]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/resolve/resolved-dns-rr.c
Merge pull request #9274 from poettering/comment-header-cleanup
[thirdparty/systemd.git] / src / resolve / resolved-dns-rr.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <math.h>
4
5 #include "alloc-util.h"
6 #include "dns-domain.h"
7 #include "dns-type.h"
8 #include "escape.h"
9 #include "hexdecoct.h"
10 #include "resolved-dns-dnssec.h"
11 #include "resolved-dns-packet.h"
12 #include "resolved-dns-rr.h"
13 #include "string-table.h"
14 #include "string-util.h"
15 #include "strv.h"
16 #include "terminal-util.h"
17
18 DnsResourceKey* dns_resource_key_new(uint16_t class, uint16_t type, const char *name) {
19 DnsResourceKey *k;
20 size_t l;
21
22 assert(name);
23
24 l = strlen(name);
25 k = malloc0(sizeof(DnsResourceKey) + l + 1);
26 if (!k)
27 return NULL;
28
29 k->n_ref = 1;
30 k->class = class;
31 k->type = type;
32
33 strcpy((char*) k + sizeof(DnsResourceKey), name);
34
35 return k;
36 }
37
38 DnsResourceKey* dns_resource_key_new_redirect(const DnsResourceKey *key, const DnsResourceRecord *cname) {
39 int r;
40
41 assert(key);
42 assert(cname);
43
44 assert(IN_SET(cname->key->type, DNS_TYPE_CNAME, DNS_TYPE_DNAME));
45
46 if (cname->key->type == DNS_TYPE_CNAME)
47 return dns_resource_key_new(key->class, key->type, cname->cname.name);
48 else {
49 DnsResourceKey *k;
50 char *destination = NULL;
51
52 r = dns_name_change_suffix(dns_resource_key_name(key), dns_resource_key_name(cname->key), cname->dname.name, &destination);
53 if (r < 0)
54 return NULL;
55 if (r == 0)
56 return dns_resource_key_ref((DnsResourceKey*) key);
57
58 k = dns_resource_key_new_consume(key->class, key->type, destination);
59 if (!k)
60 return mfree(destination);
61
62 return k;
63 }
64 }
65
66 int dns_resource_key_new_append_suffix(DnsResourceKey **ret, DnsResourceKey *key, char *name) {
67 DnsResourceKey *new_key;
68 char *joined;
69 int r;
70
71 assert(ret);
72 assert(key);
73 assert(name);
74
75 if (dns_name_is_root(name)) {
76 *ret = dns_resource_key_ref(key);
77 return 0;
78 }
79
80 r = dns_name_concat(dns_resource_key_name(key), name, &joined);
81 if (r < 0)
82 return r;
83
84 new_key = dns_resource_key_new_consume(key->class, key->type, joined);
85 if (!new_key) {
86 free(joined);
87 return -ENOMEM;
88 }
89
90 *ret = new_key;
91 return 0;
92 }
93
94 DnsResourceKey* dns_resource_key_new_consume(uint16_t class, uint16_t type, char *name) {
95 DnsResourceKey *k;
96
97 assert(name);
98
99 k = new0(DnsResourceKey, 1);
100 if (!k)
101 return NULL;
102
103 k->n_ref = 1;
104 k->class = class;
105 k->type = type;
106 k->_name = name;
107
108 return k;
109 }
110
111 DnsResourceKey* dns_resource_key_ref(DnsResourceKey *k) {
112
113 if (!k)
114 return NULL;
115
116 /* Static/const keys created with DNS_RESOURCE_KEY_CONST will
117 * set this to -1, they should not be reffed/unreffed */
118 assert(k->n_ref != (unsigned) -1);
119
120 assert(k->n_ref > 0);
121 k->n_ref++;
122
123 return k;
124 }
125
126 DnsResourceKey* dns_resource_key_unref(DnsResourceKey *k) {
127 if (!k)
128 return NULL;
129
130 assert(k->n_ref != (unsigned) -1);
131 assert(k->n_ref > 0);
132
133 if (k->n_ref == 1) {
134 free(k->_name);
135 free(k);
136 } else
137 k->n_ref--;
138
139 return NULL;
140 }
141
142 const char* dns_resource_key_name(const DnsResourceKey *key) {
143 const char *name;
144
145 if (!key)
146 return NULL;
147
148 if (key->_name)
149 name = key->_name;
150 else
151 name = (char*) key + sizeof(DnsResourceKey);
152
153 if (dns_name_is_root(name))
154 return ".";
155 else
156 return name;
157 }
158
159 bool dns_resource_key_is_address(const DnsResourceKey *key) {
160 assert(key);
161
162 /* Check if this is an A or AAAA resource key */
163
164 return key->class == DNS_CLASS_IN && IN_SET(key->type, DNS_TYPE_A, DNS_TYPE_AAAA);
165 }
166
167 bool dns_resource_key_is_dnssd_ptr(const DnsResourceKey *key) {
168 assert(key);
169
170 /* Check if this is a PTR resource key used in
171 Service Instance Enumeration as described in RFC6763 p4.1. */
172
173 if (key->type != DNS_TYPE_PTR)
174 return false;
175
176 return dns_name_endswith(dns_resource_key_name(key), "_tcp.local") ||
177 dns_name_endswith(dns_resource_key_name(key), "_udp.local");
178 }
179
180 int dns_resource_key_equal(const DnsResourceKey *a, const DnsResourceKey *b) {
181 int r;
182
183 if (a == b)
184 return 1;
185
186 r = dns_name_equal(dns_resource_key_name(a), dns_resource_key_name(b));
187 if (r <= 0)
188 return r;
189
190 if (a->class != b->class)
191 return 0;
192
193 if (a->type != b->type)
194 return 0;
195
196 return 1;
197 }
198
199 int dns_resource_key_match_rr(const DnsResourceKey *key, DnsResourceRecord *rr, const char *search_domain) {
200 int r;
201
202 assert(key);
203 assert(rr);
204
205 if (key == rr->key)
206 return 1;
207
208 /* Checks if an rr matches the specified key. If a search
209 * domain is specified, it will also be checked if the key
210 * with the search domain suffixed might match the RR. */
211
212 if (rr->key->class != key->class && key->class != DNS_CLASS_ANY)
213 return 0;
214
215 if (rr->key->type != key->type && key->type != DNS_TYPE_ANY)
216 return 0;
217
218 r = dns_name_equal(dns_resource_key_name(rr->key), dns_resource_key_name(key));
219 if (r != 0)
220 return r;
221
222 if (search_domain) {
223 _cleanup_free_ char *joined = NULL;
224
225 r = dns_name_concat(dns_resource_key_name(key), search_domain, &joined);
226 if (r < 0)
227 return r;
228
229 return dns_name_equal(dns_resource_key_name(rr->key), joined);
230 }
231
232 return 0;
233 }
234
235 int dns_resource_key_match_cname_or_dname(const DnsResourceKey *key, const DnsResourceKey *cname, const char *search_domain) {
236 int r;
237
238 assert(key);
239 assert(cname);
240
241 if (cname->class != key->class && key->class != DNS_CLASS_ANY)
242 return 0;
243
244 if (cname->type == DNS_TYPE_CNAME)
245 r = dns_name_equal(dns_resource_key_name(key), dns_resource_key_name(cname));
246 else if (cname->type == DNS_TYPE_DNAME)
247 r = dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(cname));
248 else
249 return 0;
250
251 if (r != 0)
252 return r;
253
254 if (search_domain) {
255 _cleanup_free_ char *joined = NULL;
256
257 r = dns_name_concat(dns_resource_key_name(key), search_domain, &joined);
258 if (r < 0)
259 return r;
260
261 if (cname->type == DNS_TYPE_CNAME)
262 return dns_name_equal(joined, dns_resource_key_name(cname));
263 else if (cname->type == DNS_TYPE_DNAME)
264 return dns_name_endswith(joined, dns_resource_key_name(cname));
265 }
266
267 return 0;
268 }
269
270 int dns_resource_key_match_soa(const DnsResourceKey *key, const DnsResourceKey *soa) {
271 assert(soa);
272 assert(key);
273
274 /* Checks whether 'soa' is a SOA record for the specified key. */
275
276 if (soa->class != key->class)
277 return 0;
278
279 if (soa->type != DNS_TYPE_SOA)
280 return 0;
281
282 return dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(soa));
283 }
284
285 static void dns_resource_key_hash_func(const void *i, struct siphash *state) {
286 const DnsResourceKey *k = i;
287
288 assert(k);
289
290 dns_name_hash_func(dns_resource_key_name(k), state);
291 siphash24_compress(&k->class, sizeof(k->class), state);
292 siphash24_compress(&k->type, sizeof(k->type), state);
293 }
294
295 static int dns_resource_key_compare_func(const void *a, const void *b) {
296 const DnsResourceKey *x = a, *y = b;
297 int ret;
298
299 ret = dns_name_compare_func(dns_resource_key_name(x), dns_resource_key_name(y));
300 if (ret != 0)
301 return ret;
302
303 if (x->type < y->type)
304 return -1;
305 if (x->type > y->type)
306 return 1;
307
308 if (x->class < y->class)
309 return -1;
310 if (x->class > y->class)
311 return 1;
312
313 return 0;
314 }
315
316 const struct hash_ops dns_resource_key_hash_ops = {
317 .hash = dns_resource_key_hash_func,
318 .compare = dns_resource_key_compare_func
319 };
320
321 char* dns_resource_key_to_string(const DnsResourceKey *key, char *buf, size_t buf_size) {
322 const char *c, *t;
323 char *ans = buf;
324
325 /* If we cannot convert the CLASS/TYPE into a known string,
326 use the format recommended by RFC 3597, Section 5. */
327
328 c = dns_class_to_string(key->class);
329 t = dns_type_to_string(key->type);
330
331 snprintf(buf, buf_size, "%s %s%s%.0u %s%s%.0u",
332 dns_resource_key_name(key),
333 strempty(c), c ? "" : "CLASS", c ? 0 : key->class,
334 strempty(t), t ? "" : "TYPE", t ? 0 : key->class);
335
336 return ans;
337 }
338
339 bool dns_resource_key_reduce(DnsResourceKey **a, DnsResourceKey **b) {
340 assert(a);
341 assert(b);
342
343 /* Try to replace one RR key by another if they are identical, thus saving a bit of memory. Note that we do
344 * this only for RR keys, not for RRs themselves, as they carry a lot of additional metadata (where they come
345 * from, validity data, and suchlike), and cannot be replaced so easily by other RRs that have the same
346 * superficial data. */
347
348 if (!*a)
349 return false;
350 if (!*b)
351 return false;
352
353 /* We refuse merging const keys */
354 if ((*a)->n_ref == (unsigned) -1)
355 return false;
356 if ((*b)->n_ref == (unsigned) -1)
357 return false;
358
359 /* Already the same? */
360 if (*a == *b)
361 return true;
362
363 /* Are they really identical? */
364 if (dns_resource_key_equal(*a, *b) <= 0)
365 return false;
366
367 /* Keep the one which already has more references. */
368 if ((*a)->n_ref > (*b)->n_ref) {
369 dns_resource_key_unref(*b);
370 *b = dns_resource_key_ref(*a);
371 } else {
372 dns_resource_key_unref(*a);
373 *a = dns_resource_key_ref(*b);
374 }
375
376 return true;
377 }
378
379 DnsResourceRecord* dns_resource_record_new(DnsResourceKey *key) {
380 DnsResourceRecord *rr;
381
382 rr = new0(DnsResourceRecord, 1);
383 if (!rr)
384 return NULL;
385
386 rr->n_ref = 1;
387 rr->key = dns_resource_key_ref(key);
388 rr->expiry = USEC_INFINITY;
389 rr->n_skip_labels_signer = rr->n_skip_labels_source = (unsigned) -1;
390
391 return rr;
392 }
393
394 DnsResourceRecord* dns_resource_record_new_full(uint16_t class, uint16_t type, const char *name) {
395 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
396
397 key = dns_resource_key_new(class, type, name);
398 if (!key)
399 return NULL;
400
401 return dns_resource_record_new(key);
402 }
403
404 DnsResourceRecord* dns_resource_record_ref(DnsResourceRecord *rr) {
405 if (!rr)
406 return NULL;
407
408 assert(rr->n_ref > 0);
409 rr->n_ref++;
410
411 return rr;
412 }
413
414 DnsResourceRecord* dns_resource_record_unref(DnsResourceRecord *rr) {
415 if (!rr)
416 return NULL;
417
418 assert(rr->n_ref > 0);
419
420 if (rr->n_ref > 1) {
421 rr->n_ref--;
422 return NULL;
423 }
424
425 if (rr->key) {
426 switch(rr->key->type) {
427
428 case DNS_TYPE_SRV:
429 free(rr->srv.name);
430 break;
431
432 case DNS_TYPE_PTR:
433 case DNS_TYPE_NS:
434 case DNS_TYPE_CNAME:
435 case DNS_TYPE_DNAME:
436 free(rr->ptr.name);
437 break;
438
439 case DNS_TYPE_HINFO:
440 free(rr->hinfo.cpu);
441 free(rr->hinfo.os);
442 break;
443
444 case DNS_TYPE_TXT:
445 case DNS_TYPE_SPF:
446 dns_txt_item_free_all(rr->txt.items);
447 break;
448
449 case DNS_TYPE_SOA:
450 free(rr->soa.mname);
451 free(rr->soa.rname);
452 break;
453
454 case DNS_TYPE_MX:
455 free(rr->mx.exchange);
456 break;
457
458 case DNS_TYPE_DS:
459 free(rr->ds.digest);
460 break;
461
462 case DNS_TYPE_SSHFP:
463 free(rr->sshfp.fingerprint);
464 break;
465
466 case DNS_TYPE_DNSKEY:
467 free(rr->dnskey.key);
468 break;
469
470 case DNS_TYPE_RRSIG:
471 free(rr->rrsig.signer);
472 free(rr->rrsig.signature);
473 break;
474
475 case DNS_TYPE_NSEC:
476 free(rr->nsec.next_domain_name);
477 bitmap_free(rr->nsec.types);
478 break;
479
480 case DNS_TYPE_NSEC3:
481 free(rr->nsec3.next_hashed_name);
482 free(rr->nsec3.salt);
483 bitmap_free(rr->nsec3.types);
484 break;
485
486 case DNS_TYPE_LOC:
487 case DNS_TYPE_A:
488 case DNS_TYPE_AAAA:
489 break;
490
491 case DNS_TYPE_TLSA:
492 free(rr->tlsa.data);
493 break;
494
495 case DNS_TYPE_CAA:
496 free(rr->caa.tag);
497 free(rr->caa.value);
498 break;
499
500 case DNS_TYPE_OPENPGPKEY:
501 default:
502 if (!rr->unparseable)
503 free(rr->generic.data);
504 }
505
506 if (rr->unparseable)
507 free(rr->generic.data);
508
509 free(rr->wire_format);
510 dns_resource_key_unref(rr->key);
511 }
512
513 free(rr->to_string);
514 return mfree(rr);
515 }
516
517 int dns_resource_record_new_reverse(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *hostname) {
518 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
519 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL;
520 _cleanup_free_ char *ptr = NULL;
521 int r;
522
523 assert(ret);
524 assert(address);
525 assert(hostname);
526
527 r = dns_name_reverse(family, address, &ptr);
528 if (r < 0)
529 return r;
530
531 key = dns_resource_key_new_consume(DNS_CLASS_IN, DNS_TYPE_PTR, ptr);
532 if (!key)
533 return -ENOMEM;
534
535 ptr = NULL;
536
537 rr = dns_resource_record_new(key);
538 if (!rr)
539 return -ENOMEM;
540
541 rr->ptr.name = strdup(hostname);
542 if (!rr->ptr.name)
543 return -ENOMEM;
544
545 *ret = TAKE_PTR(rr);
546
547 return 0;
548 }
549
550 int dns_resource_record_new_address(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *name) {
551 DnsResourceRecord *rr;
552
553 assert(ret);
554 assert(address);
555 assert(family);
556
557 if (family == AF_INET) {
558
559 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_A, name);
560 if (!rr)
561 return -ENOMEM;
562
563 rr->a.in_addr = address->in;
564
565 } else if (family == AF_INET6) {
566
567 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_AAAA, name);
568 if (!rr)
569 return -ENOMEM;
570
571 rr->aaaa.in6_addr = address->in6;
572 } else
573 return -EAFNOSUPPORT;
574
575 *ret = rr;
576
577 return 0;
578 }
579
580 #define FIELD_EQUAL(a, b, field) \
581 ((a).field ## _size == (b).field ## _size && \
582 memcmp((a).field, (b).field, (a).field ## _size) == 0)
583
584 int dns_resource_record_equal(const DnsResourceRecord *a, const DnsResourceRecord *b) {
585 int r;
586
587 assert(a);
588 assert(b);
589
590 if (a == b)
591 return 1;
592
593 r = dns_resource_key_equal(a->key, b->key);
594 if (r <= 0)
595 return r;
596
597 if (a->unparseable != b->unparseable)
598 return 0;
599
600 switch (a->unparseable ? _DNS_TYPE_INVALID : a->key->type) {
601
602 case DNS_TYPE_SRV:
603 r = dns_name_equal(a->srv.name, b->srv.name);
604 if (r <= 0)
605 return r;
606
607 return a->srv.priority == b->srv.priority &&
608 a->srv.weight == b->srv.weight &&
609 a->srv.port == b->srv.port;
610
611 case DNS_TYPE_PTR:
612 case DNS_TYPE_NS:
613 case DNS_TYPE_CNAME:
614 case DNS_TYPE_DNAME:
615 return dns_name_equal(a->ptr.name, b->ptr.name);
616
617 case DNS_TYPE_HINFO:
618 return strcaseeq(a->hinfo.cpu, b->hinfo.cpu) &&
619 strcaseeq(a->hinfo.os, b->hinfo.os);
620
621 case DNS_TYPE_SPF: /* exactly the same as TXT */
622 case DNS_TYPE_TXT:
623 return dns_txt_item_equal(a->txt.items, b->txt.items);
624
625 case DNS_TYPE_A:
626 return memcmp(&a->a.in_addr, &b->a.in_addr, sizeof(struct in_addr)) == 0;
627
628 case DNS_TYPE_AAAA:
629 return memcmp(&a->aaaa.in6_addr, &b->aaaa.in6_addr, sizeof(struct in6_addr)) == 0;
630
631 case DNS_TYPE_SOA:
632 r = dns_name_equal(a->soa.mname, b->soa.mname);
633 if (r <= 0)
634 return r;
635 r = dns_name_equal(a->soa.rname, b->soa.rname);
636 if (r <= 0)
637 return r;
638
639 return a->soa.serial == b->soa.serial &&
640 a->soa.refresh == b->soa.refresh &&
641 a->soa.retry == b->soa.retry &&
642 a->soa.expire == b->soa.expire &&
643 a->soa.minimum == b->soa.minimum;
644
645 case DNS_TYPE_MX:
646 if (a->mx.priority != b->mx.priority)
647 return 0;
648
649 return dns_name_equal(a->mx.exchange, b->mx.exchange);
650
651 case DNS_TYPE_LOC:
652 assert(a->loc.version == b->loc.version);
653
654 return a->loc.size == b->loc.size &&
655 a->loc.horiz_pre == b->loc.horiz_pre &&
656 a->loc.vert_pre == b->loc.vert_pre &&
657 a->loc.latitude == b->loc.latitude &&
658 a->loc.longitude == b->loc.longitude &&
659 a->loc.altitude == b->loc.altitude;
660
661 case DNS_TYPE_DS:
662 return a->ds.key_tag == b->ds.key_tag &&
663 a->ds.algorithm == b->ds.algorithm &&
664 a->ds.digest_type == b->ds.digest_type &&
665 FIELD_EQUAL(a->ds, b->ds, digest);
666
667 case DNS_TYPE_SSHFP:
668 return a->sshfp.algorithm == b->sshfp.algorithm &&
669 a->sshfp.fptype == b->sshfp.fptype &&
670 FIELD_EQUAL(a->sshfp, b->sshfp, fingerprint);
671
672 case DNS_TYPE_DNSKEY:
673 return a->dnskey.flags == b->dnskey.flags &&
674 a->dnskey.protocol == b->dnskey.protocol &&
675 a->dnskey.algorithm == b->dnskey.algorithm &&
676 FIELD_EQUAL(a->dnskey, b->dnskey, key);
677
678 case DNS_TYPE_RRSIG:
679 /* do the fast comparisons first */
680 return a->rrsig.type_covered == b->rrsig.type_covered &&
681 a->rrsig.algorithm == b->rrsig.algorithm &&
682 a->rrsig.labels == b->rrsig.labels &&
683 a->rrsig.original_ttl == b->rrsig.original_ttl &&
684 a->rrsig.expiration == b->rrsig.expiration &&
685 a->rrsig.inception == b->rrsig.inception &&
686 a->rrsig.key_tag == b->rrsig.key_tag &&
687 FIELD_EQUAL(a->rrsig, b->rrsig, signature) &&
688 dns_name_equal(a->rrsig.signer, b->rrsig.signer);
689
690 case DNS_TYPE_NSEC:
691 return dns_name_equal(a->nsec.next_domain_name, b->nsec.next_domain_name) &&
692 bitmap_equal(a->nsec.types, b->nsec.types);
693
694 case DNS_TYPE_NSEC3:
695 return a->nsec3.algorithm == b->nsec3.algorithm &&
696 a->nsec3.flags == b->nsec3.flags &&
697 a->nsec3.iterations == b->nsec3.iterations &&
698 FIELD_EQUAL(a->nsec3, b->nsec3, salt) &&
699 FIELD_EQUAL(a->nsec3, b->nsec3, next_hashed_name) &&
700 bitmap_equal(a->nsec3.types, b->nsec3.types);
701
702 case DNS_TYPE_TLSA:
703 return a->tlsa.cert_usage == b->tlsa.cert_usage &&
704 a->tlsa.selector == b->tlsa.selector &&
705 a->tlsa.matching_type == b->tlsa.matching_type &&
706 FIELD_EQUAL(a->tlsa, b->tlsa, data);
707
708 case DNS_TYPE_CAA:
709 return a->caa.flags == b->caa.flags &&
710 streq(a->caa.tag, b->caa.tag) &&
711 FIELD_EQUAL(a->caa, b->caa, value);
712
713 case DNS_TYPE_OPENPGPKEY:
714 default:
715 return FIELD_EQUAL(a->generic, b->generic, data);
716 }
717 }
718
719 static char* format_location(uint32_t latitude, uint32_t longitude, uint32_t altitude,
720 uint8_t size, uint8_t horiz_pre, uint8_t vert_pre) {
721 char *s;
722 char NS = latitude >= 1U<<31 ? 'N' : 'S';
723 char EW = longitude >= 1U<<31 ? 'E' : 'W';
724
725 int lat = latitude >= 1U<<31 ? (int) (latitude - (1U<<31)) : (int) ((1U<<31) - latitude);
726 int lon = longitude >= 1U<<31 ? (int) (longitude - (1U<<31)) : (int) ((1U<<31) - longitude);
727 double alt = altitude >= 10000000u ? altitude - 10000000u : -(double)(10000000u - altitude);
728 double siz = (size >> 4) * exp10((double) (size & 0xF));
729 double hor = (horiz_pre >> 4) * exp10((double) (horiz_pre & 0xF));
730 double ver = (vert_pre >> 4) * exp10((double) (vert_pre & 0xF));
731
732 if (asprintf(&s, "%d %d %.3f %c %d %d %.3f %c %.2fm %.2fm %.2fm %.2fm",
733 (lat / 60000 / 60),
734 (lat / 60000) % 60,
735 (lat % 60000) / 1000.,
736 NS,
737 (lon / 60000 / 60),
738 (lon / 60000) % 60,
739 (lon % 60000) / 1000.,
740 EW,
741 alt / 100.,
742 siz / 100.,
743 hor / 100.,
744 ver / 100.) < 0)
745 return NULL;
746
747 return s;
748 }
749
750 static int format_timestamp_dns(char *buf, size_t l, time_t sec) {
751 struct tm tm;
752
753 assert(buf);
754 assert(l > STRLEN("YYYYMMDDHHmmSS"));
755
756 if (!gmtime_r(&sec, &tm))
757 return -EINVAL;
758
759 if (strftime(buf, l, "%Y%m%d%H%M%S", &tm) <= 0)
760 return -EINVAL;
761
762 return 0;
763 }
764
765 static char *format_types(Bitmap *types) {
766 _cleanup_strv_free_ char **strv = NULL;
767 _cleanup_free_ char *str = NULL;
768 Iterator i;
769 unsigned type;
770 int r;
771
772 BITMAP_FOREACH(type, types, i) {
773 if (dns_type_to_string(type)) {
774 r = strv_extend(&strv, dns_type_to_string(type));
775 if (r < 0)
776 return NULL;
777 } else {
778 char *t;
779
780 r = asprintf(&t, "TYPE%u", type);
781 if (r < 0)
782 return NULL;
783
784 r = strv_consume(&strv, t);
785 if (r < 0)
786 return NULL;
787 }
788 }
789
790 str = strv_join(strv, " ");
791 if (!str)
792 return NULL;
793
794 return strjoin("( ", str, " )");
795 }
796
797 static char *format_txt(DnsTxtItem *first) {
798 DnsTxtItem *i;
799 size_t c = 1;
800 char *p, *s;
801
802 LIST_FOREACH(items, i, first)
803 c += i->length * 4 + 3;
804
805 p = s = new(char, c);
806 if (!s)
807 return NULL;
808
809 LIST_FOREACH(items, i, first) {
810 size_t j;
811
812 if (i != first)
813 *(p++) = ' ';
814
815 *(p++) = '"';
816
817 for (j = 0; j < i->length; j++) {
818 if (i->data[j] < ' ' || i->data[j] == '"' || i->data[j] >= 127) {
819 *(p++) = '\\';
820 *(p++) = '0' + (i->data[j] / 100);
821 *(p++) = '0' + ((i->data[j] / 10) % 10);
822 *(p++) = '0' + (i->data[j] % 10);
823 } else
824 *(p++) = i->data[j];
825 }
826
827 *(p++) = '"';
828 }
829
830 *p = 0;
831 return s;
832 }
833
834 const char *dns_resource_record_to_string(DnsResourceRecord *rr) {
835 _cleanup_free_ char *t = NULL;
836 char *s, k[DNS_RESOURCE_KEY_STRING_MAX];
837 int r;
838
839 assert(rr);
840
841 if (rr->to_string)
842 return rr->to_string;
843
844 dns_resource_key_to_string(rr->key, k, sizeof(k));
845
846 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
847
848 case DNS_TYPE_SRV:
849 r = asprintf(&s, "%s %u %u %u %s",
850 k,
851 rr->srv.priority,
852 rr->srv.weight,
853 rr->srv.port,
854 strna(rr->srv.name));
855 if (r < 0)
856 return NULL;
857 break;
858
859 case DNS_TYPE_PTR:
860 case DNS_TYPE_NS:
861 case DNS_TYPE_CNAME:
862 case DNS_TYPE_DNAME:
863 s = strjoin(k, " ", rr->ptr.name);
864 if (!s)
865 return NULL;
866
867 break;
868
869 case DNS_TYPE_HINFO:
870 s = strjoin(k, " ", rr->hinfo.cpu, " ", rr->hinfo.os);
871 if (!s)
872 return NULL;
873 break;
874
875 case DNS_TYPE_SPF: /* exactly the same as TXT */
876 case DNS_TYPE_TXT:
877 t = format_txt(rr->txt.items);
878 if (!t)
879 return NULL;
880
881 s = strjoin(k, " ", t);
882 if (!s)
883 return NULL;
884 break;
885
886 case DNS_TYPE_A: {
887 _cleanup_free_ char *x = NULL;
888
889 r = in_addr_to_string(AF_INET, (const union in_addr_union*) &rr->a.in_addr, &x);
890 if (r < 0)
891 return NULL;
892
893 s = strjoin(k, " ", x);
894 if (!s)
895 return NULL;
896 break;
897 }
898
899 case DNS_TYPE_AAAA:
900 r = in_addr_to_string(AF_INET6, (const union in_addr_union*) &rr->aaaa.in6_addr, &t);
901 if (r < 0)
902 return NULL;
903
904 s = strjoin(k, " ", t);
905 if (!s)
906 return NULL;
907 break;
908
909 case DNS_TYPE_SOA:
910 r = asprintf(&s, "%s %s %s %u %u %u %u %u",
911 k,
912 strna(rr->soa.mname),
913 strna(rr->soa.rname),
914 rr->soa.serial,
915 rr->soa.refresh,
916 rr->soa.retry,
917 rr->soa.expire,
918 rr->soa.minimum);
919 if (r < 0)
920 return NULL;
921 break;
922
923 case DNS_TYPE_MX:
924 r = asprintf(&s, "%s %u %s",
925 k,
926 rr->mx.priority,
927 rr->mx.exchange);
928 if (r < 0)
929 return NULL;
930 break;
931
932 case DNS_TYPE_LOC:
933 assert(rr->loc.version == 0);
934
935 t = format_location(rr->loc.latitude,
936 rr->loc.longitude,
937 rr->loc.altitude,
938 rr->loc.size,
939 rr->loc.horiz_pre,
940 rr->loc.vert_pre);
941 if (!t)
942 return NULL;
943
944 s = strjoin(k, " ", t);
945 if (!s)
946 return NULL;
947 break;
948
949 case DNS_TYPE_DS:
950 t = hexmem(rr->ds.digest, rr->ds.digest_size);
951 if (!t)
952 return NULL;
953
954 r = asprintf(&s, "%s %u %u %u %s",
955 k,
956 rr->ds.key_tag,
957 rr->ds.algorithm,
958 rr->ds.digest_type,
959 t);
960 if (r < 0)
961 return NULL;
962 break;
963
964 case DNS_TYPE_SSHFP:
965 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
966 if (!t)
967 return NULL;
968
969 r = asprintf(&s, "%s %u %u %s",
970 k,
971 rr->sshfp.algorithm,
972 rr->sshfp.fptype,
973 t);
974 if (r < 0)
975 return NULL;
976 break;
977
978 case DNS_TYPE_DNSKEY: {
979 _cleanup_free_ char *alg = NULL;
980 char *ss;
981 int n;
982 uint16_t key_tag;
983
984 key_tag = dnssec_keytag(rr, true);
985
986 r = dnssec_algorithm_to_string_alloc(rr->dnskey.algorithm, &alg);
987 if (r < 0)
988 return NULL;
989
990 r = asprintf(&s, "%s %u %u %s %n",
991 k,
992 rr->dnskey.flags,
993 rr->dnskey.protocol,
994 alg,
995 &n);
996 if (r < 0)
997 return NULL;
998
999 r = base64_append(&s, n,
1000 rr->dnskey.key, rr->dnskey.key_size,
1001 8, columns());
1002 if (r < 0)
1003 return NULL;
1004
1005 r = asprintf(&ss, "%s\n"
1006 " -- Flags:%s%s%s\n"
1007 " -- Key tag: %u",
1008 s,
1009 rr->dnskey.flags & DNSKEY_FLAG_SEP ? " SEP" : "",
1010 rr->dnskey.flags & DNSKEY_FLAG_REVOKE ? " REVOKE" : "",
1011 rr->dnskey.flags & DNSKEY_FLAG_ZONE_KEY ? " ZONE_KEY" : "",
1012 key_tag);
1013 if (r < 0)
1014 return NULL;
1015 free(s);
1016 s = ss;
1017
1018 break;
1019 }
1020
1021 case DNS_TYPE_RRSIG: {
1022 _cleanup_free_ char *alg = NULL;
1023 char expiration[STRLEN("YYYYMMDDHHmmSS") + 1], inception[STRLEN("YYYYMMDDHHmmSS") + 1];
1024 const char *type;
1025 int n;
1026
1027 type = dns_type_to_string(rr->rrsig.type_covered);
1028
1029 r = dnssec_algorithm_to_string_alloc(rr->rrsig.algorithm, &alg);
1030 if (r < 0)
1031 return NULL;
1032
1033 r = format_timestamp_dns(expiration, sizeof(expiration), rr->rrsig.expiration);
1034 if (r < 0)
1035 return NULL;
1036
1037 r = format_timestamp_dns(inception, sizeof(inception), rr->rrsig.inception);
1038 if (r < 0)
1039 return NULL;
1040
1041 /* TYPE?? follows
1042 * http://tools.ietf.org/html/rfc3597#section-5 */
1043
1044 r = asprintf(&s, "%s %s%.*u %s %u %u %s %s %u %s %n",
1045 k,
1046 type ?: "TYPE",
1047 type ? 0 : 1, type ? 0u : (unsigned) rr->rrsig.type_covered,
1048 alg,
1049 rr->rrsig.labels,
1050 rr->rrsig.original_ttl,
1051 expiration,
1052 inception,
1053 rr->rrsig.key_tag,
1054 rr->rrsig.signer,
1055 &n);
1056 if (r < 0)
1057 return NULL;
1058
1059 r = base64_append(&s, n,
1060 rr->rrsig.signature, rr->rrsig.signature_size,
1061 8, columns());
1062 if (r < 0)
1063 return NULL;
1064
1065 break;
1066 }
1067
1068 case DNS_TYPE_NSEC:
1069 t = format_types(rr->nsec.types);
1070 if (!t)
1071 return NULL;
1072
1073 r = asprintf(&s, "%s %s %s",
1074 k,
1075 rr->nsec.next_domain_name,
1076 t);
1077 if (r < 0)
1078 return NULL;
1079 break;
1080
1081 case DNS_TYPE_NSEC3: {
1082 _cleanup_free_ char *salt = NULL, *hash = NULL;
1083
1084 if (rr->nsec3.salt_size > 0) {
1085 salt = hexmem(rr->nsec3.salt, rr->nsec3.salt_size);
1086 if (!salt)
1087 return NULL;
1088 }
1089
1090 hash = base32hexmem(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, false);
1091 if (!hash)
1092 return NULL;
1093
1094 t = format_types(rr->nsec3.types);
1095 if (!t)
1096 return NULL;
1097
1098 r = asprintf(&s, "%s %"PRIu8" %"PRIu8" %"PRIu16" %s %s %s",
1099 k,
1100 rr->nsec3.algorithm,
1101 rr->nsec3.flags,
1102 rr->nsec3.iterations,
1103 rr->nsec3.salt_size > 0 ? salt : "-",
1104 hash,
1105 t);
1106 if (r < 0)
1107 return NULL;
1108
1109 break;
1110 }
1111
1112 case DNS_TYPE_TLSA: {
1113 const char *cert_usage, *selector, *matching_type;
1114
1115 cert_usage = tlsa_cert_usage_to_string(rr->tlsa.cert_usage);
1116 selector = tlsa_selector_to_string(rr->tlsa.selector);
1117 matching_type = tlsa_matching_type_to_string(rr->tlsa.matching_type);
1118
1119 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1120 if (!t)
1121 return NULL;
1122
1123 r = asprintf(&s,
1124 "%s %u %u %u %s\n"
1125 " -- Cert. usage: %s\n"
1126 " -- Selector: %s\n"
1127 " -- Matching type: %s",
1128 k,
1129 rr->tlsa.cert_usage,
1130 rr->tlsa.selector,
1131 rr->tlsa.matching_type,
1132 t,
1133 cert_usage,
1134 selector,
1135 matching_type);
1136 if (r < 0)
1137 return NULL;
1138
1139 break;
1140 }
1141
1142 case DNS_TYPE_CAA: {
1143 _cleanup_free_ char *value;
1144
1145 value = octescape(rr->caa.value, rr->caa.value_size);
1146 if (!value)
1147 return NULL;
1148
1149 r = asprintf(&s, "%s %u %s \"%s\"%s%s%s%.0u",
1150 k,
1151 rr->caa.flags,
1152 rr->caa.tag,
1153 value,
1154 rr->caa.flags ? "\n -- Flags:" : "",
1155 rr->caa.flags & CAA_FLAG_CRITICAL ? " critical" : "",
1156 rr->caa.flags & ~CAA_FLAG_CRITICAL ? " " : "",
1157 rr->caa.flags & ~CAA_FLAG_CRITICAL);
1158 if (r < 0)
1159 return NULL;
1160
1161 break;
1162 }
1163
1164 case DNS_TYPE_OPENPGPKEY: {
1165 int n;
1166
1167 r = asprintf(&s, "%s %n",
1168 k,
1169 &n);
1170 if (r < 0)
1171 return NULL;
1172
1173 r = base64_append(&s, n,
1174 rr->generic.data, rr->generic.data_size,
1175 8, columns());
1176 if (r < 0)
1177 return NULL;
1178 break;
1179 }
1180
1181 default:
1182 t = hexmem(rr->generic.data, rr->generic.data_size);
1183 if (!t)
1184 return NULL;
1185
1186 /* Format as documented in RFC 3597, Section 5 */
1187 r = asprintf(&s, "%s \\# %zu %s", k, rr->generic.data_size, t);
1188 if (r < 0)
1189 return NULL;
1190 break;
1191 }
1192
1193 rr->to_string = s;
1194 return s;
1195 }
1196
1197 ssize_t dns_resource_record_payload(DnsResourceRecord *rr, void **out) {
1198 assert(rr);
1199 assert(out);
1200
1201 switch(rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1202 case DNS_TYPE_SRV:
1203 case DNS_TYPE_PTR:
1204 case DNS_TYPE_NS:
1205 case DNS_TYPE_CNAME:
1206 case DNS_TYPE_DNAME:
1207 case DNS_TYPE_HINFO:
1208 case DNS_TYPE_SPF:
1209 case DNS_TYPE_TXT:
1210 case DNS_TYPE_A:
1211 case DNS_TYPE_AAAA:
1212 case DNS_TYPE_SOA:
1213 case DNS_TYPE_MX:
1214 case DNS_TYPE_LOC:
1215 case DNS_TYPE_DS:
1216 case DNS_TYPE_DNSKEY:
1217 case DNS_TYPE_RRSIG:
1218 case DNS_TYPE_NSEC:
1219 case DNS_TYPE_NSEC3:
1220 return -EINVAL;
1221
1222 case DNS_TYPE_SSHFP:
1223 *out = rr->sshfp.fingerprint;
1224 return rr->sshfp.fingerprint_size;
1225
1226 case DNS_TYPE_TLSA:
1227 *out = rr->tlsa.data;
1228 return rr->tlsa.data_size;
1229
1230 case DNS_TYPE_OPENPGPKEY:
1231 default:
1232 *out = rr->generic.data;
1233 return rr->generic.data_size;
1234 }
1235 }
1236
1237 int dns_resource_record_to_wire_format(DnsResourceRecord *rr, bool canonical) {
1238
1239 DnsPacket packet = {
1240 .n_ref = 1,
1241 .protocol = DNS_PROTOCOL_DNS,
1242 .on_stack = true,
1243 .refuse_compression = true,
1244 .canonical_form = canonical,
1245 };
1246
1247 size_t start, rds;
1248 int r;
1249
1250 assert(rr);
1251
1252 /* Generates the RR in wire-format, optionally in the
1253 * canonical form as discussed in the DNSSEC RFC 4034, Section
1254 * 6.2. We allocate a throw-away DnsPacket object on the stack
1255 * here, because we need some book-keeping for memory
1256 * management, and can reuse the DnsPacket serializer, that
1257 * can generate the canonical form, too, but also knows label
1258 * compression and suchlike. */
1259
1260 if (rr->wire_format && rr->wire_format_canonical == canonical)
1261 return 0;
1262
1263 r = dns_packet_append_rr(&packet, rr, 0, &start, &rds);
1264 if (r < 0)
1265 return r;
1266
1267 assert(start == 0);
1268 assert(packet._data);
1269
1270 free(rr->wire_format);
1271 rr->wire_format = packet._data;
1272 rr->wire_format_size = packet.size;
1273 rr->wire_format_rdata_offset = rds;
1274 rr->wire_format_canonical = canonical;
1275
1276 packet._data = NULL;
1277 dns_packet_unref(&packet);
1278
1279 return 0;
1280 }
1281
1282 int dns_resource_record_signer(DnsResourceRecord *rr, const char **ret) {
1283 const char *n;
1284 int r;
1285
1286 assert(rr);
1287 assert(ret);
1288
1289 /* Returns the RRset's signer, if it is known. */
1290
1291 if (rr->n_skip_labels_signer == (unsigned) -1)
1292 return -ENODATA;
1293
1294 n = dns_resource_key_name(rr->key);
1295 r = dns_name_skip(n, rr->n_skip_labels_signer, &n);
1296 if (r < 0)
1297 return r;
1298 if (r == 0)
1299 return -EINVAL;
1300
1301 *ret = n;
1302 return 0;
1303 }
1304
1305 int dns_resource_record_source(DnsResourceRecord *rr, const char **ret) {
1306 const char *n;
1307 int r;
1308
1309 assert(rr);
1310 assert(ret);
1311
1312 /* Returns the RRset's synthesizing source, if it is known. */
1313
1314 if (rr->n_skip_labels_source == (unsigned) -1)
1315 return -ENODATA;
1316
1317 n = dns_resource_key_name(rr->key);
1318 r = dns_name_skip(n, rr->n_skip_labels_source, &n);
1319 if (r < 0)
1320 return r;
1321 if (r == 0)
1322 return -EINVAL;
1323
1324 *ret = n;
1325 return 0;
1326 }
1327
1328 int dns_resource_record_is_signer(DnsResourceRecord *rr, const char *zone) {
1329 const char *signer;
1330 int r;
1331
1332 assert(rr);
1333
1334 r = dns_resource_record_signer(rr, &signer);
1335 if (r < 0)
1336 return r;
1337
1338 return dns_name_equal(zone, signer);
1339 }
1340
1341 int dns_resource_record_is_synthetic(DnsResourceRecord *rr) {
1342 int r;
1343
1344 assert(rr);
1345
1346 /* Returns > 0 if the RR is generated from a wildcard, and is not the asterisk name itself */
1347
1348 if (rr->n_skip_labels_source == (unsigned) -1)
1349 return -ENODATA;
1350
1351 if (rr->n_skip_labels_source == 0)
1352 return 0;
1353
1354 if (rr->n_skip_labels_source > 1)
1355 return 1;
1356
1357 r = dns_name_startswith(dns_resource_key_name(rr->key), "*");
1358 if (r < 0)
1359 return r;
1360
1361 return !r;
1362 }
1363
1364 void dns_resource_record_hash_func(const void *i, struct siphash *state) {
1365 const DnsResourceRecord *rr = i;
1366
1367 assert(rr);
1368
1369 dns_resource_key_hash_func(rr->key, state);
1370
1371 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1372
1373 case DNS_TYPE_SRV:
1374 siphash24_compress(&rr->srv.priority, sizeof(rr->srv.priority), state);
1375 siphash24_compress(&rr->srv.weight, sizeof(rr->srv.weight), state);
1376 siphash24_compress(&rr->srv.port, sizeof(rr->srv.port), state);
1377 dns_name_hash_func(rr->srv.name, state);
1378 break;
1379
1380 case DNS_TYPE_PTR:
1381 case DNS_TYPE_NS:
1382 case DNS_TYPE_CNAME:
1383 case DNS_TYPE_DNAME:
1384 dns_name_hash_func(rr->ptr.name, state);
1385 break;
1386
1387 case DNS_TYPE_HINFO:
1388 string_hash_func(rr->hinfo.cpu, state);
1389 string_hash_func(rr->hinfo.os, state);
1390 break;
1391
1392 case DNS_TYPE_TXT:
1393 case DNS_TYPE_SPF: {
1394 DnsTxtItem *j;
1395
1396 LIST_FOREACH(items, j, rr->txt.items) {
1397 siphash24_compress(j->data, j->length, state);
1398
1399 /* Add an extra NUL byte, so that "a" followed by "b" doesn't result in the same hash as "ab"
1400 * followed by "". */
1401 siphash24_compress_byte(0, state);
1402 }
1403 break;
1404 }
1405
1406 case DNS_TYPE_A:
1407 siphash24_compress(&rr->a.in_addr, sizeof(rr->a.in_addr), state);
1408 break;
1409
1410 case DNS_TYPE_AAAA:
1411 siphash24_compress(&rr->aaaa.in6_addr, sizeof(rr->aaaa.in6_addr), state);
1412 break;
1413
1414 case DNS_TYPE_SOA:
1415 dns_name_hash_func(rr->soa.mname, state);
1416 dns_name_hash_func(rr->soa.rname, state);
1417 siphash24_compress(&rr->soa.serial, sizeof(rr->soa.serial), state);
1418 siphash24_compress(&rr->soa.refresh, sizeof(rr->soa.refresh), state);
1419 siphash24_compress(&rr->soa.retry, sizeof(rr->soa.retry), state);
1420 siphash24_compress(&rr->soa.expire, sizeof(rr->soa.expire), state);
1421 siphash24_compress(&rr->soa.minimum, sizeof(rr->soa.minimum), state);
1422 break;
1423
1424 case DNS_TYPE_MX:
1425 siphash24_compress(&rr->mx.priority, sizeof(rr->mx.priority), state);
1426 dns_name_hash_func(rr->mx.exchange, state);
1427 break;
1428
1429 case DNS_TYPE_LOC:
1430 siphash24_compress(&rr->loc.version, sizeof(rr->loc.version), state);
1431 siphash24_compress(&rr->loc.size, sizeof(rr->loc.size), state);
1432 siphash24_compress(&rr->loc.horiz_pre, sizeof(rr->loc.horiz_pre), state);
1433 siphash24_compress(&rr->loc.vert_pre, sizeof(rr->loc.vert_pre), state);
1434 siphash24_compress(&rr->loc.latitude, sizeof(rr->loc.latitude), state);
1435 siphash24_compress(&rr->loc.longitude, sizeof(rr->loc.longitude), state);
1436 siphash24_compress(&rr->loc.altitude, sizeof(rr->loc.altitude), state);
1437 break;
1438
1439 case DNS_TYPE_SSHFP:
1440 siphash24_compress(&rr->sshfp.algorithm, sizeof(rr->sshfp.algorithm), state);
1441 siphash24_compress(&rr->sshfp.fptype, sizeof(rr->sshfp.fptype), state);
1442 siphash24_compress(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size, state);
1443 break;
1444
1445 case DNS_TYPE_DNSKEY:
1446 siphash24_compress(&rr->dnskey.flags, sizeof(rr->dnskey.flags), state);
1447 siphash24_compress(&rr->dnskey.protocol, sizeof(rr->dnskey.protocol), state);
1448 siphash24_compress(&rr->dnskey.algorithm, sizeof(rr->dnskey.algorithm), state);
1449 siphash24_compress(rr->dnskey.key, rr->dnskey.key_size, state);
1450 break;
1451
1452 case DNS_TYPE_RRSIG:
1453 siphash24_compress(&rr->rrsig.type_covered, sizeof(rr->rrsig.type_covered), state);
1454 siphash24_compress(&rr->rrsig.algorithm, sizeof(rr->rrsig.algorithm), state);
1455 siphash24_compress(&rr->rrsig.labels, sizeof(rr->rrsig.labels), state);
1456 siphash24_compress(&rr->rrsig.original_ttl, sizeof(rr->rrsig.original_ttl), state);
1457 siphash24_compress(&rr->rrsig.expiration, sizeof(rr->rrsig.expiration), state);
1458 siphash24_compress(&rr->rrsig.inception, sizeof(rr->rrsig.inception), state);
1459 siphash24_compress(&rr->rrsig.key_tag, sizeof(rr->rrsig.key_tag), state);
1460 dns_name_hash_func(rr->rrsig.signer, state);
1461 siphash24_compress(rr->rrsig.signature, rr->rrsig.signature_size, state);
1462 break;
1463
1464 case DNS_TYPE_NSEC:
1465 dns_name_hash_func(rr->nsec.next_domain_name, state);
1466 /* FIXME: we leave out the type bitmap here. Hash
1467 * would be better if we'd take it into account
1468 * too. */
1469 break;
1470
1471 case DNS_TYPE_DS:
1472 siphash24_compress(&rr->ds.key_tag, sizeof(rr->ds.key_tag), state);
1473 siphash24_compress(&rr->ds.algorithm, sizeof(rr->ds.algorithm), state);
1474 siphash24_compress(&rr->ds.digest_type, sizeof(rr->ds.digest_type), state);
1475 siphash24_compress(rr->ds.digest, rr->ds.digest_size, state);
1476 break;
1477
1478 case DNS_TYPE_NSEC3:
1479 siphash24_compress(&rr->nsec3.algorithm, sizeof(rr->nsec3.algorithm), state);
1480 siphash24_compress(&rr->nsec3.flags, sizeof(rr->nsec3.flags), state);
1481 siphash24_compress(&rr->nsec3.iterations, sizeof(rr->nsec3.iterations), state);
1482 siphash24_compress(rr->nsec3.salt, rr->nsec3.salt_size, state);
1483 siphash24_compress(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, state);
1484 /* FIXME: We leave the bitmaps out */
1485 break;
1486
1487 case DNS_TYPE_TLSA:
1488 siphash24_compress(&rr->tlsa.cert_usage, sizeof(rr->tlsa.cert_usage), state);
1489 siphash24_compress(&rr->tlsa.selector, sizeof(rr->tlsa.selector), state);
1490 siphash24_compress(&rr->tlsa.matching_type, sizeof(rr->tlsa.matching_type), state);
1491 siphash24_compress(rr->tlsa.data, rr->tlsa.data_size, state);
1492 break;
1493
1494 case DNS_TYPE_CAA:
1495 siphash24_compress(&rr->caa.flags, sizeof(rr->caa.flags), state);
1496 string_hash_func(rr->caa.tag, state);
1497 siphash24_compress(rr->caa.value, rr->caa.value_size, state);
1498 break;
1499
1500 case DNS_TYPE_OPENPGPKEY:
1501 default:
1502 siphash24_compress(rr->generic.data, rr->generic.data_size, state);
1503 break;
1504 }
1505 }
1506
1507 static int dns_resource_record_compare_func(const void *a, const void *b) {
1508 const DnsResourceRecord *x = a, *y = b;
1509 int ret;
1510
1511 ret = dns_resource_key_compare_func(x->key, y->key);
1512 if (ret != 0)
1513 return ret;
1514
1515 if (dns_resource_record_equal(x, y))
1516 return 0;
1517
1518 /* This is a bit dirty, we don't implement proper ordering, but
1519 * the hashtable doesn't need ordering anyway, hence we don't
1520 * care. */
1521 return x < y ? -1 : 1;
1522 }
1523
1524 const struct hash_ops dns_resource_record_hash_ops = {
1525 .hash = dns_resource_record_hash_func,
1526 .compare = dns_resource_record_compare_func,
1527 };
1528
1529 DnsResourceRecord *dns_resource_record_copy(DnsResourceRecord *rr) {
1530 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *copy = NULL;
1531 DnsResourceRecord *t;
1532
1533 assert(rr);
1534
1535 copy = dns_resource_record_new(rr->key);
1536 if (!copy)
1537 return NULL;
1538
1539 copy->ttl = rr->ttl;
1540 copy->expiry = rr->expiry;
1541 copy->n_skip_labels_signer = rr->n_skip_labels_signer;
1542 copy->n_skip_labels_source = rr->n_skip_labels_source;
1543 copy->unparseable = rr->unparseable;
1544
1545 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1546
1547 case DNS_TYPE_SRV:
1548 copy->srv.priority = rr->srv.priority;
1549 copy->srv.weight = rr->srv.weight;
1550 copy->srv.port = rr->srv.port;
1551 copy->srv.name = strdup(rr->srv.name);
1552 if (!copy->srv.name)
1553 return NULL;
1554 break;
1555
1556 case DNS_TYPE_PTR:
1557 case DNS_TYPE_NS:
1558 case DNS_TYPE_CNAME:
1559 case DNS_TYPE_DNAME:
1560 copy->ptr.name = strdup(rr->ptr.name);
1561 if (!copy->ptr.name)
1562 return NULL;
1563 break;
1564
1565 case DNS_TYPE_HINFO:
1566 copy->hinfo.cpu = strdup(rr->hinfo.cpu);
1567 if (!copy->hinfo.cpu)
1568 return NULL;
1569
1570 copy->hinfo.os = strdup(rr->hinfo.os);
1571 if (!copy->hinfo.os)
1572 return NULL;
1573 break;
1574
1575 case DNS_TYPE_TXT:
1576 case DNS_TYPE_SPF:
1577 copy->txt.items = dns_txt_item_copy(rr->txt.items);
1578 if (!copy->txt.items)
1579 return NULL;
1580 break;
1581
1582 case DNS_TYPE_A:
1583 copy->a = rr->a;
1584 break;
1585
1586 case DNS_TYPE_AAAA:
1587 copy->aaaa = rr->aaaa;
1588 break;
1589
1590 case DNS_TYPE_SOA:
1591 copy->soa.mname = strdup(rr->soa.mname);
1592 if (!copy->soa.mname)
1593 return NULL;
1594 copy->soa.rname = strdup(rr->soa.rname);
1595 if (!copy->soa.rname)
1596 return NULL;
1597 copy->soa.serial = rr->soa.serial;
1598 copy->soa.refresh = rr->soa.refresh;
1599 copy->soa.retry = rr->soa.retry;
1600 copy->soa.expire = rr->soa.expire;
1601 copy->soa.minimum = rr->soa.minimum;
1602 break;
1603
1604 case DNS_TYPE_MX:
1605 copy->mx.priority = rr->mx.priority;
1606 copy->mx.exchange = strdup(rr->mx.exchange);
1607 if (!copy->mx.exchange)
1608 return NULL;
1609 break;
1610
1611 case DNS_TYPE_LOC:
1612 copy->loc = rr->loc;
1613 break;
1614
1615 case DNS_TYPE_SSHFP:
1616 copy->sshfp.algorithm = rr->sshfp.algorithm;
1617 copy->sshfp.fptype = rr->sshfp.fptype;
1618 copy->sshfp.fingerprint = memdup(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1619 if (!copy->sshfp.fingerprint)
1620 return NULL;
1621 copy->sshfp.fingerprint_size = rr->sshfp.fingerprint_size;
1622 break;
1623
1624 case DNS_TYPE_DNSKEY:
1625 copy->dnskey.flags = rr->dnskey.flags;
1626 copy->dnskey.protocol = rr->dnskey.protocol;
1627 copy->dnskey.algorithm = rr->dnskey.algorithm;
1628 copy->dnskey.key = memdup(rr->dnskey.key, rr->dnskey.key_size);
1629 if (!copy->dnskey.key)
1630 return NULL;
1631 copy->dnskey.key_size = rr->dnskey.key_size;
1632 break;
1633
1634 case DNS_TYPE_RRSIG:
1635 copy->rrsig.type_covered = rr->rrsig.type_covered;
1636 copy->rrsig.algorithm = rr->rrsig.algorithm;
1637 copy->rrsig.labels = rr->rrsig.labels;
1638 copy->rrsig.original_ttl = rr->rrsig.original_ttl;
1639 copy->rrsig.expiration = rr->rrsig.expiration;
1640 copy->rrsig.inception = rr->rrsig.inception;
1641 copy->rrsig.key_tag = rr->rrsig.key_tag;
1642 copy->rrsig.signer = strdup(rr->rrsig.signer);
1643 if (!copy->rrsig.signer)
1644 return NULL;
1645 copy->rrsig.signature = memdup(rr->rrsig.signature, rr->rrsig.signature_size);
1646 if (!copy->rrsig.signature)
1647 return NULL;
1648 copy->rrsig.signature_size = rr->rrsig.signature_size;
1649 break;
1650
1651 case DNS_TYPE_NSEC:
1652 copy->nsec.next_domain_name = strdup(rr->nsec.next_domain_name);
1653 if (!copy->nsec.next_domain_name)
1654 return NULL;
1655 copy->nsec.types = bitmap_copy(rr->nsec.types);
1656 if (!copy->nsec.types)
1657 return NULL;
1658 break;
1659
1660 case DNS_TYPE_DS:
1661 copy->ds.key_tag = rr->ds.key_tag;
1662 copy->ds.algorithm = rr->ds.algorithm;
1663 copy->ds.digest_type = rr->ds.digest_type;
1664 copy->ds.digest = memdup(rr->ds.digest, rr->ds.digest_size);
1665 if (!copy->ds.digest)
1666 return NULL;
1667 copy->ds.digest_size = rr->ds.digest_size;
1668 break;
1669
1670 case DNS_TYPE_NSEC3:
1671 copy->nsec3.algorithm = rr->nsec3.algorithm;
1672 copy->nsec3.flags = rr->nsec3.flags;
1673 copy->nsec3.iterations = rr->nsec3.iterations;
1674 copy->nsec3.salt = memdup(rr->nsec3.salt, rr->nsec3.salt_size);
1675 if (!copy->nsec3.salt)
1676 return NULL;
1677 copy->nsec3.salt_size = rr->nsec3.salt_size;
1678 copy->nsec3.next_hashed_name = memdup(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size);
1679 if (!copy->nsec3.next_hashed_name_size)
1680 return NULL;
1681 copy->nsec3.next_hashed_name_size = rr->nsec3.next_hashed_name_size;
1682 copy->nsec3.types = bitmap_copy(rr->nsec3.types);
1683 if (!copy->nsec3.types)
1684 return NULL;
1685 break;
1686
1687 case DNS_TYPE_TLSA:
1688 copy->tlsa.cert_usage = rr->tlsa.cert_usage;
1689 copy->tlsa.selector = rr->tlsa.selector;
1690 copy->tlsa.matching_type = rr->tlsa.matching_type;
1691 copy->tlsa.data = memdup(rr->tlsa.data, rr->tlsa.data_size);
1692 if (!copy->tlsa.data)
1693 return NULL;
1694 copy->tlsa.data_size = rr->tlsa.data_size;
1695 break;
1696
1697 case DNS_TYPE_CAA:
1698 copy->caa.flags = rr->caa.flags;
1699 copy->caa.tag = strdup(rr->caa.tag);
1700 if (!copy->caa.tag)
1701 return NULL;
1702 copy->caa.value = memdup(rr->caa.value, rr->caa.value_size);
1703 if (!copy->caa.value)
1704 return NULL;
1705 copy->caa.value_size = rr->caa.value_size;
1706 break;
1707
1708 case DNS_TYPE_OPT:
1709 default:
1710 copy->generic.data = memdup(rr->generic.data, rr->generic.data_size);
1711 if (!copy->generic.data)
1712 return NULL;
1713 copy->generic.data_size = rr->generic.data_size;
1714 break;
1715 }
1716
1717 t = TAKE_PTR(copy);
1718
1719 return t;
1720 }
1721
1722 int dns_resource_record_clamp_ttl(DnsResourceRecord **rr, uint32_t max_ttl) {
1723 DnsResourceRecord *old_rr, *new_rr;
1724 uint32_t new_ttl;
1725
1726 assert(rr);
1727 old_rr = *rr;
1728
1729 if (old_rr->key->type == DNS_TYPE_OPT)
1730 return -EINVAL;
1731
1732 new_ttl = MIN(old_rr->ttl, max_ttl);
1733 if (new_ttl == old_rr->ttl)
1734 return 0;
1735
1736 if (old_rr->n_ref == 1) {
1737 /* Patch in place */
1738 old_rr->ttl = new_ttl;
1739 return 1;
1740 }
1741
1742 new_rr = dns_resource_record_copy(old_rr);
1743 if (!new_rr)
1744 return -ENOMEM;
1745
1746 new_rr->ttl = new_ttl;
1747
1748 dns_resource_record_unref(*rr);
1749 *rr = new_rr;
1750
1751 return 1;
1752 }
1753
1754 DnsTxtItem *dns_txt_item_free_all(DnsTxtItem *i) {
1755 DnsTxtItem *n;
1756
1757 if (!i)
1758 return NULL;
1759
1760 n = i->items_next;
1761
1762 free(i);
1763 return dns_txt_item_free_all(n);
1764 }
1765
1766 bool dns_txt_item_equal(DnsTxtItem *a, DnsTxtItem *b) {
1767
1768 if (a == b)
1769 return true;
1770
1771 if (!a != !b)
1772 return false;
1773
1774 if (!a)
1775 return true;
1776
1777 if (a->length != b->length)
1778 return false;
1779
1780 if (memcmp(a->data, b->data, a->length) != 0)
1781 return false;
1782
1783 return dns_txt_item_equal(a->items_next, b->items_next);
1784 }
1785
1786 DnsTxtItem *dns_txt_item_copy(DnsTxtItem *first) {
1787 DnsTxtItem *i, *copy = NULL, *end = NULL;
1788
1789 LIST_FOREACH(items, i, first) {
1790 DnsTxtItem *j;
1791
1792 j = memdup(i, offsetof(DnsTxtItem, data) + i->length + 1);
1793 if (!j) {
1794 dns_txt_item_free_all(copy);
1795 return NULL;
1796 }
1797
1798 LIST_INSERT_AFTER(items, copy, end, j);
1799 end = j;
1800 }
1801
1802 return copy;
1803 }
1804
1805 int dns_txt_item_new_empty(DnsTxtItem **ret) {
1806 DnsTxtItem *i;
1807
1808 /* RFC 6763, section 6.1 suggests to treat
1809 * empty TXT RRs as equivalent to a TXT record
1810 * with a single empty string. */
1811
1812 i = malloc0(offsetof(DnsTxtItem, data) + 1); /* for safety reasons we add an extra NUL byte */
1813 if (!i)
1814 return -ENOMEM;
1815
1816 *ret = i;
1817
1818 return 0;
1819 }
1820
1821 static const char* const dnssec_algorithm_table[_DNSSEC_ALGORITHM_MAX_DEFINED] = {
1822 /* Mnemonics as listed on https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml */
1823 [DNSSEC_ALGORITHM_RSAMD5] = "RSAMD5",
1824 [DNSSEC_ALGORITHM_DH] = "DH",
1825 [DNSSEC_ALGORITHM_DSA] = "DSA",
1826 [DNSSEC_ALGORITHM_ECC] = "ECC",
1827 [DNSSEC_ALGORITHM_RSASHA1] = "RSASHA1",
1828 [DNSSEC_ALGORITHM_DSA_NSEC3_SHA1] = "DSA-NSEC3-SHA1",
1829 [DNSSEC_ALGORITHM_RSASHA1_NSEC3_SHA1] = "RSASHA1-NSEC3-SHA1",
1830 [DNSSEC_ALGORITHM_RSASHA256] = "RSASHA256",
1831 [DNSSEC_ALGORITHM_RSASHA512] = "RSASHA512",
1832 [DNSSEC_ALGORITHM_ECC_GOST] = "ECC-GOST",
1833 [DNSSEC_ALGORITHM_ECDSAP256SHA256] = "ECDSAP256SHA256",
1834 [DNSSEC_ALGORITHM_ECDSAP384SHA384] = "ECDSAP384SHA384",
1835 [DNSSEC_ALGORITHM_ED25519] = "ED25519",
1836 [DNSSEC_ALGORITHM_ED448] = "ED448",
1837 [DNSSEC_ALGORITHM_INDIRECT] = "INDIRECT",
1838 [DNSSEC_ALGORITHM_PRIVATEDNS] = "PRIVATEDNS",
1839 [DNSSEC_ALGORITHM_PRIVATEOID] = "PRIVATEOID",
1840 };
1841 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_algorithm, int, 255);
1842
1843 static const char* const dnssec_digest_table[_DNSSEC_DIGEST_MAX_DEFINED] = {
1844 /* Names as listed on https://www.iana.org/assignments/ds-rr-types/ds-rr-types.xhtml */
1845 [DNSSEC_DIGEST_SHA1] = "SHA-1",
1846 [DNSSEC_DIGEST_SHA256] = "SHA-256",
1847 [DNSSEC_DIGEST_GOST_R_34_11_94] = "GOST_R_34.11-94",
1848 [DNSSEC_DIGEST_SHA384] = "SHA-384",
1849 };
1850 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_digest, int, 255);