]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/resolve/resolved-dns-rr.c
Merge pull request #8754 from poettering/sysusers-fix
[thirdparty/systemd.git] / src / resolve / resolved-dns-rr.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2 /***
3 This file is part of systemd.
4
5 Copyright 2014 Lennart Poettering
6 ***/
7
8 #include <math.h>
9
10 #include "alloc-util.h"
11 #include "dns-domain.h"
12 #include "dns-type.h"
13 #include "escape.h"
14 #include "hexdecoct.h"
15 #include "resolved-dns-dnssec.h"
16 #include "resolved-dns-packet.h"
17 #include "resolved-dns-rr.h"
18 #include "string-table.h"
19 #include "string-util.h"
20 #include "strv.h"
21 #include "terminal-util.h"
22
23 DnsResourceKey* dns_resource_key_new(uint16_t class, uint16_t type, const char *name) {
24 DnsResourceKey *k;
25 size_t l;
26
27 assert(name);
28
29 l = strlen(name);
30 k = malloc0(sizeof(DnsResourceKey) + l + 1);
31 if (!k)
32 return NULL;
33
34 k->n_ref = 1;
35 k->class = class;
36 k->type = type;
37
38 strcpy((char*) k + sizeof(DnsResourceKey), name);
39
40 return k;
41 }
42
43 DnsResourceKey* dns_resource_key_new_redirect(const DnsResourceKey *key, const DnsResourceRecord *cname) {
44 int r;
45
46 assert(key);
47 assert(cname);
48
49 assert(IN_SET(cname->key->type, DNS_TYPE_CNAME, DNS_TYPE_DNAME));
50
51 if (cname->key->type == DNS_TYPE_CNAME)
52 return dns_resource_key_new(key->class, key->type, cname->cname.name);
53 else {
54 DnsResourceKey *k;
55 char *destination = NULL;
56
57 r = dns_name_change_suffix(dns_resource_key_name(key), dns_resource_key_name(cname->key), cname->dname.name, &destination);
58 if (r < 0)
59 return NULL;
60 if (r == 0)
61 return dns_resource_key_ref((DnsResourceKey*) key);
62
63 k = dns_resource_key_new_consume(key->class, key->type, destination);
64 if (!k)
65 return mfree(destination);
66
67 return k;
68 }
69 }
70
71 int dns_resource_key_new_append_suffix(DnsResourceKey **ret, DnsResourceKey *key, char *name) {
72 DnsResourceKey *new_key;
73 char *joined;
74 int r;
75
76 assert(ret);
77 assert(key);
78 assert(name);
79
80 if (dns_name_is_root(name)) {
81 *ret = dns_resource_key_ref(key);
82 return 0;
83 }
84
85 r = dns_name_concat(dns_resource_key_name(key), name, &joined);
86 if (r < 0)
87 return r;
88
89 new_key = dns_resource_key_new_consume(key->class, key->type, joined);
90 if (!new_key) {
91 free(joined);
92 return -ENOMEM;
93 }
94
95 *ret = new_key;
96 return 0;
97 }
98
99 DnsResourceKey* dns_resource_key_new_consume(uint16_t class, uint16_t type, char *name) {
100 DnsResourceKey *k;
101
102 assert(name);
103
104 k = new0(DnsResourceKey, 1);
105 if (!k)
106 return NULL;
107
108 k->n_ref = 1;
109 k->class = class;
110 k->type = type;
111 k->_name = name;
112
113 return k;
114 }
115
116 DnsResourceKey* dns_resource_key_ref(DnsResourceKey *k) {
117
118 if (!k)
119 return NULL;
120
121 /* Static/const keys created with DNS_RESOURCE_KEY_CONST will
122 * set this to -1, they should not be reffed/unreffed */
123 assert(k->n_ref != (unsigned) -1);
124
125 assert(k->n_ref > 0);
126 k->n_ref++;
127
128 return k;
129 }
130
131 DnsResourceKey* dns_resource_key_unref(DnsResourceKey *k) {
132 if (!k)
133 return NULL;
134
135 assert(k->n_ref != (unsigned) -1);
136 assert(k->n_ref > 0);
137
138 if (k->n_ref == 1) {
139 free(k->_name);
140 free(k);
141 } else
142 k->n_ref--;
143
144 return NULL;
145 }
146
147 const char* dns_resource_key_name(const DnsResourceKey *key) {
148 const char *name;
149
150 if (!key)
151 return NULL;
152
153 if (key->_name)
154 name = key->_name;
155 else
156 name = (char*) key + sizeof(DnsResourceKey);
157
158 if (dns_name_is_root(name))
159 return ".";
160 else
161 return name;
162 }
163
164 bool dns_resource_key_is_address(const DnsResourceKey *key) {
165 assert(key);
166
167 /* Check if this is an A or AAAA resource key */
168
169 return key->class == DNS_CLASS_IN && IN_SET(key->type, DNS_TYPE_A, DNS_TYPE_AAAA);
170 }
171
172 bool dns_resource_key_is_dnssd_ptr(const DnsResourceKey *key) {
173 assert(key);
174
175 /* Check if this is a PTR resource key used in
176 Service Instance Enumeration as described in RFC6763 p4.1. */
177
178 if (key->type != DNS_TYPE_PTR)
179 return false;
180
181 return dns_name_endswith(dns_resource_key_name(key), "_tcp.local") ||
182 dns_name_endswith(dns_resource_key_name(key), "_udp.local");
183 }
184
185 int dns_resource_key_equal(const DnsResourceKey *a, const DnsResourceKey *b) {
186 int r;
187
188 if (a == b)
189 return 1;
190
191 r = dns_name_equal(dns_resource_key_name(a), dns_resource_key_name(b));
192 if (r <= 0)
193 return r;
194
195 if (a->class != b->class)
196 return 0;
197
198 if (a->type != b->type)
199 return 0;
200
201 return 1;
202 }
203
204 int dns_resource_key_match_rr(const DnsResourceKey *key, DnsResourceRecord *rr, const char *search_domain) {
205 int r;
206
207 assert(key);
208 assert(rr);
209
210 if (key == rr->key)
211 return 1;
212
213 /* Checks if an rr matches the specified key. If a search
214 * domain is specified, it will also be checked if the key
215 * with the search domain suffixed might match the RR. */
216
217 if (rr->key->class != key->class && key->class != DNS_CLASS_ANY)
218 return 0;
219
220 if (rr->key->type != key->type && key->type != DNS_TYPE_ANY)
221 return 0;
222
223 r = dns_name_equal(dns_resource_key_name(rr->key), dns_resource_key_name(key));
224 if (r != 0)
225 return r;
226
227 if (search_domain) {
228 _cleanup_free_ char *joined = NULL;
229
230 r = dns_name_concat(dns_resource_key_name(key), search_domain, &joined);
231 if (r < 0)
232 return r;
233
234 return dns_name_equal(dns_resource_key_name(rr->key), joined);
235 }
236
237 return 0;
238 }
239
240 int dns_resource_key_match_cname_or_dname(const DnsResourceKey *key, const DnsResourceKey *cname, const char *search_domain) {
241 int r;
242
243 assert(key);
244 assert(cname);
245
246 if (cname->class != key->class && key->class != DNS_CLASS_ANY)
247 return 0;
248
249 if (cname->type == DNS_TYPE_CNAME)
250 r = dns_name_equal(dns_resource_key_name(key), dns_resource_key_name(cname));
251 else if (cname->type == DNS_TYPE_DNAME)
252 r = dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(cname));
253 else
254 return 0;
255
256 if (r != 0)
257 return r;
258
259 if (search_domain) {
260 _cleanup_free_ char *joined = NULL;
261
262 r = dns_name_concat(dns_resource_key_name(key), search_domain, &joined);
263 if (r < 0)
264 return r;
265
266 if (cname->type == DNS_TYPE_CNAME)
267 return dns_name_equal(joined, dns_resource_key_name(cname));
268 else if (cname->type == DNS_TYPE_DNAME)
269 return dns_name_endswith(joined, dns_resource_key_name(cname));
270 }
271
272 return 0;
273 }
274
275 int dns_resource_key_match_soa(const DnsResourceKey *key, const DnsResourceKey *soa) {
276 assert(soa);
277 assert(key);
278
279 /* Checks whether 'soa' is a SOA record for the specified key. */
280
281 if (soa->class != key->class)
282 return 0;
283
284 if (soa->type != DNS_TYPE_SOA)
285 return 0;
286
287 return dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(soa));
288 }
289
290 static void dns_resource_key_hash_func(const void *i, struct siphash *state) {
291 const DnsResourceKey *k = i;
292
293 assert(k);
294
295 dns_name_hash_func(dns_resource_key_name(k), state);
296 siphash24_compress(&k->class, sizeof(k->class), state);
297 siphash24_compress(&k->type, sizeof(k->type), state);
298 }
299
300 static int dns_resource_key_compare_func(const void *a, const void *b) {
301 const DnsResourceKey *x = a, *y = b;
302 int ret;
303
304 ret = dns_name_compare_func(dns_resource_key_name(x), dns_resource_key_name(y));
305 if (ret != 0)
306 return ret;
307
308 if (x->type < y->type)
309 return -1;
310 if (x->type > y->type)
311 return 1;
312
313 if (x->class < y->class)
314 return -1;
315 if (x->class > y->class)
316 return 1;
317
318 return 0;
319 }
320
321 const struct hash_ops dns_resource_key_hash_ops = {
322 .hash = dns_resource_key_hash_func,
323 .compare = dns_resource_key_compare_func
324 };
325
326 char* dns_resource_key_to_string(const DnsResourceKey *key, char *buf, size_t buf_size) {
327 const char *c, *t;
328 char *ans = buf;
329
330 /* If we cannot convert the CLASS/TYPE into a known string,
331 use the format recommended by RFC 3597, Section 5. */
332
333 c = dns_class_to_string(key->class);
334 t = dns_type_to_string(key->type);
335
336 snprintf(buf, buf_size, "%s %s%s%.0u %s%s%.0u",
337 dns_resource_key_name(key),
338 strempty(c), c ? "" : "CLASS", c ? 0 : key->class,
339 strempty(t), t ? "" : "TYPE", t ? 0 : key->class);
340
341 return ans;
342 }
343
344 bool dns_resource_key_reduce(DnsResourceKey **a, DnsResourceKey **b) {
345 assert(a);
346 assert(b);
347
348 /* Try to replace one RR key by another if they are identical, thus saving a bit of memory. Note that we do
349 * this only for RR keys, not for RRs themselves, as they carry a lot of additional metadata (where they come
350 * from, validity data, and suchlike), and cannot be replaced so easily by other RRs that have the same
351 * superficial data. */
352
353 if (!*a)
354 return false;
355 if (!*b)
356 return false;
357
358 /* We refuse merging const keys */
359 if ((*a)->n_ref == (unsigned) -1)
360 return false;
361 if ((*b)->n_ref == (unsigned) -1)
362 return false;
363
364 /* Already the same? */
365 if (*a == *b)
366 return true;
367
368 /* Are they really identical? */
369 if (dns_resource_key_equal(*a, *b) <= 0)
370 return false;
371
372 /* Keep the one which already has more references. */
373 if ((*a)->n_ref > (*b)->n_ref) {
374 dns_resource_key_unref(*b);
375 *b = dns_resource_key_ref(*a);
376 } else {
377 dns_resource_key_unref(*a);
378 *a = dns_resource_key_ref(*b);
379 }
380
381 return true;
382 }
383
384 DnsResourceRecord* dns_resource_record_new(DnsResourceKey *key) {
385 DnsResourceRecord *rr;
386
387 rr = new0(DnsResourceRecord, 1);
388 if (!rr)
389 return NULL;
390
391 rr->n_ref = 1;
392 rr->key = dns_resource_key_ref(key);
393 rr->expiry = USEC_INFINITY;
394 rr->n_skip_labels_signer = rr->n_skip_labels_source = (unsigned) -1;
395
396 return rr;
397 }
398
399 DnsResourceRecord* dns_resource_record_new_full(uint16_t class, uint16_t type, const char *name) {
400 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
401
402 key = dns_resource_key_new(class, type, name);
403 if (!key)
404 return NULL;
405
406 return dns_resource_record_new(key);
407 }
408
409 DnsResourceRecord* dns_resource_record_ref(DnsResourceRecord *rr) {
410 if (!rr)
411 return NULL;
412
413 assert(rr->n_ref > 0);
414 rr->n_ref++;
415
416 return rr;
417 }
418
419 DnsResourceRecord* dns_resource_record_unref(DnsResourceRecord *rr) {
420 if (!rr)
421 return NULL;
422
423 assert(rr->n_ref > 0);
424
425 if (rr->n_ref > 1) {
426 rr->n_ref--;
427 return NULL;
428 }
429
430 if (rr->key) {
431 switch(rr->key->type) {
432
433 case DNS_TYPE_SRV:
434 free(rr->srv.name);
435 break;
436
437 case DNS_TYPE_PTR:
438 case DNS_TYPE_NS:
439 case DNS_TYPE_CNAME:
440 case DNS_TYPE_DNAME:
441 free(rr->ptr.name);
442 break;
443
444 case DNS_TYPE_HINFO:
445 free(rr->hinfo.cpu);
446 free(rr->hinfo.os);
447 break;
448
449 case DNS_TYPE_TXT:
450 case DNS_TYPE_SPF:
451 dns_txt_item_free_all(rr->txt.items);
452 break;
453
454 case DNS_TYPE_SOA:
455 free(rr->soa.mname);
456 free(rr->soa.rname);
457 break;
458
459 case DNS_TYPE_MX:
460 free(rr->mx.exchange);
461 break;
462
463 case DNS_TYPE_DS:
464 free(rr->ds.digest);
465 break;
466
467 case DNS_TYPE_SSHFP:
468 free(rr->sshfp.fingerprint);
469 break;
470
471 case DNS_TYPE_DNSKEY:
472 free(rr->dnskey.key);
473 break;
474
475 case DNS_TYPE_RRSIG:
476 free(rr->rrsig.signer);
477 free(rr->rrsig.signature);
478 break;
479
480 case DNS_TYPE_NSEC:
481 free(rr->nsec.next_domain_name);
482 bitmap_free(rr->nsec.types);
483 break;
484
485 case DNS_TYPE_NSEC3:
486 free(rr->nsec3.next_hashed_name);
487 free(rr->nsec3.salt);
488 bitmap_free(rr->nsec3.types);
489 break;
490
491 case DNS_TYPE_LOC:
492 case DNS_TYPE_A:
493 case DNS_TYPE_AAAA:
494 break;
495
496 case DNS_TYPE_TLSA:
497 free(rr->tlsa.data);
498 break;
499
500 case DNS_TYPE_CAA:
501 free(rr->caa.tag);
502 free(rr->caa.value);
503 break;
504
505 case DNS_TYPE_OPENPGPKEY:
506 default:
507 if (!rr->unparseable)
508 free(rr->generic.data);
509 }
510
511 if (rr->unparseable)
512 free(rr->generic.data);
513
514 free(rr->wire_format);
515 dns_resource_key_unref(rr->key);
516 }
517
518 free(rr->to_string);
519 return mfree(rr);
520 }
521
522 int dns_resource_record_new_reverse(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *hostname) {
523 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
524 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL;
525 _cleanup_free_ char *ptr = NULL;
526 int r;
527
528 assert(ret);
529 assert(address);
530 assert(hostname);
531
532 r = dns_name_reverse(family, address, &ptr);
533 if (r < 0)
534 return r;
535
536 key = dns_resource_key_new_consume(DNS_CLASS_IN, DNS_TYPE_PTR, ptr);
537 if (!key)
538 return -ENOMEM;
539
540 ptr = NULL;
541
542 rr = dns_resource_record_new(key);
543 if (!rr)
544 return -ENOMEM;
545
546 rr->ptr.name = strdup(hostname);
547 if (!rr->ptr.name)
548 return -ENOMEM;
549
550 *ret = TAKE_PTR(rr);
551
552 return 0;
553 }
554
555 int dns_resource_record_new_address(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *name) {
556 DnsResourceRecord *rr;
557
558 assert(ret);
559 assert(address);
560 assert(family);
561
562 if (family == AF_INET) {
563
564 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_A, name);
565 if (!rr)
566 return -ENOMEM;
567
568 rr->a.in_addr = address->in;
569
570 } else if (family == AF_INET6) {
571
572 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_AAAA, name);
573 if (!rr)
574 return -ENOMEM;
575
576 rr->aaaa.in6_addr = address->in6;
577 } else
578 return -EAFNOSUPPORT;
579
580 *ret = rr;
581
582 return 0;
583 }
584
585 #define FIELD_EQUAL(a, b, field) \
586 ((a).field ## _size == (b).field ## _size && \
587 memcmp((a).field, (b).field, (a).field ## _size) == 0)
588
589 int dns_resource_record_equal(const DnsResourceRecord *a, const DnsResourceRecord *b) {
590 int r;
591
592 assert(a);
593 assert(b);
594
595 if (a == b)
596 return 1;
597
598 r = dns_resource_key_equal(a->key, b->key);
599 if (r <= 0)
600 return r;
601
602 if (a->unparseable != b->unparseable)
603 return 0;
604
605 switch (a->unparseable ? _DNS_TYPE_INVALID : a->key->type) {
606
607 case DNS_TYPE_SRV:
608 r = dns_name_equal(a->srv.name, b->srv.name);
609 if (r <= 0)
610 return r;
611
612 return a->srv.priority == b->srv.priority &&
613 a->srv.weight == b->srv.weight &&
614 a->srv.port == b->srv.port;
615
616 case DNS_TYPE_PTR:
617 case DNS_TYPE_NS:
618 case DNS_TYPE_CNAME:
619 case DNS_TYPE_DNAME:
620 return dns_name_equal(a->ptr.name, b->ptr.name);
621
622 case DNS_TYPE_HINFO:
623 return strcaseeq(a->hinfo.cpu, b->hinfo.cpu) &&
624 strcaseeq(a->hinfo.os, b->hinfo.os);
625
626 case DNS_TYPE_SPF: /* exactly the same as TXT */
627 case DNS_TYPE_TXT:
628 return dns_txt_item_equal(a->txt.items, b->txt.items);
629
630 case DNS_TYPE_A:
631 return memcmp(&a->a.in_addr, &b->a.in_addr, sizeof(struct in_addr)) == 0;
632
633 case DNS_TYPE_AAAA:
634 return memcmp(&a->aaaa.in6_addr, &b->aaaa.in6_addr, sizeof(struct in6_addr)) == 0;
635
636 case DNS_TYPE_SOA:
637 r = dns_name_equal(a->soa.mname, b->soa.mname);
638 if (r <= 0)
639 return r;
640 r = dns_name_equal(a->soa.rname, b->soa.rname);
641 if (r <= 0)
642 return r;
643
644 return a->soa.serial == b->soa.serial &&
645 a->soa.refresh == b->soa.refresh &&
646 a->soa.retry == b->soa.retry &&
647 a->soa.expire == b->soa.expire &&
648 a->soa.minimum == b->soa.minimum;
649
650 case DNS_TYPE_MX:
651 if (a->mx.priority != b->mx.priority)
652 return 0;
653
654 return dns_name_equal(a->mx.exchange, b->mx.exchange);
655
656 case DNS_TYPE_LOC:
657 assert(a->loc.version == b->loc.version);
658
659 return a->loc.size == b->loc.size &&
660 a->loc.horiz_pre == b->loc.horiz_pre &&
661 a->loc.vert_pre == b->loc.vert_pre &&
662 a->loc.latitude == b->loc.latitude &&
663 a->loc.longitude == b->loc.longitude &&
664 a->loc.altitude == b->loc.altitude;
665
666 case DNS_TYPE_DS:
667 return a->ds.key_tag == b->ds.key_tag &&
668 a->ds.algorithm == b->ds.algorithm &&
669 a->ds.digest_type == b->ds.digest_type &&
670 FIELD_EQUAL(a->ds, b->ds, digest);
671
672 case DNS_TYPE_SSHFP:
673 return a->sshfp.algorithm == b->sshfp.algorithm &&
674 a->sshfp.fptype == b->sshfp.fptype &&
675 FIELD_EQUAL(a->sshfp, b->sshfp, fingerprint);
676
677 case DNS_TYPE_DNSKEY:
678 return a->dnskey.flags == b->dnskey.flags &&
679 a->dnskey.protocol == b->dnskey.protocol &&
680 a->dnskey.algorithm == b->dnskey.algorithm &&
681 FIELD_EQUAL(a->dnskey, b->dnskey, key);
682
683 case DNS_TYPE_RRSIG:
684 /* do the fast comparisons first */
685 return a->rrsig.type_covered == b->rrsig.type_covered &&
686 a->rrsig.algorithm == b->rrsig.algorithm &&
687 a->rrsig.labels == b->rrsig.labels &&
688 a->rrsig.original_ttl == b->rrsig.original_ttl &&
689 a->rrsig.expiration == b->rrsig.expiration &&
690 a->rrsig.inception == b->rrsig.inception &&
691 a->rrsig.key_tag == b->rrsig.key_tag &&
692 FIELD_EQUAL(a->rrsig, b->rrsig, signature) &&
693 dns_name_equal(a->rrsig.signer, b->rrsig.signer);
694
695 case DNS_TYPE_NSEC:
696 return dns_name_equal(a->nsec.next_domain_name, b->nsec.next_domain_name) &&
697 bitmap_equal(a->nsec.types, b->nsec.types);
698
699 case DNS_TYPE_NSEC3:
700 return a->nsec3.algorithm == b->nsec3.algorithm &&
701 a->nsec3.flags == b->nsec3.flags &&
702 a->nsec3.iterations == b->nsec3.iterations &&
703 FIELD_EQUAL(a->nsec3, b->nsec3, salt) &&
704 FIELD_EQUAL(a->nsec3, b->nsec3, next_hashed_name) &&
705 bitmap_equal(a->nsec3.types, b->nsec3.types);
706
707 case DNS_TYPE_TLSA:
708 return a->tlsa.cert_usage == b->tlsa.cert_usage &&
709 a->tlsa.selector == b->tlsa.selector &&
710 a->tlsa.matching_type == b->tlsa.matching_type &&
711 FIELD_EQUAL(a->tlsa, b->tlsa, data);
712
713 case DNS_TYPE_CAA:
714 return a->caa.flags == b->caa.flags &&
715 streq(a->caa.tag, b->caa.tag) &&
716 FIELD_EQUAL(a->caa, b->caa, value);
717
718 case DNS_TYPE_OPENPGPKEY:
719 default:
720 return FIELD_EQUAL(a->generic, b->generic, data);
721 }
722 }
723
724 static char* format_location(uint32_t latitude, uint32_t longitude, uint32_t altitude,
725 uint8_t size, uint8_t horiz_pre, uint8_t vert_pre) {
726 char *s;
727 char NS = latitude >= 1U<<31 ? 'N' : 'S';
728 char EW = longitude >= 1U<<31 ? 'E' : 'W';
729
730 int lat = latitude >= 1U<<31 ? (int) (latitude - (1U<<31)) : (int) ((1U<<31) - latitude);
731 int lon = longitude >= 1U<<31 ? (int) (longitude - (1U<<31)) : (int) ((1U<<31) - longitude);
732 double alt = altitude >= 10000000u ? altitude - 10000000u : -(double)(10000000u - altitude);
733 double siz = (size >> 4) * exp10((double) (size & 0xF));
734 double hor = (horiz_pre >> 4) * exp10((double) (horiz_pre & 0xF));
735 double ver = (vert_pre >> 4) * exp10((double) (vert_pre & 0xF));
736
737 if (asprintf(&s, "%d %d %.3f %c %d %d %.3f %c %.2fm %.2fm %.2fm %.2fm",
738 (lat / 60000 / 60),
739 (lat / 60000) % 60,
740 (lat % 60000) / 1000.,
741 NS,
742 (lon / 60000 / 60),
743 (lon / 60000) % 60,
744 (lon % 60000) / 1000.,
745 EW,
746 alt / 100.,
747 siz / 100.,
748 hor / 100.,
749 ver / 100.) < 0)
750 return NULL;
751
752 return s;
753 }
754
755 static int format_timestamp_dns(char *buf, size_t l, time_t sec) {
756 struct tm tm;
757
758 assert(buf);
759 assert(l > STRLEN("YYYYMMDDHHmmSS"));
760
761 if (!gmtime_r(&sec, &tm))
762 return -EINVAL;
763
764 if (strftime(buf, l, "%Y%m%d%H%M%S", &tm) <= 0)
765 return -EINVAL;
766
767 return 0;
768 }
769
770 static char *format_types(Bitmap *types) {
771 _cleanup_strv_free_ char **strv = NULL;
772 _cleanup_free_ char *str = NULL;
773 Iterator i;
774 unsigned type;
775 int r;
776
777 BITMAP_FOREACH(type, types, i) {
778 if (dns_type_to_string(type)) {
779 r = strv_extend(&strv, dns_type_to_string(type));
780 if (r < 0)
781 return NULL;
782 } else {
783 char *t;
784
785 r = asprintf(&t, "TYPE%u", type);
786 if (r < 0)
787 return NULL;
788
789 r = strv_consume(&strv, t);
790 if (r < 0)
791 return NULL;
792 }
793 }
794
795 str = strv_join(strv, " ");
796 if (!str)
797 return NULL;
798
799 return strjoin("( ", str, " )");
800 }
801
802 static char *format_txt(DnsTxtItem *first) {
803 DnsTxtItem *i;
804 size_t c = 1;
805 char *p, *s;
806
807 LIST_FOREACH(items, i, first)
808 c += i->length * 4 + 3;
809
810 p = s = new(char, c);
811 if (!s)
812 return NULL;
813
814 LIST_FOREACH(items, i, first) {
815 size_t j;
816
817 if (i != first)
818 *(p++) = ' ';
819
820 *(p++) = '"';
821
822 for (j = 0; j < i->length; j++) {
823 if (i->data[j] < ' ' || i->data[j] == '"' || i->data[j] >= 127) {
824 *(p++) = '\\';
825 *(p++) = '0' + (i->data[j] / 100);
826 *(p++) = '0' + ((i->data[j] / 10) % 10);
827 *(p++) = '0' + (i->data[j] % 10);
828 } else
829 *(p++) = i->data[j];
830 }
831
832 *(p++) = '"';
833 }
834
835 *p = 0;
836 return s;
837 }
838
839 const char *dns_resource_record_to_string(DnsResourceRecord *rr) {
840 _cleanup_free_ char *t = NULL;
841 char *s, k[DNS_RESOURCE_KEY_STRING_MAX];
842 int r;
843
844 assert(rr);
845
846 if (rr->to_string)
847 return rr->to_string;
848
849 dns_resource_key_to_string(rr->key, k, sizeof(k));
850
851 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
852
853 case DNS_TYPE_SRV:
854 r = asprintf(&s, "%s %u %u %u %s",
855 k,
856 rr->srv.priority,
857 rr->srv.weight,
858 rr->srv.port,
859 strna(rr->srv.name));
860 if (r < 0)
861 return NULL;
862 break;
863
864 case DNS_TYPE_PTR:
865 case DNS_TYPE_NS:
866 case DNS_TYPE_CNAME:
867 case DNS_TYPE_DNAME:
868 s = strjoin(k, " ", rr->ptr.name);
869 if (!s)
870 return NULL;
871
872 break;
873
874 case DNS_TYPE_HINFO:
875 s = strjoin(k, " ", rr->hinfo.cpu, " ", rr->hinfo.os);
876 if (!s)
877 return NULL;
878 break;
879
880 case DNS_TYPE_SPF: /* exactly the same as TXT */
881 case DNS_TYPE_TXT:
882 t = format_txt(rr->txt.items);
883 if (!t)
884 return NULL;
885
886 s = strjoin(k, " ", t);
887 if (!s)
888 return NULL;
889 break;
890
891 case DNS_TYPE_A: {
892 _cleanup_free_ char *x = NULL;
893
894 r = in_addr_to_string(AF_INET, (const union in_addr_union*) &rr->a.in_addr, &x);
895 if (r < 0)
896 return NULL;
897
898 s = strjoin(k, " ", x);
899 if (!s)
900 return NULL;
901 break;
902 }
903
904 case DNS_TYPE_AAAA:
905 r = in_addr_to_string(AF_INET6, (const union in_addr_union*) &rr->aaaa.in6_addr, &t);
906 if (r < 0)
907 return NULL;
908
909 s = strjoin(k, " ", t);
910 if (!s)
911 return NULL;
912 break;
913
914 case DNS_TYPE_SOA:
915 r = asprintf(&s, "%s %s %s %u %u %u %u %u",
916 k,
917 strna(rr->soa.mname),
918 strna(rr->soa.rname),
919 rr->soa.serial,
920 rr->soa.refresh,
921 rr->soa.retry,
922 rr->soa.expire,
923 rr->soa.minimum);
924 if (r < 0)
925 return NULL;
926 break;
927
928 case DNS_TYPE_MX:
929 r = asprintf(&s, "%s %u %s",
930 k,
931 rr->mx.priority,
932 rr->mx.exchange);
933 if (r < 0)
934 return NULL;
935 break;
936
937 case DNS_TYPE_LOC:
938 assert(rr->loc.version == 0);
939
940 t = format_location(rr->loc.latitude,
941 rr->loc.longitude,
942 rr->loc.altitude,
943 rr->loc.size,
944 rr->loc.horiz_pre,
945 rr->loc.vert_pre);
946 if (!t)
947 return NULL;
948
949 s = strjoin(k, " ", t);
950 if (!s)
951 return NULL;
952 break;
953
954 case DNS_TYPE_DS:
955 t = hexmem(rr->ds.digest, rr->ds.digest_size);
956 if (!t)
957 return NULL;
958
959 r = asprintf(&s, "%s %u %u %u %s",
960 k,
961 rr->ds.key_tag,
962 rr->ds.algorithm,
963 rr->ds.digest_type,
964 t);
965 if (r < 0)
966 return NULL;
967 break;
968
969 case DNS_TYPE_SSHFP:
970 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
971 if (!t)
972 return NULL;
973
974 r = asprintf(&s, "%s %u %u %s",
975 k,
976 rr->sshfp.algorithm,
977 rr->sshfp.fptype,
978 t);
979 if (r < 0)
980 return NULL;
981 break;
982
983 case DNS_TYPE_DNSKEY: {
984 _cleanup_free_ char *alg = NULL;
985 char *ss;
986 int n;
987 uint16_t key_tag;
988
989 key_tag = dnssec_keytag(rr, true);
990
991 r = dnssec_algorithm_to_string_alloc(rr->dnskey.algorithm, &alg);
992 if (r < 0)
993 return NULL;
994
995 r = asprintf(&s, "%s %u %u %s %n",
996 k,
997 rr->dnskey.flags,
998 rr->dnskey.protocol,
999 alg,
1000 &n);
1001 if (r < 0)
1002 return NULL;
1003
1004 r = base64_append(&s, n,
1005 rr->dnskey.key, rr->dnskey.key_size,
1006 8, columns());
1007 if (r < 0)
1008 return NULL;
1009
1010 r = asprintf(&ss, "%s\n"
1011 " -- Flags:%s%s%s\n"
1012 " -- Key tag: %u",
1013 s,
1014 rr->dnskey.flags & DNSKEY_FLAG_SEP ? " SEP" : "",
1015 rr->dnskey.flags & DNSKEY_FLAG_REVOKE ? " REVOKE" : "",
1016 rr->dnskey.flags & DNSKEY_FLAG_ZONE_KEY ? " ZONE_KEY" : "",
1017 key_tag);
1018 if (r < 0)
1019 return NULL;
1020 free(s);
1021 s = ss;
1022
1023 break;
1024 }
1025
1026 case DNS_TYPE_RRSIG: {
1027 _cleanup_free_ char *alg = NULL;
1028 char expiration[STRLEN("YYYYMMDDHHmmSS") + 1], inception[STRLEN("YYYYMMDDHHmmSS") + 1];
1029 const char *type;
1030 int n;
1031
1032 type = dns_type_to_string(rr->rrsig.type_covered);
1033
1034 r = dnssec_algorithm_to_string_alloc(rr->rrsig.algorithm, &alg);
1035 if (r < 0)
1036 return NULL;
1037
1038 r = format_timestamp_dns(expiration, sizeof(expiration), rr->rrsig.expiration);
1039 if (r < 0)
1040 return NULL;
1041
1042 r = format_timestamp_dns(inception, sizeof(inception), rr->rrsig.inception);
1043 if (r < 0)
1044 return NULL;
1045
1046 /* TYPE?? follows
1047 * http://tools.ietf.org/html/rfc3597#section-5 */
1048
1049 r = asprintf(&s, "%s %s%.*u %s %u %u %s %s %u %s %n",
1050 k,
1051 type ?: "TYPE",
1052 type ? 0 : 1, type ? 0u : (unsigned) rr->rrsig.type_covered,
1053 alg,
1054 rr->rrsig.labels,
1055 rr->rrsig.original_ttl,
1056 expiration,
1057 inception,
1058 rr->rrsig.key_tag,
1059 rr->rrsig.signer,
1060 &n);
1061 if (r < 0)
1062 return NULL;
1063
1064 r = base64_append(&s, n,
1065 rr->rrsig.signature, rr->rrsig.signature_size,
1066 8, columns());
1067 if (r < 0)
1068 return NULL;
1069
1070 break;
1071 }
1072
1073 case DNS_TYPE_NSEC:
1074 t = format_types(rr->nsec.types);
1075 if (!t)
1076 return NULL;
1077
1078 r = asprintf(&s, "%s %s %s",
1079 k,
1080 rr->nsec.next_domain_name,
1081 t);
1082 if (r < 0)
1083 return NULL;
1084 break;
1085
1086 case DNS_TYPE_NSEC3: {
1087 _cleanup_free_ char *salt = NULL, *hash = NULL;
1088
1089 if (rr->nsec3.salt_size > 0) {
1090 salt = hexmem(rr->nsec3.salt, rr->nsec3.salt_size);
1091 if (!salt)
1092 return NULL;
1093 }
1094
1095 hash = base32hexmem(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, false);
1096 if (!hash)
1097 return NULL;
1098
1099 t = format_types(rr->nsec3.types);
1100 if (!t)
1101 return NULL;
1102
1103 r = asprintf(&s, "%s %"PRIu8" %"PRIu8" %"PRIu16" %s %s %s",
1104 k,
1105 rr->nsec3.algorithm,
1106 rr->nsec3.flags,
1107 rr->nsec3.iterations,
1108 rr->nsec3.salt_size > 0 ? salt : "-",
1109 hash,
1110 t);
1111 if (r < 0)
1112 return NULL;
1113
1114 break;
1115 }
1116
1117 case DNS_TYPE_TLSA: {
1118 const char *cert_usage, *selector, *matching_type;
1119
1120 cert_usage = tlsa_cert_usage_to_string(rr->tlsa.cert_usage);
1121 selector = tlsa_selector_to_string(rr->tlsa.selector);
1122 matching_type = tlsa_matching_type_to_string(rr->tlsa.matching_type);
1123
1124 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1125 if (!t)
1126 return NULL;
1127
1128 r = asprintf(&s,
1129 "%s %u %u %u %s\n"
1130 " -- Cert. usage: %s\n"
1131 " -- Selector: %s\n"
1132 " -- Matching type: %s",
1133 k,
1134 rr->tlsa.cert_usage,
1135 rr->tlsa.selector,
1136 rr->tlsa.matching_type,
1137 t,
1138 cert_usage,
1139 selector,
1140 matching_type);
1141 if (r < 0)
1142 return NULL;
1143
1144 break;
1145 }
1146
1147 case DNS_TYPE_CAA: {
1148 _cleanup_free_ char *value;
1149
1150 value = octescape(rr->caa.value, rr->caa.value_size);
1151 if (!value)
1152 return NULL;
1153
1154 r = asprintf(&s, "%s %u %s \"%s\"%s%s%s%.0u",
1155 k,
1156 rr->caa.flags,
1157 rr->caa.tag,
1158 value,
1159 rr->caa.flags ? "\n -- Flags:" : "",
1160 rr->caa.flags & CAA_FLAG_CRITICAL ? " critical" : "",
1161 rr->caa.flags & ~CAA_FLAG_CRITICAL ? " " : "",
1162 rr->caa.flags & ~CAA_FLAG_CRITICAL);
1163 if (r < 0)
1164 return NULL;
1165
1166 break;
1167 }
1168
1169 case DNS_TYPE_OPENPGPKEY: {
1170 int n;
1171
1172 r = asprintf(&s, "%s %n",
1173 k,
1174 &n);
1175 if (r < 0)
1176 return NULL;
1177
1178 r = base64_append(&s, n,
1179 rr->generic.data, rr->generic.data_size,
1180 8, columns());
1181 if (r < 0)
1182 return NULL;
1183 break;
1184 }
1185
1186 default:
1187 t = hexmem(rr->generic.data, rr->generic.data_size);
1188 if (!t)
1189 return NULL;
1190
1191 /* Format as documented in RFC 3597, Section 5 */
1192 r = asprintf(&s, "%s \\# %zu %s", k, rr->generic.data_size, t);
1193 if (r < 0)
1194 return NULL;
1195 break;
1196 }
1197
1198 rr->to_string = s;
1199 return s;
1200 }
1201
1202 ssize_t dns_resource_record_payload(DnsResourceRecord *rr, void **out) {
1203 assert(rr);
1204 assert(out);
1205
1206 switch(rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1207 case DNS_TYPE_SRV:
1208 case DNS_TYPE_PTR:
1209 case DNS_TYPE_NS:
1210 case DNS_TYPE_CNAME:
1211 case DNS_TYPE_DNAME:
1212 case DNS_TYPE_HINFO:
1213 case DNS_TYPE_SPF:
1214 case DNS_TYPE_TXT:
1215 case DNS_TYPE_A:
1216 case DNS_TYPE_AAAA:
1217 case DNS_TYPE_SOA:
1218 case DNS_TYPE_MX:
1219 case DNS_TYPE_LOC:
1220 case DNS_TYPE_DS:
1221 case DNS_TYPE_DNSKEY:
1222 case DNS_TYPE_RRSIG:
1223 case DNS_TYPE_NSEC:
1224 case DNS_TYPE_NSEC3:
1225 return -EINVAL;
1226
1227 case DNS_TYPE_SSHFP:
1228 *out = rr->sshfp.fingerprint;
1229 return rr->sshfp.fingerprint_size;
1230
1231 case DNS_TYPE_TLSA:
1232 *out = rr->tlsa.data;
1233 return rr->tlsa.data_size;
1234
1235 case DNS_TYPE_OPENPGPKEY:
1236 default:
1237 *out = rr->generic.data;
1238 return rr->generic.data_size;
1239 }
1240 }
1241
1242 int dns_resource_record_to_wire_format(DnsResourceRecord *rr, bool canonical) {
1243
1244 DnsPacket packet = {
1245 .n_ref = 1,
1246 .protocol = DNS_PROTOCOL_DNS,
1247 .on_stack = true,
1248 .refuse_compression = true,
1249 .canonical_form = canonical,
1250 };
1251
1252 size_t start, rds;
1253 int r;
1254
1255 assert(rr);
1256
1257 /* Generates the RR in wire-format, optionally in the
1258 * canonical form as discussed in the DNSSEC RFC 4034, Section
1259 * 6.2. We allocate a throw-away DnsPacket object on the stack
1260 * here, because we need some book-keeping for memory
1261 * management, and can reuse the DnsPacket serializer, that
1262 * can generate the canonical form, too, but also knows label
1263 * compression and suchlike. */
1264
1265 if (rr->wire_format && rr->wire_format_canonical == canonical)
1266 return 0;
1267
1268 r = dns_packet_append_rr(&packet, rr, 0, &start, &rds);
1269 if (r < 0)
1270 return r;
1271
1272 assert(start == 0);
1273 assert(packet._data);
1274
1275 free(rr->wire_format);
1276 rr->wire_format = packet._data;
1277 rr->wire_format_size = packet.size;
1278 rr->wire_format_rdata_offset = rds;
1279 rr->wire_format_canonical = canonical;
1280
1281 packet._data = NULL;
1282 dns_packet_unref(&packet);
1283
1284 return 0;
1285 }
1286
1287 int dns_resource_record_signer(DnsResourceRecord *rr, const char **ret) {
1288 const char *n;
1289 int r;
1290
1291 assert(rr);
1292 assert(ret);
1293
1294 /* Returns the RRset's signer, if it is known. */
1295
1296 if (rr->n_skip_labels_signer == (unsigned) -1)
1297 return -ENODATA;
1298
1299 n = dns_resource_key_name(rr->key);
1300 r = dns_name_skip(n, rr->n_skip_labels_signer, &n);
1301 if (r < 0)
1302 return r;
1303 if (r == 0)
1304 return -EINVAL;
1305
1306 *ret = n;
1307 return 0;
1308 }
1309
1310 int dns_resource_record_source(DnsResourceRecord *rr, const char **ret) {
1311 const char *n;
1312 int r;
1313
1314 assert(rr);
1315 assert(ret);
1316
1317 /* Returns the RRset's synthesizing source, if it is known. */
1318
1319 if (rr->n_skip_labels_source == (unsigned) -1)
1320 return -ENODATA;
1321
1322 n = dns_resource_key_name(rr->key);
1323 r = dns_name_skip(n, rr->n_skip_labels_source, &n);
1324 if (r < 0)
1325 return r;
1326 if (r == 0)
1327 return -EINVAL;
1328
1329 *ret = n;
1330 return 0;
1331 }
1332
1333 int dns_resource_record_is_signer(DnsResourceRecord *rr, const char *zone) {
1334 const char *signer;
1335 int r;
1336
1337 assert(rr);
1338
1339 r = dns_resource_record_signer(rr, &signer);
1340 if (r < 0)
1341 return r;
1342
1343 return dns_name_equal(zone, signer);
1344 }
1345
1346 int dns_resource_record_is_synthetic(DnsResourceRecord *rr) {
1347 int r;
1348
1349 assert(rr);
1350
1351 /* Returns > 0 if the RR is generated from a wildcard, and is not the asterisk name itself */
1352
1353 if (rr->n_skip_labels_source == (unsigned) -1)
1354 return -ENODATA;
1355
1356 if (rr->n_skip_labels_source == 0)
1357 return 0;
1358
1359 if (rr->n_skip_labels_source > 1)
1360 return 1;
1361
1362 r = dns_name_startswith(dns_resource_key_name(rr->key), "*");
1363 if (r < 0)
1364 return r;
1365
1366 return !r;
1367 }
1368
1369 void dns_resource_record_hash_func(const void *i, struct siphash *state) {
1370 const DnsResourceRecord *rr = i;
1371
1372 assert(rr);
1373
1374 dns_resource_key_hash_func(rr->key, state);
1375
1376 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1377
1378 case DNS_TYPE_SRV:
1379 siphash24_compress(&rr->srv.priority, sizeof(rr->srv.priority), state);
1380 siphash24_compress(&rr->srv.weight, sizeof(rr->srv.weight), state);
1381 siphash24_compress(&rr->srv.port, sizeof(rr->srv.port), state);
1382 dns_name_hash_func(rr->srv.name, state);
1383 break;
1384
1385 case DNS_TYPE_PTR:
1386 case DNS_TYPE_NS:
1387 case DNS_TYPE_CNAME:
1388 case DNS_TYPE_DNAME:
1389 dns_name_hash_func(rr->ptr.name, state);
1390 break;
1391
1392 case DNS_TYPE_HINFO:
1393 string_hash_func(rr->hinfo.cpu, state);
1394 string_hash_func(rr->hinfo.os, state);
1395 break;
1396
1397 case DNS_TYPE_TXT:
1398 case DNS_TYPE_SPF: {
1399 DnsTxtItem *j;
1400
1401 LIST_FOREACH(items, j, rr->txt.items) {
1402 siphash24_compress(j->data, j->length, state);
1403
1404 /* Add an extra NUL byte, so that "a" followed by "b" doesn't result in the same hash as "ab"
1405 * followed by "". */
1406 siphash24_compress_byte(0, state);
1407 }
1408 break;
1409 }
1410
1411 case DNS_TYPE_A:
1412 siphash24_compress(&rr->a.in_addr, sizeof(rr->a.in_addr), state);
1413 break;
1414
1415 case DNS_TYPE_AAAA:
1416 siphash24_compress(&rr->aaaa.in6_addr, sizeof(rr->aaaa.in6_addr), state);
1417 break;
1418
1419 case DNS_TYPE_SOA:
1420 dns_name_hash_func(rr->soa.mname, state);
1421 dns_name_hash_func(rr->soa.rname, state);
1422 siphash24_compress(&rr->soa.serial, sizeof(rr->soa.serial), state);
1423 siphash24_compress(&rr->soa.refresh, sizeof(rr->soa.refresh), state);
1424 siphash24_compress(&rr->soa.retry, sizeof(rr->soa.retry), state);
1425 siphash24_compress(&rr->soa.expire, sizeof(rr->soa.expire), state);
1426 siphash24_compress(&rr->soa.minimum, sizeof(rr->soa.minimum), state);
1427 break;
1428
1429 case DNS_TYPE_MX:
1430 siphash24_compress(&rr->mx.priority, sizeof(rr->mx.priority), state);
1431 dns_name_hash_func(rr->mx.exchange, state);
1432 break;
1433
1434 case DNS_TYPE_LOC:
1435 siphash24_compress(&rr->loc.version, sizeof(rr->loc.version), state);
1436 siphash24_compress(&rr->loc.size, sizeof(rr->loc.size), state);
1437 siphash24_compress(&rr->loc.horiz_pre, sizeof(rr->loc.horiz_pre), state);
1438 siphash24_compress(&rr->loc.vert_pre, sizeof(rr->loc.vert_pre), state);
1439 siphash24_compress(&rr->loc.latitude, sizeof(rr->loc.latitude), state);
1440 siphash24_compress(&rr->loc.longitude, sizeof(rr->loc.longitude), state);
1441 siphash24_compress(&rr->loc.altitude, sizeof(rr->loc.altitude), state);
1442 break;
1443
1444 case DNS_TYPE_SSHFP:
1445 siphash24_compress(&rr->sshfp.algorithm, sizeof(rr->sshfp.algorithm), state);
1446 siphash24_compress(&rr->sshfp.fptype, sizeof(rr->sshfp.fptype), state);
1447 siphash24_compress(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size, state);
1448 break;
1449
1450 case DNS_TYPE_DNSKEY:
1451 siphash24_compress(&rr->dnskey.flags, sizeof(rr->dnskey.flags), state);
1452 siphash24_compress(&rr->dnskey.protocol, sizeof(rr->dnskey.protocol), state);
1453 siphash24_compress(&rr->dnskey.algorithm, sizeof(rr->dnskey.algorithm), state);
1454 siphash24_compress(rr->dnskey.key, rr->dnskey.key_size, state);
1455 break;
1456
1457 case DNS_TYPE_RRSIG:
1458 siphash24_compress(&rr->rrsig.type_covered, sizeof(rr->rrsig.type_covered), state);
1459 siphash24_compress(&rr->rrsig.algorithm, sizeof(rr->rrsig.algorithm), state);
1460 siphash24_compress(&rr->rrsig.labels, sizeof(rr->rrsig.labels), state);
1461 siphash24_compress(&rr->rrsig.original_ttl, sizeof(rr->rrsig.original_ttl), state);
1462 siphash24_compress(&rr->rrsig.expiration, sizeof(rr->rrsig.expiration), state);
1463 siphash24_compress(&rr->rrsig.inception, sizeof(rr->rrsig.inception), state);
1464 siphash24_compress(&rr->rrsig.key_tag, sizeof(rr->rrsig.key_tag), state);
1465 dns_name_hash_func(rr->rrsig.signer, state);
1466 siphash24_compress(rr->rrsig.signature, rr->rrsig.signature_size, state);
1467 break;
1468
1469 case DNS_TYPE_NSEC:
1470 dns_name_hash_func(rr->nsec.next_domain_name, state);
1471 /* FIXME: we leave out the type bitmap here. Hash
1472 * would be better if we'd take it into account
1473 * too. */
1474 break;
1475
1476 case DNS_TYPE_DS:
1477 siphash24_compress(&rr->ds.key_tag, sizeof(rr->ds.key_tag), state);
1478 siphash24_compress(&rr->ds.algorithm, sizeof(rr->ds.algorithm), state);
1479 siphash24_compress(&rr->ds.digest_type, sizeof(rr->ds.digest_type), state);
1480 siphash24_compress(rr->ds.digest, rr->ds.digest_size, state);
1481 break;
1482
1483 case DNS_TYPE_NSEC3:
1484 siphash24_compress(&rr->nsec3.algorithm, sizeof(rr->nsec3.algorithm), state);
1485 siphash24_compress(&rr->nsec3.flags, sizeof(rr->nsec3.flags), state);
1486 siphash24_compress(&rr->nsec3.iterations, sizeof(rr->nsec3.iterations), state);
1487 siphash24_compress(rr->nsec3.salt, rr->nsec3.salt_size, state);
1488 siphash24_compress(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, state);
1489 /* FIXME: We leave the bitmaps out */
1490 break;
1491
1492 case DNS_TYPE_TLSA:
1493 siphash24_compress(&rr->tlsa.cert_usage, sizeof(rr->tlsa.cert_usage), state);
1494 siphash24_compress(&rr->tlsa.selector, sizeof(rr->tlsa.selector), state);
1495 siphash24_compress(&rr->tlsa.matching_type, sizeof(rr->tlsa.matching_type), state);
1496 siphash24_compress(rr->tlsa.data, rr->tlsa.data_size, state);
1497 break;
1498
1499 case DNS_TYPE_CAA:
1500 siphash24_compress(&rr->caa.flags, sizeof(rr->caa.flags), state);
1501 string_hash_func(rr->caa.tag, state);
1502 siphash24_compress(rr->caa.value, rr->caa.value_size, state);
1503 break;
1504
1505 case DNS_TYPE_OPENPGPKEY:
1506 default:
1507 siphash24_compress(rr->generic.data, rr->generic.data_size, state);
1508 break;
1509 }
1510 }
1511
1512 static int dns_resource_record_compare_func(const void *a, const void *b) {
1513 const DnsResourceRecord *x = a, *y = b;
1514 int ret;
1515
1516 ret = dns_resource_key_compare_func(x->key, y->key);
1517 if (ret != 0)
1518 return ret;
1519
1520 if (dns_resource_record_equal(x, y))
1521 return 0;
1522
1523 /* This is a bit dirty, we don't implement proper ordering, but
1524 * the hashtable doesn't need ordering anyway, hence we don't
1525 * care. */
1526 return x < y ? -1 : 1;
1527 }
1528
1529 const struct hash_ops dns_resource_record_hash_ops = {
1530 .hash = dns_resource_record_hash_func,
1531 .compare = dns_resource_record_compare_func,
1532 };
1533
1534 DnsResourceRecord *dns_resource_record_copy(DnsResourceRecord *rr) {
1535 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *copy = NULL;
1536 DnsResourceRecord *t;
1537
1538 assert(rr);
1539
1540 copy = dns_resource_record_new(rr->key);
1541 if (!copy)
1542 return NULL;
1543
1544 copy->ttl = rr->ttl;
1545 copy->expiry = rr->expiry;
1546 copy->n_skip_labels_signer = rr->n_skip_labels_signer;
1547 copy->n_skip_labels_source = rr->n_skip_labels_source;
1548 copy->unparseable = rr->unparseable;
1549
1550 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1551
1552 case DNS_TYPE_SRV:
1553 copy->srv.priority = rr->srv.priority;
1554 copy->srv.weight = rr->srv.weight;
1555 copy->srv.port = rr->srv.port;
1556 copy->srv.name = strdup(rr->srv.name);
1557 if (!copy->srv.name)
1558 return NULL;
1559 break;
1560
1561 case DNS_TYPE_PTR:
1562 case DNS_TYPE_NS:
1563 case DNS_TYPE_CNAME:
1564 case DNS_TYPE_DNAME:
1565 copy->ptr.name = strdup(rr->ptr.name);
1566 if (!copy->ptr.name)
1567 return NULL;
1568 break;
1569
1570 case DNS_TYPE_HINFO:
1571 copy->hinfo.cpu = strdup(rr->hinfo.cpu);
1572 if (!copy->hinfo.cpu)
1573 return NULL;
1574
1575 copy->hinfo.os = strdup(rr->hinfo.os);
1576 if (!copy->hinfo.os)
1577 return NULL;
1578 break;
1579
1580 case DNS_TYPE_TXT:
1581 case DNS_TYPE_SPF:
1582 copy->txt.items = dns_txt_item_copy(rr->txt.items);
1583 if (!copy->txt.items)
1584 return NULL;
1585 break;
1586
1587 case DNS_TYPE_A:
1588 copy->a = rr->a;
1589 break;
1590
1591 case DNS_TYPE_AAAA:
1592 copy->aaaa = rr->aaaa;
1593 break;
1594
1595 case DNS_TYPE_SOA:
1596 copy->soa.mname = strdup(rr->soa.mname);
1597 if (!copy->soa.mname)
1598 return NULL;
1599 copy->soa.rname = strdup(rr->soa.rname);
1600 if (!copy->soa.rname)
1601 return NULL;
1602 copy->soa.serial = rr->soa.serial;
1603 copy->soa.refresh = rr->soa.refresh;
1604 copy->soa.retry = rr->soa.retry;
1605 copy->soa.expire = rr->soa.expire;
1606 copy->soa.minimum = rr->soa.minimum;
1607 break;
1608
1609 case DNS_TYPE_MX:
1610 copy->mx.priority = rr->mx.priority;
1611 copy->mx.exchange = strdup(rr->mx.exchange);
1612 if (!copy->mx.exchange)
1613 return NULL;
1614 break;
1615
1616 case DNS_TYPE_LOC:
1617 copy->loc = rr->loc;
1618 break;
1619
1620 case DNS_TYPE_SSHFP:
1621 copy->sshfp.algorithm = rr->sshfp.algorithm;
1622 copy->sshfp.fptype = rr->sshfp.fptype;
1623 copy->sshfp.fingerprint = memdup(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1624 if (!copy->sshfp.fingerprint)
1625 return NULL;
1626 copy->sshfp.fingerprint_size = rr->sshfp.fingerprint_size;
1627 break;
1628
1629 case DNS_TYPE_DNSKEY:
1630 copy->dnskey.flags = rr->dnskey.flags;
1631 copy->dnskey.protocol = rr->dnskey.protocol;
1632 copy->dnskey.algorithm = rr->dnskey.algorithm;
1633 copy->dnskey.key = memdup(rr->dnskey.key, rr->dnskey.key_size);
1634 if (!copy->dnskey.key)
1635 return NULL;
1636 copy->dnskey.key_size = rr->dnskey.key_size;
1637 break;
1638
1639 case DNS_TYPE_RRSIG:
1640 copy->rrsig.type_covered = rr->rrsig.type_covered;
1641 copy->rrsig.algorithm = rr->rrsig.algorithm;
1642 copy->rrsig.labels = rr->rrsig.labels;
1643 copy->rrsig.original_ttl = rr->rrsig.original_ttl;
1644 copy->rrsig.expiration = rr->rrsig.expiration;
1645 copy->rrsig.inception = rr->rrsig.inception;
1646 copy->rrsig.key_tag = rr->rrsig.key_tag;
1647 copy->rrsig.signer = strdup(rr->rrsig.signer);
1648 if (!copy->rrsig.signer)
1649 return NULL;
1650 copy->rrsig.signature = memdup(rr->rrsig.signature, rr->rrsig.signature_size);
1651 if (!copy->rrsig.signature)
1652 return NULL;
1653 copy->rrsig.signature_size = rr->rrsig.signature_size;
1654 break;
1655
1656 case DNS_TYPE_NSEC:
1657 copy->nsec.next_domain_name = strdup(rr->nsec.next_domain_name);
1658 if (!copy->nsec.next_domain_name)
1659 return NULL;
1660 copy->nsec.types = bitmap_copy(rr->nsec.types);
1661 if (!copy->nsec.types)
1662 return NULL;
1663 break;
1664
1665 case DNS_TYPE_DS:
1666 copy->ds.key_tag = rr->ds.key_tag;
1667 copy->ds.algorithm = rr->ds.algorithm;
1668 copy->ds.digest_type = rr->ds.digest_type;
1669 copy->ds.digest = memdup(rr->ds.digest, rr->ds.digest_size);
1670 if (!copy->ds.digest)
1671 return NULL;
1672 copy->ds.digest_size = rr->ds.digest_size;
1673 break;
1674
1675 case DNS_TYPE_NSEC3:
1676 copy->nsec3.algorithm = rr->nsec3.algorithm;
1677 copy->nsec3.flags = rr->nsec3.flags;
1678 copy->nsec3.iterations = rr->nsec3.iterations;
1679 copy->nsec3.salt = memdup(rr->nsec3.salt, rr->nsec3.salt_size);
1680 if (!copy->nsec3.salt)
1681 return NULL;
1682 copy->nsec3.salt_size = rr->nsec3.salt_size;
1683 copy->nsec3.next_hashed_name = memdup(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size);
1684 if (!copy->nsec3.next_hashed_name_size)
1685 return NULL;
1686 copy->nsec3.next_hashed_name_size = rr->nsec3.next_hashed_name_size;
1687 copy->nsec3.types = bitmap_copy(rr->nsec3.types);
1688 if (!copy->nsec3.types)
1689 return NULL;
1690 break;
1691
1692 case DNS_TYPE_TLSA:
1693 copy->tlsa.cert_usage = rr->tlsa.cert_usage;
1694 copy->tlsa.selector = rr->tlsa.selector;
1695 copy->tlsa.matching_type = rr->tlsa.matching_type;
1696 copy->tlsa.data = memdup(rr->tlsa.data, rr->tlsa.data_size);
1697 if (!copy->tlsa.data)
1698 return NULL;
1699 copy->tlsa.data_size = rr->tlsa.data_size;
1700 break;
1701
1702 case DNS_TYPE_CAA:
1703 copy->caa.flags = rr->caa.flags;
1704 copy->caa.tag = strdup(rr->caa.tag);
1705 if (!copy->caa.tag)
1706 return NULL;
1707 copy->caa.value = memdup(rr->caa.value, rr->caa.value_size);
1708 if (!copy->caa.value)
1709 return NULL;
1710 copy->caa.value_size = rr->caa.value_size;
1711 break;
1712
1713 case DNS_TYPE_OPT:
1714 default:
1715 copy->generic.data = memdup(rr->generic.data, rr->generic.data_size);
1716 if (!copy->generic.data)
1717 return NULL;
1718 copy->generic.data_size = rr->generic.data_size;
1719 break;
1720 }
1721
1722 t = TAKE_PTR(copy);
1723
1724 return t;
1725 }
1726
1727 int dns_resource_record_clamp_ttl(DnsResourceRecord **rr, uint32_t max_ttl) {
1728 DnsResourceRecord *old_rr, *new_rr;
1729 uint32_t new_ttl;
1730
1731 assert(rr);
1732 old_rr = *rr;
1733
1734 if (old_rr->key->type == DNS_TYPE_OPT)
1735 return -EINVAL;
1736
1737 new_ttl = MIN(old_rr->ttl, max_ttl);
1738 if (new_ttl == old_rr->ttl)
1739 return 0;
1740
1741 if (old_rr->n_ref == 1) {
1742 /* Patch in place */
1743 old_rr->ttl = new_ttl;
1744 return 1;
1745 }
1746
1747 new_rr = dns_resource_record_copy(old_rr);
1748 if (!new_rr)
1749 return -ENOMEM;
1750
1751 new_rr->ttl = new_ttl;
1752
1753 dns_resource_record_unref(*rr);
1754 *rr = new_rr;
1755
1756 return 1;
1757 }
1758
1759 DnsTxtItem *dns_txt_item_free_all(DnsTxtItem *i) {
1760 DnsTxtItem *n;
1761
1762 if (!i)
1763 return NULL;
1764
1765 n = i->items_next;
1766
1767 free(i);
1768 return dns_txt_item_free_all(n);
1769 }
1770
1771 bool dns_txt_item_equal(DnsTxtItem *a, DnsTxtItem *b) {
1772
1773 if (a == b)
1774 return true;
1775
1776 if (!a != !b)
1777 return false;
1778
1779 if (!a)
1780 return true;
1781
1782 if (a->length != b->length)
1783 return false;
1784
1785 if (memcmp(a->data, b->data, a->length) != 0)
1786 return false;
1787
1788 return dns_txt_item_equal(a->items_next, b->items_next);
1789 }
1790
1791 DnsTxtItem *dns_txt_item_copy(DnsTxtItem *first) {
1792 DnsTxtItem *i, *copy = NULL, *end = NULL;
1793
1794 LIST_FOREACH(items, i, first) {
1795 DnsTxtItem *j;
1796
1797 j = memdup(i, offsetof(DnsTxtItem, data) + i->length + 1);
1798 if (!j) {
1799 dns_txt_item_free_all(copy);
1800 return NULL;
1801 }
1802
1803 LIST_INSERT_AFTER(items, copy, end, j);
1804 end = j;
1805 }
1806
1807 return copy;
1808 }
1809
1810 int dns_txt_item_new_empty(DnsTxtItem **ret) {
1811 DnsTxtItem *i;
1812
1813 /* RFC 6763, section 6.1 suggests to treat
1814 * empty TXT RRs as equivalent to a TXT record
1815 * with a single empty string. */
1816
1817 i = malloc0(offsetof(DnsTxtItem, data) + 1); /* for safety reasons we add an extra NUL byte */
1818 if (!i)
1819 return -ENOMEM;
1820
1821 *ret = i;
1822
1823 return 0;
1824 }
1825
1826 static const char* const dnssec_algorithm_table[_DNSSEC_ALGORITHM_MAX_DEFINED] = {
1827 /* Mnemonics as listed on https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml */
1828 [DNSSEC_ALGORITHM_RSAMD5] = "RSAMD5",
1829 [DNSSEC_ALGORITHM_DH] = "DH",
1830 [DNSSEC_ALGORITHM_DSA] = "DSA",
1831 [DNSSEC_ALGORITHM_ECC] = "ECC",
1832 [DNSSEC_ALGORITHM_RSASHA1] = "RSASHA1",
1833 [DNSSEC_ALGORITHM_DSA_NSEC3_SHA1] = "DSA-NSEC3-SHA1",
1834 [DNSSEC_ALGORITHM_RSASHA1_NSEC3_SHA1] = "RSASHA1-NSEC3-SHA1",
1835 [DNSSEC_ALGORITHM_RSASHA256] = "RSASHA256",
1836 [DNSSEC_ALGORITHM_RSASHA512] = "RSASHA512",
1837 [DNSSEC_ALGORITHM_ECC_GOST] = "ECC-GOST",
1838 [DNSSEC_ALGORITHM_ECDSAP256SHA256] = "ECDSAP256SHA256",
1839 [DNSSEC_ALGORITHM_ECDSAP384SHA384] = "ECDSAP384SHA384",
1840 [DNSSEC_ALGORITHM_ED25519] = "ED25519",
1841 [DNSSEC_ALGORITHM_ED448] = "ED448",
1842 [DNSSEC_ALGORITHM_INDIRECT] = "INDIRECT",
1843 [DNSSEC_ALGORITHM_PRIVATEDNS] = "PRIVATEDNS",
1844 [DNSSEC_ALGORITHM_PRIVATEOID] = "PRIVATEOID",
1845 };
1846 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_algorithm, int, 255);
1847
1848 static const char* const dnssec_digest_table[_DNSSEC_DIGEST_MAX_DEFINED] = {
1849 /* Names as listed on https://www.iana.org/assignments/ds-rr-types/ds-rr-types.xhtml */
1850 [DNSSEC_DIGEST_SHA1] = "SHA-1",
1851 [DNSSEC_DIGEST_SHA256] = "SHA-256",
1852 [DNSSEC_DIGEST_GOST_R_34_11_94] = "GOST_R_34.11-94",
1853 [DNSSEC_DIGEST_SHA384] = "SHA-384",
1854 };
1855 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_digest, int, 255);