]> git.ipfire.org Git - thirdparty/u-boot.git/blame - include/spi-mem.h
Merge tag 'u-boot-nand-20240414' of https://source.denx.de/u-boot/custodians/u-boot...
[thirdparty/u-boot.git] / include / spi-mem.h
CommitLineData
d13f5b25
BB
1/* SPDX-License-Identifier: GPL-2.0+ */
2/*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
5 *
6 * Author:
7 * Peter Pan <peterpandong@micron.com>
8 * Boris Brezillon <boris.brezillon@bootlin.com>
9 */
10
11#ifndef __UBOOT_SPI_MEM_H
12#define __UBOOT_SPI_MEM_H
13
e2e69291
MK
14#include <linux/errno.h>
15
340fd10e 16struct udevice;
d13f5b25
BB
17
18#define SPI_MEM_OP_CMD(__opcode, __buswidth) \
19 { \
20 .buswidth = __buswidth, \
21 .opcode = __opcode, \
d15de623 22 .nbytes = 1, \
d13f5b25
BB
23 }
24
25#define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth) \
26 { \
27 .nbytes = __nbytes, \
28 .val = __val, \
29 .buswidth = __buswidth, \
30 }
31
32#define SPI_MEM_OP_NO_ADDR { }
33
34#define SPI_MEM_OP_DUMMY(__nbytes, __buswidth) \
35 { \
36 .nbytes = __nbytes, \
37 .buswidth = __buswidth, \
38 }
39
40#define SPI_MEM_OP_NO_DUMMY { }
41
42#define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth) \
43 { \
44 .dir = SPI_MEM_DATA_IN, \
45 .nbytes = __nbytes, \
46 .buf.in = __buf, \
47 .buswidth = __buswidth, \
48 }
49
50#define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth) \
51 { \
52 .dir = SPI_MEM_DATA_OUT, \
53 .nbytes = __nbytes, \
54 .buf.out = __buf, \
55 .buswidth = __buswidth, \
56 }
57
58#define SPI_MEM_OP_NO_DATA { }
59
60/**
61 * enum spi_mem_data_dir - describes the direction of a SPI memory data
62 * transfer from the controller perspective
790c1699 63 * @SPI_MEM_NO_DATA: no data transferred
d13f5b25
BB
64 * @SPI_MEM_DATA_IN: data coming from the SPI memory
65 * @SPI_MEM_DATA_OUT: data sent the SPI memory
66 */
67enum spi_mem_data_dir {
790c1699 68 SPI_MEM_NO_DATA,
d13f5b25
BB
69 SPI_MEM_DATA_IN,
70 SPI_MEM_DATA_OUT,
71};
72
73/**
74 * struct spi_mem_op - describes a SPI memory operation
d15de623
PY
75 * @cmd.nbytes: number of opcode bytes (only 1 or 2 are valid). The opcode is
76 * sent MSB-first.
d13f5b25
BB
77 * @cmd.buswidth: number of IO lines used to transmit the command
78 * @cmd.opcode: operation opcode
a1eb40b7 79 * @cmd.dtr: whether the command opcode should be sent in DTR mode or not
d13f5b25
BB
80 * @addr.nbytes: number of address bytes to send. Can be zero if the operation
81 * does not need to send an address
82 * @addr.buswidth: number of IO lines used to transmit the address cycles
83 * @addr.val: address value. This value is always sent MSB first on the bus.
84 * Note that only @addr.nbytes are taken into account in this
85 * address value, so users should make sure the value fits in the
86 * assigned number of bytes.
a1eb40b7 87 * @addr.dtr: whether the address should be sent in DTR mode or not
d13f5b25
BB
88 * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
89 * be zero if the operation does not require dummy bytes
90 * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
a1eb40b7 91 * @dummy.dtr: whether the dummy bytes should be sent in DTR mode or not
d13f5b25 92 * @data.buswidth: number of IO lanes used to send/receive the data
a1eb40b7 93 * @data.dtr: whether the data should be sent in DTR mode or not
d13f5b25
BB
94 * @data.dir: direction of the transfer
95 * @data.buf.in: input buffer
96 * @data.buf.out: output buffer
97 */
98struct spi_mem_op {
99 struct {
d15de623 100 u8 nbytes;
d13f5b25 101 u8 buswidth;
a1eb40b7 102 u8 dtr : 1;
d15de623 103 u16 opcode;
d13f5b25
BB
104 } cmd;
105
106 struct {
107 u8 nbytes;
108 u8 buswidth;
a1eb40b7 109 u8 dtr : 1;
d13f5b25
BB
110 u64 val;
111 } addr;
112
113 struct {
114 u8 nbytes;
115 u8 buswidth;
a1eb40b7 116 u8 dtr : 1;
d13f5b25
BB
117 } dummy;
118
119 struct {
120 u8 buswidth;
a1eb40b7 121 u8 dtr : 1;
d13f5b25
BB
122 enum spi_mem_data_dir dir;
123 unsigned int nbytes;
124 /* buf.{in,out} must be DMA-able. */
125 union {
126 void *in;
127 const void *out;
128 } buf;
129 } data;
130};
131
132#define SPI_MEM_OP(__cmd, __addr, __dummy, __data) \
133 { \
134 .cmd = __cmd, \
135 .addr = __addr, \
136 .dummy = __dummy, \
137 .data = __data, \
138 }
f7e1de4c
CTK
139/**
140 * struct spi_mem_dirmap_info - Direct mapping information
141 * @op_tmpl: operation template that should be used by the direct mapping when
142 * the memory device is accessed
143 * @offset: absolute offset this direct mapping is pointing to
144 * @length: length in byte of this direct mapping
145 *
146 * This information is used by the controller specific implementation to know
147 * the portion of memory that is directly mapped and the spi_mem_op that should
148 * be used to access the device.
149 * A direct mapping is only valid for one direction (read or write) and this
150 * direction is directly encoded in the ->op_tmpl.data.dir field.
151 */
152struct spi_mem_dirmap_info {
153 struct spi_mem_op op_tmpl;
154 u64 offset;
155 u64 length;
156};
157
158/**
159 * struct spi_mem_dirmap_desc - Direct mapping descriptor
160 * @mem: the SPI memory device this direct mapping is attached to
161 * @info: information passed at direct mapping creation time
162 * @nodirmap: set to 1 if the SPI controller does not implement
163 * ->mem_ops->dirmap_create() or when this function returned an
164 * error. If @nodirmap is true, all spi_mem_dirmap_{read,write}()
165 * calls will use spi_mem_exec_op() to access the memory. This is a
166 * degraded mode that allows spi_mem drivers to use the same code
167 * no matter whether the controller supports direct mapping or not
168 * @priv: field pointing to controller specific data
169 *
170 * Common part of a direct mapping descriptor. This object is created by
171 * spi_mem_dirmap_create() and controller implementation of ->create_dirmap()
172 * can create/attach direct mapping resources to the descriptor in the ->priv
173 * field.
174 */
175struct spi_mem_dirmap_desc {
176 struct spi_slave *slave;
177 struct spi_mem_dirmap_info info;
178 unsigned int nodirmap;
179 void *priv;
180};
d13f5b25
BB
181
182#ifndef __UBOOT__
183/**
184 * struct spi_mem - describes a SPI memory device
185 * @spi: the underlying SPI device
186 * @drvpriv: spi_mem_driver private data
187 *
188 * Extra information that describe the SPI memory device and may be needed by
189 * the controller to properly handle this device should be placed here.
190 *
191 * One example would be the device size since some controller expose their SPI
192 * mem devices through a io-mapped region.
193 */
194struct spi_mem {
195 struct udevice *dev;
196 void *drvpriv;
197};
198
199/**
200 * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
201 * device
202 * @mem: memory device
203 * @data: data to attach to the memory device
204 */
205static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
206{
207 mem->drvpriv = data;
208}
209
210/**
211 * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
212 * device
213 * @mem: memory device
214 *
215 * Return: the data attached to the mem device.
216 */
217static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
218{
219 return mem->drvpriv;
220}
221#endif /* __UBOOT__ */
222
223/**
224 * struct spi_controller_mem_ops - SPI memory operations
225 * @adjust_op_size: shrink the data xfer of an operation to match controller's
226 * limitations (can be alignment of max RX/TX size
227 * limitations)
228 * @supports_op: check if an operation is supported by the controller
229 * @exec_op: execute a SPI memory operation
f7e1de4c
CTK
230 * @dirmap_create: create a direct mapping descriptor that can later be used to
231 * access the memory device. This method is optional
232 * @dirmap_destroy: destroy a memory descriptor previous created by
233 * ->dirmap_create()
234 * @dirmap_read: read data from the memory device using the direct mapping
235 * created by ->dirmap_create(). The function can return less
236 * data than requested (for example when the request is crossing
237 * the currently mapped area), and the caller of
238 * spi_mem_dirmap_read() is responsible for calling it again in
239 * this case.
240 * @dirmap_write: write data to the memory device using the direct mapping
241 * created by ->dirmap_create(). The function can return less
242 * data than requested (for example when the request is crossing
243 * the currently mapped area), and the caller of
244 * spi_mem_dirmap_write() is responsible for calling it again in
245 * this case.
d13f5b25
BB
246 *
247 * This interface should be implemented by SPI controllers providing an
248 * high-level interface to execute SPI memory operation, which is usually the
249 * case for QSPI controllers.
f7e1de4c
CTK
250 *
251 * Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct
252 * mapping from the CPU because doing that can stall the CPU waiting for the
253 * SPI mem transaction to finish, and this will make real-time maintainers
254 * unhappy and might make your system less reactive. Instead, drivers should
255 * use DMA to access this direct mapping.
d13f5b25
BB
256 */
257struct spi_controller_mem_ops {
258 int (*adjust_op_size)(struct spi_slave *slave, struct spi_mem_op *op);
259 bool (*supports_op)(struct spi_slave *slave,
260 const struct spi_mem_op *op);
261 int (*exec_op)(struct spi_slave *slave,
262 const struct spi_mem_op *op);
f7e1de4c
CTK
263 int (*dirmap_create)(struct spi_mem_dirmap_desc *desc);
264 void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc);
265 ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc,
266 u64 offs, size_t len, void *buf);
267 ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc,
268 u64 offs, size_t len, const void *buf);
d13f5b25
BB
269};
270
271#ifndef __UBOOT__
272/**
273 * struct spi_mem_driver - SPI memory driver
274 * @spidrv: inherit from a SPI driver
275 * @probe: probe a SPI memory. Usually where detection/initialization takes
276 * place
277 * @remove: remove a SPI memory
278 * @shutdown: take appropriate action when the system is shutdown
279 *
280 * This is just a thin wrapper around a spi_driver. The core takes care of
281 * allocating the spi_mem object and forwarding the probe/remove/shutdown
282 * request to the spi_mem_driver. The reason we use this wrapper is because
283 * we might have to stuff more information into the spi_mem struct to let
284 * SPI controllers know more about the SPI memory they interact with, and
285 * having this intermediate layer allows us to do that without adding more
286 * useless fields to the spi_device object.
287 */
288struct spi_mem_driver {
289 struct spi_driver spidrv;
290 int (*probe)(struct spi_mem *mem);
291 int (*remove)(struct spi_mem *mem);
292 void (*shutdown)(struct spi_mem *mem);
293};
294
295#if IS_ENABLED(CONFIG_SPI_MEM)
296int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
297 const struct spi_mem_op *op,
298 struct sg_table *sg);
299
300void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
301 const struct spi_mem_op *op,
302 struct sg_table *sg);
303#else
304static inline int
305spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
306 const struct spi_mem_op *op,
307 struct sg_table *sg)
308{
24e3d5d2 309 return -ENOSYS;
d13f5b25
BB
310}
311
312static inline void
313spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
314 const struct spi_mem_op *op,
315 struct sg_table *sg)
316{
317}
318#endif /* CONFIG_SPI_MEM */
319#endif /* __UBOOT__ */
320
321int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op);
322
323bool spi_mem_supports_op(struct spi_slave *slave, const struct spi_mem_op *op);
5752d6ae
PY
324bool spi_mem_dtr_supports_op(struct spi_slave *slave,
325 const struct spi_mem_op *op);
d13f5b25 326
2299076e
PY
327bool spi_mem_default_supports_op(struct spi_slave *slave,
328 const struct spi_mem_op *op);
329
d13f5b25
BB
330int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op);
331
af6266c1
MM
332bool spi_mem_default_supports_op(struct spi_slave *mem,
333 const struct spi_mem_op *op);
334
f7e1de4c
CTK
335struct spi_mem_dirmap_desc *
336spi_mem_dirmap_create(struct spi_slave *mem,
337 const struct spi_mem_dirmap_info *info);
338void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc);
339ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
340 u64 offs, size_t len, void *buf);
341ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
342 u64 offs, size_t len, const void *buf);
343
d13f5b25
BB
344#ifndef __UBOOT__
345int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
346 struct module *owner);
347
348void spi_mem_driver_unregister(struct spi_mem_driver *drv);
349
350#define spi_mem_driver_register(__drv) \
351 spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
352
353#define module_spi_mem_driver(__drv) \
354 module_driver(__drv, spi_mem_driver_register, \
355 spi_mem_driver_unregister)
356#endif
357
358#endif /* __LINUX_SPI_MEM_H */