From: Lennart Poettering Date: Fri, 19 Jul 2019 09:04:03 +0000 (+0200) Subject: efi: steal glibc sha256 implementation X-Git-Tag: v243-rc1~32^2~16 X-Git-Url: http://git.ipfire.org/?p=thirdparty%2Fsystemd.git;a=commitdiff_plain;h=073220bf3667161af172c09bd5c10d26e1b22d66 efi: steal glibc sha256 implementation --- diff --git a/src/boot/efi/meson.build b/src/boot/efi/meson.build index 0ae31916358..d74660b27fd 100644 --- a/src/boot/efi/meson.build +++ b/src/boot/efi/meson.build @@ -8,6 +8,7 @@ efi_headers = files(''' linux.h measure.h pe.h + sha256.h shim.h splash.h util.h @@ -24,8 +25,9 @@ common_sources = ''' systemd_boot_sources = ''' boot.c console.c - shim.c crc32.c + sha256.c + shim.c '''.split() stub_sources = ''' diff --git a/src/boot/efi/sha256.c b/src/boot/efi/sha256.c new file mode 100644 index 00000000000..40da636dc71 --- /dev/null +++ b/src/boot/efi/sha256.c @@ -0,0 +1,275 @@ +/* Stolen from glibc and converted to UEFI style. In glibc it comes with the following copyright blurb: */ + +/* Functions to compute SHA256 message digest of files or memory blocks. + according to the definition of SHA256 in FIPS 180-2. + Copyright (C) 2007-2019 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + . */ + +/* Written by Ulrich Drepper , 2007. */ + +#include "sha256.h" + +#if __BYTE_ORDER == __LITTLE_ENDIAN +# define SWAP(n) \ + (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) +# define SWAP64(n) \ + (((n) << 56) \ + | (((n) & 0xff00) << 40) \ + | (((n) & 0xff0000) << 24) \ + | (((n) & 0xff000000) << 8) \ + | (((n) >> 8) & 0xff000000) \ + | (((n) >> 24) & 0xff0000) \ + | (((n) >> 40) & 0xff00) \ + | ((n) >> 56)) +#else +# define SWAP(n) (n) +# define SWAP64(n) (n) +#endif + +/* This array contains the bytes used to pad the buffer to the next + 64-byte boundary. (FIPS 180-2:5.1.1) */ +static const UINT8 fillbuf[64] = { + 0x80, 0 /* , 0, 0, ... */ +}; + +/* Constants for SHA256 from FIPS 180-2:4.2.2. */ +static const UINT32 K[64] = { + 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, + 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, + 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, + 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, + 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, + 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, + 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, + 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, + 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, + 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, + 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, + 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, + 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, + 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, + 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, + 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 +}; + +static void sha256_process_block(const void *, UINTN, struct sha256_ctx *); + +/* Initialize structure containing state of computation. + (FIPS 180-2:5.3.2) */ +void sha256_init_ctx(struct sha256_ctx *ctx) { + ctx->H[0] = 0x6a09e667; + ctx->H[1] = 0xbb67ae85; + ctx->H[2] = 0x3c6ef372; + ctx->H[3] = 0xa54ff53a; + ctx->H[4] = 0x510e527f; + ctx->H[5] = 0x9b05688c; + ctx->H[6] = 0x1f83d9ab; + ctx->H[7] = 0x5be0cd19; + + ctx->total64 = 0; + ctx->buflen = 0; +} + +/* Process the remaining bytes in the internal buffer and the usual + prolog according to the standard and write the result to RESBUF. + + IMPORTANT: On some systems it is required that RESBUF is correctly + aligned for a 32 bits value. */ +void *sha256_finish_ctx(struct sha256_ctx *ctx, void *resbuf) { + /* Take yet unprocessed bytes into account. */ + UINT32 bytes = ctx->buflen; + UINTN pad, i; + + /* Now count remaining bytes. */ + ctx->total64 += bytes; + + pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes; + CopyMem (&ctx->buffer[bytes], fillbuf, pad); + + /* Put the 64-bit file length in *bits* at the end of the buffer. */ + ctx->buffer32[(bytes + pad + 4) / 4] = SWAP (ctx->total[TOTAL64_low] << 3); + ctx->buffer32[(bytes + pad) / 4] = SWAP ((ctx->total[TOTAL64_high] << 3) + | (ctx->total[TOTAL64_low] >> 29)); + + /* Process last bytes. */ + sha256_process_block (ctx->buffer, bytes + pad + 8, ctx); + + /* Put result from CTX in first 32 bytes following RESBUF. */ + for (i = 0; i < 8; ++i) + ((UINT32 *) resbuf)[i] = SWAP (ctx->H[i]); + + return resbuf; +} + +void sha256_process_bytes(const void *buffer, UINTN len, struct sha256_ctx *ctx) { + /* When we already have some bits in our internal buffer concatenate + both inputs first. */ + + if (ctx->buflen != 0) { + UINTN left_over = ctx->buflen; + UINTN add = 128 - left_over > len ? len : 128 - left_over; + + CopyMem (&ctx->buffer[left_over], buffer, add); + ctx->buflen += add; + + if (ctx->buflen > 64) { + sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx); + + ctx->buflen &= 63; + /* The regions in the following copy operation cannot overlap. */ + CopyMem (ctx->buffer, &ctx->buffer[(left_over + add) & ~63], + ctx->buflen); + } + + buffer = (const char *) buffer + add; + len -= add; + } + + /* Process available complete blocks. */ + if (len >= 64) { +#if !_STRING_ARCH_unaligned +/* To check alignment gcc has an appropriate operator. Other + compilers don't. */ +# if __GNUC__ >= 2 +# define UNALIGNED_P(p) (((UINTN) p) % __alignof__ (UINT32) != 0) +# else +# define UNALIGNED_P(p) (((UINTN) p) % sizeof (UINT32) != 0) +# endif + if (UNALIGNED_P (buffer)) + while (len > 64) { + CopyMem (ctx->buffer, buffer, 64); + sha256_process_block (ctx->buffer, 64, ctx); + buffer = (const char *) buffer + 64; + len -= 64; + } + else +#endif + { + sha256_process_block (buffer, len & ~63, ctx); + buffer = (const char *) buffer + (len & ~63); + len &= 63; + } + } + + /* Move remaining bytes into internal buffer. */ + if (len > 0) { + UINTN left_over = ctx->buflen; + + CopyMem (&ctx->buffer[left_over], buffer, len); + left_over += len; + if (left_over >= 64) { + sha256_process_block (ctx->buffer, 64, ctx); + left_over -= 64; + CopyMem (ctx->buffer, &ctx->buffer[64], left_over); + } + ctx->buflen = left_over; + } +} + + +/* Process LEN bytes of BUFFER, accumulating context into CTX. + It is assumed that LEN % 64 == 0. */ +static void sha256_process_block(const void *buffer, UINTN len, struct sha256_ctx *ctx) { + const UINT32 *words = buffer; + UINTN nwords = len / sizeof (UINT32); + UINT32 a = ctx->H[0]; + UINT32 b = ctx->H[1]; + UINT32 c = ctx->H[2]; + UINT32 d = ctx->H[3]; + UINT32 e = ctx->H[4]; + UINT32 f = ctx->H[5]; + UINT32 g = ctx->H[6]; + UINT32 h = ctx->H[7]; + + /* First increment the byte count. FIPS 180-2 specifies the possible + length of the file up to 2^64 bits. Here we only compute the + number of bytes. */ + ctx->total64 += len; + + /* Process all bytes in the buffer with 64 bytes in each round of + the loop. */ + while (nwords > 0) { + UINT32 W[64]; + UINT32 a_save = a; + UINT32 b_save = b; + UINT32 c_save = c; + UINT32 d_save = d; + UINT32 e_save = e; + UINT32 f_save = f; + UINT32 g_save = g; + UINT32 h_save = h; + UINTN t; + + /* Operators defined in FIPS 180-2:4.1.2. */ +#define Ch(x, y, z) ((x & y) ^ (~x & z)) +#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) +#define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22)) +#define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25)) +#define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3)) +#define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10)) + + /* It is unfortunate that C does not provide an operator for + cyclic rotation. Hope the C compiler is smart enough. */ +#define CYCLIC(w, s) ((w >> s) | (w << (32 - s))) + + /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */ + for (t = 0; t < 16; ++t) { + W[t] = SWAP (*words); + ++words; + } + for (t = 16; t < 64; ++t) + W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16]; + + /* The actual computation according to FIPS 180-2:6.2.2 step 3. */ + for (t = 0; t < 64; ++t) { + UINT32 T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t]; + UINT32 T2 = S0 (a) + Maj (a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + } + + /* Add the starting values of the context according to FIPS 180-2:6.2.2 + step 4. */ + a += a_save; + b += b_save; + c += c_save; + d += d_save; + e += e_save; + f += f_save; + g += g_save; + h += h_save; + + /* Prepare for the next round. */ + nwords -= 16; + } + + /* Put checksum in context given as argument. */ + ctx->H[0] = a; + ctx->H[1] = b; + ctx->H[2] = c; + ctx->H[3] = d; + ctx->H[4] = e; + ctx->H[5] = f; + ctx->H[6] = g; + ctx->H[7] = h; +} diff --git a/src/boot/efi/sha256.h b/src/boot/efi/sha256.h new file mode 100644 index 00000000000..ca9f2859374 --- /dev/null +++ b/src/boot/efi/sha256.h @@ -0,0 +1,28 @@ +/* SPDX-License-Identifier: LGPL-2.1+ */ +#pragma once + +#include +#include + +struct sha256_ctx { + UINT32 H[8]; + + union { + UINT64 total64; +#define TOTAL64_low (1 - (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) +#define TOTAL64_high (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) + UINT32 total[2]; + }; + + UINT32 buflen; + + union { + UINT8 buffer[128]; /* NB: always correctly aligned for UINT32. */ + UINT32 buffer32[32]; + UINT64 buffer64[16]; + }; +}; + +void sha256_init_ctx(struct sha256_ctx *ctx); +void *sha256_finish_ctx(struct sha256_ctx *ctx, VOID *resbuf); +void sha256_process_bytes(const void *buffer, UINTN len, struct sha256_ctx *ctx);