->nsec3.next_hashed_name);
480 free(rr->nsec3.salt);
481 bitmap_free(rr->nsec3.types);
482 break;
483
484 case DNS_TYPE_LOC:
485 case DNS_TYPE_A:
486 case DNS_TYPE_AAAA:
487 break;
488
489 case DNS_TYPE_TLSA:
490 free(rr->tlsa.data);
491 break;
492
493 case DNS_TYPE_CAA:
494 free(rr->caa.tag);
495 free(rr->caa.value);
496 break;
497
498 case DNS_TYPE_OPENPGPKEY:
499 default:
500 if (!rr->unparseable)
501 free(rr->generic.data);
502 }
503
504 if (rr->unparseable)
505 free(rr->generic.data);
506
507 free(rr->wire_format);
508 dns_resource_key_unref(rr->key);
509 }
510
511 free(rr->to_string);
512 return mfree(rr);
513 }
514
515 int dns_resource_record_new_reverse(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *hostname) {
516 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
517 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL;
518 _cleanup_free_ char *ptr = NULL;
519 int r;
520
521 assert(ret);
522 assert(address);
523 assert(hostname);
524
525 r = dns_name_reverse(family, address, &ptr);
526 if (r < 0)
527 return r;
528
529 key = dns_resource_key_new_consume(DNS_CLASS_IN, DNS_TYPE_PTR, ptr);
530 if (!key)
531 return -ENOMEM;
532
533 ptr = NULL;
534
535 rr = dns_resource_record_new(key);
536 if (!rr)
537 return -ENOMEM;
538
539 rr->ptr.name = strdup(hostname);
540 if (!rr->ptr.name)
541 return -ENOMEM;
542
543 *ret = TAKE_PTR(rr);
544
545 return 0;
546 }
547
548 int dns_resource_record_new_address(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *name) {
549 DnsResourceRecord *rr;
550
551 assert(ret);
552 assert(address);
553 assert(family);
554
555 if (family == AF_INET) {
556
557 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_A, name);
558 if (!rr)
559 return -ENOMEM;
560
561 rr->a.in_addr = address->in;
562
563 } else if (family == AF_INET6) {
564
565 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_AAAA, name);
566 if (!rr)
567 return -ENOMEM;
568
569 rr->aaaa.in6_addr = address->in6;
570 } else
571 return -EAFNOSUPPORT;
572
573 *ret = rr;
574
575 return 0;
576 }
577
578 #define FIELD_EQUAL(a, b, field) \
579 ((a).field ## _size == (b).field ## _size && \
580 memcmp((a).field, (b).field, (a).field ## _size) == 0)
581
582 int dns_resource_record_equal(const DnsResourceRecord *a, const DnsResourceRecord *b) {
583 int r;
584
585 assert(a);
586 assert(b);
587
588 if (a == b)
589 return 1;
590
591 r = dns_resource_key_equal(a->key, b->key);
592 if (r <= 0)
593 return r;
594
595 if (a->unparseable != b->unparseable)
596 return 0;
597
598 switch (a->unparseable ? _DNS_TYPE_INVALID : a->key->type) {
599
600 case DNS_TYPE_SRV:
601 r = dns_name_equal(a->srv.name, b->srv.name);
602 if (r <= 0)
603 return r;
604
605 return a->srv.priority == b->srv.priority &&
606 a->srv.weight == b->srv.weight &&
607 a->srv.port == b->srv.port;
608
609 case DNS_TYPE_PTR:
610 case DNS_TYPE_NS:
611 case DNS_TYPE_CNAME:
612 case DNS_TYPE_DNAME:
613 return dns_name_equal(a->ptr.name, b->ptr.name);
614
615 case DNS_TYPE_HINFO:
616 return strcaseeq(a->hinfo.cpu, b->hinfo.cpu) &&
617 strcaseeq(a->hinfo.os, b->hinfo.os);
618
619 case DNS_TYPE_SPF: /* exactly the same as TXT */
620 case DNS_TYPE_TXT:
621 return dns_txt_item_equal(a->txt.items, b->txt.items);
622
623 case DNS_TYPE_A:
624 return memcmp(&a->a.in_addr, &b->a.in_addr, sizeof(struct in_addr)) == 0;
625
626 case DNS_TYPE_AAAA:
627 return memcmp(&a->aaaa.in6_addr, &b->aaaa.in6_addr, sizeof(struct in6_addr)) == 0;
628
629 case DNS_TYPE_SOA:
630 r = dns_name_equal(a->soa.mname, b->soa.mname);
631 if (r <= 0)
632 return r;
633 r = dns_name_equal(a->soa.rname, b->soa.rname);
634 if (r <= 0)
635 return r;
636
637 return a->soa.serial == b->soa.serial &&
638 a->soa.refresh == b->soa.refresh &&
639 a->soa.retry == b->soa.retry &&
640 a->soa.expire == b->soa.expire &&
641 a->soa.minimum == b->soa.minimum;
642
643 case DNS_TYPE_MX:
644 if (a->mx.priority != b->mx.priority)
645 return 0;
646
647 return dns_name_equal(a->mx.exchange, b->mx.exchange);
648
649 case DNS_TYPE_LOC:
650 assert(a->loc.version == b->loc.version);
651
652 return a->loc.size == b->loc.size &&
653 a->loc.horiz_pre == b->loc.horiz_pre &&
654 a->loc.vert_pre == b->loc.vert_pre &&
655 a->loc.latitude == b->loc.latitude &&
656 a->loc.longitude == b->loc.longitude &&
657 a->loc.altitude == b->loc.altitude;
658
659 case DNS_TYPE_DS:
660 return a->ds.key_tag == b->ds.key_tag &&
661 a->ds.algorithm == b->ds.algorithm &&
662 a->ds.digest_type == b->ds.digest_type &&
663 FIELD_EQUAL(a->ds, b->ds, digest);
664
665 case DNS_TYPE_SSHFP:
666 return a->sshfp.algorithm == b->sshfp.algorithm &&
667 a->sshfp.fptype == b->sshfp.fptype &&
668 FIELD_EQUAL(a->sshfp, b->sshfp, fingerprint);
669
670 case DNS_TYPE_DNSKEY:
671 return a->dnskey.flags == b->dnskey.flags &&
672 a->dnskey.protocol == b->dnskey.protocol &&
673 a->dnskey.algorithm == b->dnskey.algorithm &&
674 FIELD_EQUAL(a->dnskey, b->dnskey, key);
675
676 case DNS_TYPE_RRSIG:
677 /* do the fast comparisons first */
678 return a->rrsig.type_covered == b->rrsig.type_covered &&
679 a->rrsig.algorithm == b->rrsig.algorithm &&
680 a->rrsig.labels == b->rrsig.labels &&
681 a->rrsig.original_ttl == b->rrsig.original_ttl &&
682 a->rrsig.expiration == b->rrsig.expiration &&
683 a->rrsig.inception == b->rrsig.inception &&
684 a->rrsig.key_tag == b->rrsig.key_tag &&
685 FIELD_EQUAL(a->rrsig, b->rrsig, signature) &&
686 dns_name_equal(a->rrsig.signer, b->rrsig.signer);
687
688 case DNS_TYPE_NSEC:
689 return dns_name_equal(a->nsec.next_domain_name, b->nsec.next_domain_name) &&
690 bitmap_equal(a->nsec.types, b->nsec.types);
691
692 case DNS_TYPE_NSEC3:
693 return a->nsec3.algorithm == b->nsec3.algorithm &&
694 a->nsec3.flags == b->nsec3.flags &&
695 a->nsec3.iterations == b->nsec3.iterations &&
696 FIELD_EQUAL(a->nsec3, b->nsec3, salt) &&
697 FIELD_EQUAL(a->nsec3, b->nsec3, next_hashed_name) &&
698 bitmap_equal(a->nsec3.types, b->nsec3.types);
699
700 case DNS_TYPE_TLSA:
701 return a->tlsa.cert_usage == b->tlsa.cert_usage &&
702 a->tlsa.selector == b->tlsa.selector &&
703 a->tlsa.matching_type == b->tlsa.matching_type &&
704 FIELD_EQUAL(a->tlsa, b->tlsa, data);
705
706 case DNS_TYPE_CAA:
707 return a->caa.flags == b->caa.flags &&
708 streq(a->caa.tag, b->caa.tag) &&
709 FIELD_EQUAL(a->caa, b->caa, value);
710
711 case DNS_TYPE_OPENPGPKEY:
712 default:
713 return FIELD_EQUAL(a->generic, b->generic, data);
714 }
715 }
716
717 static char* format_location(uint32_t latitude, uint32_t longitude, uint32_t altitude,
718 uint8_t size, uint8_t horiz_pre, uint8_t vert_pre) {
719 char *s;
720 char NS = latitude >= 1U<<31 ? 'N' : 'S';
721 char EW = longitude >= 1U<<31 ? 'E' : 'W';
722
723 int lat = latitude >= 1U<<31 ? (int) (latitude - (1U<<31)) : (int) ((1U<<31) - latitude);
724 int lon = longitude >= 1U<<31 ? (int) (longitude - (1U<<31)) : (int) ((1U<<31) - longitude);
725 double alt = altitude >= 10000000u ? altitude - 10000000u : -(double)(10000000u - altitude);
726 double siz = (size >> 4) * exp10((double) (size & 0xF));
727 double hor = (horiz_pre >> 4) * exp10((double) (horiz_pre & 0xF));
728 double ver = (vert_pre >> 4) * exp10((double) (vert_pre & 0xF));
729
730 if (asprintf(&s, "%d %d %.3f %c %d %d %.3f %c %.2fm %.2fm %.2fm %.2fm",
731 (lat / 60000 / 60),
732 (lat / 60000) % 60,
733 (lat % 60000) / 1000.,
734 NS,
735 (lon / 60000 / 60),
736 (lon / 60000) % 60,
737 (lon % 60000) / 1000.,
738 EW,
739 alt / 100.,
740 siz / 100.,
741 hor / 100.,
742 ver / 100.) < 0)
743 return NULL;
744
745 return s;
746 }
747
748 static int format_timestamp_dns(char *buf, size_t l, time_t sec) {
749 struct tm tm;
750
751 assert(buf);
752 assert(l > STRLEN("YYYYMMDDHHmmSS"));
753
754 if (!gmtime_r(&sec, &tm))
755 return -EINVAL;
756
757 if (strftime(buf, l, "%Y%m%d%H%M%S", &tm) <= 0)
758 return -EINVAL;
759
760 return 0;
761 }
762
763 static char *format_types(Bitmap *types) {
764 _cleanup_strv_free_ char **strv = NULL;
765 _cleanup_free_ char *str = NULL;
766 Iterator i;
767 unsigned type;
768 int r;
769
770 BITMAP_FOREACH(type, types, i) {
771 if (dns_type_to_string(type)) {
772 r = strv_extend(&strv, dns_type_to_string(type));
773 if (r < 0)
774 return NULL;
775 } else {
776 char *t;
777
778 r = asprintf(&t, "TYPE%u", type);
779 if (r < 0)
780 return NULL;
781
782 r = strv_consume(&strv, t);
783 if (r < 0)
784 return NULL;
785 }
786 }
787
788 str = strv_join(strv, " ");
789 if (!str)
790 return NULL;
791
792 return strjoin("( ", str, " )");
793 }
794
795 static char *format_txt(DnsTxtItem *first) {
796 DnsTxtItem *i;
797 size_t c = 1;
798 char *p, *s;
799
800 LIST_FOREACH(items, i, first)
801 c += i->length * 4 + 3;
802
803 p = s = new(char, c);
804 if (!s)
805 return NULL;
806
807 LIST_FOREACH(items, i, first) {
808 size_t j;
809
810 if (i != first)
811 *(p++) = ' ';
812
813 *(p++) = '"';
814
815 for (j = 0; j < i->length; j++) {
816 if (i->data[j] < ' ' || i->data[j] == '"' || i->data[j] >= 127) {
817 *(p++) = '\\';
818 *(p++) = '0' + (i->data[j] / 100);
819 *(p++) = '0' + ((i->data[j] / 10) % 10);
820 *(p++) = '0' + (i->data[j] % 10);
821 } else
822 *(p++) = i->data[j];
823 }
824
825 *(p++) = '"';
826 }
827
828 *p = 0;
829 return s;
830 }
831
832 const char *dns_resource_record_to_string(DnsResourceRecord *rr) {
833 _cleanup_free_ char *t = NULL;
834 char *s, k[DNS_RESOURCE_KEY_STRING_MAX];
835 int r;
836
837 assert(rr);
838
839 if (rr->to_string)
840 return rr->to_string;
841
842 dns_resource_key_to_string(rr->key, k, sizeof(k));
843
844 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
845
846 case DNS_TYPE_SRV:
847 r = asprintf(&s, "%s %u %u %u %s",
848 k,
849 rr->srv.priority,
850 rr->srv.weight,
851 rr->srv.port,
852 strna(rr->srv.name));
853 if (r < 0)
854 return NULL;
855 break;
856
857 case DNS_TYPE_PTR:
858 case DNS_TYPE_NS:
859 case DNS_TYPE_CNAME:
860 case DNS_TYPE_DNAME:
861 s = strjoin(k, " ", rr->ptr.name);
862 if (!s)
863 return NULL;
864
865 break;
866
867 case DNS_TYPE_HINFO:
868 s = strjoin(k, " ", rr->hinfo.cpu, " ", rr->hinfo.os);
869 if (!s)
870 return NULL;
871 break;
872
873 case DNS_TYPE_SPF: /* exactly the same as TXT */
874 case DNS_TYPE_TXT:
875 t = format_txt(rr->txt.items);
876 if (!t)
877 return NULL;
878
879 s = strjoin(k, " ", t);
880 if (!s)
881 return NULL;
882 break;
883
884 case DNS_TYPE_A: {
885 _cleanup_free_ char *x = NULL;
886
887 r = in_addr_to_string(AF_INET, (const union in_addr_union*) &rr->a.in_addr, &x);
888 if (r < 0)
889 return NULL;
890
891 s = strjoin(k, " ", x);
892 if (!s)
893 return NULL;
894 break;
895 }
896
897 case DNS_TYPE_AAAA:
898 r = in_addr_to_string(AF_INET6, (const union in_addr_union*) &rr->aaaa.in6_addr, &t);
899 if (r < 0)
900 return NULL;
901
902 s = strjoin(k, " ", t);
903 if (!s)
904 return NULL;
905 break;
906
907 case DNS_TYPE_SOA:
908 r = asprintf(&s, "%s %s %s %u %u %u %u %u",
909 k,
910 strna(rr->soa.mname),
911 strna(rr->soa.rname),
912 rr->soa.serial,
913 rr->soa.refresh,
914 rr->soa.retry,
915 rr->soa.expire,
916 rr->soa.minimum);
917 if (r < 0)
918 return NULL;
919 break;
920
921 case DNS_TYPE_MX:
922 r = asprintf(&s, "%s %u %s",
923 k,
924 rr->mx.priority,
925 rr->mx.exchange);
926 if (r < 0)
927 return NULL;
928 break;
929
930 case DNS_TYPE_LOC:
931 assert(rr->loc.version == 0);
932
933 t = format_location(rr->loc.latitude,
934 rr->loc.longitude,
935 rr->loc.altitude,
936 rr->loc.size,
937 rr->loc.horiz_pre,
938 rr->loc.vert_pre);
939 if (!t)
940 return NULL;
941
942 s = strjoin(k, " ", t);
943 if (!s)
944 return NULL;
945 break;
946
947 case DNS_TYPE_DS:
948 t = hexmem(rr->ds.digest, rr->ds.digest_size);
949 if (!t)
950 return NULL;
951
952 r = asprintf(&s, "%s %u %u %u %s",
953 k,
954 rr->ds.key_tag,
955 rr->ds.algorithm,
956 rr->ds.digest_type,
957 t);
958 if (r < 0)
959 return NULL;
960 break;
961
962 case DNS_TYPE_SSHFP:
963 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
964 if (!t)
965 return NULL;
966
967 r = asprintf(&s, "%s %u %u %s",
968 k,
969 rr->sshfp.algorithm,
970 rr->sshfp.fptype,
971 t);
972 if (r < 0)
973 return NULL;
974 break;
975
976 case DNS_TYPE_DNSKEY: {
977 _cleanup_free_ char *alg = NULL;
978 char *ss;
979 int n;
980 uint16_t key_tag;
981
982 key_tag = dnssec_keytag(rr, true);
983
984 r = dnssec_algorithm_to_string_alloc(rr->dnskey.algorithm, &alg);
985 if (r < 0)
986 return NULL;
987
988 r = asprintf(&s, "%s %u %u %s %n",
989 k,
990 rr->dnskey.flags,
991 rr->dnskey.protocol,
992 alg,
993 &n);
994 if (r < 0)
995 return NULL;
996
997 r = base64_append(&s, n,
998 rr->dnskey.key, rr->dnskey.key_size,
999 8, columns());
1000 if (r < 0)
1001 return NULL;
1002
1003 r = asprintf(&ss, "%s\n"
1004 " -- Flags:%s%s%s\n"
1005 " -- Key tag: %u",
1006 s,
1007 rr->dnskey.flags & DNSKEY_FLAG_SEP ? " SEP" : "",
1008 rr->dnskey.flags & DNSKEY_FLAG_REVOKE ? " REVOKE" : "",
1009 rr->dnskey.flags & DNSKEY_FLAG_ZONE_KEY ? " ZONE_KEY" : "",
1010 key_tag);
1011 if (r < 0)
1012 return NULL;
1013 free(s);
1014 s = ss;
1015
1016 break;
1017 }
1018
1019 case DNS_TYPE_RRSIG: {
1020 _cleanup_free_ char *alg = NULL;
1021 char expiration[STRLEN("YYYYMMDDHHmmSS") + 1], inception[STRLEN("YYYYMMDDHHmmSS") + 1];
1022 const char *type;
1023 int n;
1024
1025 type = dns_type_to_string(rr->rrsig.type_covered);
1026
1027 r = dnssec_algorithm_to_string_alloc(rr->rrsig.algorithm, &alg);
1028 if (r < 0)
1029 return NULL;
1030
1031 r = format_timestamp_dns(expiration, sizeof(expiration), rr->rrsig.expiration);
1032 if (r < 0)
1033 return NULL;
1034
1035 r = format_timestamp_dns(inception, sizeof(inception), rr->rrsig.inception);
1036 if (r < 0)
1037 return NULL;
1038
1039 /* TYPE?? follows
1040 * http://tools.ietf.org/html/rfc3597#section-5 */
1041
1042 r = asprintf(&s, "%s %s%.*u %s %u %u %s %s %u %s %n",
1043 k,
1044 type ?: "TYPE",
1045 type ? 0 : 1, type ? 0u : (unsigned) rr->rrsig.type_covered,
1046 alg,
1047 rr->rrsig.labels,
1048 rr->rrsig.original_ttl,
1049 expiration,
1050 inception,
1051 rr->rrsig.key_tag,
1052 rr->rrsig.signer,
1053 &n);
1054 if (r < 0)
1055 return NULL;
1056
1057 r = base64_append(&s, n,
1058 rr->rrsig.signature, rr->rrsig.signature_size,
1059 8, columns());
1060 if (r < 0)
1061 return NULL;
1062
1063 break;
1064 }
1065
1066 case DNS_TYPE_NSEC:
1067 t = format_types(rr->nsec.types);
1068 if (!t)
1069 return NULL;
1070
1071 r = asprintf(&s, "%s %s %s",
1072 k,
1073 rr->nsec.next_domain_name,
1074 t);
1075 if (r < 0)
1076 return NULL;
1077 break;
1078
1079 case DNS_TYPE_NSEC3: {
1080 _cleanup_free_ char *salt = NULL, *hash = NULL;
1081
1082 if (rr->nsec3.salt_size > 0) {
1083 salt = hexmem(rr->nsec3.salt, rr->nsec3.salt_size);
1084 if (!salt)
1085 return NULL;
1086 }
1087
1088 hash = base32hexmem(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, false);
1089 if (!hash)
1090 return NULL;
1091
1092 t = format_types(rr->nsec3.types);
1093 if (!t)
1094 return NULL;
1095
1096 r = asprintf(&s, "%s %"PRIu8" %"PRIu8" %"PRIu16" %s %s %s",
1097 k,
1098 rr->nsec3.algorithm,
1099 rr->nsec3.flags,
1100 rr->nsec3.iterations,
1101 rr->nsec3.salt_size > 0 ? salt : "-",
1102 hash,
1103 t);
1104 if (r < 0)
1105 return NULL;
1106
1107 break;
1108 }
1109
1110 case DNS_TYPE_TLSA: {
1111 const char *cert_usage, *selector, *matching_type;
1112
1113 cert_usage = tlsa_cert_usage_to_string(rr->tlsa.cert_usage);
1114 selector = tlsa_selector_to_string(rr->tlsa.selector);
1115 matching_type = tlsa_matching_type_to_string(rr->tlsa.matching_type);
1116
1117 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1118 if (!t)
1119 return NULL;
1120
1121 r = asprintf(&s,
1122 "%s %u %u %u %s\n"
1123 " -- Cert. usage: %s\n"
1124 " -- Selector: %s\n"
1125 " -- Matching type: %s",
1126 k,
1127 rr->tlsa.cert_usage,
1128 rr->tlsa.selector,
1129 rr->tlsa.matching_type,
1130 t,
1131 cert_usage,
1132 selector,
1133 matching_type);
1134 if (r < 0)
1135 return NULL;
1136
1137 break;
1138 }
1139
1140 case DNS_TYPE_CAA: {
1141 _cleanup_free_ char *value;
1142
1143 value = octescape(rr->caa.value, rr->caa.value_size);
1144 if (!value)
1145 return NULL;
1146
1147 r = asprintf(&s, "%s %u %s \"%s\"%s%s%s%.0u",
1148 k,
1149 rr->caa.flags,
1150 rr->caa.tag,
1151 value,
1152 rr->caa.flags ? "\n -- Flags:" : "",
1153 rr->caa.flags & CAA_FLAG_CRITICAL ? " critical" : "",
1154 rr->caa.flags & ~CAA_FLAG_CRITICAL ? " " : "",
1155 rr->caa.flags & ~CAA_FLAG_CRITICAL);
1156 if (r < 0)
1157 return NULL;
1158
1159 break;
1160 }
1161
1162 case DNS_TYPE_OPENPGPKEY: {
1163 int n;
1164
1165 r = asprintf(&s, "%s %n",
1166 k,
1167 &n);
1168 if (r < 0)
1169 return NULL;
1170
1171 r = base64_append(&s, n,
1172 rr->generic.data, rr->generic.data_size,
1173 8, columns());
1174 if (r < 0)
1175 return NULL;
1176 break;
1177 }
1178
1179 default:
1180 t = hexmem(rr->generic.data, rr->generic.data_size);
1181 if (!t)
1182 return NULL;
1183
1184 /* Format as documented in RFC 3597, Section 5 */
1185 r = asprintf(&s, "%s \\# %zu %s", k, rr->generic.data_size, t);
1186 if (r < 0)
1187 return NULL;
1188 break;
1189 }
1190
1191 rr->to_string = s;
1192 return s;
1193 }
1194
1195 ssize_t dns_resource_record_payload(DnsResourceRecord *rr, void **out) {
1196 assert(rr);
1197 assert(out);
1198
1199 switch(rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1200 case DNS_TYPE_SRV:
1201 case DNS_TYPE_PTR:
1202 case DNS_TYPE_NS:
1203 case DNS_TYPE_CNAME:
1204 case DNS_TYPE_DNAME:
1205 case DNS_TYPE_HINFO:
1206 case DNS_TYPE_SPF:
1207 case DNS_TYPE_TXT:
1208 case DNS_TYPE_A:
1209 case DNS_TYPE_AAAA:
1210 case DNS_TYPE_SOA:
1211 case DNS_TYPE_MX:
1212 case DNS_TYPE_LOC:
1213 case DNS_TYPE_DS:
1214 case DNS_TYPE_DNSKEY:
1215 case DNS_TYPE_RRSIG:
1216 case DNS_TYPE_NSEC:
1217 case DNS_TYPE_NSEC3:
1218 return -EINVAL;
1219
1220 case DNS_TYPE_SSHFP:
1221 *out = rr->sshfp.fingerprint;
1222 return rr->sshfp.fingerprint_size;
1223
1224 case DNS_TYPE_TLSA:
1225 *out = rr->tlsa.data;
1226 return rr->tlsa.data_size;
1227
1228 case DNS_TYPE_OPENPGPKEY:
1229 default:
1230 *out = rr->generic.data;
1231 return rr->generic.data_size;
1232 }
1233 }
1234
1235 int dns_resource_record_to_wire_format(DnsResourceRecord *rr, bool canonical) {
1236
1237 DnsPacket packet = {
1238 .n_ref = 1,
1239 .protocol = DNS_PROTOCOL_DNS,
1240 .on_stack = true,
1241 .refuse_compression = true,
1242 .canonical_form = canonical,
1243 };
1244
1245 size_t start, rds;
1246 int r;
1247
1248 assert(rr);
1249
1250 /* Generates the RR in wire-format, optionally in the
1251 * canonical form as discussed in the DNSSEC RFC 4034, Section
1252 * 6.2. We allocate a throw-away DnsPacket object on the stack
1253 * here, because we need some book-keeping for memory
1254 * management, and can reuse the DnsPacket serializer, that
1255 * can generate the canonical form, too, but also knows label
1256 * compression and suchlike. */
1257
1258 if (rr->wire_format && rr->wire_format_canonical == canonical)
1259 return 0;
1260
1261 r = dns_packet_append_rr(&packet, rr, 0, &start, &rds);
1262 if (r < 0)
1263 return r;
1264
1265 assert(start == 0);
1266 assert(packet._data);
1267
1268 free(rr->wire_format);
1269 rr->wire_format = packet._data;
1270 rr->wire_format_size = packet.size;
1271 rr->wire_format_rdata_offset = rds;
1272 rr->wire_format_canonical = canonical;
1273
1274 packet._data = NULL;
1275 dns_packet_unref(&packet);
1276
1277 return 0;
1278 }
1279
1280 int dns_resource_record_signer(DnsResourceRecord *rr, const char **ret) {
1281 const char *n;
1282 int r;
1283
1284 assert(rr);
1285 assert(ret);
1286
1287 /* Returns the RRset's signer, if it is known. */
1288
1289 if (rr->n_skip_labels_signer == (unsigned) -1)
1290 return -ENODATA;
1291
1292 n = dns_resource_key_name(rr->key);
1293 r = dns_name_skip(n, rr->n_skip_labels_signer, &n);
1294 if (r < 0)
1295 return r;
1296 if (r == 0)
1297 return -EINVAL;
1298
1299 *ret = n;
1300 return 0;
1301 }
1302
1303 int dns_resource_record_source(DnsResourceRecord *rr, const char **ret) {
1304 const char *n;
1305 int r;
1306
1307 assert(rr);
1308 assert(ret);
1309
1310 /* Returns the RRset's synthesizing source, if it is known. */
1311
1312 if (rr->n_skip_labels_source == (unsigned) -1)
1313 return -ENODATA;
1314
1315 n = dns_resource_key_name(rr->key);
1316 r = dns_name_skip(n, rr->n_skip_labels_source, &n);
1317 if (r < 0)
1318 return r;
1319 if (r == 0)
1320 return -EINVAL;
1321
1322 *ret = n;
1323 return 0;
1324 }
1325
1326 int dns_resource_record_is_signer(DnsResourceRecord *rr, const char *zone) {
1327 const char *signer;
1328 int r;
1329
1330 assert(rr);
1331
1332 r = dns_resource_record_signer(rr, &signer);
1333 if (r < 0)
1334 return r;
1335
1336 return dns_name_equal(zone, signer);
1337 }
1338
1339 int dns_resource_record_is_synthetic(DnsResourceRecord *rr) {
1340 int r;
1341
1342 assert(rr);
1343
1344 /* Returns > 0 if the RR is generated from a wildcard, and is not the asterisk name itself */
1345
1346 if (rr->n_skip_labels_source == (unsigned) -1)
1347 return -ENODATA;
1348
1349 if (rr->n_skip_labels_source == 0)
1350 return 0;
1351
1352 if (rr->n_skip_labels_source > 1)
1353 return 1;
1354
1355 r = dns_name_startswith(dns_resource_key_name(rr->key), "*");
1356 if (r < 0)
1357 return r;
1358
1359 return !r;
1360 }
1361
1362 void dns_resource_record_hash_func(const void *i, struct siphash *state) {
1363 const DnsResourceRecord *rr = i;
1364
1365 assert(rr);
1366
1367 dns_resource_key_hash_func(rr->key, state);
1368
1369 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1370
1371 case DNS_TYPE_SRV:
1372 siphash24_compress(&rr->srv.priority, sizeof(rr->srv.priority), state);
1373 siphash24_compress(&rr->srv.weight, sizeof(rr->srv.weight), state);
1374 siphash24_compress(&rr->srv.port, sizeof(rr->srv.port), state);
1375 dns_name_hash_func(rr->srv.name, state);
1376 break;
1377
1378 case DNS_TYPE_PTR:
1379 case DNS_TYPE_NS:
1380 case DNS_TYPE_CNAME:
1381 case DNS_TYPE_DNAME:
1382 dns_name_hash_func(rr->ptr.name, state);
1383 break;
1384
1385 case DNS_TYPE_HINFO:
1386 string_hash_func(rr->hinfo.cpu, state);
1387 string_hash_func(rr->hinfo.os, state);
1388 break;
1389
1390 case DNS_TYPE_TXT:
1391 case DNS_TYPE_SPF: {
1392 DnsTxtItem *j;
1393
1394 LIST_FOREACH(items, j, rr->txt.items) {
1395 siphash24_compress(j->data, j->length, state);
1396
1397 /* Add an extra NUL byte, so that "a" followed by "b" doesn't result in the same hash as "ab"
1398 * followed by "". */
1399 siphash24_compress_byte(0, state);
1400 }
1401 break;
1402 }
1403
1404 case DNS_TYPE_A:
1405 siphash24_compress(&rr->a.in_addr, sizeof(rr->a.in_addr), state);
1406 break;
1407
1408 case DNS_TYPE_AAAA:
1409 siphash24_compress(&rr->aaaa.in6_addr, sizeof(rr->aaaa.in6_addr), state);
1410 break;
1411
1412 case DNS_TYPE_SOA:
1413 dns_name_hash_func(rr->soa.mname, state);
1414 dns_name_hash_func(rr->soa.rname, state);
1415 siphash24_compress(&rr->soa.serial, sizeof(rr->soa.serial), state);
1416 siphash24_compress(&rr->soa.refresh, sizeof(rr->soa.refresh), state);
1417 siphash24_compress(&rr->soa.retry, sizeof(rr->soa.retry), state);
1418 siphash24_compress(&rr->soa.expire, sizeof(rr->soa.expire), state);
1419 siphash24_compress(&rr->soa.minimum, sizeof(rr->soa.minimum), state);
1420 break;
1421
1422 case DNS_TYPE_MX:
1423 siphash24_compress(&rr->mx.priority, sizeof(rr->mx.priority), state);
1424 dns_name_hash_func(rr->mx.exchange, state);
1425 break;
1426
1427 case DNS_TYPE_LOC:
1428 siphash24_compress(&rr->loc.version, sizeof(rr->loc.version), state);
1429 siphash24_compress(&rr->loc.size, sizeof(rr->loc.size), state);
1430 siphash24_compress(&rr->loc.horiz_pre, sizeof(rr->loc.horiz_pre), state);
1431 siphash24_compress(&rr->loc.vert_pre, sizeof(rr->loc.vert_pre), state);
1432 siphash24_compress(&rr->loc.latitude, sizeof(rr->loc.latitude), state);
1433 siphash24_compress(&rr->loc.longitude, sizeof(rr->loc.longitude), state);
1434 siphash24_compress(&rr->loc.altitude, sizeof(rr->loc.altitude), state);
1435 break;
1436
1437 case DNS_TYPE_SSHFP:
1438 siphash24_compress(&rr->sshfp.algorithm, sizeof(rr->sshfp.algorithm), state);
1439 siphash24_compress(&rr->sshfp.fptype, sizeof(rr->sshfp.fptype), state);
1440 siphash24_compress(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size, state);
1441 break;
1442
1443 case DNS_TYPE_DNSKEY:
1444 siphash24_compress(&rr->dnskey.flags, sizeof(rr->dnskey.flags), state);
1445 siphash24_compress(&rr->dnskey.protocol, sizeof(rr->dnskey.protocol), state);
1446 siphash24_compress(&rr->dnskey.algorithm, sizeof(rr->dnskey.algorithm), state);
1447 siphash24_compress(rr->dnskey.key, rr->dnskey.key_size, state);
1448 break;
1449
1450 case DNS_TYPE_RRSIG:
1451 siphash24_compress(&rr->rrsig.type_covered, sizeof(rr->rrsig.type_covered), state);
1452 siphash24_compress(&rr->rrsig.algorithm, sizeof(rr->rrsig.algorithm), state);
1453 siphash24_compress(&rr->rrsig.labels, sizeof(rr->rrsig.labels), state);
1454 siphash24_compress(&rr->rrsig.original_ttl, sizeof(rr->rrsig.original_ttl), state);
1455 siphash24_compress(&rr->rrsig.expiration, sizeof(rr->rrsig.expiration), state);
1456 siphash24_compress(&rr->rrsig.inception, sizeof(rr->rrsig.inception), state);
1457 siphash24_compress(&rr->rrsig.key_tag, sizeof(rr->rrsig.key_tag), state);
1458 dns_name_hash_func(rr->rrsig.signer, state);
1459 siphash24_compress(rr->rrsig.signature, rr->rrsig.signature_size, state);
1460 break;
1461
1462 case DNS_TYPE_NSEC:
1463 dns_name_hash_func(rr->nsec.next_domain_name, state);
1464 /* FIXME: we leave out the type bitmap here. Hash
1465 * would be better if we'd take it into account
1466 * too. */
1467 break;
1468
1469 case DNS_TYPE_DS:
1470 siphash24_compress(&rr->ds.key_tag, sizeof(rr->ds.key_tag), state);
1471 siphash24_compress(&rr->ds.algorithm, sizeof(rr->ds.algorithm), state);
1472 siphash24_compress(&rr->ds.digest_type, sizeof(rr->ds.digest_type), state);
1473 siphash24_compress(rr->ds.digest, rr->ds.digest_size, state);
1474 break;
1475
1476 case DNS_TYPE_NSEC3:
1477 siphash24_compress(&rr->nsec3.algorithm, sizeof(rr->nsec3.algorithm), state);
1478 siphash24_compress(&rr->nsec3.flags, sizeof(rr->nsec3.flags), state);
1479 siphash24_compress(&rr->nsec3.iterations, sizeof(rr->nsec3.iterations), state);
1480 siphash24_compress(rr->nsec3.salt, rr->nsec3.salt_size, state);
1481 siphash24_compress(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, state);
1482 /* FIXME: We leave the bitmaps out */
1483 break;
1484
1485 case DNS_TYPE_TLSA:
1486 siphash24_compress(&rr->tlsa.cert_usage, sizeof(rr->tlsa.cert_usage), state);
1487 siphash24_compress(&rr->tlsa.selector, sizeof(rr->tlsa.selector), state);
1488 siphash24_compress(&rr->tlsa.matching_type, sizeof(rr->tlsa.matching_type), state);
1489 siphash24_compress(rr->tlsa.data, rr->tlsa.data_size, state);
1490 break;
1491
1492 case DNS_TYPE_CAA:
1493 siphash24_compress(&rr->caa.flags, sizeof(rr->caa.flags), state);
1494 string_hash_func(rr->caa.tag, state);
1495 siphash24_compress(rr->caa.value, rr->caa.value_size, state);
1496 break;
1497
1498 case DNS_TYPE_OPENPGPKEY:
1499 default:
1500 siphash24_compress(rr->generic.data, rr->generic.data_size, state);
1501 break;
1502 }
1503 }
1504
1505 static int dns_resource_record_compare_func(const void *a, const void *b) {
1506 const DnsResourceRecord *x = a, *y = b;
1507 int ret;
1508
1509 ret = dns_resource_key_compare_func(x->key, y->key);
1510 if (ret != 0)
1511 return ret;
1512
1513 if (dns_resource_record_equal(x, y))
1514 return 0;
1515
1516 /* We still use CMP() here, even though don't implement proper
1517 * ordering, since the hashtable doesn't need ordering anyway. */
1518 return CMP(x, y);
1519 }
1520
1521 const struct hash_ops dns_resource_record_hash_ops = {
1522 .hash = dns_resource_record_hash_func,
1523 .compare = dns_resource_record_compare_func,
1524 };
1525
1526 DnsResourceRecord *dns_resource_record_copy(DnsResourceRecord *rr) {
1527 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *copy = NULL;
1528 DnsResourceRecord *t;
1529
1530 assert(rr);
1531
1532 copy = dns_resource_record_new(rr->key);
1533 if (!copy)
1534 return NULL;
1535
1536 copy->ttl = rr->ttl;
1537 copy->expiry = rr->expiry;
1538 copy->n_skip_labels_signer = rr->n_skip_labels_signer;
1539 copy->n_skip_labels_source = rr->n_skip_labels_source;
1540 copy->unparseable = rr->unparseable;
1541
1542 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1543
1544 case DNS_TYPE_SRV:
1545 copy->srv.priority = rr->srv.priority;
1546 copy->srv.weight = rr->srv.weight;
1547 copy->srv.port = rr->srv.port;
1548 copy->srv.name = strdup(rr->srv.name);
1549 if (!copy->srv.name)
1550 return NULL;
1551 break;
1552
1553 case DNS_TYPE_PTR:
1554 case DNS_TYPE_NS:
1555 case DNS_TYPE_CNAME:
1556 case DNS_TYPE_DNAME:
1557 copy->ptr.name = strdup(rr->ptr.name);
1558 if (!copy->ptr.name)
1559 return NULL;
1560 break;
1561
1562 case DNS_TYPE_HINFO:
1563 copy->hinfo.cpu = strdup(rr->hinfo.cpu);
1564 if (!copy->hinfo.cpu)
1565 return NULL;
1566
1567 copy->hinfo.os = strdup(rr->hinfo.os);
1568 if (!copy->hinfo.os)
1569 return NULL;
1570 break;
1571
1572 case DNS_TYPE_TXT:
1573 case DNS_TYPE_SPF:
1574 copy->txt.items = dns_txt_item_copy(rr->txt.items);
1575 if (!copy->txt.items)
1576 return NULL;
1577 break;
1578
1579 case DNS_TYPE_A:
1580 copy->a = rr->a;
1581 break;
1582
1583 case DNS_TYPE_AAAA:
1584 copy->aaaa = rr->aaaa;
1585 break;
1586
1587 case DNS_TYPE_SOA:
1588 copy->soa.mname = strdup(rr->soa.mname);
1589 if (!copy->soa.mname)
1590 return NULL;
1591 copy->soa.rname = strdup(rr->soa.rname);
1592 if (!copy->soa.rname)
1593 return NULL;
1594 copy->soa.serial = rr->soa.serial;
1595 copy->soa.refresh = rr->soa.refresh;
1596 copy->soa.retry = rr->soa.retry;
1597 copy->soa.expire = rr->soa.expire;
1598 copy->soa.minimum = rr->soa.minimum;
1599 break;
1600
1601 case DNS_TYPE_MX:
1602 copy->mx.priority = rr->mx.priority;
1603 copy->mx.exchange = strdup(rr->mx.exchange);
1604 if (!copy->mx.exchange)
1605 return NULL;
1606 break;
1607
1608 case DNS_TYPE_LOC:
1609 copy->loc = rr->loc;
1610 break;
1611
1612 case DNS_TYPE_SSHFP:
1613 copy->sshfp.algorithm = rr->sshfp.algorithm;
1614 copy->sshfp.fptype = rr->sshfp.fptype;
1615 copy->sshfp.fingerprint = memdup(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1616 if (!copy->sshfp.fingerprint)
1617 return NULL;
1618 copy->sshfp.fingerprint_size = rr->sshfp.fingerprint_size;
1619 break;
1620
1621 case DNS_TYPE_DNSKEY:
1622 copy->dnskey.flags = rr->dnskey.flags;
1623 copy->dnskey.protocol = rr->dnskey.protocol;
1624 copy->dnskey.algorithm = rr->dnskey.algorithm;
1625 copy->dnskey.key = memdup(rr->dnskey.key, rr->dnskey.key_size);
1626 if (!copy->dnskey.key)
1627 return NULL;
1628 copy->dnskey.key_size = rr->dnskey.key_size;
1629 break;
1630
1631 case DNS_TYPE_RRSIG:
1632 copy->rrsig.type_covered = rr->rrsig.type_covered;
1633 copy->rrsig.algorithm = rr->rrsig.algorithm;
1634 copy->rrsig.labels = rr->rrsig.labels;
1635 copy->rrsig.original_ttl = rr->rrsig.original_ttl;
1636 copy->rrsig.expiration = rr->rrsig.expiration;
1637 copy->rrsig.inception = rr->rrsig.inception;
1638 copy->rrsig.key_tag = rr->rrsig.key_tag;
1639 copy->rrsig.signer = strdup(rr->rrsig.signer);
1640 if (!copy->rrsig.signer)
1641 return NULL;
1642 copy->rrsig.signature = memdup(rr->rrsig.signature, rr->rrsig.signature_size);
1643 if (!copy->rrsig.signature)
1644 return NULL;
1645 copy->rrsig.signature_size = rr->rrsig.signature_size;
1646 break;
1647
1648 case DNS_TYPE_NSEC:
1649 copy->nsec.next_domain_name = strdup(rr->nsec.next_domain_name);
1650 if (!copy->nsec.next_domain_name)
1651 return NULL;
1652 copy->nsec.types = bitmap_copy(rr->nsec.types);
1653 if (!copy->nsec.types)
1654 return NULL;
1655 break;
1656
1657 case DNS_TYPE_DS:
1658 copy->ds.key_tag = rr->ds.key_tag;
1659 copy->ds.algorithm = rr->ds.algorithm;
1660 copy->ds.digest_type = rr->ds.digest_type;
1661 copy->ds.digest = memdup(rr->ds.digest, rr->ds.digest_size);
1662 if (!copy->ds.digest)
1663 return NULL;
1664 copy->ds.digest_size = rr->ds.digest_size;
1665 break;
1666
1667 case DNS_TYPE_NSEC3:
1668 copy->nsec3.algorithm = rr->nsec3.algorithm;
1669 copy->nsec3.flags = rr->nsec3.flags;
1670 copy->nsec3.iterations = rr->nsec3.iterations;
1671 copy->nsec3.salt = memdup(rr->nsec3.salt, rr->nsec3.salt_size);
1672 if (!copy->nsec3.salt)
1673 return NULL;
1674 copy->nsec3.salt_size = rr->nsec3.salt_size;
1675 copy->nsec3.next_hashed_name = memdup(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size);
1676 if (!copy->nsec3.next_hashed_name_size)
1677 return NULL;
1678 copy->nsec3.next_hashed_name_size = rr->nsec3.next_hashed_name_size;
1679 copy->nsec3.types = bitmap_copy(rr->nsec3.types);
1680 if (!copy->nsec3.types)
1681 return NULL;
1682 break;
1683
1684 case DNS_TYPE_TLSA:
1685 copy->tlsa.cert_usage = rr->tlsa.cert_usage;
1686 copy->tlsa.selector = rr->tlsa.selector;
1687 copy->tlsa.matching_type = rr->tlsa.matching_type;
1688 copy->tlsa.data = memdup(rr->tlsa.data, rr->tlsa.data_size);
1689 if (!copy->tlsa.data)
1690 return NULL;
1691 copy->tlsa.data_size = rr->tlsa.data_size;
1692 break;
1693
1694 case DNS_TYPE_CAA:
1695 copy->caa.flags = rr->caa.flags;
1696 copy->caa.tag = strdup(rr->caa.tag);
1697 if (!copy->caa.tag)
1698 return NULL;
1699 copy->caa.value = memdup(rr->caa.value, rr->caa.value_size);
1700 if (!copy->caa.value)
1701 return NULL;
1702 copy->caa.value_size = rr->caa.value_size;
1703 break;
1704
1705 case DNS_TYPE_OPT:
1706 default:
1707 copy->generic.data = memdup(rr->generic.data, rr->generic.data_size);
1708 if (!copy->generic.data)
1709 return NULL;
1710 copy->generic.data_size = rr->generic.data_size;
1711 break;
1712 }
1713
1714 t = TAKE_PTR(copy);
1715
1716 return t;
1717 }
1718
1719 int dns_resource_record_clamp_ttl(DnsResourceRecord **rr, uint32_t max_ttl) {
1720 DnsResourceRecord *old_rr, *new_rr;
1721 uint32_t new_ttl;
1722
1723 assert(rr);
1724 old_rr = *rr;
1725
1726 if (old_rr->key->type == DNS_TYPE_OPT)
1727 return -EINVAL;
1728
1729 new_ttl = MIN(old_rr->ttl, max_ttl);
1730 if (new_ttl == old_rr->ttl)
1731 return 0;
1732
1733 if (old_rr->n_ref == 1) {
1734 /* Patch in place */
1735 old_rr->ttl = new_ttl;
1736 return 1;
1737 }
1738
1739 new_rr = dns_resource_record_copy(old_rr);
1740 if (!new_rr)
1741 return -ENOMEM;
1742
1743 new_rr->ttl = new_ttl;
1744
1745 dns_resource_record_unref(*rr);
1746 *rr = new_rr;
1747
1748 return 1;
1749 }
1750
1751 DnsTxtItem *dns_txt_item_free_all(DnsTxtItem *i) {
1752 DnsTxtItem *n;
1753
1754 if (!i)
1755 return NULL;
1756
1757 n = i->items_next;
1758
1759 free(i);
1760 return dns_txt_item_free_all(n);
1761 }
1762
1763 bool dns_txt_item_equal(DnsTxtItem *a, DnsTxtItem *b) {
1764
1765 if (a == b)
1766 return true;
1767
1768 if (!a != !b)
1769 return false;
1770
1771 if (!a)
1772 return true;
1773
1774 if (a->length != b->length)
1775 return false;
1776
1777 if (memcmp(a->data, b->data, a->length) != 0)
1778 return false;
1779
1780 return dns_txt_item_equal(a->items_next, b->items_next);
1781 }
1782
1783 DnsTxtItem *dns_txt_item_copy(DnsTxtItem *first) {
1784 DnsTxtItem *i, *copy = NULL, *end = NULL;
1785
1786 LIST_FOREACH(items, i, first) {
1787 DnsTxtItem *j;
1788
1789 j = memdup(i, offsetof(DnsTxtItem, data) + i->length + 1);
1790 if (!j) {
1791 dns_txt_item_free_all(copy);
1792 return NULL;
1793 }
1794
1795 LIST_INSERT_AFTER(items, copy, end, j);
1796 end = j;
1797 }
1798
1799 return copy;
1800 }
1801
1802 int dns_txt_item_new_empty(DnsTxtItem **ret) {
1803 DnsTxtItem *i;
1804
1805 /* RFC 6763, section 6.1 suggests to treat
1806 * empty TXT RRs as equivalent to a TXT record
1807 * with a single empty string. */
1808
1809 i = malloc0(offsetof(DnsTxtItem, data) + 1); /* for safety reasons we add an extra NUL byte */
1810 if (!i)
1811 return -ENOMEM;
1812
1813 *ret = i;
1814
1815 return 0;
1816 }
1817
1818 static const char* const dnssec_algorithm_table[_DNSSEC_ALGORITHM_MAX_DEFINED] = {
1819 /* Mnemonics as listed on https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml */
1820 [DNSSEC_ALGORITHM_RSAMD5] = "RSAMD5",
1821 [DNSSEC_ALGORITHM_DH] = "DH",
1822 [DNSSEC_ALGORITHM_DSA] = "DSA",
1823 [DNSSEC_ALGORITHM_ECC] = "ECC",
1824 [DNSSEC_ALGORITHM_RSASHA1] = "RSASHA1",
1825 [DNSSEC_ALGORITHM_DSA_NSEC3_SHA1] = "DSA-NSEC3-SHA1",
1826 [DNSSEC_ALGORITHM_RSASHA1_NSEC3_SHA1] = "RSASHA1-NSEC3-SHA1",
1827 [DNSSEC_ALGORITHM_RSASHA256] = "RSASHA256",
1828 [DNSSEC_ALGORITHM_RSASHA512] = "RSASHA512",
1829 [DNSSEC_ALGORITHM_ECC_GOST] = "ECC-GOST",
1830 [DNSSEC_ALGORITHM_ECDSAP256SHA256] = "ECDSAP256SHA256",
1831 [DNSSEC_ALGORITHM_ECDSAP384SHA384] = "ECDSAP384SHA384",
1832 [DNSSEC_ALGORITHM_ED25519] = "ED25519",
1833 [DNSSEC_ALGORITHM_ED448] = "ED448",
1834 [DNSSEC_ALGORITHM_INDIRECT] = "INDIRECT",
1835 [DNSSEC_ALGORITHM_PRIVATEDNS] = "PRIVATEDNS",
1836 [DNSSEC_ALGORITHM_PRIVATEOID] = "PRIVATEOID",
1837 };
1838 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_algorithm, int, 255);
1839
1840 static const char* const dnssec_digest_table[_DNSSEC_DIGEST_MAX_DEFINED] = {
1841 /* Names as listed on https://www.iana.org/assignments/ds-rr-types/ds-rr-types.xhtml */
1842 [DNSSEC_DIGEST_SHA1] = "SHA-1",
1843 [DNSSEC_DIGEST_SHA256] = "SHA-256",
1844 [DNSSEC_DIGEST_GOST_R_34_11_94] = "GOST_R_34.11-94",
1845 [DNSSEC_DIGEST_SHA384] = "SHA-384",
1846 };
1847 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_digest, int, 255);