]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/resolve/resolved-dns-rr.c
Merge pull request #10994 from poettering/sd-bus-tweaks
[thirdparty/systemd.git] / src / resolve / resolved-dns-rr.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <math.h>
4
5 #include "alloc-util.h"
6 #include "dns-domain.h"
7 #include "dns-type.h"
8 #include "escape.h"
9 #include "hexdecoct.h"
10 #include "resolved-dns-dnssec.h"
11 #include "resolved-dns-packet.h"
12 #include "resolved-dns-rr.h"
13 #include "string-table.h"
14 #include "string-util.h"
15 #include "strv.h"
16 #include "terminal-util.h"
17
18 DnsResourceKey* dns_resource_key_new(uint16_t class, uint16_t type, const char *name) {
19 DnsResourceKey *k;
20 size_t l;
21
22 assert(name);
23
24 l = strlen(name);
25 k = malloc0(sizeof(DnsResourceKey) + l + 1);
26 if (!k)
27 return NULL;
28
29 k->n_ref = 1;
30 k->class = class;
31 k->type = type;
32
33 strcpy((char*) k + sizeof(DnsResourceKey), name);
34
35 return k;
36 }
37
38 DnsResourceKey* dns_resource_key_new_redirect(const DnsResourceKey *key, const DnsResourceRecord *cname) {
39 int r;
40
41 assert(key);
42 assert(cname);
43
44 assert(IN_SET(cname->key->type, DNS_TYPE_CNAME, DNS_TYPE_DNAME));
45
46 if (cname->key->type == DNS_TYPE_CNAME)
47 return dns_resource_key_new(key->class, key->type, cname->cname.name);
48 else {
49 DnsResourceKey *k;
50 char *destination = NULL;
51
52 r = dns_name_change_suffix(dns_resource_key_name(key), dns_resource_key_name(cname->key), cname->dname.name, &destination);
53 if (r < 0)
54 return NULL;
55 if (r == 0)
56 return dns_resource_key_ref((DnsResourceKey*) key);
57
58 k = dns_resource_key_new_consume(key->class, key->type, destination);
59 if (!k)
60 return mfree(destination);
61
62 return k;
63 }
64 }
65
66 int dns_resource_key_new_append_suffix(DnsResourceKey **ret, DnsResourceKey *key, char *name) {
67 DnsResourceKey *new_key;
68 char *joined;
69 int r;
70
71 assert(ret);
72 assert(key);
73 assert(name);
74
75 if (dns_name_is_root(name)) {
76 *ret = dns_resource_key_ref(key);
77 return 0;
78 }
79
80 r = dns_name_concat(dns_resource_key_name(key), name, &joined);
81 if (r < 0)
82 return r;
83
84 new_key = dns_resource_key_new_consume(key->class, key->type, joined);
85 if (!new_key) {
86 free(joined);
87 return -ENOMEM;
88 }
89
90 *ret = new_key;
91 return 0;
92 }
93
94 DnsResourceKey* dns_resource_key_new_consume(uint16_t class, uint16_t type, char *name) {
95 DnsResourceKey *k;
96
97 assert(name);
98
99 k = new0(DnsResourceKey, 1);
100 if (!k)
101 return NULL;
102
103 k->n_ref = 1;
104 k->class = class;
105 k->type = type;
106 k->_name = name;
107
108 return k;
109 }
110
111 DnsResourceKey* dns_resource_key_ref(DnsResourceKey *k) {
112
113 if (!k)
114 return NULL;
115
116 /* Static/const keys created with DNS_RESOURCE_KEY_CONST will
117 * set this to -1, they should not be reffed/unreffed */
118 assert(k->n_ref != (unsigned) -1);
119
120 assert(k->n_ref > 0);
121 k->n_ref++;
122
123 return k;
124 }
125
126 DnsResourceKey* dns_resource_key_unref(DnsResourceKey *k) {
127 if (!k)
128 return NULL;
129
130 assert(k->n_ref != (unsigned) -1);
131 assert(k->n_ref > 0);
132
133 if (k->n_ref == 1) {
134 free(k->_name);
135 free(k);
136 } else
137 k->n_ref--;
138
139 return NULL;
140 }
141
142 const char* dns_resource_key_name(const DnsResourceKey *key) {
143 const char *name;
144
145 if (!key)
146 return NULL;
147
148 if (key->_name)
149 name = key->_name;
150 else
151 name = (char*) key + sizeof(DnsResourceKey);
152
153 if (dns_name_is_root(name))
154 return ".";
155 else
156 return name;
157 }
158
159 bool dns_resource_key_is_address(const DnsResourceKey *key) {
160 assert(key);
161
162 /* Check if this is an A or AAAA resource key */
163
164 return key->class == DNS_CLASS_IN && IN_SET(key->type, DNS_TYPE_A, DNS_TYPE_AAAA);
165 }
166
167 bool dns_resource_key_is_dnssd_ptr(const DnsResourceKey *key) {
168 assert(key);
169
170 /* Check if this is a PTR resource key used in
171 Service Instance Enumeration as described in RFC6763 p4.1. */
172
173 if (key->type != DNS_TYPE_PTR)
174 return false;
175
176 return dns_name_endswith(dns_resource_key_name(key), "_tcp.local") ||
177 dns_name_endswith(dns_resource_key_name(key), "_udp.local");
178 }
179
180 int dns_resource_key_equal(const DnsResourceKey *a, const DnsResourceKey *b) {
181 int r;
182
183 if (a == b)
184 return 1;
185
186 r = dns_name_equal(dns_resource_key_name(a), dns_resource_key_name(b));
187 if (r <= 0)
188 return r;
189
190 if (a->class != b->class)
191 return 0;
192
193 if (a->type != b->type)
194 return 0;
195
196 return 1;
197 }
198
199 int dns_resource_key_match_rr(const DnsResourceKey *key, DnsResourceRecord *rr, const char *search_domain) {
200 int r;
201
202 assert(key);
203 assert(rr);
204
205 if (key == rr->key)
206 return 1;
207
208 /* Checks if an rr matches the specified key. If a search
209 * domain is specified, it will also be checked if the key
210 * with the search domain suffixed might match the RR. */
211
212 if (rr->key->class != key->class && key->class != DNS_CLASS_ANY)
213 return 0;
214
215 if (rr->key->type != key->type && key->type != DNS_TYPE_ANY)
216 return 0;
217
218 r = dns_name_equal(dns_resource_key_name(rr->key), dns_resource_key_name(key));
219 if (r != 0)
220 return r;
221
222 if (search_domain) {
223 _cleanup_free_ char *joined = NULL;
224
225 r = dns_name_concat(dns_resource_key_name(key), search_domain, &joined);
226 if (r < 0)
227 return r;
228
229 return dns_name_equal(dns_resource_key_name(rr->key), joined);
230 }
231
232 return 0;
233 }
234
235 int dns_resource_key_match_cname_or_dname(const DnsResourceKey *key, const DnsResourceKey *cname, const char *search_domain) {
236 int r;
237
238 assert(key);
239 assert(cname);
240
241 if (cname->class != key->class && key->class != DNS_CLASS_ANY)
242 return 0;
243
244 if (cname->type == DNS_TYPE_CNAME)
245 r = dns_name_equal(dns_resource_key_name(key), dns_resource_key_name(cname));
246 else if (cname->type == DNS_TYPE_DNAME)
247 r = dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(cname));
248 else
249 return 0;
250
251 if (r != 0)
252 return r;
253
254 if (search_domain) {
255 _cleanup_free_ char *joined = NULL;
256
257 r = dns_name_concat(dns_resource_key_name(key), search_domain, &joined);
258 if (r < 0)
259 return r;
260
261 if (cname->type == DNS_TYPE_CNAME)
262 return dns_name_equal(joined, dns_resource_key_name(cname));
263 else if (cname->type == DNS_TYPE_DNAME)
264 return dns_name_endswith(joined, dns_resource_key_name(cname));
265 }
266
267 return 0;
268 }
269
270 int dns_resource_key_match_soa(const DnsResourceKey *key, const DnsResourceKey *soa) {
271 assert(soa);
272 assert(key);
273
274 /* Checks whether 'soa' is a SOA record for the specified key. */
275
276 if (soa->class != key->class)
277 return 0;
278
279 if (soa->type != DNS_TYPE_SOA)
280 return 0;
281
282 return dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(soa));
283 }
284
285 static void dns_resource_key_hash_func(const DnsResourceKey *k, struct siphash *state) {
286 assert(k);
287
288 dns_name_hash_func(dns_resource_key_name(k), state);
289 siphash24_compress(&k->class, sizeof(k->class), state);
290 siphash24_compress(&k->type, sizeof(k->type), state);
291 }
292
293 static int dns_resource_key_compare_func(const DnsResourceKey *x, const DnsResourceKey *y) {
294 int ret;
295
296 ret = dns_name_compare_func(dns_resource_key_name(x), dns_resource_key_name(y));
297 if (ret != 0)
298 return ret;
299
300 ret = CMP(x->type, y->type);
301 if (ret != 0)
302 return ret;
303
304 ret = CMP(x->class, y->class);
305 if (ret != 0)
306 return ret;
307
308 return 0;
309 }
310
311 DEFINE_HASH_OPS(dns_resource_key_hash_ops, DnsResourceKey, dns_resource_key_hash_func, dns_resource_key_compare_func);
312
313 char* dns_resource_key_to_string(const DnsResourceKey *key, char *buf, size_t buf_size) {
314 const char *c, *t;
315 char *ans = buf;
316
317 /* If we cannot convert the CLASS/TYPE into a known string,
318 use the format recommended by RFC 3597, Section 5. */
319
320 c = dns_class_to_string(key->class);
321 t = dns_type_to_string(key->type);
322
323 snprintf(buf, buf_size, "%s %s%s%.0u %s%s%.0u",
324 dns_resource_key_name(key),
325 strempty(c), c ? "" : "CLASS", c ? 0 : key->class,
326 strempty(t), t ? "" : "TYPE", t ? 0 : key->type);
327
328 return ans;
329 }
330
331 bool dns_resource_key_reduce(DnsResourceKey **a, DnsResourceKey **b) {
332 assert(a);
333 assert(b);
334
335 /* Try to replace one RR key by another if they are identical, thus saving a bit of memory. Note that we do
336 * this only for RR keys, not for RRs themselves, as they carry a lot of additional metadata (where they come
337 * from, validity data, and suchlike), and cannot be replaced so easily by other RRs that have the same
338 * superficial data. */
339
340 if (!*a)
341 return false;
342 if (!*b)
343 return false;
344
345 /* We refuse merging const keys */
346 if ((*a)->n_ref == (unsigned) -1)
347 return false;
348 if ((*b)->n_ref == (unsigned) -1)
349 return false;
350
351 /* Already the same? */
352 if (*a == *b)
353 return true;
354
355 /* Are they really identical? */
356 if (dns_resource_key_equal(*a, *b) <= 0)
357 return false;
358
359 /* Keep the one which already has more references. */
360 if ((*a)->n_ref > (*b)->n_ref) {
361 dns_resource_key_unref(*b);
362 *b = dns_resource_key_ref(*a);
363 } else {
364 dns_resource_key_unref(*a);
365 *a = dns_resource_key_ref(*b);
366 }
367
368 return true;
369 }
370
371 DnsResourceRecord* dns_resource_record_new(DnsResourceKey *key) {
372 DnsResourceRecord *rr;
373
374 rr = new0(DnsResourceRecord, 1);
375 if (!rr)
376 return NULL;
377
378 rr->n_ref = 1;
379 rr->key = dns_resource_key_ref(key);
380 rr->expiry = USEC_INFINITY;
381 rr->n_skip_labels_signer = rr->n_skip_labels_source = (unsigned) -1;
382
383 return rr;
384 }
385
386 DnsResourceRecord* dns_resource_record_new_full(uint16_t class, uint16_t type, const char *name) {
387 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
388
389 key = dns_resource_key_new(class, type, name);
390 if (!key)
391 return NULL;
392
393 return dns_resource_record_new(key);
394 }
395
396 static DnsResourceRecord* dns_resource_record_free(DnsResourceRecord *rr) {
397 assert(rr);
398
399 if (rr->key) {
400 switch(rr->key->type) {
401
402 case DNS_TYPE_SRV:
403 free(rr->srv.name);
404 break;
405
406 case DNS_TYPE_PTR:
407 case DNS_TYPE_NS:
408 case DNS_TYPE_CNAME:
409 case DNS_TYPE_DNAME:
410 free(rr->ptr.name);
411 break;
412
413 case DNS_TYPE_HINFO:
414 free(rr->hinfo.cpu);
415 free(rr->hinfo.os);
416 break;
417
418 case DNS_TYPE_TXT:
419 case DNS_TYPE_SPF:
420 dns_txt_item_free_all(rr->txt.items);
421 break;
422
423 case DNS_TYPE_SOA:
424 free(rr->soa.mname);
425 free(rr->soa.rname);
426 break;
427
428 case DNS_TYPE_MX:
429 free(rr->mx.exchange);
430 break;
431
432 case DNS_TYPE_DS:
433 free(rr->ds.digest);
434 break;
435
436 case DNS_TYPE_SSHFP:
437 free(rr->sshfp.fingerprint);
438 break;
439
440 case DNS_TYPE_DNSKEY:
441 free(rr->dnskey.key);
442 break;
443
444 case DNS_TYPE_RRSIG:
445 free(rr->rrsig.signer);
446 free(rr->rrsig.signature);
447 break;
448
449 case DNS_TYPE_NSEC:
450 free(rr->nsec.next_domain_name);
451 bitmap_free(rr->nsec.types);
452 break;
453
454 case DNS_TYPE_NSEC3:
455 free(rr->nsec3.next_hashed_name);
456 free(rr->nsec3.salt);
457 bitmap_free(rr->nsec3.types);
458 break;
459
460 case DNS_TYPE_LOC:
461 case DNS_TYPE_A:
462 case DNS_TYPE_AAAA:
463 break;
464
465 case DNS_TYPE_TLSA:
466 free(rr->tlsa.data);
467 break;
468
469 case DNS_TYPE_CAA:
470 free(rr->caa.tag);
471 free(rr->caa.value);
472 break;
473
474 case DNS_TYPE_OPENPGPKEY:
475 default:
476 if (!rr->unparseable)
477 free(rr->generic.data);
478 }
479
480 if (rr->unparseable)
481 free(rr->generic.data);
482
483 free(rr->wire_format);
484 dns_resource_key_unref(rr->key);
485 }
486
487 free(rr->to_string);
488 return mfree(rr);
489 }
490
491 DEFINE_TRIVIAL_REF_UNREF_FUNC(DnsResourceRecord, dns_resource_record, dns_resource_record_free);
492
493 int dns_resource_record_new_reverse(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *hostname) {
494 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
495 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL;
496 _cleanup_free_ char *ptr = NULL;
497 int r;
498
499 assert(ret);
500 assert(address);
501 assert(hostname);
502
503 r = dns_name_reverse(family, address, &ptr);
504 if (r < 0)
505 return r;
506
507 key = dns_resource_key_new_consume(DNS_CLASS_IN, DNS_TYPE_PTR, ptr);
508 if (!key)
509 return -ENOMEM;
510
511 ptr = NULL;
512
513 rr = dns_resource_record_new(key);
514 if (!rr)
515 return -ENOMEM;
516
517 rr->ptr.name = strdup(hostname);
518 if (!rr->ptr.name)
519 return -ENOMEM;
520
521 *ret = TAKE_PTR(rr);
522
523 return 0;
524 }
525
526 int dns_resource_record_new_address(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *name) {
527 DnsResourceRecord *rr;
528
529 assert(ret);
530 assert(address);
531 assert(family);
532
533 if (family == AF_INET) {
534
535 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_A, name);
536 if (!rr)
537 return -ENOMEM;
538
539 rr->a.in_addr = address->in;
540
541 } else if (family == AF_INET6) {
542
543 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_AAAA, name);
544 if (!rr)
545 return -ENOMEM;
546
547 rr->aaaa.in6_addr = address->in6;
548 } else
549 return -EAFNOSUPPORT;
550
551 *ret = rr;
552
553 return 0;
554 }
555
556 #define FIELD_EQUAL(a, b, field) \
557 ((a).field ## _size == (b).field ## _size && \
558 memcmp((a).field, (b).field, (a).field ## _size) == 0)
559
560 int dns_resource_record_equal(const DnsResourceRecord *a, const DnsResourceRecord *b) {
561 int r;
562
563 assert(a);
564 assert(b);
565
566 if (a == b)
567 return 1;
568
569 r = dns_resource_key_equal(a->key, b->key);
570 if (r <= 0)
571 return r;
572
573 if (a->unparseable != b->unparseable)
574 return 0;
575
576 switch (a->unparseable ? _DNS_TYPE_INVALID : a->key->type) {
577
578 case DNS_TYPE_SRV:
579 r = dns_name_equal(a->srv.name, b->srv.name);
580 if (r <= 0)
581 return r;
582
583 return a->srv.priority == b->srv.priority &&
584 a->srv.weight == b->srv.weight &&
585 a->srv.port == b->srv.port;
586
587 case DNS_TYPE_PTR:
588 case DNS_TYPE_NS:
589 case DNS_TYPE_CNAME:
590 case DNS_TYPE_DNAME:
591 return dns_name_equal(a->ptr.name, b->ptr.name);
592
593 case DNS_TYPE_HINFO:
594 return strcaseeq(a->hinfo.cpu, b->hinfo.cpu) &&
595 strcaseeq(a->hinfo.os, b->hinfo.os);
596
597 case DNS_TYPE_SPF: /* exactly the same as TXT */
598 case DNS_TYPE_TXT:
599 return dns_txt_item_equal(a->txt.items, b->txt.items);
600
601 case DNS_TYPE_A:
602 return memcmp(&a->a.in_addr, &b->a.in_addr, sizeof(struct in_addr)) == 0;
603
604 case DNS_TYPE_AAAA:
605 return memcmp(&a->aaaa.in6_addr, &b->aaaa.in6_addr, sizeof(struct in6_addr)) == 0;
606
607 case DNS_TYPE_SOA:
608 r = dns_name_equal(a->soa.mname, b->soa.mname);
609 if (r <= 0)
610 return r;
611 r = dns_name_equal(a->soa.rname, b->soa.rname);
612 if (r <= 0)
613 return r;
614
615 return a->soa.serial == b->soa.serial &&
616 a->soa.refresh == b->soa.refresh &&
617 a->soa.retry == b->soa.retry &&
618 a->soa.expire == b->soa.expire &&
619 a->soa.minimum == b->soa.minimum;
620
621 case DNS_TYPE_MX:
622 if (a->mx.priority != b->mx.priority)
623 return 0;
624
625 return dns_name_equal(a->mx.exchange, b->mx.exchange);
626
627 case DNS_TYPE_LOC:
628 assert(a->loc.version == b->loc.version);
629
630 return a->loc.size == b->loc.size &&
631 a->loc.horiz_pre == b->loc.horiz_pre &&
632 a->loc.vert_pre == b->loc.vert_pre &&
633 a->loc.latitude == b->loc.latitude &&
634 a->loc.longitude == b->loc.longitude &&
635 a->loc.altitude == b->loc.altitude;
636
637 case DNS_TYPE_DS:
638 return a->ds.key_tag == b->ds.key_tag &&
639 a->ds.algorithm == b->ds.algorithm &&
640 a->ds.digest_type == b->ds.digest_type &&
641 FIELD_EQUAL(a->ds, b->ds, digest);
642
643 case DNS_TYPE_SSHFP:
644 return a->sshfp.algorithm == b->sshfp.algorithm &&
645 a->sshfp.fptype == b->sshfp.fptype &&
646 FIELD_EQUAL(a->sshfp, b->sshfp, fingerprint);
647
648 case DNS_TYPE_DNSKEY:
649 return a->dnskey.flags == b->dnskey.flags &&
650 a->dnskey.protocol == b->dnskey.protocol &&
651 a->dnskey.algorithm == b->dnskey.algorithm &&
652 FIELD_EQUAL(a->dnskey, b->dnskey, key);
653
654 case DNS_TYPE_RRSIG:
655 /* do the fast comparisons first */
656 return a->rrsig.type_covered == b->rrsig.type_covered &&
657 a->rrsig.algorithm == b->rrsig.algorithm &&
658 a->rrsig.labels == b->rrsig.labels &&
659 a->rrsig.original_ttl == b->rrsig.original_ttl &&
660 a->rrsig.expiration == b->rrsig.expiration &&
661 a->rrsig.inception == b->rrsig.inception &&
662 a->rrsig.key_tag == b->rrsig.key_tag &&
663 FIELD_EQUAL(a->rrsig, b->rrsig, signature) &&
664 dns_name_equal(a->rrsig.signer, b->rrsig.signer);
665
666 case DNS_TYPE_NSEC:
667 return dns_name_equal(a->nsec.next_domain_name, b->nsec.next_domain_name) &&
668 bitmap_equal(a->nsec.types, b->nsec.types);
669
670 case DNS_TYPE_NSEC3:
671 return a->nsec3.algorithm == b->nsec3.algorithm &&
672 a->nsec3.flags == b->nsec3.flags &&
673 a->nsec3.iterations == b->nsec3.iterations &&
674 FIELD_EQUAL(a->nsec3, b->nsec3, salt) &&
675 FIELD_EQUAL(a->nsec3, b->nsec3, next_hashed_name) &&
676 bitmap_equal(a->nsec3.types, b->nsec3.types);
677
678 case DNS_TYPE_TLSA:
679 return a->tlsa.cert_usage == b->tlsa.cert_usage &&
680 a->tlsa.selector == b->tlsa.selector &&
681 a->tlsa.matching_type == b->tlsa.matching_type &&
682 FIELD_EQUAL(a->tlsa, b->tlsa, data);
683
684 case DNS_TYPE_CAA:
685 return a->caa.flags == b->caa.flags &&
686 streq(a->caa.tag, b->caa.tag) &&
687 FIELD_EQUAL(a->caa, b->caa, value);
688
689 case DNS_TYPE_OPENPGPKEY:
690 default:
691 return FIELD_EQUAL(a->generic, b->generic, data);
692 }
693 }
694
695 static char* format_location(uint32_t latitude, uint32_t longitude, uint32_t altitude,
696 uint8_t size, uint8_t horiz_pre, uint8_t vert_pre) {
697 char *s;
698 char NS = latitude >= 1U<<31 ? 'N' : 'S';
699 char EW = longitude >= 1U<<31 ? 'E' : 'W';
700
701 int lat = latitude >= 1U<<31 ? (int) (latitude - (1U<<31)) : (int) ((1U<<31) - latitude);
702 int lon = longitude >= 1U<<31 ? (int) (longitude - (1U<<31)) : (int) ((1U<<31) - longitude);
703 double alt = altitude >= 10000000u ? altitude - 10000000u : -(double)(10000000u - altitude);
704 double siz = (size >> 4) * exp10((double) (size & 0xF));
705 double hor = (horiz_pre >> 4) * exp10((double) (horiz_pre & 0xF));
706 double ver = (vert_pre >> 4) * exp10((double) (vert_pre & 0xF));
707
708 if (asprintf(&s, "%d %d %.3f %c %d %d %.3f %c %.2fm %.2fm %.2fm %.2fm",
709 (lat / 60000 / 60),
710 (lat / 60000) % 60,
711 (lat % 60000) / 1000.,
712 NS,
713 (lon / 60000 / 60),
714 (lon / 60000) % 60,
715 (lon % 60000) / 1000.,
716 EW,
717 alt / 100.,
718 siz / 100.,
719 hor / 100.,
720 ver / 100.) < 0)
721 return NULL;
722
723 return s;
724 }
725
726 static int format_timestamp_dns(char *buf, size_t l, time_t sec) {
727 struct tm tm;
728
729 assert(buf);
730 assert(l > STRLEN("YYYYMMDDHHmmSS"));
731
732 if (!gmtime_r(&sec, &tm))
733 return -EINVAL;
734
735 if (strftime(buf, l, "%Y%m%d%H%M%S", &tm) <= 0)
736 return -EINVAL;
737
738 return 0;
739 }
740
741 static char *format_types(Bitmap *types) {
742 _cleanup_strv_free_ char **strv = NULL;
743 _cleanup_free_ char *str = NULL;
744 Iterator i;
745 unsigned type;
746 int r;
747
748 BITMAP_FOREACH(type, types, i) {
749 if (dns_type_to_string(type)) {
750 r = strv_extend(&strv, dns_type_to_string(type));
751 if (r < 0)
752 return NULL;
753 } else {
754 char *t;
755
756 r = asprintf(&t, "TYPE%u", type);
757 if (r < 0)
758 return NULL;
759
760 r = strv_consume(&strv, t);
761 if (r < 0)
762 return NULL;
763 }
764 }
765
766 str = strv_join(strv, " ");
767 if (!str)
768 return NULL;
769
770 return strjoin("( ", str, " )");
771 }
772
773 static char *format_txt(DnsTxtItem *first) {
774 DnsTxtItem *i;
775 size_t c = 1;
776 char *p, *s;
777
778 LIST_FOREACH(items, i, first)
779 c += i->length * 4 + 3;
780
781 p = s = new(char, c);
782 if (!s)
783 return NULL;
784
785 LIST_FOREACH(items, i, first) {
786 size_t j;
787
788 if (i != first)
789 *(p++) = ' ';
790
791 *(p++) = '"';
792
793 for (j = 0; j < i->length; j++) {
794 if (i->data[j] < ' ' || i->data[j] == '"' || i->data[j] >= 127) {
795 *(p++) = '\\';
796 *(p++) = '0' + (i->data[j] / 100);
797 *(p++) = '0' + ((i->data[j] / 10) % 10);
798 *(p++) = '0' + (i->data[j] % 10);
799 } else
800 *(p++) = i->data[j];
801 }
802
803 *(p++) = '"';
804 }
805
806 *p = 0;
807 return s;
808 }
809
810 const char *dns_resource_record_to_string(DnsResourceRecord *rr) {
811 _cleanup_free_ char *t = NULL;
812 char *s, k[DNS_RESOURCE_KEY_STRING_MAX];
813 int r;
814
815 assert(rr);
816
817 if (rr->to_string)
818 return rr->to_string;
819
820 dns_resource_key_to_string(rr->key, k, sizeof(k));
821
822 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
823
824 case DNS_TYPE_SRV:
825 r = asprintf(&s, "%s %u %u %u %s",
826 k,
827 rr->srv.priority,
828 rr->srv.weight,
829 rr->srv.port,
830 strna(rr->srv.name));
831 if (r < 0)
832 return NULL;
833 break;
834
835 case DNS_TYPE_PTR:
836 case DNS_TYPE_NS:
837 case DNS_TYPE_CNAME:
838 case DNS_TYPE_DNAME:
839 s = strjoin(k, " ", rr->ptr.name);
840 if (!s)
841 return NULL;
842
843 break;
844
845 case DNS_TYPE_HINFO:
846 s = strjoin(k, " ", rr->hinfo.cpu, " ", rr->hinfo.os);
847 if (!s)
848 return NULL;
849 break;
850
851 case DNS_TYPE_SPF: /* exactly the same as TXT */
852 case DNS_TYPE_TXT:
853 t = format_txt(rr->txt.items);
854 if (!t)
855 return NULL;
856
857 s = strjoin(k, " ", t);
858 if (!s)
859 return NULL;
860 break;
861
862 case DNS_TYPE_A: {
863 _cleanup_free_ char *x = NULL;
864
865 r = in_addr_to_string(AF_INET, (const union in_addr_union*) &rr->a.in_addr, &x);
866 if (r < 0)
867 return NULL;
868
869 s = strjoin(k, " ", x);
870 if (!s)
871 return NULL;
872 break;
873 }
874
875 case DNS_TYPE_AAAA:
876 r = in_addr_to_string(AF_INET6, (const union in_addr_union*) &rr->aaaa.in6_addr, &t);
877 if (r < 0)
878 return NULL;
879
880 s = strjoin(k, " ", t);
881 if (!s)
882 return NULL;
883 break;
884
885 case DNS_TYPE_SOA:
886 r = asprintf(&s, "%s %s %s %u %u %u %u %u",
887 k,
888 strna(rr->soa.mname),
889 strna(rr->soa.rname),
890 rr->soa.serial,
891 rr->soa.refresh,
892 rr->soa.retry,
893 rr->soa.expire,
894 rr->soa.minimum);
895 if (r < 0)
896 return NULL;
897 break;
898
899 case DNS_TYPE_MX:
900 r = asprintf(&s, "%s %u %s",
901 k,
902 rr->mx.priority,
903 rr->mx.exchange);
904 if (r < 0)
905 return NULL;
906 break;
907
908 case DNS_TYPE_LOC:
909 assert(rr->loc.version == 0);
910
911 t = format_location(rr->loc.latitude,
912 rr->loc.longitude,
913 rr->loc.altitude,
914 rr->loc.size,
915 rr->loc.horiz_pre,
916 rr->loc.vert_pre);
917 if (!t)
918 return NULL;
919
920 s = strjoin(k, " ", t);
921 if (!s)
922 return NULL;
923 break;
924
925 case DNS_TYPE_DS:
926 t = hexmem(rr->ds.digest, rr->ds.digest_size);
927 if (!t)
928 return NULL;
929
930 r = asprintf(&s, "%s %u %u %u %s",
931 k,
932 rr->ds.key_tag,
933 rr->ds.algorithm,
934 rr->ds.digest_type,
935 t);
936 if (r < 0)
937 return NULL;
938 break;
939
940 case DNS_TYPE_SSHFP:
941 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
942 if (!t)
943 return NULL;
944
945 r = asprintf(&s, "%s %u %u %s",
946 k,
947 rr->sshfp.algorithm,
948 rr->sshfp.fptype,
949 t);
950 if (r < 0)
951 return NULL;
952 break;
953
954 case DNS_TYPE_DNSKEY: {
955 _cleanup_free_ char *alg = NULL;
956 char *ss;
957 int n;
958 uint16_t key_tag;
959
960 key_tag = dnssec_keytag(rr, true);
961
962 r = dnssec_algorithm_to_string_alloc(rr->dnskey.algorithm, &alg);
963 if (r < 0)
964 return NULL;
965
966 r = asprintf(&s, "%s %u %u %s %n",
967 k,
968 rr->dnskey.flags,
969 rr->dnskey.protocol,
970 alg,
971 &n);
972 if (r < 0)
973 return NULL;
974
975 r = base64_append(&s, n,
976 rr->dnskey.key, rr->dnskey.key_size,
977 8, columns());
978 if (r < 0)
979 return NULL;
980
981 r = asprintf(&ss, "%s\n"
982 " -- Flags:%s%s%s\n"
983 " -- Key tag: %u",
984 s,
985 rr->dnskey.flags & DNSKEY_FLAG_SEP ? " SEP" : "",
986 rr->dnskey.flags & DNSKEY_FLAG_REVOKE ? " REVOKE" : "",
987 rr->dnskey.flags & DNSKEY_FLAG_ZONE_KEY ? " ZONE_KEY" : "",
988 key_tag);
989 if (r < 0)
990 return NULL;
991 free(s);
992 s = ss;
993
994 break;
995 }
996
997 case DNS_TYPE_RRSIG: {
998 _cleanup_free_ char *alg = NULL;
999 char expiration[STRLEN("YYYYMMDDHHmmSS") + 1], inception[STRLEN("YYYYMMDDHHmmSS") + 1];
1000 const char *type;
1001 int n;
1002
1003 type = dns_type_to_string(rr->rrsig.type_covered);
1004
1005 r = dnssec_algorithm_to_string_alloc(rr->rrsig.algorithm, &alg);
1006 if (r < 0)
1007 return NULL;
1008
1009 r = format_timestamp_dns(expiration, sizeof(expiration), rr->rrsig.expiration);
1010 if (r < 0)
1011 return NULL;
1012
1013 r = format_timestamp_dns(inception, sizeof(inception), rr->rrsig.inception);
1014 if (r < 0)
1015 return NULL;
1016
1017 /* TYPE?? follows
1018 * http://tools.ietf.org/html/rfc3597#section-5 */
1019
1020 r = asprintf(&s, "%s %s%.*u %s %u %u %s %s %u %s %n",
1021 k,
1022 type ?: "TYPE",
1023 type ? 0 : 1, type ? 0u : (unsigned) rr->rrsig.type_covered,
1024 alg,
1025 rr->rrsig.labels,
1026 rr->rrsig.original_ttl,
1027 expiration,
1028 inception,
1029 rr->rrsig.key_tag,
1030 rr->rrsig.signer,
1031 &n);
1032 if (r < 0)
1033 return NULL;
1034
1035 r = base64_append(&s, n,
1036 rr->rrsig.signature, rr->rrsig.signature_size,
1037 8, columns());
1038 if (r < 0)
1039 return NULL;
1040
1041 break;
1042 }
1043
1044 case DNS_TYPE_NSEC:
1045 t = format_types(rr->nsec.types);
1046 if (!t)
1047 return NULL;
1048
1049 r = asprintf(&s, "%s %s %s",
1050 k,
1051 rr->nsec.next_domain_name,
1052 t);
1053 if (r < 0)
1054 return NULL;
1055 break;
1056
1057 case DNS_TYPE_NSEC3: {
1058 _cleanup_free_ char *salt = NULL, *hash = NULL;
1059
1060 if (rr->nsec3.salt_size > 0) {
1061 salt = hexmem(rr->nsec3.salt, rr->nsec3.salt_size);
1062 if (!salt)
1063 return NULL;
1064 }
1065
1066 hash = base32hexmem(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, false);
1067 if (!hash)
1068 return NULL;
1069
1070 t = format_types(rr->nsec3.types);
1071 if (!t)
1072 return NULL;
1073
1074 r = asprintf(&s, "%s %"PRIu8" %"PRIu8" %"PRIu16" %s %s %s",
1075 k,
1076 rr->nsec3.algorithm,
1077 rr->nsec3.flags,
1078 rr->nsec3.iterations,
1079 rr->nsec3.salt_size > 0 ? salt : "-",
1080 hash,
1081 t);
1082 if (r < 0)
1083 return NULL;
1084
1085 break;
1086 }
1087
1088 case DNS_TYPE_TLSA: {
1089 const char *cert_usage, *selector, *matching_type;
1090
1091 cert_usage = tlsa_cert_usage_to_string(rr->tlsa.cert_usage);
1092 selector = tlsa_selector_to_string(rr->tlsa.selector);
1093 matching_type = tlsa_matching_type_to_string(rr->tlsa.matching_type);
1094
1095 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1096 if (!t)
1097 return NULL;
1098
1099 r = asprintf(&s,
1100 "%s %u %u %u %s\n"
1101 " -- Cert. usage: %s\n"
1102 " -- Selector: %s\n"
1103 " -- Matching type: %s",
1104 k,
1105 rr->tlsa.cert_usage,
1106 rr->tlsa.selector,
1107 rr->tlsa.matching_type,
1108 t,
1109 cert_usage,
1110 selector,
1111 matching_type);
1112 if (r < 0)
1113 return NULL;
1114
1115 break;
1116 }
1117
1118 case DNS_TYPE_CAA: {
1119 _cleanup_free_ char *value;
1120
1121 value = octescape(rr->caa.value, rr->caa.value_size);
1122 if (!value)
1123 return NULL;
1124
1125 r = asprintf(&s, "%s %u %s \"%s\"%s%s%s%.0u",
1126 k,
1127 rr->caa.flags,
1128 rr->caa.tag,
1129 value,
1130 rr->caa.flags ? "\n -- Flags:" : "",
1131 rr->caa.flags & CAA_FLAG_CRITICAL ? " critical" : "",
1132 rr->caa.flags & ~CAA_FLAG_CRITICAL ? " " : "",
1133 rr->caa.flags & ~CAA_FLAG_CRITICAL);
1134 if (r < 0)
1135 return NULL;
1136
1137 break;
1138 }
1139
1140 case DNS_TYPE_OPENPGPKEY: {
1141 int n;
1142
1143 r = asprintf(&s, "%s %n",
1144 k,
1145 &n);
1146 if (r < 0)
1147 return NULL;
1148
1149 r = base64_append(&s, n,
1150 rr->generic.data, rr->generic.data_size,
1151 8, columns());
1152 if (r < 0)
1153 return NULL;
1154 break;
1155 }
1156
1157 default:
1158 t = hexmem(rr->generic.data, rr->generic.data_size);
1159 if (!t)
1160 return NULL;
1161
1162 /* Format as documented in RFC 3597, Section 5 */
1163 r = asprintf(&s, "%s \\# %zu %s", k, rr->generic.data_size, t);
1164 if (r < 0)
1165 return NULL;
1166 break;
1167 }
1168
1169 rr->to_string = s;
1170 return s;
1171 }
1172
1173 ssize_t dns_resource_record_payload(DnsResourceRecord *rr, void **out) {
1174 assert(rr);
1175 assert(out);
1176
1177 switch(rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1178 case DNS_TYPE_SRV:
1179 case DNS_TYPE_PTR:
1180 case DNS_TYPE_NS:
1181 case DNS_TYPE_CNAME:
1182 case DNS_TYPE_DNAME:
1183 case DNS_TYPE_HINFO:
1184 case DNS_TYPE_SPF:
1185 case DNS_TYPE_TXT:
1186 case DNS_TYPE_A:
1187 case DNS_TYPE_AAAA:
1188 case DNS_TYPE_SOA:
1189 case DNS_TYPE_MX:
1190 case DNS_TYPE_LOC:
1191 case DNS_TYPE_DS:
1192 case DNS_TYPE_DNSKEY:
1193 case DNS_TYPE_RRSIG:
1194 case DNS_TYPE_NSEC:
1195 case DNS_TYPE_NSEC3:
1196 return -EINVAL;
1197
1198 case DNS_TYPE_SSHFP:
1199 *out = rr->sshfp.fingerprint;
1200 return rr->sshfp.fingerprint_size;
1201
1202 case DNS_TYPE_TLSA:
1203 *out = rr->tlsa.data;
1204 return rr->tlsa.data_size;
1205
1206 case DNS_TYPE_OPENPGPKEY:
1207 default:
1208 *out = rr->generic.data;
1209 return rr->generic.data_size;
1210 }
1211 }
1212
1213 int dns_resource_record_to_wire_format(DnsResourceRecord *rr, bool canonical) {
1214
1215 DnsPacket packet = {
1216 .n_ref = 1,
1217 .protocol = DNS_PROTOCOL_DNS,
1218 .on_stack = true,
1219 .refuse_compression = true,
1220 .canonical_form = canonical,
1221 };
1222
1223 size_t start, rds;
1224 int r;
1225
1226 assert(rr);
1227
1228 /* Generates the RR in wire-format, optionally in the
1229 * canonical form as discussed in the DNSSEC RFC 4034, Section
1230 * 6.2. We allocate a throw-away DnsPacket object on the stack
1231 * here, because we need some book-keeping for memory
1232 * management, and can reuse the DnsPacket serializer, that
1233 * can generate the canonical form, too, but also knows label
1234 * compression and suchlike. */
1235
1236 if (rr->wire_format && rr->wire_format_canonical == canonical)
1237 return 0;
1238
1239 r = dns_packet_append_rr(&packet, rr, 0, &start, &rds);
1240 if (r < 0)
1241 return r;
1242
1243 assert(start == 0);
1244 assert(packet._data);
1245
1246 free(rr->wire_format);
1247 rr->wire_format = packet._data;
1248 rr->wire_format_size = packet.size;
1249 rr->wire_format_rdata_offset = rds;
1250 rr->wire_format_canonical = canonical;
1251
1252 packet._data = NULL;
1253 dns_packet_unref(&packet);
1254
1255 return 0;
1256 }
1257
1258 int dns_resource_record_signer(DnsResourceRecord *rr, const char **ret) {
1259 const char *n;
1260 int r;
1261
1262 assert(rr);
1263 assert(ret);
1264
1265 /* Returns the RRset's signer, if it is known. */
1266
1267 if (rr->n_skip_labels_signer == (unsigned) -1)
1268 return -ENODATA;
1269
1270 n = dns_resource_key_name(rr->key);
1271 r = dns_name_skip(n, rr->n_skip_labels_signer, &n);
1272 if (r < 0)
1273 return r;
1274 if (r == 0)
1275 return -EINVAL;
1276
1277 *ret = n;
1278 return 0;
1279 }
1280
1281 int dns_resource_record_source(DnsResourceRecord *rr, const char **ret) {
1282 const char *n;
1283 int r;
1284
1285 assert(rr);
1286 assert(ret);
1287
1288 /* Returns the RRset's synthesizing source, if it is known. */
1289
1290 if (rr->n_skip_labels_source == (unsigned) -1)
1291 return -ENODATA;
1292
1293 n = dns_resource_key_name(rr->key);
1294 r = dns_name_skip(n, rr->n_skip_labels_source, &n);
1295 if (r < 0)
1296 return r;
1297 if (r == 0)
1298 return -EINVAL;
1299
1300 *ret = n;
1301 return 0;
1302 }
1303
1304 int dns_resource_record_is_signer(DnsResourceRecord *rr, const char *zone) {
1305 const char *signer;
1306 int r;
1307
1308 assert(rr);
1309
1310 r = dns_resource_record_signer(rr, &signer);
1311 if (r < 0)
1312 return r;
1313
1314 return dns_name_equal(zone, signer);
1315 }
1316
1317 int dns_resource_record_is_synthetic(DnsResourceRecord *rr) {
1318 int r;
1319
1320 assert(rr);
1321
1322 /* Returns > 0 if the RR is generated from a wildcard, and is not the asterisk name itself */
1323
1324 if (rr->n_skip_labels_source == (unsigned) -1)
1325 return -ENODATA;
1326
1327 if (rr->n_skip_labels_source == 0)
1328 return 0;
1329
1330 if (rr->n_skip_labels_source > 1)
1331 return 1;
1332
1333 r = dns_name_startswith(dns_resource_key_name(rr->key), "*");
1334 if (r < 0)
1335 return r;
1336
1337 return !r;
1338 }
1339
1340 void dns_resource_record_hash_func(const DnsResourceRecord *rr, struct siphash *state) {
1341 assert(rr);
1342
1343 dns_resource_key_hash_func(rr->key, state);
1344
1345 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1346
1347 case DNS_TYPE_SRV:
1348 siphash24_compress(&rr->srv.priority, sizeof(rr->srv.priority), state);
1349 siphash24_compress(&rr->srv.weight, sizeof(rr->srv.weight), state);
1350 siphash24_compress(&rr->srv.port, sizeof(rr->srv.port), state);
1351 dns_name_hash_func(rr->srv.name, state);
1352 break;
1353
1354 case DNS_TYPE_PTR:
1355 case DNS_TYPE_NS:
1356 case DNS_TYPE_CNAME:
1357 case DNS_TYPE_DNAME:
1358 dns_name_hash_func(rr->ptr.name, state);
1359 break;
1360
1361 case DNS_TYPE_HINFO:
1362 string_hash_func(rr->hinfo.cpu, state);
1363 string_hash_func(rr->hinfo.os, state);
1364 break;
1365
1366 case DNS_TYPE_TXT:
1367 case DNS_TYPE_SPF: {
1368 DnsTxtItem *j;
1369
1370 LIST_FOREACH(items, j, rr->txt.items) {
1371 siphash24_compress(j->data, j->length, state);
1372
1373 /* Add an extra NUL byte, so that "a" followed by "b" doesn't result in the same hash as "ab"
1374 * followed by "". */
1375 siphash24_compress_byte(0, state);
1376 }
1377 break;
1378 }
1379
1380 case DNS_TYPE_A:
1381 siphash24_compress(&rr->a.in_addr, sizeof(rr->a.in_addr), state);
1382 break;
1383
1384 case DNS_TYPE_AAAA:
1385 siphash24_compress(&rr->aaaa.in6_addr, sizeof(rr->aaaa.in6_addr), state);
1386 break;
1387
1388 case DNS_TYPE_SOA:
1389 dns_name_hash_func(rr->soa.mname, state);
1390 dns_name_hash_func(rr->soa.rname, state);
1391 siphash24_compress(&rr->soa.serial, sizeof(rr->soa.serial), state);
1392 siphash24_compress(&rr->soa.refresh, sizeof(rr->soa.refresh), state);
1393 siphash24_compress(&rr->soa.retry, sizeof(rr->soa.retry), state);
1394 siphash24_compress(&rr->soa.expire, sizeof(rr->soa.expire), state);
1395 siphash24_compress(&rr->soa.minimum, sizeof(rr->soa.minimum), state);
1396 break;
1397
1398 case DNS_TYPE_MX:
1399 siphash24_compress(&rr->mx.priority, sizeof(rr->mx.priority), state);
1400 dns_name_hash_func(rr->mx.exchange, state);
1401 break;
1402
1403 case DNS_TYPE_LOC:
1404 siphash24_compress(&rr->loc.version, sizeof(rr->loc.version), state);
1405 siphash24_compress(&rr->loc.size, sizeof(rr->loc.size), state);
1406 siphash24_compress(&rr->loc.horiz_pre, sizeof(rr->loc.horiz_pre), state);
1407 siphash24_compress(&rr->loc.vert_pre, sizeof(rr->loc.vert_pre), state);
1408 siphash24_compress(&rr->loc.latitude, sizeof(rr->loc.latitude), state);
1409 siphash24_compress(&rr->loc.longitude, sizeof(rr->loc.longitude), state);
1410 siphash24_compress(&rr->loc.altitude, sizeof(rr->loc.altitude), state);
1411 break;
1412
1413 case DNS_TYPE_SSHFP:
1414 siphash24_compress(&rr->sshfp.algorithm, sizeof(rr->sshfp.algorithm), state);
1415 siphash24_compress(&rr->sshfp.fptype, sizeof(rr->sshfp.fptype), state);
1416 siphash24_compress(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size, state);
1417 break;
1418
1419 case DNS_TYPE_DNSKEY:
1420 siphash24_compress(&rr->dnskey.flags, sizeof(rr->dnskey.flags), state);
1421 siphash24_compress(&rr->dnskey.protocol, sizeof(rr->dnskey.protocol), state);
1422 siphash24_compress(&rr->dnskey.algorithm, sizeof(rr->dnskey.algorithm), state);
1423 siphash24_compress(rr->dnskey.key, rr->dnskey.key_size, state);
1424 break;
1425
1426 case DNS_TYPE_RRSIG:
1427 siphash24_compress(&rr->rrsig.type_covered, sizeof(rr->rrsig.type_covered), state);
1428 siphash24_compress(&rr->rrsig.algorithm, sizeof(rr->rrsig.algorithm), state);
1429 siphash24_compress(&rr->rrsig.labels, sizeof(rr->rrsig.labels), state);
1430 siphash24_compress(&rr->rrsig.original_ttl, sizeof(rr->rrsig.original_ttl), state);
1431 siphash24_compress(&rr->rrsig.expiration, sizeof(rr->rrsig.expiration), state);
1432 siphash24_compress(&rr->rrsig.inception, sizeof(rr->rrsig.inception), state);
1433 siphash24_compress(&rr->rrsig.key_tag, sizeof(rr->rrsig.key_tag), state);
1434 dns_name_hash_func(rr->rrsig.signer, state);
1435 siphash24_compress(rr->rrsig.signature, rr->rrsig.signature_size, state);
1436 break;
1437
1438 case DNS_TYPE_NSEC:
1439 dns_name_hash_func(rr->nsec.next_domain_name, state);
1440 /* FIXME: we leave out the type bitmap here. Hash
1441 * would be better if we'd take it into account
1442 * too. */
1443 break;
1444
1445 case DNS_TYPE_DS:
1446 siphash24_compress(&rr->ds.key_tag, sizeof(rr->ds.key_tag), state);
1447 siphash24_compress(&rr->ds.algorithm, sizeof(rr->ds.algorithm), state);
1448 siphash24_compress(&rr->ds.digest_type, sizeof(rr->ds.digest_type), state);
1449 siphash24_compress(rr->ds.digest, rr->ds.digest_size, state);
1450 break;
1451
1452 case DNS_TYPE_NSEC3:
1453 siphash24_compress(&rr->nsec3.algorithm, sizeof(rr->nsec3.algorithm), state);
1454 siphash24_compress(&rr->nsec3.flags, sizeof(rr->nsec3.flags), state);
1455 siphash24_compress(&rr->nsec3.iterations, sizeof(rr->nsec3.iterations), state);
1456 siphash24_compress(rr->nsec3.salt, rr->nsec3.salt_size, state);
1457 siphash24_compress(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, state);
1458 /* FIXME: We leave the bitmaps out */
1459 break;
1460
1461 case DNS_TYPE_TLSA:
1462 siphash24_compress(&rr->tlsa.cert_usage, sizeof(rr->tlsa.cert_usage), state);
1463 siphash24_compress(&rr->tlsa.selector, sizeof(rr->tlsa.selector), state);
1464 siphash24_compress(&rr->tlsa.matching_type, sizeof(rr->tlsa.matching_type), state);
1465 siphash24_compress(rr->tlsa.data, rr->tlsa.data_size, state);
1466 break;
1467
1468 case DNS_TYPE_CAA:
1469 siphash24_compress(&rr->caa.flags, sizeof(rr->caa.flags), state);
1470 string_hash_func(rr->caa.tag, state);
1471 siphash24_compress(rr->caa.value, rr->caa.value_size, state);
1472 break;
1473
1474 case DNS_TYPE_OPENPGPKEY:
1475 default:
1476 siphash24_compress(rr->generic.data, rr->generic.data_size, state);
1477 break;
1478 }
1479 }
1480
1481 static int dns_resource_record_compare_func(const DnsResourceRecord *x, const DnsResourceRecord *y) {
1482 int r;
1483
1484 r = dns_resource_key_compare_func(x->key, y->key);
1485 if (r != 0)
1486 return r;
1487
1488 if (dns_resource_record_equal(x, y))
1489 return 0;
1490
1491 /* We still use CMP() here, even though don't implement proper
1492 * ordering, since the hashtable doesn't need ordering anyway. */
1493 return CMP(x, y);
1494 }
1495
1496 DEFINE_HASH_OPS(dns_resource_record_hash_ops, DnsResourceRecord, dns_resource_record_hash_func, dns_resource_record_compare_func);
1497
1498 DnsResourceRecord *dns_resource_record_copy(DnsResourceRecord *rr) {
1499 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *copy = NULL;
1500 DnsResourceRecord *t;
1501
1502 assert(rr);
1503
1504 copy = dns_resource_record_new(rr->key);
1505 if (!copy)
1506 return NULL;
1507
1508 copy->ttl = rr->ttl;
1509 copy->expiry = rr->expiry;
1510 copy->n_skip_labels_signer = rr->n_skip_labels_signer;
1511 copy->n_skip_labels_source = rr->n_skip_labels_source;
1512 copy->unparseable = rr->unparseable;
1513
1514 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1515
1516 case DNS_TYPE_SRV:
1517 copy->srv.priority = rr->srv.priority;
1518 copy->srv.weight = rr->srv.weight;
1519 copy->srv.port = rr->srv.port;
1520 copy->srv.name = strdup(rr->srv.name);
1521 if (!copy->srv.name)
1522 return NULL;
1523 break;
1524
1525 case DNS_TYPE_PTR:
1526 case DNS_TYPE_NS:
1527 case DNS_TYPE_CNAME:
1528 case DNS_TYPE_DNAME:
1529 copy->ptr.name = strdup(rr->ptr.name);
1530 if (!copy->ptr.name)
1531 return NULL;
1532 break;
1533
1534 case DNS_TYPE_HINFO:
1535 copy->hinfo.cpu = strdup(rr->hinfo.cpu);
1536 if (!copy->hinfo.cpu)
1537 return NULL;
1538
1539 copy->hinfo.os = strdup(rr->hinfo.os);
1540 if (!copy->hinfo.os)
1541 return NULL;
1542 break;
1543
1544 case DNS_TYPE_TXT:
1545 case DNS_TYPE_SPF:
1546 copy->txt.items = dns_txt_item_copy(rr->txt.items);
1547 if (!copy->txt.items)
1548 return NULL;
1549 break;
1550
1551 case DNS_TYPE_A:
1552 copy->a = rr->a;
1553 break;
1554
1555 case DNS_TYPE_AAAA:
1556 copy->aaaa = rr->aaaa;
1557 break;
1558
1559 case DNS_TYPE_SOA:
1560 copy->soa.mname = strdup(rr->soa.mname);
1561 if (!copy->soa.mname)
1562 return NULL;
1563 copy->soa.rname = strdup(rr->soa.rname);
1564 if (!copy->soa.rname)
1565 return NULL;
1566 copy->soa.serial = rr->soa.serial;
1567 copy->soa.refresh = rr->soa.refresh;
1568 copy->soa.retry = rr->soa.retry;
1569 copy->soa.expire = rr->soa.expire;
1570 copy->soa.minimum = rr->soa.minimum;
1571 break;
1572
1573 case DNS_TYPE_MX:
1574 copy->mx.priority = rr->mx.priority;
1575 copy->mx.exchange = strdup(rr->mx.exchange);
1576 if (!copy->mx.exchange)
1577 return NULL;
1578 break;
1579
1580 case DNS_TYPE_LOC:
1581 copy->loc = rr->loc;
1582 break;
1583
1584 case DNS_TYPE_SSHFP:
1585 copy->sshfp.algorithm = rr->sshfp.algorithm;
1586 copy->sshfp.fptype = rr->sshfp.fptype;
1587 copy->sshfp.fingerprint = memdup(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1588 if (!copy->sshfp.fingerprint)
1589 return NULL;
1590 copy->sshfp.fingerprint_size = rr->sshfp.fingerprint_size;
1591 break;
1592
1593 case DNS_TYPE_DNSKEY:
1594 copy->dnskey.flags = rr->dnskey.flags;
1595 copy->dnskey.protocol = rr->dnskey.protocol;
1596 copy->dnskey.algorithm = rr->dnskey.algorithm;
1597 copy->dnskey.key = memdup(rr->dnskey.key, rr->dnskey.key_size);
1598 if (!copy->dnskey.key)
1599 return NULL;
1600 copy->dnskey.key_size = rr->dnskey.key_size;
1601 break;
1602
1603 case DNS_TYPE_RRSIG:
1604 copy->rrsig.type_covered = rr->rrsig.type_covered;
1605 copy->rrsig.algorithm = rr->rrsig.algorithm;
1606 copy->rrsig.labels = rr->rrsig.labels;
1607 copy->rrsig.original_ttl = rr->rrsig.original_ttl;
1608 copy->rrsig.expiration = rr->rrsig.expiration;
1609 copy->rrsig.inception = rr->rrsig.inception;
1610 copy->rrsig.key_tag = rr->rrsig.key_tag;
1611 copy->rrsig.signer = strdup(rr->rrsig.signer);
1612 if (!copy->rrsig.signer)
1613 return NULL;
1614 copy->rrsig.signature = memdup(rr->rrsig.signature, rr->rrsig.signature_size);
1615 if (!copy->rrsig.signature)
1616 return NULL;
1617 copy->rrsig.signature_size = rr->rrsig.signature_size;
1618 break;
1619
1620 case DNS_TYPE_NSEC:
1621 copy->nsec.next_domain_name = strdup(rr->nsec.next_domain_name);
1622 if (!copy->nsec.next_domain_name)
1623 return NULL;
1624 copy->nsec.types = bitmap_copy(rr->nsec.types);
1625 if (!copy->nsec.types)
1626 return NULL;
1627 break;
1628
1629 case DNS_TYPE_DS:
1630 copy->ds.key_tag = rr->ds.key_tag;
1631 copy->ds.algorithm = rr->ds.algorithm;
1632 copy->ds.digest_type = rr->ds.digest_type;
1633 copy->ds.digest = memdup(rr->ds.digest, rr->ds.digest_size);
1634 if (!copy->ds.digest)
1635 return NULL;
1636 copy->ds.digest_size = rr->ds.digest_size;
1637 break;
1638
1639 case DNS_TYPE_NSEC3:
1640 copy->nsec3.algorithm = rr->nsec3.algorithm;
1641 copy->nsec3.flags = rr->nsec3.flags;
1642 copy->nsec3.iterations = rr->nsec3.iterations;
1643 copy->nsec3.salt = memdup(rr->nsec3.salt, rr->nsec3.salt_size);
1644 if (!copy->nsec3.salt)
1645 return NULL;
1646 copy->nsec3.salt_size = rr->nsec3.salt_size;
1647 copy->nsec3.next_hashed_name = memdup(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size);
1648 if (!copy->nsec3.next_hashed_name_size)
1649 return NULL;
1650 copy->nsec3.next_hashed_name_size = rr->nsec3.next_hashed_name_size;
1651 copy->nsec3.types = bitmap_copy(rr->nsec3.types);
1652 if (!copy->nsec3.types)
1653 return NULL;
1654 break;
1655
1656 case DNS_TYPE_TLSA:
1657 copy->tlsa.cert_usage = rr->tlsa.cert_usage;
1658 copy->tlsa.selector = rr->tlsa.selector;
1659 copy->tlsa.matching_type = rr->tlsa.matching_type;
1660 copy->tlsa.data = memdup(rr->tlsa.data, rr->tlsa.data_size);
1661 if (!copy->tlsa.data)
1662 return NULL;
1663 copy->tlsa.data_size = rr->tlsa.data_size;
1664 break;
1665
1666 case DNS_TYPE_CAA:
1667 copy->caa.flags = rr->caa.flags;
1668 copy->caa.tag = strdup(rr->caa.tag);
1669 if (!copy->caa.tag)
1670 return NULL;
1671 copy->caa.value = memdup(rr->caa.value, rr->caa.value_size);
1672 if (!copy->caa.value)
1673 return NULL;
1674 copy->caa.value_size = rr->caa.value_size;
1675 break;
1676
1677 case DNS_TYPE_OPT:
1678 default:
1679 copy->generic.data = memdup(rr->generic.data, rr->generic.data_size);
1680 if (!copy->generic.data)
1681 return NULL;
1682 copy->generic.data_size = rr->generic.data_size;
1683 break;
1684 }
1685
1686 t = TAKE_PTR(copy);
1687
1688 return t;
1689 }
1690
1691 int dns_resource_record_clamp_ttl(DnsResourceRecord **rr, uint32_t max_ttl) {
1692 DnsResourceRecord *old_rr, *new_rr;
1693 uint32_t new_ttl;
1694
1695 assert(rr);
1696 old_rr = *rr;
1697
1698 if (old_rr->key->type == DNS_TYPE_OPT)
1699 return -EINVAL;
1700
1701 new_ttl = MIN(old_rr->ttl, max_ttl);
1702 if (new_ttl == old_rr->ttl)
1703 return 0;
1704
1705 if (old_rr->n_ref == 1) {
1706 /* Patch in place */
1707 old_rr->ttl = new_ttl;
1708 return 1;
1709 }
1710
1711 new_rr = dns_resource_record_copy(old_rr);
1712 if (!new_rr)
1713 return -ENOMEM;
1714
1715 new_rr->ttl = new_ttl;
1716
1717 dns_resource_record_unref(*rr);
1718 *rr = new_rr;
1719
1720 return 1;
1721 }
1722
1723 DnsTxtItem *dns_txt_item_free_all(DnsTxtItem *i) {
1724 DnsTxtItem *n;
1725
1726 if (!i)
1727 return NULL;
1728
1729 n = i->items_next;
1730
1731 free(i);
1732 return dns_txt_item_free_all(n);
1733 }
1734
1735 bool dns_txt_item_equal(DnsTxtItem *a, DnsTxtItem *b) {
1736
1737 if (a == b)
1738 return true;
1739
1740 if (!a != !b)
1741 return false;
1742
1743 if (!a)
1744 return true;
1745
1746 if (a->length != b->length)
1747 return false;
1748
1749 if (memcmp(a->data, b->data, a->length) != 0)
1750 return false;
1751
1752 return dns_txt_item_equal(a->items_next, b->items_next);
1753 }
1754
1755 DnsTxtItem *dns_txt_item_copy(DnsTxtItem *first) {
1756 DnsTxtItem *i, *copy = NULL, *end = NULL;
1757
1758 LIST_FOREACH(items, i, first) {
1759 DnsTxtItem *j;
1760
1761 j = memdup(i, offsetof(DnsTxtItem, data) + i->length + 1);
1762 if (!j) {
1763 dns_txt_item_free_all(copy);
1764 return NULL;
1765 }
1766
1767 LIST_INSERT_AFTER(items, copy, end, j);
1768 end = j;
1769 }
1770
1771 return copy;
1772 }
1773
1774 int dns_txt_item_new_empty(DnsTxtItem **ret) {
1775 DnsTxtItem *i;
1776
1777 /* RFC 6763, section 6.1 suggests to treat
1778 * empty TXT RRs as equivalent to a TXT record
1779 * with a single empty string. */
1780
1781 i = malloc0(offsetof(DnsTxtItem, data) + 1); /* for safety reasons we add an extra NUL byte */
1782 if (!i)
1783 return -ENOMEM;
1784
1785 *ret = i;
1786
1787 return 0;
1788 }
1789
1790 static const char* const dnssec_algorithm_table[_DNSSEC_ALGORITHM_MAX_DEFINED] = {
1791 /* Mnemonics as listed on https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml */
1792 [DNSSEC_ALGORITHM_RSAMD5] = "RSAMD5",
1793 [DNSSEC_ALGORITHM_DH] = "DH",
1794 [DNSSEC_ALGORITHM_DSA] = "DSA",
1795 [DNSSEC_ALGORITHM_ECC] = "ECC",
1796 [DNSSEC_ALGORITHM_RSASHA1] = "RSASHA1",
1797 [DNSSEC_ALGORITHM_DSA_NSEC3_SHA1] = "DSA-NSEC3-SHA1",
1798 [DNSSEC_ALGORITHM_RSASHA1_NSEC3_SHA1] = "RSASHA1-NSEC3-SHA1",
1799 [DNSSEC_ALGORITHM_RSASHA256] = "RSASHA256",
1800 [DNSSEC_ALGORITHM_RSASHA512] = "RSASHA512",
1801 [DNSSEC_ALGORITHM_ECC_GOST] = "ECC-GOST",
1802 [DNSSEC_ALGORITHM_ECDSAP256SHA256] = "ECDSAP256SHA256",
1803 [DNSSEC_ALGORITHM_ECDSAP384SHA384] = "ECDSAP384SHA384",
1804 [DNSSEC_ALGORITHM_ED25519] = "ED25519",
1805 [DNSSEC_ALGORITHM_ED448] = "ED448",
1806 [DNSSEC_ALGORITHM_INDIRECT] = "INDIRECT",
1807 [DNSSEC_ALGORITHM_PRIVATEDNS] = "PRIVATEDNS",
1808 [DNSSEC_ALGORITHM_PRIVATEOID] = "PRIVATEOID",
1809 };
1810 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_algorithm, int, 255);
1811
1812 static const char* const dnssec_digest_table[_DNSSEC_DIGEST_MAX_DEFINED] = {
1813 /* Names as listed on https://www.iana.org/assignments/ds-rr-types/ds-rr-types.xhtml */
1814 [DNSSEC_DIGEST_SHA1] = "SHA-1",
1815 [DNSSEC_DIGEST_SHA256] = "SHA-256",
1816 [DNSSEC_DIGEST_GOST_R_34_11_94] = "GOST_R_34.11-94",
1817 [DNSSEC_DIGEST_SHA384] = "SHA-384",
1818 };
1819 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_digest, int, 255);