]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/shared/dissect-image.c
dissect: use new blockdev_partscan_enabled() API where appropriate
[thirdparty/systemd.git] / src / shared / dissect-image.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #if HAVE_VALGRIND_MEMCHECK_H
4 #include <valgrind/memcheck.h>
5 #endif
6
7 #include <linux/dm-ioctl.h>
8 #include <linux/loop.h>
9 #include <sys/mount.h>
10 #include <sys/prctl.h>
11 #include <sys/wait.h>
12
13 #include "sd-device.h"
14 #include "sd-id128.h"
15
16 #include "architecture.h"
17 #include "ask-password-api.h"
18 #include "blkid-util.h"
19 #include "blockdev-util.h"
20 #include "copy.h"
21 #include "crypt-util.h"
22 #include "def.h"
23 #include "device-nodes.h"
24 #include "device-util.h"
25 #include "dissect-image.h"
26 #include "dm-util.h"
27 #include "env-file.h"
28 #include "fd-util.h"
29 #include "fileio.h"
30 #include "fs-util.h"
31 #include "fsck-util.h"
32 #include "gpt.h"
33 #include "hexdecoct.h"
34 #include "hostname-util.h"
35 #include "id128-util.h"
36 #include "mkdir.h"
37 #include "mount-util.h"
38 #include "mountpoint-util.h"
39 #include "namespace-util.h"
40 #include "nulstr-util.h"
41 #include "os-util.h"
42 #include "path-util.h"
43 #include "process-util.h"
44 #include "raw-clone.h"
45 #include "signal-util.h"
46 #include "stat-util.h"
47 #include "stdio-util.h"
48 #include "string-table.h"
49 #include "string-util.h"
50 #include "strv.h"
51 #include "tmpfile-util.h"
52 #include "udev-util.h"
53 #include "user-util.h"
54 #include "xattr-util.h"
55
56 int probe_filesystem(const char *node, char **ret_fstype) {
57 /* Try to find device content type and return it in *ret_fstype. If nothing is found,
58 * 0/NULL will be returned. -EUCLEAN will be returned for ambiguous results, and an
59 * different error otherwise. */
60
61 #if HAVE_BLKID
62 _cleanup_(blkid_free_probep) blkid_probe b = NULL;
63 const char *fstype;
64 int r;
65
66 errno = 0;
67 b = blkid_new_probe_from_filename(node);
68 if (!b)
69 return errno_or_else(ENOMEM);
70
71 blkid_probe_enable_superblocks(b, 1);
72 blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE);
73
74 errno = 0;
75 r = blkid_do_safeprobe(b);
76 if (r == 1) {
77 log_debug("No type detected on partition %s", node);
78 goto not_found;
79 }
80 if (r == -2)
81 return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN),
82 "Results ambiguous for partition %s", node);
83 if (r != 0)
84 return errno_or_else(EIO);
85
86 (void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL);
87
88 if (fstype) {
89 char *t;
90
91 t = strdup(fstype);
92 if (!t)
93 return -ENOMEM;
94
95 *ret_fstype = t;
96 return 1;
97 }
98
99 not_found:
100 *ret_fstype = NULL;
101 return 0;
102 #else
103 return -EOPNOTSUPP;
104 #endif
105 }
106
107 #if HAVE_BLKID
108 /* Detect RPMB and Boot partitions, which are not listed by blkid.
109 * See https://github.com/systemd/systemd/issues/5806. */
110 static bool device_is_mmc_special_partition(sd_device *d) {
111 const char *sysname;
112
113 assert(d);
114
115 if (sd_device_get_sysname(d, &sysname) < 0)
116 return false;
117
118 return startswith(sysname, "mmcblk") &&
119 (endswith(sysname, "rpmb") || endswith(sysname, "boot0") || endswith(sysname, "boot1"));
120 }
121
122 static bool device_is_block(sd_device *d) {
123 const char *ss;
124
125 assert(d);
126
127 if (sd_device_get_subsystem(d, &ss) < 0)
128 return false;
129
130 return streq(ss, "block");
131 }
132
133 static int enumerator_for_parent(sd_device *d, sd_device_enumerator **ret) {
134 _cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL;
135 int r;
136
137 assert(d);
138 assert(ret);
139
140 r = sd_device_enumerator_new(&e);
141 if (r < 0)
142 return r;
143
144 r = sd_device_enumerator_allow_uninitialized(e);
145 if (r < 0)
146 return r;
147
148 r = sd_device_enumerator_add_match_parent(e, d);
149 if (r < 0)
150 return r;
151
152 *ret = TAKE_PTR(e);
153 return 0;
154 }
155
156 /* how many times to wait for the device nodes to appear */
157 #define N_DEVICE_NODE_LIST_ATTEMPTS 10
158
159 static int wait_for_partitions_to_appear(
160 int fd,
161 sd_device *d,
162 unsigned num_partitions,
163 DissectImageFlags flags,
164 sd_device_enumerator **ret_enumerator) {
165
166 _cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL;
167 sd_device *q;
168 unsigned n;
169 int r;
170
171 assert(fd >= 0);
172 assert(d);
173 assert(ret_enumerator);
174
175 r = enumerator_for_parent(d, &e);
176 if (r < 0)
177 return r;
178
179 /* Count the partitions enumerated by the kernel */
180 n = 0;
181 FOREACH_DEVICE(e, q) {
182 if (sd_device_get_devnum(q, NULL) < 0)
183 continue;
184 if (!device_is_block(q))
185 continue;
186 if (device_is_mmc_special_partition(q))
187 continue;
188
189 if (!FLAGS_SET(flags, DISSECT_IMAGE_NO_UDEV)) {
190 r = device_wait_for_initialization(q, "block", USEC_INFINITY, NULL);
191 if (r < 0)
192 return r;
193 }
194
195 n++;
196 }
197
198 if (n == num_partitions + 1) {
199 *ret_enumerator = TAKE_PTR(e);
200 return 0; /* success! */
201 }
202 if (n > num_partitions + 1)
203 return log_debug_errno(SYNTHETIC_ERRNO(EIO),
204 "blkid and kernel partition lists do not match.");
205
206 /* The kernel has probed fewer partitions than blkid? Maybe the kernel prober is still running or it
207 * got EBUSY because udev already opened the device. Let's reprobe the device, which is a synchronous
208 * call that waits until probing is complete. */
209
210 for (unsigned j = 0; ; j++) {
211 if (j++ > 20)
212 return -EBUSY;
213
214 if (ioctl(fd, BLKRRPART, 0) >= 0)
215 break;
216 r = -errno;
217 if (r == -EINVAL) {
218 /* If we are running on a block device that has partition scanning off, return an
219 * explicit recognizable error about this, so that callers can generate a proper
220 * message explaining the situation. */
221
222 r = blockdev_partscan_enabled(fd);
223 if (r < 0)
224 return r;
225 if (r == 0)
226 return log_debug_errno(EPROTONOSUPPORT,
227 "Device is a loop device and partition scanning is off!");
228
229 return -EINVAL; /* original error */
230 }
231 if (r != -EBUSY)
232 return r;
233
234 /* If something else has the device open, such as an udev rule, the ioctl will return
235 * EBUSY. Since there's no way to wait until it isn't busy anymore, let's just wait a bit,
236 * and try again.
237 *
238 * This is really something they should fix in the kernel! */
239 (void) usleep(50 * USEC_PER_MSEC);
240
241 }
242
243 return -EAGAIN; /* no success yet, try again */
244 }
245
246 static int loop_wait_for_partitions_to_appear(
247 int fd,
248 sd_device *d,
249 unsigned num_partitions,
250 DissectImageFlags flags,
251 sd_device_enumerator **ret_enumerator) {
252 _cleanup_(sd_device_unrefp) sd_device *device = NULL;
253 int r;
254
255 assert(fd >= 0);
256 assert(d);
257 assert(ret_enumerator);
258
259 log_debug("Waiting for device (parent + %d partitions) to appear...", num_partitions);
260
261 if (!FLAGS_SET(flags, DISSECT_IMAGE_NO_UDEV)) {
262 r = device_wait_for_initialization(d, "block", USEC_INFINITY, &device);
263 if (r < 0)
264 return r;
265 } else
266 device = sd_device_ref(d);
267
268 for (unsigned i = 0; i < N_DEVICE_NODE_LIST_ATTEMPTS; i++) {
269 r = wait_for_partitions_to_appear(fd, device, num_partitions, flags, ret_enumerator);
270 if (r != -EAGAIN)
271 return r;
272 }
273
274 return log_debug_errno(SYNTHETIC_ERRNO(ENXIO),
275 "Kernel partitions dit not appear within %d attempts",
276 N_DEVICE_NODE_LIST_ATTEMPTS);
277 }
278
279 static void check_partition_flags(
280 const char *node,
281 unsigned long long pflags,
282 unsigned long long supported) {
283
284 assert(node);
285
286 /* Mask away all flags supported by this partition's type and the three flags the UEFI spec defines generically */
287 pflags &= ~(supported | GPT_FLAG_REQUIRED_PARTITION | GPT_FLAG_NO_BLOCK_IO_PROTOCOL | GPT_FLAG_LEGACY_BIOS_BOOTABLE);
288
289 if (pflags == 0)
290 return;
291
292 /* If there are other bits set, then log about it, to make things discoverable */
293 for (unsigned i = 0; i < sizeof(pflags) * 8; i++) {
294 unsigned long long bit = 1ULL << i;
295 if (!FLAGS_SET(pflags, bit))
296 continue;
297
298 log_debug("Unexpected partition flag %llu set on %s!", bit, node);
299 }
300 }
301
302 #endif
303
304 int dissect_image(
305 int fd,
306 const void *root_hash,
307 size_t root_hash_size,
308 const char *verity_data,
309 const MountOptions *mount_options,
310 DissectImageFlags flags,
311 DissectedImage **ret) {
312
313 #if HAVE_BLKID
314 sd_id128_t root_uuid = SD_ID128_NULL, verity_uuid = SD_ID128_NULL;
315 _cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL;
316 bool is_gpt, is_mbr, generic_rw, multiple_generic = false;
317 _cleanup_(sd_device_unrefp) sd_device *d = NULL;
318 _cleanup_(dissected_image_unrefp) DissectedImage *m = NULL;
319 _cleanup_(blkid_free_probep) blkid_probe b = NULL;
320 _cleanup_free_ char *generic_node = NULL;
321 sd_id128_t generic_uuid = SD_ID128_NULL;
322 const char *pttype = NULL;
323 blkid_partlist pl;
324 int r, generic_nr;
325 struct stat st;
326 sd_device *q;
327 unsigned i;
328
329 assert(fd >= 0);
330 assert(ret);
331 assert(root_hash || root_hash_size == 0);
332 assert(!((flags & DISSECT_IMAGE_GPT_ONLY) && (flags & DISSECT_IMAGE_NO_PARTITION_TABLE)));
333
334 /* Probes a disk image, and returns information about what it found in *ret.
335 *
336 * Returns -ENOPKG if no suitable partition table or file system could be found.
337 * Returns -EADDRNOTAVAIL if a root hash was specified but no matching root/verity partitions found. */
338
339 if (root_hash) {
340 /* If a root hash is supplied, then we use the root partition that has a UUID that match the first
341 * 128bit of the root hash. And we use the verity partition that has a UUID that match the final
342 * 128bit. */
343
344 if (root_hash_size < sizeof(sd_id128_t))
345 return -EINVAL;
346
347 memcpy(&root_uuid, root_hash, sizeof(sd_id128_t));
348 memcpy(&verity_uuid, (const uint8_t*) root_hash + root_hash_size - sizeof(sd_id128_t), sizeof(sd_id128_t));
349
350 if (sd_id128_is_null(root_uuid))
351 return -EINVAL;
352 if (sd_id128_is_null(verity_uuid))
353 return -EINVAL;
354 }
355
356 if (fstat(fd, &st) < 0)
357 return -errno;
358
359 if (!S_ISBLK(st.st_mode))
360 return -ENOTBLK;
361
362 b = blkid_new_probe();
363 if (!b)
364 return -ENOMEM;
365
366 errno = 0;
367 r = blkid_probe_set_device(b, fd, 0, 0);
368 if (r != 0)
369 return errno_or_else(ENOMEM);
370
371 if ((flags & DISSECT_IMAGE_GPT_ONLY) == 0) {
372 /* Look for file system superblocks, unless we only shall look for GPT partition tables */
373 blkid_probe_enable_superblocks(b, 1);
374 blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE|BLKID_SUBLKS_USAGE);
375 }
376
377 blkid_probe_enable_partitions(b, 1);
378 blkid_probe_set_partitions_flags(b, BLKID_PARTS_ENTRY_DETAILS);
379
380 errno = 0;
381 r = blkid_do_safeprobe(b);
382 if (IN_SET(r, -2, 1))
383 return log_debug_errno(SYNTHETIC_ERRNO(ENOPKG), "Failed to identify any partition table.");
384 if (r != 0)
385 return errno_or_else(EIO);
386
387 m = new0(DissectedImage, 1);
388 if (!m)
389 return -ENOMEM;
390
391 r = sd_device_new_from_devnum(&d, 'b', st.st_rdev);
392 if (r < 0)
393 return r;
394
395 if ((!(flags & DISSECT_IMAGE_GPT_ONLY) &&
396 (flags & DISSECT_IMAGE_REQUIRE_ROOT)) ||
397 (flags & DISSECT_IMAGE_NO_PARTITION_TABLE)) {
398 const char *usage = NULL;
399
400 (void) blkid_probe_lookup_value(b, "USAGE", &usage, NULL);
401 if (STRPTR_IN_SET(usage, "filesystem", "crypto")) {
402 _cleanup_free_ char *t = NULL, *n = NULL, *o = NULL;
403 const char *fstype = NULL, *options = NULL;
404
405 /* OK, we have found a file system, that's our root partition then. */
406 (void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL);
407
408 if (fstype) {
409 t = strdup(fstype);
410 if (!t)
411 return -ENOMEM;
412 }
413
414 r = device_path_make_major_minor(st.st_mode, st.st_rdev, &n);
415 if (r < 0)
416 return r;
417
418 m->single_file_system = true;
419 m->verity = root_hash && verity_data;
420 m->can_verity = !!verity_data;
421
422 options = mount_options_from_part(mount_options, 0);
423 if (options) {
424 o = strdup(options);
425 if (!o)
426 return -ENOMEM;
427 }
428
429 m->partitions[PARTITION_ROOT] = (DissectedPartition) {
430 .found = true,
431 .rw = !m->verity,
432 .partno = -1,
433 .architecture = _ARCHITECTURE_INVALID,
434 .fstype = TAKE_PTR(t),
435 .node = TAKE_PTR(n),
436 .mount_options = TAKE_PTR(o),
437 };
438
439 m->encrypted = streq_ptr(fstype, "crypto_LUKS");
440
441 /* Even on a single partition we need to wait for udev to create the
442 * /dev/block/X:Y symlink to /dev/loopZ */
443 r = loop_wait_for_partitions_to_appear(fd, d, 0, flags, &e);
444 if (r < 0)
445 return r;
446 *ret = TAKE_PTR(m);
447
448 return 0;
449 }
450 }
451
452 (void) blkid_probe_lookup_value(b, "PTTYPE", &pttype, NULL);
453 if (!pttype)
454 return -ENOPKG;
455
456 is_gpt = streq_ptr(pttype, "gpt");
457 is_mbr = streq_ptr(pttype, "dos");
458
459 if (!is_gpt && ((flags & DISSECT_IMAGE_GPT_ONLY) || !is_mbr))
460 return -ENOPKG;
461
462 errno = 0;
463 pl = blkid_probe_get_partitions(b);
464 if (!pl)
465 return errno_or_else(ENOMEM);
466
467 r = loop_wait_for_partitions_to_appear(fd, d, blkid_partlist_numof_partitions(pl), flags, &e);
468 if (r < 0)
469 return r;
470
471 FOREACH_DEVICE(e, q) {
472 unsigned long long pflags;
473 blkid_partition pp;
474 const char *node;
475 dev_t qn;
476 int nr;
477
478 r = sd_device_get_devnum(q, &qn);
479 if (r < 0)
480 continue;
481
482 if (st.st_rdev == qn)
483 continue;
484
485 if (!device_is_block(q))
486 continue;
487
488 if (device_is_mmc_special_partition(q))
489 continue;
490
491 r = sd_device_get_devname(q, &node);
492 if (r < 0)
493 continue;
494
495 pp = blkid_partlist_devno_to_partition(pl, qn);
496 if (!pp)
497 continue;
498
499 pflags = blkid_partition_get_flags(pp);
500
501 nr = blkid_partition_get_partno(pp);
502 if (nr < 0)
503 continue;
504
505 if (is_gpt) {
506 int designator = _PARTITION_DESIGNATOR_INVALID, architecture = _ARCHITECTURE_INVALID;
507 const char *stype, *sid, *fstype = NULL;
508 sd_id128_t type_id, id;
509 bool rw = true;
510
511 sid = blkid_partition_get_uuid(pp);
512 if (!sid)
513 continue;
514 if (sd_id128_from_string(sid, &id) < 0)
515 continue;
516
517 stype = blkid_partition_get_type_string(pp);
518 if (!stype)
519 continue;
520 if (sd_id128_from_string(stype, &type_id) < 0)
521 continue;
522
523 if (sd_id128_equal(type_id, GPT_HOME)) {
524
525 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
526
527 if (pflags & GPT_FLAG_NO_AUTO)
528 continue;
529
530 designator = PARTITION_HOME;
531 rw = !(pflags & GPT_FLAG_READ_ONLY);
532 } else if (sd_id128_equal(type_id, GPT_SRV)) {
533
534 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
535
536 if (pflags & GPT_FLAG_NO_AUTO)
537 continue;
538
539 designator = PARTITION_SRV;
540 rw = !(pflags & GPT_FLAG_READ_ONLY);
541 } else if (sd_id128_equal(type_id, GPT_ESP)) {
542
543 /* Note that we don't check the GPT_FLAG_NO_AUTO flag for the ESP, as it is not defined
544 * there. We instead check the GPT_FLAG_NO_BLOCK_IO_PROTOCOL, as recommended by the
545 * UEFI spec (See "12.3.3 Number and Location of System Partitions"). */
546
547 if (pflags & GPT_FLAG_NO_BLOCK_IO_PROTOCOL)
548 continue;
549
550 designator = PARTITION_ESP;
551 fstype = "vfat";
552
553 } else if (sd_id128_equal(type_id, GPT_XBOOTLDR)) {
554
555 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
556
557 if (pflags & GPT_FLAG_NO_AUTO)
558 continue;
559
560 designator = PARTITION_XBOOTLDR;
561 rw = !(pflags & GPT_FLAG_READ_ONLY);
562 }
563 #ifdef GPT_ROOT_NATIVE
564 else if (sd_id128_equal(type_id, GPT_ROOT_NATIVE)) {
565
566 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
567
568 if (pflags & GPT_FLAG_NO_AUTO)
569 continue;
570
571 /* If a root ID is specified, ignore everything but the root id */
572 if (!sd_id128_is_null(root_uuid) && !sd_id128_equal(root_uuid, id))
573 continue;
574
575 designator = PARTITION_ROOT;
576 architecture = native_architecture();
577 rw = !(pflags & GPT_FLAG_READ_ONLY);
578 } else if (sd_id128_equal(type_id, GPT_ROOT_NATIVE_VERITY)) {
579
580 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
581
582 if (pflags & GPT_FLAG_NO_AUTO)
583 continue;
584
585 m->can_verity = true;
586
587 /* Ignore verity unless a root hash is specified */
588 if (sd_id128_is_null(verity_uuid) || !sd_id128_equal(verity_uuid, id))
589 continue;
590
591 designator = PARTITION_ROOT_VERITY;
592 fstype = "DM_verity_hash";
593 architecture = native_architecture();
594 rw = false;
595 }
596 #endif
597 #ifdef GPT_ROOT_SECONDARY
598 else if (sd_id128_equal(type_id, GPT_ROOT_SECONDARY)) {
599
600 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
601
602 if (pflags & GPT_FLAG_NO_AUTO)
603 continue;
604
605 /* If a root ID is specified, ignore everything but the root id */
606 if (!sd_id128_is_null(root_uuid) && !sd_id128_equal(root_uuid, id))
607 continue;
608
609 designator = PARTITION_ROOT_SECONDARY;
610 architecture = SECONDARY_ARCHITECTURE;
611 rw = !(pflags & GPT_FLAG_READ_ONLY);
612 } else if (sd_id128_equal(type_id, GPT_ROOT_SECONDARY_VERITY)) {
613
614 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
615
616 if (pflags & GPT_FLAG_NO_AUTO)
617 continue;
618
619 m->can_verity = true;
620
621 /* Ignore verity unless root has is specified */
622 if (sd_id128_is_null(verity_uuid) || !sd_id128_equal(verity_uuid, id))
623 continue;
624
625 designator = PARTITION_ROOT_SECONDARY_VERITY;
626 fstype = "DM_verity_hash";
627 architecture = SECONDARY_ARCHITECTURE;
628 rw = false;
629 }
630 #endif
631 else if (sd_id128_equal(type_id, GPT_SWAP)) {
632
633 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO);
634
635 if (pflags & GPT_FLAG_NO_AUTO)
636 continue;
637
638 designator = PARTITION_SWAP;
639 fstype = "swap";
640 } else if (sd_id128_equal(type_id, GPT_LINUX_GENERIC)) {
641
642 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
643
644 if (pflags & GPT_FLAG_NO_AUTO)
645 continue;
646
647 if (generic_node)
648 multiple_generic = true;
649 else {
650 generic_nr = nr;
651 generic_rw = !(pflags & GPT_FLAG_READ_ONLY);
652 generic_uuid = id;
653 generic_node = strdup(node);
654 if (!generic_node)
655 return -ENOMEM;
656 }
657
658 } else if (sd_id128_equal(type_id, GPT_TMP)) {
659
660 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
661
662 if (pflags & GPT_FLAG_NO_AUTO)
663 continue;
664
665 designator = PARTITION_TMP;
666 rw = !(pflags & GPT_FLAG_READ_ONLY);
667
668 } else if (sd_id128_equal(type_id, GPT_VAR)) {
669
670 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
671
672 if (pflags & GPT_FLAG_NO_AUTO)
673 continue;
674
675 if (!FLAGS_SET(flags, DISSECT_IMAGE_RELAX_VAR_CHECK)) {
676 sd_id128_t var_uuid;
677
678 /* For /var we insist that the uuid of the partition matches the
679 * HMAC-SHA256 of the /var GPT partition type uuid, keyed by machine
680 * ID. Why? Unlike the other partitions /var is inherently
681 * installation specific, hence we need to be careful not to mount it
682 * in the wrong installation. By hashing the partition UUID from
683 * /etc/machine-id we can securely bind the partition to the
684 * installation. */
685
686 r = sd_id128_get_machine_app_specific(GPT_VAR, &var_uuid);
687 if (r < 0)
688 return r;
689
690 if (!sd_id128_equal(var_uuid, id)) {
691 log_debug("Found a /var/ partition, but its UUID didn't match our expectations, ignoring.");
692 continue;
693 }
694 }
695
696 designator = PARTITION_VAR;
697 rw = !(pflags & GPT_FLAG_READ_ONLY);
698 }
699
700 if (designator != _PARTITION_DESIGNATOR_INVALID) {
701 _cleanup_free_ char *t = NULL, *n = NULL, *o = NULL;
702 const char *options = NULL;
703
704 /* First one wins */
705 if (m->partitions[designator].found)
706 continue;
707
708 if (fstype) {
709 t = strdup(fstype);
710 if (!t)
711 return -ENOMEM;
712 }
713
714 n = strdup(node);
715 if (!n)
716 return -ENOMEM;
717
718 options = mount_options_from_part(mount_options, nr);
719 if (options) {
720 o = strdup(options);
721 if (!o)
722 return -ENOMEM;
723 }
724
725 m->partitions[designator] = (DissectedPartition) {
726 .found = true,
727 .partno = nr,
728 .rw = rw,
729 .architecture = architecture,
730 .node = TAKE_PTR(n),
731 .fstype = TAKE_PTR(t),
732 .uuid = id,
733 .mount_options = TAKE_PTR(o),
734 };
735 }
736
737 } else if (is_mbr) {
738
739 switch (blkid_partition_get_type(pp)) {
740
741 case 0x83: /* Linux partition */
742
743 if (pflags != 0x80) /* Bootable flag */
744 continue;
745
746 if (generic_node)
747 multiple_generic = true;
748 else {
749 generic_nr = nr;
750 generic_rw = true;
751 generic_node = strdup(node);
752 if (!generic_node)
753 return -ENOMEM;
754 }
755
756 break;
757
758 case 0xEA: { /* Boot Loader Spec extended $BOOT partition */
759 _cleanup_free_ char *n = NULL, *o = NULL;
760 sd_id128_t id = SD_ID128_NULL;
761 const char *sid, *options = NULL;
762
763 /* First one wins */
764 if (m->partitions[PARTITION_XBOOTLDR].found)
765 continue;
766
767 sid = blkid_partition_get_uuid(pp);
768 if (sid)
769 (void) sd_id128_from_string(sid, &id);
770
771 n = strdup(node);
772 if (!n)
773 return -ENOMEM;
774
775 options = mount_options_from_part(mount_options, nr);
776 if (options) {
777 o = strdup(options);
778 if (!o)
779 return -ENOMEM;
780 }
781
782 m->partitions[PARTITION_XBOOTLDR] = (DissectedPartition) {
783 .found = true,
784 .partno = nr,
785 .rw = true,
786 .architecture = _ARCHITECTURE_INVALID,
787 .node = TAKE_PTR(n),
788 .uuid = id,
789 .mount_options = TAKE_PTR(o),
790 };
791
792 break;
793 }}
794 }
795 }
796
797 if (!m->partitions[PARTITION_ROOT].found) {
798 /* No root partition found? Then let's see if ther's one for the secondary architecture. And if not
799 * either, then check if there's a single generic one, and use that. */
800
801 if (m->partitions[PARTITION_ROOT_VERITY].found)
802 return -EADDRNOTAVAIL;
803
804 if (m->partitions[PARTITION_ROOT_SECONDARY].found) {
805 m->partitions[PARTITION_ROOT] = m->partitions[PARTITION_ROOT_SECONDARY];
806 zero(m->partitions[PARTITION_ROOT_SECONDARY]);
807
808 m->partitions[PARTITION_ROOT_VERITY] = m->partitions[PARTITION_ROOT_SECONDARY_VERITY];
809 zero(m->partitions[PARTITION_ROOT_SECONDARY_VERITY]);
810
811 } else if (flags & DISSECT_IMAGE_REQUIRE_ROOT) {
812 _cleanup_free_ char *o = NULL;
813 const char *options = NULL;
814
815 /* If the root has was set, then we won't fallback to a generic node, because the root hash
816 * decides */
817 if (root_hash)
818 return -EADDRNOTAVAIL;
819
820 /* If we didn't find a generic node, then we can't fix this up either */
821 if (!generic_node)
822 return -ENXIO;
823
824 /* If we didn't find a properly marked root partition, but we did find a single suitable
825 * generic Linux partition, then use this as root partition, if the caller asked for it. */
826 if (multiple_generic)
827 return -ENOTUNIQ;
828
829 options = mount_options_from_part(mount_options, generic_nr);
830 if (options) {
831 o = strdup(options);
832 if (!o)
833 return -ENOMEM;
834 }
835
836 m->partitions[PARTITION_ROOT] = (DissectedPartition) {
837 .found = true,
838 .rw = generic_rw,
839 .partno = generic_nr,
840 .architecture = _ARCHITECTURE_INVALID,
841 .node = TAKE_PTR(generic_node),
842 .uuid = generic_uuid,
843 .mount_options = TAKE_PTR(o),
844 };
845 }
846 }
847
848 if (root_hash) {
849 if (!m->partitions[PARTITION_ROOT_VERITY].found || !m->partitions[PARTITION_ROOT].found)
850 return -EADDRNOTAVAIL;
851
852 /* If we found the primary root with the hash, then we definitely want to suppress any secondary root
853 * (which would be weird, after all the root hash should only be assigned to one pair of
854 * partitions... */
855 m->partitions[PARTITION_ROOT_SECONDARY].found = false;
856 m->partitions[PARTITION_ROOT_SECONDARY_VERITY].found = false;
857
858 /* If we found a verity setup, then the root partition is necessarily read-only. */
859 m->partitions[PARTITION_ROOT].rw = false;
860
861 m->verity = true;
862 }
863
864 blkid_free_probe(b);
865 b = NULL;
866
867 /* Fill in file system types if we don't know them yet. */
868 for (i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
869 DissectedPartition *p = m->partitions + i;
870
871 if (!p->found)
872 continue;
873
874 if (!p->fstype && p->node) {
875 r = probe_filesystem(p->node, &p->fstype);
876 if (r < 0 && r != -EUCLEAN)
877 return r;
878 }
879
880 if (streq_ptr(p->fstype, "crypto_LUKS"))
881 m->encrypted = true;
882
883 if (p->fstype && fstype_is_ro(p->fstype))
884 p->rw = false;
885 }
886
887 *ret = TAKE_PTR(m);
888
889 return 0;
890 #else
891 return -EOPNOTSUPP;
892 #endif
893 }
894
895 DissectedImage* dissected_image_unref(DissectedImage *m) {
896 unsigned i;
897
898 if (!m)
899 return NULL;
900
901 for (i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
902 free(m->partitions[i].fstype);
903 free(m->partitions[i].node);
904 free(m->partitions[i].decrypted_fstype);
905 free(m->partitions[i].decrypted_node);
906 free(m->partitions[i].mount_options);
907 }
908
909 free(m->hostname);
910 strv_free(m->machine_info);
911 strv_free(m->os_release);
912
913 return mfree(m);
914 }
915
916 static int is_loop_device(const char *path) {
917 char s[SYS_BLOCK_PATH_MAX("/../loop/")];
918 struct stat st;
919
920 assert(path);
921
922 if (stat(path, &st) < 0)
923 return -errno;
924
925 if (!S_ISBLK(st.st_mode))
926 return -ENOTBLK;
927
928 xsprintf_sys_block_path(s, "/loop/", st.st_dev);
929 if (access(s, F_OK) < 0) {
930 if (errno != ENOENT)
931 return -errno;
932
933 /* The device itself isn't a loop device, but maybe it's a partition and its parent is? */
934 xsprintf_sys_block_path(s, "/../loop/", st.st_dev);
935 if (access(s, F_OK) < 0)
936 return errno == ENOENT ? false : -errno;
937 }
938
939 return true;
940 }
941
942 static int run_fsck(const char *node, const char *fstype) {
943 int r, exit_status;
944 pid_t pid;
945
946 assert(node);
947 assert(fstype);
948
949 r = fsck_exists(fstype);
950 if (r < 0) {
951 log_debug_errno(r, "Couldn't determine whether fsck for %s exists, proceeding anyway.", fstype);
952 return 0;
953 }
954 if (r == 0) {
955 log_debug("Not checking partition %s, as fsck for %s does not exist.", node, fstype);
956 return 0;
957 }
958
959 r = safe_fork("(fsck)", FORK_RESET_SIGNALS|FORK_CLOSE_ALL_FDS|FORK_RLIMIT_NOFILE_SAFE|FORK_DEATHSIG|FORK_NULL_STDIO, &pid);
960 if (r < 0)
961 return log_debug_errno(r, "Failed to fork off fsck: %m");
962 if (r == 0) {
963 /* Child */
964 execl("/sbin/fsck", "/sbin/fsck", "-aT", node, NULL);
965 log_debug_errno(errno, "Failed to execl() fsck: %m");
966 _exit(FSCK_OPERATIONAL_ERROR);
967 }
968
969 exit_status = wait_for_terminate_and_check("fsck", pid, 0);
970 if (exit_status < 0)
971 return log_debug_errno(exit_status, "Failed to fork off /sbin/fsck: %m");
972
973 if ((exit_status & ~FSCK_ERROR_CORRECTED) != FSCK_SUCCESS) {
974 log_debug("fsck failed with exit status %i.", exit_status);
975
976 if ((exit_status & (FSCK_SYSTEM_SHOULD_REBOOT|FSCK_ERRORS_LEFT_UNCORRECTED)) != 0)
977 return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN), "File system is corrupted, refusing.");
978
979 log_debug("Ignoring fsck error.");
980 }
981
982 return 0;
983 }
984
985 static int mount_partition(
986 DissectedPartition *m,
987 const char *where,
988 const char *directory,
989 uid_t uid_shift,
990 DissectImageFlags flags) {
991
992 _cleanup_free_ char *chased = NULL, *options = NULL;
993 const char *p, *node, *fstype;
994 bool rw;
995 int r;
996
997 assert(m);
998 assert(where);
999
1000 node = m->decrypted_node ?: m->node;
1001 fstype = m->decrypted_fstype ?: m->fstype;
1002
1003 if (!m->found || !node || !fstype)
1004 return 0;
1005
1006 /* Stacked encryption? Yuck */
1007 if (streq_ptr(fstype, "crypto_LUKS"))
1008 return -ELOOP;
1009
1010 rw = m->rw && !(flags & DISSECT_IMAGE_READ_ONLY);
1011
1012 if (FLAGS_SET(flags, DISSECT_IMAGE_FSCK) && rw) {
1013 r = run_fsck(node, fstype);
1014 if (r < 0)
1015 return r;
1016 }
1017
1018 if (directory) {
1019 r = chase_symlinks(directory, where, CHASE_PREFIX_ROOT, &chased, NULL);
1020 if (r < 0)
1021 return r;
1022
1023 p = chased;
1024 } else
1025 p = where;
1026
1027 /* If requested, turn on discard support. */
1028 if (fstype_can_discard(fstype) &&
1029 ((flags & DISSECT_IMAGE_DISCARD) ||
1030 ((flags & DISSECT_IMAGE_DISCARD_ON_LOOP) && is_loop_device(m->node)))) {
1031 options = strdup("discard");
1032 if (!options)
1033 return -ENOMEM;
1034 }
1035
1036 if (uid_is_valid(uid_shift) && uid_shift != 0 && fstype_can_uid_gid(fstype)) {
1037 _cleanup_free_ char *uid_option = NULL;
1038
1039 if (asprintf(&uid_option, "uid=" UID_FMT ",gid=" GID_FMT, uid_shift, (gid_t) uid_shift) < 0)
1040 return -ENOMEM;
1041
1042 if (!strextend_with_separator(&options, ",", uid_option, NULL))
1043 return -ENOMEM;
1044 }
1045
1046 if (!isempty(m->mount_options))
1047 if (!strextend_with_separator(&options, ",", m->mount_options, NULL))
1048 return -ENOMEM;
1049
1050 r = mount_verbose(LOG_DEBUG, node, p, fstype, MS_NODEV|(rw ? 0 : MS_RDONLY), options);
1051 if (r < 0)
1052 return r;
1053
1054 return 1;
1055 }
1056
1057 int dissected_image_mount(DissectedImage *m, const char *where, uid_t uid_shift, DissectImageFlags flags) {
1058 int r, boot_mounted;
1059
1060 assert(m);
1061 assert(where);
1062
1063 if (!m->partitions[PARTITION_ROOT].found)
1064 return -ENXIO;
1065
1066 if ((flags & DISSECT_IMAGE_MOUNT_NON_ROOT_ONLY) == 0) {
1067 r = mount_partition(m->partitions + PARTITION_ROOT, where, NULL, uid_shift, flags);
1068 if (r < 0)
1069 return r;
1070
1071 if (flags & DISSECT_IMAGE_VALIDATE_OS) {
1072 r = path_is_os_tree(where);
1073 if (r < 0)
1074 return r;
1075 if (r == 0)
1076 return -EMEDIUMTYPE;
1077 }
1078 }
1079
1080 if (flags & DISSECT_IMAGE_MOUNT_ROOT_ONLY)
1081 return 0;
1082
1083 r = mount_partition(m->partitions + PARTITION_HOME, where, "/home", uid_shift, flags);
1084 if (r < 0)
1085 return r;
1086
1087 r = mount_partition(m->partitions + PARTITION_SRV, where, "/srv", uid_shift, flags);
1088 if (r < 0)
1089 return r;
1090
1091 r = mount_partition(m->partitions + PARTITION_VAR, where, "/var", uid_shift, flags);
1092 if (r < 0)
1093 return r;
1094
1095 r = mount_partition(m->partitions + PARTITION_TMP, where, "/var/tmp", uid_shift, flags);
1096 if (r < 0)
1097 return r;
1098
1099 boot_mounted = mount_partition(m->partitions + PARTITION_XBOOTLDR, where, "/boot", uid_shift, flags);
1100 if (boot_mounted < 0)
1101 return boot_mounted;
1102
1103 if (m->partitions[PARTITION_ESP].found) {
1104 /* Mount the ESP to /efi if it exists. If it doesn't exist, use /boot instead, but only if it
1105 * exists and is empty, and we didn't already mount the XBOOTLDR partition into it. */
1106
1107 r = chase_symlinks("/efi", where, CHASE_PREFIX_ROOT, NULL, NULL);
1108 if (r >= 0) {
1109 r = mount_partition(m->partitions + PARTITION_ESP, where, "/efi", uid_shift, flags);
1110 if (r < 0)
1111 return r;
1112
1113 } else if (boot_mounted <= 0) {
1114 _cleanup_free_ char *p = NULL;
1115
1116 r = chase_symlinks("/boot", where, CHASE_PREFIX_ROOT, &p, NULL);
1117 if (r >= 0 && dir_is_empty(p) > 0) {
1118 r = mount_partition(m->partitions + PARTITION_ESP, where, "/boot", uid_shift, flags);
1119 if (r < 0)
1120 return r;
1121 }
1122 }
1123 }
1124
1125 return 0;
1126 }
1127
1128 #if HAVE_LIBCRYPTSETUP
1129 typedef struct DecryptedPartition {
1130 struct crypt_device *device;
1131 char *name;
1132 bool relinquished;
1133 } DecryptedPartition;
1134
1135 struct DecryptedImage {
1136 DecryptedPartition *decrypted;
1137 size_t n_decrypted;
1138 size_t n_allocated;
1139 };
1140 #endif
1141
1142 DecryptedImage* decrypted_image_unref(DecryptedImage* d) {
1143 #if HAVE_LIBCRYPTSETUP
1144 size_t i;
1145 int r;
1146
1147 if (!d)
1148 return NULL;
1149
1150 for (i = 0; i < d->n_decrypted; i++) {
1151 DecryptedPartition *p = d->decrypted + i;
1152
1153 if (p->device && p->name && !p->relinquished) {
1154 r = crypt_deactivate(p->device, p->name);
1155 if (r < 0)
1156 log_debug_errno(r, "Failed to deactivate encrypted partition %s", p->name);
1157 }
1158
1159 if (p->device)
1160 crypt_free(p->device);
1161 free(p->name);
1162 }
1163
1164 free(d);
1165 #endif
1166 return NULL;
1167 }
1168
1169 #if HAVE_LIBCRYPTSETUP
1170
1171 static int make_dm_name_and_node(const void *original_node, const char *suffix, char **ret_name, char **ret_node) {
1172 _cleanup_free_ char *name = NULL, *node = NULL;
1173 const char *base;
1174
1175 assert(original_node);
1176 assert(suffix);
1177 assert(ret_name);
1178 assert(ret_node);
1179
1180 base = strrchr(original_node, '/');
1181 if (!base)
1182 base = original_node;
1183 else
1184 base++;
1185 if (isempty(base))
1186 return -EINVAL;
1187
1188 name = strjoin(base, suffix);
1189 if (!name)
1190 return -ENOMEM;
1191 if (!filename_is_valid(name))
1192 return -EINVAL;
1193
1194 node = path_join(crypt_get_dir(), name);
1195 if (!node)
1196 return -ENOMEM;
1197
1198 *ret_name = TAKE_PTR(name);
1199 *ret_node = TAKE_PTR(node);
1200
1201 return 0;
1202 }
1203
1204 static int decrypt_partition(
1205 DissectedPartition *m,
1206 const char *passphrase,
1207 DissectImageFlags flags,
1208 DecryptedImage *d) {
1209
1210 _cleanup_free_ char *node = NULL, *name = NULL;
1211 _cleanup_(crypt_freep) struct crypt_device *cd = NULL;
1212 int r;
1213
1214 assert(m);
1215 assert(d);
1216
1217 if (!m->found || !m->node || !m->fstype)
1218 return 0;
1219
1220 if (!streq(m->fstype, "crypto_LUKS"))
1221 return 0;
1222
1223 if (!passphrase)
1224 return -ENOKEY;
1225
1226 r = make_dm_name_and_node(m->node, "-decrypted", &name, &node);
1227 if (r < 0)
1228 return r;
1229
1230 if (!GREEDY_REALLOC0(d->decrypted, d->n_allocated, d->n_decrypted + 1))
1231 return -ENOMEM;
1232
1233 r = crypt_init(&cd, m->node);
1234 if (r < 0)
1235 return log_debug_errno(r, "Failed to initialize dm-crypt: %m");
1236
1237 crypt_set_log_callback(cd, cryptsetup_log_glue, NULL);
1238
1239 r = crypt_load(cd, CRYPT_LUKS, NULL);
1240 if (r < 0)
1241 return log_debug_errno(r, "Failed to load LUKS metadata: %m");
1242
1243 r = crypt_activate_by_passphrase(cd, name, CRYPT_ANY_SLOT, passphrase, strlen(passphrase),
1244 ((flags & DISSECT_IMAGE_READ_ONLY) ? CRYPT_ACTIVATE_READONLY : 0) |
1245 ((flags & DISSECT_IMAGE_DISCARD_ON_CRYPTO) ? CRYPT_ACTIVATE_ALLOW_DISCARDS : 0));
1246 if (r < 0) {
1247 log_debug_errno(r, "Failed to activate LUKS device: %m");
1248 return r == -EPERM ? -EKEYREJECTED : r;
1249 }
1250
1251 d->decrypted[d->n_decrypted].name = TAKE_PTR(name);
1252 d->decrypted[d->n_decrypted].device = TAKE_PTR(cd);
1253 d->n_decrypted++;
1254
1255 m->decrypted_node = TAKE_PTR(node);
1256
1257 return 0;
1258 }
1259
1260 static int verity_can_reuse(const void *root_hash, size_t root_hash_size, bool has_sig, const char *name, struct crypt_device **ret_cd) {
1261 /* If the same volume was already open, check that the root hashes match, and reuse it if they do */
1262 _cleanup_free_ char *root_hash_existing = NULL;
1263 _cleanup_(crypt_freep) struct crypt_device *cd = NULL;
1264 struct crypt_params_verity crypt_params = {};
1265 size_t root_hash_existing_size = root_hash_size;
1266 int r;
1267
1268 assert(ret_cd);
1269
1270 r = crypt_init_by_name(&cd, name);
1271 if (r < 0)
1272 return log_debug_errno(r, "Error opening verity device, crypt_init_by_name failed: %m");
1273 r = crypt_get_verity_info(cd, &crypt_params);
1274 if (r < 0)
1275 return log_debug_errno(r, "Error opening verity device, crypt_get_verity_info failed: %m");
1276 root_hash_existing = malloc0(root_hash_size);
1277 if (!root_hash_existing)
1278 return -ENOMEM;
1279 r = crypt_volume_key_get(cd, CRYPT_ANY_SLOT, root_hash_existing, &root_hash_existing_size, NULL, 0);
1280 if (r < 0)
1281 return log_debug_errno(r, "Error opening verity device, crypt_volume_key_get failed: %m");
1282 if (root_hash_size != root_hash_existing_size || memcmp(root_hash_existing, root_hash, root_hash_size) != 0)
1283 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but root hashes are different.");
1284 #if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY
1285 /* Ensure that, if signatures are supported, we only reuse the device if the previous mount
1286 * used the same settings, so that a previous unsigned mount will not be reused if the user
1287 * asks to use signing for the new one, and viceversa. */
1288 if (has_sig != !!(crypt_params.flags & CRYPT_VERITY_ROOT_HASH_SIGNATURE))
1289 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but signature settings are not the same.");
1290 #endif
1291
1292 *ret_cd = TAKE_PTR(cd);
1293 return 0;
1294 }
1295
1296 static inline void dm_deferred_remove_clean(char *name) {
1297 if (!name)
1298 return;
1299 (void) crypt_deactivate_by_name(NULL, name, CRYPT_DEACTIVATE_DEFERRED);
1300 free(name);
1301 }
1302 DEFINE_TRIVIAL_CLEANUP_FUNC(char *, dm_deferred_remove_clean);
1303
1304 static int verity_partition(
1305 DissectedPartition *m,
1306 DissectedPartition *v,
1307 const void *root_hash,
1308 size_t root_hash_size,
1309 const char *verity_data,
1310 const char *root_hash_sig_path,
1311 const void *root_hash_sig,
1312 size_t root_hash_sig_size,
1313 DissectImageFlags flags,
1314 DecryptedImage *d) {
1315
1316 _cleanup_free_ char *node = NULL, *name = NULL, *hash_sig_from_file = NULL;
1317 _cleanup_(crypt_freep) struct crypt_device *cd = NULL;
1318 _cleanup_(dm_deferred_remove_cleanp) char *restore_deferred_remove = NULL;
1319 int r;
1320
1321 assert(m);
1322 assert(v || verity_data);
1323
1324 if (!root_hash)
1325 return 0;
1326
1327 if (!m->found || !m->node || !m->fstype)
1328 return 0;
1329 if (!verity_data) {
1330 if (!v->found || !v->node || !v->fstype)
1331 return 0;
1332
1333 if (!streq(v->fstype, "DM_verity_hash"))
1334 return 0;
1335 }
1336
1337 if (FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE)) {
1338 /* Use the roothash, which is unique per volume, as the device node name, so that it can be reused */
1339 _cleanup_free_ char *root_hash_encoded = NULL;
1340 root_hash_encoded = hexmem(root_hash, root_hash_size);
1341 if (!root_hash_encoded)
1342 return -ENOMEM;
1343 r = make_dm_name_and_node(root_hash_encoded, "-verity", &name, &node);
1344 } else
1345 r = make_dm_name_and_node(m->node, "-verity", &name, &node);
1346 if (r < 0)
1347 return r;
1348
1349 if (!root_hash_sig && root_hash_sig_path) {
1350 r = read_full_file_full(AT_FDCWD, root_hash_sig_path, 0, &hash_sig_from_file, &root_hash_sig_size);
1351 if (r < 0)
1352 return r;
1353 }
1354
1355 r = crypt_init(&cd, verity_data ?: v->node);
1356 if (r < 0)
1357 return r;
1358
1359 crypt_set_log_callback(cd, cryptsetup_log_glue, NULL);
1360
1361 r = crypt_load(cd, CRYPT_VERITY, NULL);
1362 if (r < 0)
1363 return r;
1364
1365 r = crypt_set_data_device(cd, m->node);
1366 if (r < 0)
1367 return r;
1368
1369 if (!GREEDY_REALLOC0(d->decrypted, d->n_allocated, d->n_decrypted + 1))
1370 return -ENOMEM;
1371
1372 /* If activating fails because the device already exists, check the metadata and reuse it if it matches.
1373 * In case of ENODEV/ENOENT, which can happen if another process is activating at the exact same time,
1374 * retry a few times before giving up. */
1375 for (unsigned i = 0; i < N_DEVICE_NODE_LIST_ATTEMPTS; i++) {
1376 if (root_hash_sig || hash_sig_from_file) {
1377 #if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY
1378 r = crypt_activate_by_signed_key(cd, name, root_hash, root_hash_size, root_hash_sig ?: hash_sig_from_file, root_hash_sig_size, CRYPT_ACTIVATE_READONLY);
1379 #else
1380 r = log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "activation of verity device with signature requested, but not supported by cryptsetup due to missing crypt_activate_by_signed_key()");
1381 #endif
1382 } else
1383 r = crypt_activate_by_volume_key(cd, name, root_hash, root_hash_size, CRYPT_ACTIVATE_READONLY);
1384 /* libdevmapper can return EINVAL when the device is already in the activation stage.
1385 * There's no way to distinguish this situation from a genuine error due to invalid
1386 * parameters, so immediately fallback to activating the device with a unique name.
1387 * Improvements in libcrypsetup can ensure this never happens: https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/96 */
1388 if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
1389 return verity_partition(m, v, root_hash, root_hash_size, verity_data, NULL, root_hash_sig ?: hash_sig_from_file, root_hash_sig_size, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
1390 if (!IN_SET(r, 0, -EEXIST, -ENODEV))
1391 return r;
1392 if (r == -EEXIST) {
1393 struct crypt_device *existing_cd = NULL;
1394
1395 if (!restore_deferred_remove){
1396 /* To avoid races, disable automatic removal on umount while setting up the new device. Restore it on failure. */
1397 r = dm_deferred_remove_cancel(name);
1398 if (r < 0)
1399 return log_debug_errno(r, "Disabling automated deferred removal for verity device %s failed: %m", node);
1400 restore_deferred_remove = strdup(name);
1401 if (!restore_deferred_remove)
1402 return -ENOMEM;
1403 }
1404
1405 r = verity_can_reuse(root_hash, root_hash_size, !!root_hash_sig || !!hash_sig_from_file, name, &existing_cd);
1406 /* Same as above, -EINVAL can randomly happen when it actually means -EEXIST */
1407 if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
1408 return verity_partition(m, v, root_hash, root_hash_size, verity_data, NULL, root_hash_sig ?: hash_sig_from_file, root_hash_sig_size, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
1409 if (!IN_SET(r, 0, -ENODEV, -ENOENT))
1410 return log_debug_errno(r, "Checking whether existing verity device %s can be reused failed: %m", node);
1411 if (r == 0) {
1412 if (cd)
1413 crypt_free(cd);
1414 cd = existing_cd;
1415 }
1416 }
1417 if (r == 0)
1418 break;
1419 }
1420
1421 /* Sanity check: libdevmapper is known to report that the device already exists and is active,
1422 * but it's actually not there, so the later filesystem probe or mount would fail. */
1423 if (r == 0)
1424 r = access(node, F_OK);
1425 /* An existing verity device was reported by libcryptsetup/libdevmapper, but we can't use it at this time.
1426 * Fall back to activating it with a unique device name. */
1427 if (r != 0 && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
1428 return verity_partition(m, v, root_hash, root_hash_size, verity_data, NULL, root_hash_sig ?: hash_sig_from_file, root_hash_sig_size, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
1429
1430 /* Everything looks good and we'll be able to mount the device, so deferred remove will be re-enabled at that point. */
1431 restore_deferred_remove = mfree(restore_deferred_remove);
1432
1433 d->decrypted[d->n_decrypted].name = TAKE_PTR(name);
1434 d->decrypted[d->n_decrypted].device = TAKE_PTR(cd);
1435 d->n_decrypted++;
1436
1437 m->decrypted_node = TAKE_PTR(node);
1438
1439 return 0;
1440 }
1441 #endif
1442
1443 int dissected_image_decrypt(
1444 DissectedImage *m,
1445 const char *passphrase,
1446 const void *root_hash,
1447 size_t root_hash_size,
1448 const char *verity_data,
1449 const char *root_hash_sig_path,
1450 const void *root_hash_sig,
1451 size_t root_hash_sig_size,
1452 DissectImageFlags flags,
1453 DecryptedImage **ret) {
1454
1455 #if HAVE_LIBCRYPTSETUP
1456 _cleanup_(decrypted_image_unrefp) DecryptedImage *d = NULL;
1457 unsigned i;
1458 int r;
1459 #endif
1460
1461 assert(m);
1462 assert(root_hash || root_hash_size == 0);
1463
1464 /* Returns:
1465 *
1466 * = 0 → There was nothing to decrypt
1467 * > 0 → Decrypted successfully
1468 * -ENOKEY → There's something to decrypt but no key was supplied
1469 * -EKEYREJECTED → Passed key was not correct
1470 */
1471
1472 if (root_hash && root_hash_size < sizeof(sd_id128_t))
1473 return -EINVAL;
1474
1475 if (!m->encrypted && !m->verity) {
1476 *ret = NULL;
1477 return 0;
1478 }
1479
1480 #if HAVE_LIBCRYPTSETUP
1481 d = new0(DecryptedImage, 1);
1482 if (!d)
1483 return -ENOMEM;
1484
1485 for (i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
1486 DissectedPartition *p = m->partitions + i;
1487 int k;
1488
1489 if (!p->found)
1490 continue;
1491
1492 r = decrypt_partition(p, passphrase, flags, d);
1493 if (r < 0)
1494 return r;
1495
1496 k = PARTITION_VERITY_OF(i);
1497 if (k >= 0) {
1498 r = verity_partition(p, m->partitions + k, root_hash, root_hash_size, verity_data, root_hash_sig_path, root_hash_sig, root_hash_sig_size, flags | DISSECT_IMAGE_VERITY_SHARE, d);
1499 if (r < 0)
1500 return r;
1501 }
1502
1503 if (!p->decrypted_fstype && p->decrypted_node) {
1504 r = probe_filesystem(p->decrypted_node, &p->decrypted_fstype);
1505 if (r < 0 && r != -EUCLEAN)
1506 return r;
1507 }
1508 }
1509
1510 *ret = TAKE_PTR(d);
1511
1512 return 1;
1513 #else
1514 return -EOPNOTSUPP;
1515 #endif
1516 }
1517
1518 int dissected_image_decrypt_interactively(
1519 DissectedImage *m,
1520 const char *passphrase,
1521 const void *root_hash,
1522 size_t root_hash_size,
1523 const char *verity_data,
1524 const char *root_hash_sig_path,
1525 const void *root_hash_sig,
1526 size_t root_hash_sig_size,
1527 DissectImageFlags flags,
1528 DecryptedImage **ret) {
1529
1530 _cleanup_strv_free_erase_ char **z = NULL;
1531 int n = 3, r;
1532
1533 if (passphrase)
1534 n--;
1535
1536 for (;;) {
1537 r = dissected_image_decrypt(m, passphrase, root_hash, root_hash_size, verity_data, root_hash_sig_path, root_hash_sig, root_hash_sig_size, flags, ret);
1538 if (r >= 0)
1539 return r;
1540 if (r == -EKEYREJECTED)
1541 log_error_errno(r, "Incorrect passphrase, try again!");
1542 else if (r != -ENOKEY)
1543 return log_error_errno(r, "Failed to decrypt image: %m");
1544
1545 if (--n < 0)
1546 return log_error_errno(SYNTHETIC_ERRNO(EKEYREJECTED),
1547 "Too many retries.");
1548
1549 z = strv_free(z);
1550
1551 r = ask_password_auto("Please enter image passphrase:", NULL, "dissect", "dissect", USEC_INFINITY, 0, &z);
1552 if (r < 0)
1553 return log_error_errno(r, "Failed to query for passphrase: %m");
1554
1555 passphrase = z[0];
1556 }
1557 }
1558
1559 int decrypted_image_relinquish(DecryptedImage *d) {
1560
1561 #if HAVE_LIBCRYPTSETUP
1562 size_t i;
1563 int r;
1564 #endif
1565
1566 assert(d);
1567
1568 /* Turns on automatic removal after the last use ended for all DM devices of this image, and sets a boolean so
1569 * that we don't clean it up ourselves either anymore */
1570
1571 #if HAVE_LIBCRYPTSETUP
1572 for (i = 0; i < d->n_decrypted; i++) {
1573 DecryptedPartition *p = d->decrypted + i;
1574
1575 if (p->relinquished)
1576 continue;
1577
1578 r = crypt_deactivate_by_name(NULL, p->name, CRYPT_DEACTIVATE_DEFERRED);
1579 if (r < 0)
1580 return log_debug_errno(r, "Failed to mark %s for auto-removal: %m", p->name);
1581
1582 p->relinquished = true;
1583 }
1584 #endif
1585
1586 return 0;
1587 }
1588
1589 int verity_metadata_load(const char *image, const char *root_hash_path, void **ret_roothash, size_t *ret_roothash_size, char **ret_verity_data, char **ret_roothashsig) {
1590 _cleanup_free_ char *verity_filename = NULL, *roothashsig_filename = NULL;
1591 _cleanup_free_ void *roothash_decoded = NULL;
1592 size_t roothash_decoded_size = 0;
1593 int r;
1594
1595 assert(image);
1596
1597 if (is_device_path(image)) {
1598 /* If we are asked to load the root hash for a device node, exit early */
1599 if (ret_roothash)
1600 *ret_roothash = NULL;
1601 if (ret_roothash_size)
1602 *ret_roothash_size = 0;
1603 if (ret_verity_data)
1604 *ret_verity_data = NULL;
1605 if (ret_roothashsig)
1606 *ret_roothashsig = NULL;
1607 return 0;
1608 }
1609
1610 if (ret_verity_data) {
1611 char *e;
1612
1613 verity_filename = new(char, strlen(image) + STRLEN(".verity") + 1);
1614 if (!verity_filename)
1615 return -ENOMEM;
1616 strcpy(verity_filename, image);
1617 e = endswith(verity_filename, ".raw");
1618 if (e)
1619 strcpy(e, ".verity");
1620 else
1621 strcat(verity_filename, ".verity");
1622
1623 r = access(verity_filename, F_OK);
1624 if (r < 0) {
1625 if (errno != ENOENT)
1626 return -errno;
1627 verity_filename = mfree(verity_filename);
1628 }
1629 }
1630
1631 if (ret_roothashsig) {
1632 char *e;
1633
1634 /* Follow naming convention recommended by the relevant RFC:
1635 * https://tools.ietf.org/html/rfc5751#section-3.2.1 */
1636 roothashsig_filename = new(char, strlen(image) + STRLEN(".roothash.p7s") + 1);
1637 if (!roothashsig_filename)
1638 return -ENOMEM;
1639 strcpy(roothashsig_filename, image);
1640 e = endswith(roothashsig_filename, ".raw");
1641 if (e)
1642 strcpy(e, ".roothash.p7s");
1643 else
1644 strcat(roothashsig_filename, ".roothash.p7s");
1645
1646 r = access(roothashsig_filename, R_OK);
1647 if (r < 0) {
1648 if (errno != ENOENT)
1649 return -errno;
1650 roothashsig_filename = mfree(roothashsig_filename);
1651 }
1652 }
1653
1654 if (ret_roothash) {
1655 _cleanup_free_ char *text = NULL;
1656 assert(ret_roothash_size);
1657
1658 if (root_hash_path) {
1659 /* We have the path to a roothash to load and decode, eg: RootHash=/foo/bar.roothash */
1660 r = read_one_line_file(root_hash_path, &text);
1661 if (r < 0)
1662 return r;
1663 } else {
1664 r = getxattr_malloc(image, "user.verity.roothash", &text, true);
1665 if (r < 0) {
1666 char *fn, *e, *n;
1667
1668 if (!IN_SET(r, -ENODATA, -EOPNOTSUPP, -ENOENT))
1669 return r;
1670
1671 fn = newa(char, strlen(image) + STRLEN(".roothash") + 1);
1672 n = stpcpy(fn, image);
1673 e = endswith(fn, ".raw");
1674 if (e)
1675 n = e;
1676
1677 strcpy(n, ".roothash");
1678
1679 r = read_one_line_file(fn, &text);
1680 if (r < 0 && r != -ENOENT)
1681 return r;
1682 }
1683 }
1684
1685 if (text) {
1686 r = unhexmem(text, strlen(text), &roothash_decoded, &roothash_decoded_size);
1687 if (r < 0)
1688 return r;
1689 if (roothash_decoded_size < sizeof(sd_id128_t))
1690 return -EINVAL;
1691 }
1692 }
1693
1694 if (ret_roothash) {
1695 *ret_roothash = TAKE_PTR(roothash_decoded);
1696 *ret_roothash_size = roothash_decoded_size;
1697 }
1698 if (ret_verity_data)
1699 *ret_verity_data = TAKE_PTR(verity_filename);
1700 if (roothashsig_filename)
1701 *ret_roothashsig = TAKE_PTR(roothashsig_filename);
1702
1703 return 1;
1704 }
1705
1706 int dissected_image_acquire_metadata(DissectedImage *m) {
1707
1708 enum {
1709 META_HOSTNAME,
1710 META_MACHINE_ID,
1711 META_MACHINE_INFO,
1712 META_OS_RELEASE,
1713 _META_MAX,
1714 };
1715
1716 static const char *const paths[_META_MAX] = {
1717 [META_HOSTNAME] = "/etc/hostname\0",
1718 [META_MACHINE_ID] = "/etc/machine-id\0",
1719 [META_MACHINE_INFO] = "/etc/machine-info\0",
1720 [META_OS_RELEASE] = "/etc/os-release\0"
1721 "/usr/lib/os-release\0",
1722 };
1723
1724 _cleanup_strv_free_ char **machine_info = NULL, **os_release = NULL;
1725 _cleanup_(rmdir_and_freep) char *t = NULL;
1726 _cleanup_(sigkill_waitp) pid_t child = 0;
1727 sd_id128_t machine_id = SD_ID128_NULL;
1728 _cleanup_free_ char *hostname = NULL;
1729 unsigned n_meta_initialized = 0, k;
1730 int fds[2 * _META_MAX], r;
1731
1732 BLOCK_SIGNALS(SIGCHLD);
1733
1734 assert(m);
1735
1736 for (; n_meta_initialized < _META_MAX; n_meta_initialized ++)
1737 if (pipe2(fds + 2*n_meta_initialized, O_CLOEXEC) < 0) {
1738 r = -errno;
1739 goto finish;
1740 }
1741
1742 r = mkdtemp_malloc("/tmp/dissect-XXXXXX", &t);
1743 if (r < 0)
1744 goto finish;
1745
1746 r = safe_fork("(sd-dissect)", FORK_RESET_SIGNALS|FORK_DEATHSIG|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE, &child);
1747 if (r < 0)
1748 goto finish;
1749 if (r == 0) {
1750 r = dissected_image_mount(m, t, UID_INVALID, DISSECT_IMAGE_READ_ONLY|DISSECT_IMAGE_MOUNT_ROOT_ONLY|DISSECT_IMAGE_VALIDATE_OS);
1751 if (r < 0) {
1752 log_debug_errno(r, "Failed to mount dissected image: %m");
1753 _exit(EXIT_FAILURE);
1754 }
1755
1756 for (k = 0; k < _META_MAX; k++) {
1757 _cleanup_close_ int fd = -1;
1758 const char *p;
1759
1760 fds[2*k] = safe_close(fds[2*k]);
1761
1762 NULSTR_FOREACH(p, paths[k]) {
1763 fd = chase_symlinks_and_open(p, t, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC|O_NOCTTY, NULL);
1764 if (fd >= 0)
1765 break;
1766 }
1767 if (fd < 0) {
1768 log_debug_errno(fd, "Failed to read %s file of image, ignoring: %m", paths[k]);
1769 continue;
1770 }
1771
1772 r = copy_bytes(fd, fds[2*k+1], (uint64_t) -1, 0);
1773 if (r < 0)
1774 _exit(EXIT_FAILURE);
1775
1776 fds[2*k+1] = safe_close(fds[2*k+1]);
1777 }
1778
1779 _exit(EXIT_SUCCESS);
1780 }
1781
1782 for (k = 0; k < _META_MAX; k++) {
1783 _cleanup_fclose_ FILE *f = NULL;
1784
1785 fds[2*k+1] = safe_close(fds[2*k+1]);
1786
1787 f = take_fdopen(&fds[2*k], "r");
1788 if (!f) {
1789 r = -errno;
1790 goto finish;
1791 }
1792
1793 switch (k) {
1794
1795 case META_HOSTNAME:
1796 r = read_etc_hostname_stream(f, &hostname);
1797 if (r < 0)
1798 log_debug_errno(r, "Failed to read /etc/hostname: %m");
1799
1800 break;
1801
1802 case META_MACHINE_ID: {
1803 _cleanup_free_ char *line = NULL;
1804
1805 r = read_line(f, LONG_LINE_MAX, &line);
1806 if (r < 0)
1807 log_debug_errno(r, "Failed to read /etc/machine-id: %m");
1808 else if (r == 33) {
1809 r = sd_id128_from_string(line, &machine_id);
1810 if (r < 0)
1811 log_debug_errno(r, "Image contains invalid /etc/machine-id: %s", line);
1812 } else if (r == 0)
1813 log_debug("/etc/machine-id file is empty.");
1814 else
1815 log_debug("/etc/machine-id has unexpected length %i.", r);
1816
1817 break;
1818 }
1819
1820 case META_MACHINE_INFO:
1821 r = load_env_file_pairs(f, "machine-info", &machine_info);
1822 if (r < 0)
1823 log_debug_errno(r, "Failed to read /etc/machine-info: %m");
1824
1825 break;
1826
1827 case META_OS_RELEASE:
1828 r = load_env_file_pairs(f, "os-release", &os_release);
1829 if (r < 0)
1830 log_debug_errno(r, "Failed to read OS release file: %m");
1831
1832 break;
1833 }
1834 }
1835
1836 r = wait_for_terminate_and_check("(sd-dissect)", child, 0);
1837 child = 0;
1838 if (r < 0)
1839 goto finish;
1840 if (r != EXIT_SUCCESS)
1841 return -EPROTO;
1842
1843 free_and_replace(m->hostname, hostname);
1844 m->machine_id = machine_id;
1845 strv_free_and_replace(m->machine_info, machine_info);
1846 strv_free_and_replace(m->os_release, os_release);
1847
1848 finish:
1849 for (k = 0; k < n_meta_initialized; k++)
1850 safe_close_pair(fds + 2*k);
1851
1852 return r;
1853 }
1854
1855 int dissect_image_and_warn(
1856 int fd,
1857 const char *name,
1858 const void *root_hash,
1859 size_t root_hash_size,
1860 const char *verity_data,
1861 const MountOptions *mount_options,
1862 DissectImageFlags flags,
1863 DissectedImage **ret) {
1864
1865 _cleanup_free_ char *buffer = NULL;
1866 int r;
1867
1868 if (!name) {
1869 r = fd_get_path(fd, &buffer);
1870 if (r < 0)
1871 return r;
1872
1873 name = buffer;
1874 }
1875
1876 r = dissect_image(fd, root_hash, root_hash_size, verity_data, mount_options, flags, ret);
1877
1878 switch (r) {
1879
1880 case -EOPNOTSUPP:
1881 return log_error_errno(r, "Dissecting images is not supported, compiled without blkid support.");
1882
1883 case -ENOPKG:
1884 return log_error_errno(r, "Couldn't identify a suitable partition table or file system in '%s'.", name);
1885
1886 case -EADDRNOTAVAIL:
1887 return log_error_errno(r, "No root partition for specified root hash found in '%s'.", name);
1888
1889 case -ENOTUNIQ:
1890 return log_error_errno(r, "Multiple suitable root partitions found in image '%s'.", name);
1891
1892 case -ENXIO:
1893 return log_error_errno(r, "No suitable root partition found in image '%s'.", name);
1894
1895 case -EPROTONOSUPPORT:
1896 return log_error_errno(r, "Device '%s' is loopback block device with partition scanning turned off, please turn it on.", name);
1897
1898 default:
1899 if (r < 0)
1900 return log_error_errno(r, "Failed to dissect image '%s': %m", name);
1901
1902 return r;
1903 }
1904 }
1905
1906 bool dissected_image_can_do_verity(const DissectedImage *image, unsigned partition_designator) {
1907 if (image->single_file_system)
1908 return partition_designator == PARTITION_ROOT && image->can_verity;
1909
1910 return PARTITION_VERITY_OF(partition_designator) >= 0;
1911 }
1912
1913 bool dissected_image_has_verity(const DissectedImage *image, unsigned partition_designator) {
1914 int k;
1915
1916 if (image->single_file_system)
1917 return partition_designator == PARTITION_ROOT && image->verity;
1918
1919 k = PARTITION_VERITY_OF(partition_designator);
1920 return k >= 0 && image->partitions[k].found;
1921 }
1922
1923 MountOptions* mount_options_free_all(MountOptions *options) {
1924 MountOptions *m;
1925
1926 while ((m = options)) {
1927 LIST_REMOVE(mount_options, options, m);
1928 free(m->options);
1929 free(m);
1930 }
1931
1932 return NULL;
1933 }
1934
1935 const char* mount_options_from_part(const MountOptions *options, unsigned int partition_number) {
1936 MountOptions *m;
1937
1938 LIST_FOREACH(mount_options, m, (MountOptions *)options)
1939 if (partition_number == m->partition_number && !isempty(m->options))
1940 return m->options;
1941
1942 return NULL;
1943 }
1944
1945 int mount_image_privately_interactively(
1946 const char *image,
1947 DissectImageFlags flags,
1948 char **ret_directory,
1949 LoopDevice **ret_loop_device,
1950 DecryptedImage **ret_decrypted_image) {
1951
1952 _cleanup_(loop_device_unrefp) LoopDevice *d = NULL;
1953 _cleanup_(decrypted_image_unrefp) DecryptedImage *decrypted_image = NULL;
1954 _cleanup_(dissected_image_unrefp) DissectedImage *dissected_image = NULL;
1955 _cleanup_(rmdir_and_freep) char *created_dir = NULL;
1956 _cleanup_free_ char *temp = NULL;
1957 int r;
1958
1959 /* Mounts an OS image at a temporary place, inside a newly created mount namespace of our own. This
1960 * is used by tools such as systemd-tmpfiles or systemd-firstboot to operate on some disk image
1961 * easily. */
1962
1963 assert(image);
1964 assert(ret_directory);
1965 assert(ret_loop_device);
1966 assert(ret_decrypted_image);
1967
1968 r = tempfn_random_child(NULL, program_invocation_short_name, &temp);
1969 if (r < 0)
1970 return log_error_errno(r, "Failed to generate temporary mount directory: %m");
1971
1972 r = loop_device_make_by_path(
1973 image,
1974 FLAGS_SET(flags, DISSECT_IMAGE_READ_ONLY) ? O_RDONLY : O_RDWR,
1975 FLAGS_SET(flags, DISSECT_IMAGE_NO_PARTITION_TABLE) ? 0 : LO_FLAGS_PARTSCAN,
1976 &d);
1977 if (r < 0)
1978 return log_error_errno(r, "Failed to set up loopback device: %m");
1979
1980 r = dissect_image_and_warn(d->fd, image, NULL, 0, NULL, NULL, flags, &dissected_image);
1981 if (r < 0)
1982 return r;
1983
1984 r = dissected_image_decrypt_interactively(dissected_image, NULL, NULL, 0, NULL, NULL, NULL, 0, flags, &decrypted_image);
1985 if (r < 0)
1986 return r;
1987
1988 r = detach_mount_namespace();
1989 if (r < 0)
1990 return log_error_errno(r, "Failed to detach mount namespace: %m");
1991
1992 r = mkdir_p(temp, 0700);
1993 if (r < 0)
1994 return log_error_errno(r, "Failed to create mount point: %m");
1995
1996 created_dir = TAKE_PTR(temp);
1997
1998 r = dissected_image_mount(dissected_image, created_dir, UID_INVALID, flags);
1999 if (r == -EUCLEAN)
2000 return log_error_errno(r, "File system check on image failed: %m");
2001 if (r < 0)
2002 return log_error_errno(r, "Failed to mount image: %m");
2003
2004 if (decrypted_image) {
2005 r = decrypted_image_relinquish(decrypted_image);
2006 if (r < 0)
2007 return log_error_errno(r, "Failed to relinquish DM devices: %m");
2008 }
2009
2010 loop_device_relinquish(d);
2011
2012 *ret_directory = TAKE_PTR(created_dir);
2013 *ret_loop_device = TAKE_PTR(d);
2014 *ret_decrypted_image = TAKE_PTR(decrypted_image);
2015
2016 return 0;
2017 }
2018
2019 static const char *const partition_designator_table[] = {
2020 [PARTITION_ROOT] = "root",
2021 [PARTITION_ROOT_SECONDARY] = "root-secondary",
2022 [PARTITION_HOME] = "home",
2023 [PARTITION_SRV] = "srv",
2024 [PARTITION_ESP] = "esp",
2025 [PARTITION_XBOOTLDR] = "xbootldr",
2026 [PARTITION_SWAP] = "swap",
2027 [PARTITION_ROOT_VERITY] = "root-verity",
2028 [PARTITION_ROOT_SECONDARY_VERITY] = "root-secondary-verity",
2029 [PARTITION_TMP] = "tmp",
2030 [PARTITION_VAR] = "var",
2031 };
2032
2033 DEFINE_STRING_TABLE_LOOKUP(partition_designator, int);