]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob
1820448
[thirdparty/kernel/linux.git] /
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 #ifndef __HCI_CORE_H
26 #define __HCI_CORE_H
27
28 #include <net/bluetooth/hci.h>
29
30 /* HCI priority */
31 #define HCI_PRIO_MAX 7
32
33 /* HCI Core structures */
34 struct inquiry_data {
35 bdaddr_t bdaddr;
36 __u8 pscan_rep_mode;
37 __u8 pscan_period_mode;
38 __u8 pscan_mode;
39 __u8 dev_class[3];
40 __le16 clock_offset;
41 __s8 rssi;
42 __u8 ssp_mode;
43 };
44
45 struct inquiry_entry {
46 struct list_head all; /* inq_cache.all */
47 struct list_head list; /* unknown or resolve */
48 enum {
49 NAME_NOT_KNOWN,
50 NAME_NEEDED,
51 NAME_PENDING,
52 NAME_KNOWN,
53 } name_state;
54 __u32 timestamp;
55 struct inquiry_data data;
56 };
57
58 struct discovery_state {
59 int type;
60 enum {
61 DISCOVERY_STOPPED,
62 DISCOVERY_STARTING,
63 DISCOVERY_FINDING,
64 DISCOVERY_RESOLVING,
65 DISCOVERY_STOPPING,
66 } state;
67 struct list_head all; /* All devices found during inquiry */
68 struct list_head unknown; /* Name state not known */
69 struct list_head resolve; /* Name needs to be resolved */
70 __u32 timestamp;
71 bdaddr_t last_adv_addr;
72 u8 last_adv_addr_type;
73 s8 last_adv_rssi;
74 u8 last_adv_data[HCI_MAX_AD_LENGTH];
75 u8 last_adv_data_len;
76 };
77
78 struct hci_conn_hash {
79 struct list_head list;
80 unsigned int acl_num;
81 unsigned int amp_num;
82 unsigned int sco_num;
83 unsigned int le_num;
84 };
85
86 struct bdaddr_list {
87 struct list_head list;
88 bdaddr_t bdaddr;
89 u8 bdaddr_type;
90 };
91
92 struct bt_uuid {
93 struct list_head list;
94 u8 uuid[16];
95 u8 size;
96 u8 svc_hint;
97 };
98
99 struct smp_csrk {
100 bdaddr_t bdaddr;
101 u8 bdaddr_type;
102 u8 master;
103 u8 val[16];
104 };
105
106 struct smp_ltk {
107 struct list_head list;
108 bdaddr_t bdaddr;
109 u8 bdaddr_type;
110 u8 authenticated;
111 u8 type;
112 u8 enc_size;
113 __le16 ediv;
114 __le64 rand;
115 u8 val[16];
116 };
117
118 struct smp_irk {
119 struct list_head list;
120 bdaddr_t rpa;
121 bdaddr_t bdaddr;
122 u8 addr_type;
123 u8 val[16];
124 };
125
126 struct link_key {
127 struct list_head list;
128 bdaddr_t bdaddr;
129 u8 type;
130 u8 val[HCI_LINK_KEY_SIZE];
131 u8 pin_len;
132 };
133
134 struct oob_data {
135 struct list_head list;
136 bdaddr_t bdaddr;
137 u8 hash192[16];
138 u8 randomizer192[16];
139 u8 hash256[16];
140 u8 randomizer256[16];
141 };
142
143 #define HCI_MAX_SHORT_NAME_LENGTH 10
144
145 /* Default LE RPA expiry time, 15 minutes */
146 #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60)
147
148 /* Default min/max age of connection information (1s/3s) */
149 #define DEFAULT_CONN_INFO_MIN_AGE 1000
150 #define DEFAULT_CONN_INFO_MAX_AGE 3000
151
152 struct amp_assoc {
153 __u16 len;
154 __u16 offset;
155 __u16 rem_len;
156 __u16 len_so_far;
157 __u8 data[HCI_MAX_AMP_ASSOC_SIZE];
158 };
159
160 #define HCI_MAX_PAGES 3
161
162 #define NUM_REASSEMBLY 4
163 struct hci_dev {
164 struct list_head list;
165 struct mutex lock;
166
167 char name[8];
168 unsigned long flags;
169 __u16 id;
170 __u8 bus;
171 __u8 dev_type;
172 bdaddr_t bdaddr;
173 bdaddr_t random_addr;
174 bdaddr_t static_addr;
175 __u8 adv_addr_type;
176 __u8 dev_name[HCI_MAX_NAME_LENGTH];
177 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH];
178 __u8 eir[HCI_MAX_EIR_LENGTH];
179 __u8 dev_class[3];
180 __u8 major_class;
181 __u8 minor_class;
182 __u8 max_page;
183 __u8 features[HCI_MAX_PAGES][8];
184 __u8 le_features[8];
185 __u8 le_white_list_size;
186 __u8 le_states[8];
187 __u8 commands[64];
188 __u8 hci_ver;
189 __u16 hci_rev;
190 __u8 lmp_ver;
191 __u16 manufacturer;
192 __u16 lmp_subver;
193 __u16 voice_setting;
194 __u8 num_iac;
195 __u8 io_capability;
196 __s8 inq_tx_power;
197 __u16 page_scan_interval;
198 __u16 page_scan_window;
199 __u8 page_scan_type;
200 __u8 le_adv_channel_map;
201 __u8 le_scan_type;
202 __u16 le_scan_interval;
203 __u16 le_scan_window;
204 __u16 le_conn_min_interval;
205 __u16 le_conn_max_interval;
206 __u16 discov_interleaved_timeout;
207 __u16 conn_info_min_age;
208 __u16 conn_info_max_age;
209 __u8 ssp_debug_mode;
210 __u32 clock;
211
212 __u16 devid_source;
213 __u16 devid_vendor;
214 __u16 devid_product;
215 __u16 devid_version;
216
217 __u16 pkt_type;
218 __u16 esco_type;
219 __u16 link_policy;
220 __u16 link_mode;
221
222 __u32 idle_timeout;
223 __u16 sniff_min_interval;
224 __u16 sniff_max_interval;
225
226 __u8 amp_status;
227 __u32 amp_total_bw;
228 __u32 amp_max_bw;
229 __u32 amp_min_latency;
230 __u32 amp_max_pdu;
231 __u8 amp_type;
232 __u16 amp_pal_cap;
233 __u16 amp_assoc_size;
234 __u32 amp_max_flush_to;
235 __u32 amp_be_flush_to;
236
237 struct amp_assoc loc_assoc;
238
239 __u8 flow_ctl_mode;
240
241 unsigned int auto_accept_delay;
242
243 unsigned long quirks;
244
245 atomic_t cmd_cnt;
246 unsigned int acl_cnt;
247 unsigned int sco_cnt;
248 unsigned int le_cnt;
249
250 unsigned int acl_mtu;
251 unsigned int sco_mtu;
252 unsigned int le_mtu;
253 unsigned int acl_pkts;
254 unsigned int sco_pkts;
255 unsigned int le_pkts;
256
257 __u16 block_len;
258 __u16 block_mtu;
259 __u16 num_blocks;
260 __u16 block_cnt;
261
262 unsigned long acl_last_tx;
263 unsigned long sco_last_tx;
264 unsigned long le_last_tx;
265
266 struct workqueue_struct *workqueue;
267 struct workqueue_struct *req_workqueue;
268
269 struct work_struct power_on;
270 struct delayed_work power_off;
271
272 __u16 discov_timeout;
273 struct delayed_work discov_off;
274
275 struct delayed_work service_cache;
276
277 struct delayed_work cmd_timer;
278
279 struct work_struct rx_work;
280 struct work_struct cmd_work;
281 struct work_struct tx_work;
282
283 struct sk_buff_head rx_q;
284 struct sk_buff_head raw_q;
285 struct sk_buff_head cmd_q;
286
287 struct sk_buff *recv_evt;
288 struct sk_buff *sent_cmd;
289 struct sk_buff *reassembly[NUM_REASSEMBLY];
290
291 struct mutex req_lock;
292 wait_queue_head_t req_wait_q;
293 __u32 req_status;
294 __u32 req_result;
295
296 struct crypto_blkcipher *tfm_aes;
297
298 struct discovery_state discovery;
299 struct hci_conn_hash conn_hash;
300
301 struct list_head mgmt_pending;
302 struct list_head blacklist;
303 struct list_head uuids;
304 struct list_head link_keys;
305 struct list_head long_term_keys;
306 struct list_head identity_resolving_keys;
307 struct list_head remote_oob_data;
308 struct list_head le_white_list;
309 struct list_head le_conn_params;
310 struct list_head pend_le_conns;
311
312 struct hci_dev_stats stat;
313
314 atomic_t promisc;
315
316 struct dentry *debugfs;
317
318 struct device dev;
319
320 struct rfkill *rfkill;
321
322 unsigned long dbg_flags;
323 unsigned long dev_flags;
324
325 struct delayed_work le_scan_disable;
326
327 __s8 adv_tx_power;
328 __u8 adv_data[HCI_MAX_AD_LENGTH];
329 __u8 adv_data_len;
330 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH];
331 __u8 scan_rsp_data_len;
332
333 __u8 irk[16];
334 __u32 rpa_timeout;
335 struct delayed_work rpa_expired;
336 bdaddr_t rpa;
337
338 int (*open)(struct hci_dev *hdev);
339 int (*close)(struct hci_dev *hdev);
340 int (*flush)(struct hci_dev *hdev);
341 int (*setup)(struct hci_dev *hdev);
342 int (*send)(struct hci_dev *hdev, struct sk_buff *skb);
343 void (*notify)(struct hci_dev *hdev, unsigned int evt);
344 };
345
346 #define HCI_PHY_HANDLE(handle) (handle & 0xff)
347
348 struct hci_conn {
349 struct list_head list;
350
351 atomic_t refcnt;
352
353 bdaddr_t dst;
354 __u8 dst_type;
355 bdaddr_t src;
356 __u8 src_type;
357 bdaddr_t init_addr;
358 __u8 init_addr_type;
359 bdaddr_t resp_addr;
360 __u8 resp_addr_type;
361 __u16 handle;
362 __u16 state;
363 __u8 mode;
364 __u8 type;
365 bool out;
366 __u8 attempt;
367 __u8 dev_class[3];
368 __u8 features[HCI_MAX_PAGES][8];
369 __u16 pkt_type;
370 __u16 link_policy;
371 __u8 key_type;
372 __u8 auth_type;
373 __u8 sec_level;
374 __u8 pending_sec_level;
375 __u8 pin_length;
376 __u8 enc_key_size;
377 __u8 io_capability;
378 __u32 passkey_notify;
379 __u8 passkey_entered;
380 __u16 disc_timeout;
381 __u16 setting;
382 __u16 le_conn_min_interval;
383 __u16 le_conn_max_interval;
384 __u16 le_conn_interval;
385 __u16 le_conn_latency;
386 __u16 le_supv_timeout;
387 __s8 rssi;
388 __s8 tx_power;
389 __s8 max_tx_power;
390 unsigned long flags;
391
392 __u32 clock;
393 __u16 clock_accuracy;
394
395 unsigned long conn_info_timestamp;
396
397 __u8 remote_cap;
398 __u8 remote_auth;
399 __u8 remote_id;
400
401 unsigned int sent;
402
403 struct sk_buff_head data_q;
404 struct list_head chan_list;
405
406 struct delayed_work disc_work;
407 struct delayed_work auto_accept_work;
408 struct delayed_work idle_work;
409 struct delayed_work le_conn_timeout;
410
411 struct device dev;
412
413 struct hci_dev *hdev;
414 void *l2cap_data;
415 void *sco_data;
416 struct amp_mgr *amp_mgr;
417
418 struct hci_conn *link;
419
420 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status);
421 void (*security_cfm_cb) (struct hci_conn *conn, u8 status);
422 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason);
423 };
424
425 struct hci_chan {
426 struct list_head list;
427 __u16 handle;
428 struct hci_conn *conn;
429 struct sk_buff_head data_q;
430 unsigned int sent;
431 __u8 state;
432 };
433
434 struct hci_conn_params {
435 struct list_head list;
436
437 bdaddr_t addr;
438 u8 addr_type;
439
440 u16 conn_min_interval;
441 u16 conn_max_interval;
442 u16 conn_latency;
443 u16 supervision_timeout;
444
445 enum {
446 HCI_AUTO_CONN_DISABLED,
447 HCI_AUTO_CONN_ALWAYS,
448 HCI_AUTO_CONN_LINK_LOSS,
449 } auto_connect;
450 };
451
452 extern struct list_head hci_dev_list;
453 extern struct list_head hci_cb_list;
454 extern rwlock_t hci_dev_list_lock;
455 extern rwlock_t hci_cb_list_lock;
456
457 /* ----- HCI interface to upper protocols ----- */
458 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr);
459 void l2cap_connect_cfm(struct hci_conn *hcon, u8 status);
460 int l2cap_disconn_ind(struct hci_conn *hcon);
461 void l2cap_disconn_cfm(struct hci_conn *hcon, u8 reason);
462 int l2cap_security_cfm(struct hci_conn *hcon, u8 status, u8 encrypt);
463 int l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags);
464
465 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags);
466 void sco_connect_cfm(struct hci_conn *hcon, __u8 status);
467 void sco_disconn_cfm(struct hci_conn *hcon, __u8 reason);
468 int sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb);
469
470 /* ----- Inquiry cache ----- */
471 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */
472 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */
473
474 static inline void discovery_init(struct hci_dev *hdev)
475 {
476 hdev->discovery.state = DISCOVERY_STOPPED;
477 INIT_LIST_HEAD(&hdev->discovery.all);
478 INIT_LIST_HEAD(&hdev->discovery.unknown);
479 INIT_LIST_HEAD(&hdev->discovery.resolve);
480 }
481
482 bool hci_discovery_active(struct hci_dev *hdev);
483
484 void hci_discovery_set_state(struct hci_dev *hdev, int state);
485
486 static inline int inquiry_cache_empty(struct hci_dev *hdev)
487 {
488 return list_empty(&hdev->discovery.all);
489 }
490
491 static inline long inquiry_cache_age(struct hci_dev *hdev)
492 {
493 struct discovery_state *c = &hdev->discovery;
494 return jiffies - c->timestamp;
495 }
496
497 static inline long inquiry_entry_age(struct inquiry_entry *e)
498 {
499 return jiffies - e->timestamp;
500 }
501
502 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
503 bdaddr_t *bdaddr);
504 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
505 bdaddr_t *bdaddr);
506 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
507 bdaddr_t *bdaddr,
508 int state);
509 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
510 struct inquiry_entry *ie);
511 bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
512 bool name_known, bool *ssp);
513 void hci_inquiry_cache_flush(struct hci_dev *hdev);
514
515 /* ----- HCI Connections ----- */
516 enum {
517 HCI_CONN_AUTH_PEND,
518 HCI_CONN_REAUTH_PEND,
519 HCI_CONN_ENCRYPT_PEND,
520 HCI_CONN_RSWITCH_PEND,
521 HCI_CONN_MODE_CHANGE_PEND,
522 HCI_CONN_SCO_SETUP_PEND,
523 HCI_CONN_LE_SMP_PEND,
524 HCI_CONN_MGMT_CONNECTED,
525 HCI_CONN_SSP_ENABLED,
526 HCI_CONN_SC_ENABLED,
527 HCI_CONN_AES_CCM,
528 HCI_CONN_POWER_SAVE,
529 HCI_CONN_REMOTE_OOB,
530 HCI_CONN_FLUSH_KEY,
531 HCI_CONN_MASTER,
532 HCI_CONN_ENCRYPT,
533 HCI_CONN_AUTH,
534 HCI_CONN_SECURE,
535 HCI_CONN_FIPS,
536 };
537
538 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn)
539 {
540 struct hci_dev *hdev = conn->hdev;
541 return test_bit(HCI_SSP_ENABLED, &hdev->dev_flags) &&
542 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
543 }
544
545 static inline bool hci_conn_sc_enabled(struct hci_conn *conn)
546 {
547 struct hci_dev *hdev = conn->hdev;
548 return test_bit(HCI_SC_ENABLED, &hdev->dev_flags) &&
549 test_bit(HCI_CONN_SC_ENABLED, &conn->flags);
550 }
551
552 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c)
553 {
554 struct hci_conn_hash *h = &hdev->conn_hash;
555 list_add_rcu(&c->list, &h->list);
556 switch (c->type) {
557 case ACL_LINK:
558 h->acl_num++;
559 break;
560 case AMP_LINK:
561 h->amp_num++;
562 break;
563 case LE_LINK:
564 h->le_num++;
565 break;
566 case SCO_LINK:
567 case ESCO_LINK:
568 h->sco_num++;
569 break;
570 }
571 }
572
573 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c)
574 {
575 struct hci_conn_hash *h = &hdev->conn_hash;
576
577 list_del_rcu(&c->list);
578 synchronize_rcu();
579
580 switch (c->type) {
581 case ACL_LINK:
582 h->acl_num--;
583 break;
584 case AMP_LINK:
585 h->amp_num--;
586 break;
587 case LE_LINK:
588 h->le_num--;
589 break;
590 case SCO_LINK:
591 case ESCO_LINK:
592 h->sco_num--;
593 break;
594 }
595 }
596
597 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type)
598 {
599 struct hci_conn_hash *h = &hdev->conn_hash;
600 switch (type) {
601 case ACL_LINK:
602 return h->acl_num;
603 case AMP_LINK:
604 return h->amp_num;
605 case LE_LINK:
606 return h->le_num;
607 case SCO_LINK:
608 case ESCO_LINK:
609 return h->sco_num;
610 default:
611 return 0;
612 }
613 }
614
615 static inline unsigned int hci_conn_count(struct hci_dev *hdev)
616 {
617 struct hci_conn_hash *c = &hdev->conn_hash;
618
619 return c->acl_num + c->amp_num + c->sco_num + c->le_num;
620 }
621
622 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev,
623 __u16 handle)
624 {
625 struct hci_conn_hash *h = &hdev->conn_hash;
626 struct hci_conn *c;
627
628 rcu_read_lock();
629
630 list_for_each_entry_rcu(c, &h->list, list) {
631 if (c->handle == handle) {
632 rcu_read_unlock();
633 return c;
634 }
635 }
636 rcu_read_unlock();
637
638 return NULL;
639 }
640
641 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev,
642 __u8 type, bdaddr_t *ba)
643 {
644 struct hci_conn_hash *h = &hdev->conn_hash;
645 struct hci_conn *c;
646
647 rcu_read_lock();
648
649 list_for_each_entry_rcu(c, &h->list, list) {
650 if (c->type == type && !bacmp(&c->dst, ba)) {
651 rcu_read_unlock();
652 return c;
653 }
654 }
655
656 rcu_read_unlock();
657
658 return NULL;
659 }
660
661 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev,
662 __u8 type, __u16 state)
663 {
664 struct hci_conn_hash *h = &hdev->conn_hash;
665 struct hci_conn *c;
666
667 rcu_read_lock();
668
669 list_for_each_entry_rcu(c, &h->list, list) {
670 if (c->type == type && c->state == state) {
671 rcu_read_unlock();
672 return c;
673 }
674 }
675
676 rcu_read_unlock();
677
678 return NULL;
679 }
680
681 void hci_disconnect(struct hci_conn *conn, __u8 reason);
682 bool hci_setup_sync(struct hci_conn *conn, __u16 handle);
683 void hci_sco_setup(struct hci_conn *conn, __u8 status);
684
685 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst);
686 int hci_conn_del(struct hci_conn *conn);
687 void hci_conn_hash_flush(struct hci_dev *hdev);
688 void hci_conn_check_pending(struct hci_dev *hdev);
689
690 struct hci_chan *hci_chan_create(struct hci_conn *conn);
691 void hci_chan_del(struct hci_chan *chan);
692 void hci_chan_list_flush(struct hci_conn *conn);
693 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle);
694
695 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
696 u8 dst_type, u8 sec_level, u8 auth_type);
697 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
698 u8 sec_level, u8 auth_type);
699 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
700 __u16 setting);
701 int hci_conn_check_link_mode(struct hci_conn *conn);
702 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level);
703 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type);
704 int hci_conn_change_link_key(struct hci_conn *conn);
705 int hci_conn_switch_role(struct hci_conn *conn, __u8 role);
706
707 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active);
708
709 void hci_le_conn_failed(struct hci_conn *conn, u8 status);
710
711 /*
712 * hci_conn_get() and hci_conn_put() are used to control the life-time of an
713 * "hci_conn" object. They do not guarantee that the hci_conn object is running,
714 * working or anything else. They just guarantee that the object is available
715 * and can be dereferenced. So you can use its locks, local variables and any
716 * other constant data.
717 * Before accessing runtime data, you _must_ lock the object and then check that
718 * it is still running. As soon as you release the locks, the connection might
719 * get dropped, though.
720 *
721 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control
722 * how long the underlying connection is held. So every channel that runs on the
723 * hci_conn object calls this to prevent the connection from disappearing. As
724 * long as you hold a device, you must also guarantee that you have a valid
725 * reference to the device via hci_conn_get() (or the initial reference from
726 * hci_conn_add()).
727 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't
728 * break because nobody cares for that. But this means, we cannot use
729 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME).
730 */
731
732 static inline void hci_conn_get(struct hci_conn *conn)
733 {
734 get_device(&conn->dev);
735 }
736
737 static inline void hci_conn_put(struct hci_conn *conn)
738 {
739 put_device(&conn->dev);
740 }
741
742 static inline void hci_conn_hold(struct hci_conn *conn)
743 {
744 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
745
746 atomic_inc(&conn->refcnt);
747 cancel_delayed_work(&conn->disc_work);
748 }
749
750 static inline void hci_conn_drop(struct hci_conn *conn)
751 {
752 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
753
754 if (atomic_dec_and_test(&conn->refcnt)) {
755 unsigned long timeo;
756
757 switch (conn->type) {
758 case ACL_LINK:
759 case LE_LINK:
760 cancel_delayed_work(&conn->idle_work);
761 if (conn->state == BT_CONNECTED) {
762 timeo = conn->disc_timeout;
763 if (!conn->out)
764 timeo *= 2;
765 } else {
766 timeo = msecs_to_jiffies(10);
767 }
768 break;
769
770 case AMP_LINK:
771 timeo = conn->disc_timeout;
772 break;
773
774 default:
775 timeo = msecs_to_jiffies(10);
776 break;
777 }
778
779 cancel_delayed_work(&conn->disc_work);
780 queue_delayed_work(conn->hdev->workqueue,
781 &conn->disc_work, timeo);
782 }
783 }
784
785 /* ----- HCI Devices ----- */
786 static inline void hci_dev_put(struct hci_dev *d)
787 {
788 BT_DBG("%s orig refcnt %d", d->name,
789 atomic_read(&d->dev.kobj.kref.refcount));
790
791 put_device(&d->dev);
792 }
793
794 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d)
795 {
796 BT_DBG("%s orig refcnt %d", d->name,
797 atomic_read(&d->dev.kobj.kref.refcount));
798
799 get_device(&d->dev);
800 return d;
801 }
802
803 #define hci_dev_lock(d) mutex_lock(&d->lock)
804 #define hci_dev_unlock(d) mutex_unlock(&d->lock)
805
806 #define to_hci_dev(d) container_of(d, struct hci_dev, dev)
807 #define to_hci_conn(c) container_of(c, struct hci_conn, dev)
808
809 static inline void *hci_get_drvdata(struct hci_dev *hdev)
810 {
811 return dev_get_drvdata(&hdev->dev);
812 }
813
814 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data)
815 {
816 dev_set_drvdata(&hdev->dev, data);
817 }
818
819 struct hci_dev *hci_dev_get(int index);
820 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src);
821
822 struct hci_dev *hci_alloc_dev(void);
823 void hci_free_dev(struct hci_dev *hdev);
824 int hci_register_dev(struct hci_dev *hdev);
825 void hci_unregister_dev(struct hci_dev *hdev);
826 int hci_suspend_dev(struct hci_dev *hdev);
827 int hci_resume_dev(struct hci_dev *hdev);
828 int hci_dev_open(__u16 dev);
829 int hci_dev_close(__u16 dev);
830 int hci_dev_reset(__u16 dev);
831 int hci_dev_reset_stat(__u16 dev);
832 int hci_dev_cmd(unsigned int cmd, void __user *arg);
833 int hci_get_dev_list(void __user *arg);
834 int hci_get_dev_info(void __user *arg);
835 int hci_get_conn_list(void __user *arg);
836 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg);
837 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg);
838 int hci_inquiry(void __user *arg);
839
840 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
841 bdaddr_t *bdaddr, u8 type);
842 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
843 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
844
845 struct bdaddr_list *hci_white_list_lookup(struct hci_dev *hdev,
846 bdaddr_t *bdaddr, u8 type);
847 void hci_white_list_clear(struct hci_dev *hdev);
848 int hci_white_list_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
849 int hci_white_list_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
850
851 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
852 bdaddr_t *addr, u8 addr_type);
853 int hci_conn_params_add(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type,
854 u8 auto_connect, u16 conn_min_interval,
855 u16 conn_max_interval);
856 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type);
857 void hci_conn_params_clear(struct hci_dev *hdev);
858
859 struct bdaddr_list *hci_pend_le_conn_lookup(struct hci_dev *hdev,
860 bdaddr_t *addr, u8 addr_type);
861 void hci_pend_le_conn_add(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type);
862 void hci_pend_le_conn_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type);
863 void hci_pend_le_conns_clear(struct hci_dev *hdev);
864
865 void hci_update_background_scan(struct hci_dev *hdev);
866
867 void hci_uuids_clear(struct hci_dev *hdev);
868
869 void hci_link_keys_clear(struct hci_dev *hdev);
870 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
871 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
872 bdaddr_t *bdaddr, u8 *val, u8 type,
873 u8 pin_len, bool *persistent);
874 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, __le64 rand,
875 bool master);
876 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
877 u8 addr_type, u8 type, u8 authenticated,
878 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand);
879 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
880 u8 addr_type, bool master);
881 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type);
882 void hci_smp_ltks_clear(struct hci_dev *hdev);
883 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
884
885 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa);
886 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
887 u8 addr_type);
888 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
889 u8 addr_type, u8 val[16], bdaddr_t *rpa);
890 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type);
891 void hci_smp_irks_clear(struct hci_dev *hdev);
892
893 void hci_remote_oob_data_clear(struct hci_dev *hdev);
894 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
895 bdaddr_t *bdaddr);
896 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
897 u8 *hash, u8 *randomizer);
898 int hci_add_remote_oob_ext_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
899 u8 *hash192, u8 *randomizer192,
900 u8 *hash256, u8 *randomizer256);
901 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr);
902
903 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb);
904
905 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb);
906 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count);
907 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count);
908
909 void hci_init_sysfs(struct hci_dev *hdev);
910 void hci_conn_init_sysfs(struct hci_conn *conn);
911 void hci_conn_add_sysfs(struct hci_conn *conn);
912 void hci_conn_del_sysfs(struct hci_conn *conn);
913
914 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev))
915
916 /* ----- LMP capabilities ----- */
917 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT)
918 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH)
919 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD)
920 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF)
921 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK)
922 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ)
923 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO)
924 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR))
925 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE)
926 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR)
927 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC)
928 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ)
929 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR))
930 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR)
931 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH)
932 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO)
933 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR)
934 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES)
935 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT)
936
937 /* ----- Extended LMP capabilities ----- */
938 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER)
939 #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE)
940 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN)
941 #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN)
942 #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC)
943 #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING)
944
945 /* ----- Host capabilities ----- */
946 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP)
947 #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC)
948 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE))
949 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR))
950
951 /* ----- HCI protocols ----- */
952 #define HCI_PROTO_DEFER 0x01
953
954 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
955 __u8 type, __u8 *flags)
956 {
957 switch (type) {
958 case ACL_LINK:
959 return l2cap_connect_ind(hdev, bdaddr);
960
961 case SCO_LINK:
962 case ESCO_LINK:
963 return sco_connect_ind(hdev, bdaddr, flags);
964
965 default:
966 BT_ERR("unknown link type %d", type);
967 return -EINVAL;
968 }
969 }
970
971 static inline void hci_proto_connect_cfm(struct hci_conn *conn, __u8 status)
972 {
973 switch (conn->type) {
974 case ACL_LINK:
975 case LE_LINK:
976 l2cap_connect_cfm(conn, status);
977 break;
978
979 case SCO_LINK:
980 case ESCO_LINK:
981 sco_connect_cfm(conn, status);
982 break;
983
984 default:
985 BT_ERR("unknown link type %d", conn->type);
986 break;
987 }
988
989 if (conn->connect_cfm_cb)
990 conn->connect_cfm_cb(conn, status);
991 }
992
993 static inline int hci_proto_disconn_ind(struct hci_conn *conn)
994 {
995 if (conn->type != ACL_LINK && conn->type != LE_LINK)
996 return HCI_ERROR_REMOTE_USER_TERM;
997
998 return l2cap_disconn_ind(conn);
999 }
1000
1001 static inline void hci_proto_disconn_cfm(struct hci_conn *conn, __u8 reason)
1002 {
1003 switch (conn->type) {
1004 case ACL_LINK:
1005 case LE_LINK:
1006 l2cap_disconn_cfm(conn, reason);
1007 break;
1008
1009 case SCO_LINK:
1010 case ESCO_LINK:
1011 sco_disconn_cfm(conn, reason);
1012 break;
1013
1014 /* L2CAP would be handled for BREDR chan */
1015 case AMP_LINK:
1016 break;
1017
1018 default:
1019 BT_ERR("unknown link type %d", conn->type);
1020 break;
1021 }
1022
1023 if (conn->disconn_cfm_cb)
1024 conn->disconn_cfm_cb(conn, reason);
1025 }
1026
1027 static inline void hci_proto_auth_cfm(struct hci_conn *conn, __u8 status)
1028 {
1029 __u8 encrypt;
1030
1031 if (conn->type != ACL_LINK && conn->type != LE_LINK)
1032 return;
1033
1034 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1035 return;
1036
1037 encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00;
1038 l2cap_security_cfm(conn, status, encrypt);
1039
1040 if (conn->security_cfm_cb)
1041 conn->security_cfm_cb(conn, status);
1042 }
1043
1044 static inline void hci_proto_encrypt_cfm(struct hci_conn *conn, __u8 status,
1045 __u8 encrypt)
1046 {
1047 if (conn->type != ACL_LINK && conn->type != LE_LINK)
1048 return;
1049
1050 l2cap_security_cfm(conn, status, encrypt);
1051
1052 if (conn->security_cfm_cb)
1053 conn->security_cfm_cb(conn, status);
1054 }
1055
1056 /* ----- HCI callbacks ----- */
1057 struct hci_cb {
1058 struct list_head list;
1059
1060 char *name;
1061
1062 void (*security_cfm) (struct hci_conn *conn, __u8 status,
1063 __u8 encrypt);
1064 void (*key_change_cfm) (struct hci_conn *conn, __u8 status);
1065 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role);
1066 };
1067
1068 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status)
1069 {
1070 struct hci_cb *cb;
1071 __u8 encrypt;
1072
1073 hci_proto_auth_cfm(conn, status);
1074
1075 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1076 return;
1077
1078 encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00;
1079
1080 read_lock(&hci_cb_list_lock);
1081 list_for_each_entry(cb, &hci_cb_list, list) {
1082 if (cb->security_cfm)
1083 cb->security_cfm(conn, status, encrypt);
1084 }
1085 read_unlock(&hci_cb_list_lock);
1086 }
1087
1088 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status,
1089 __u8 encrypt)
1090 {
1091 struct hci_cb *cb;
1092
1093 if (conn->sec_level == BT_SECURITY_SDP)
1094 conn->sec_level = BT_SECURITY_LOW;
1095
1096 if (conn->pending_sec_level > conn->sec_level)
1097 conn->sec_level = conn->pending_sec_level;
1098
1099 hci_proto_encrypt_cfm(conn, status, encrypt);
1100
1101 read_lock(&hci_cb_list_lock);
1102 list_for_each_entry(cb, &hci_cb_list, list) {
1103 if (cb->security_cfm)
1104 cb->security_cfm(conn, status, encrypt);
1105 }
1106 read_unlock(&hci_cb_list_lock);
1107 }
1108
1109 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status)
1110 {
1111 struct hci_cb *cb;
1112
1113 read_lock(&hci_cb_list_lock);
1114 list_for_each_entry(cb, &hci_cb_list, list) {
1115 if (cb->key_change_cfm)
1116 cb->key_change_cfm(conn, status);
1117 }
1118 read_unlock(&hci_cb_list_lock);
1119 }
1120
1121 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status,
1122 __u8 role)
1123 {
1124 struct hci_cb *cb;
1125
1126 read_lock(&hci_cb_list_lock);
1127 list_for_each_entry(cb, &hci_cb_list, list) {
1128 if (cb->role_switch_cfm)
1129 cb->role_switch_cfm(conn, status, role);
1130 }
1131 read_unlock(&hci_cb_list_lock);
1132 }
1133
1134 static inline bool eir_has_data_type(u8 *data, size_t data_len, u8 type)
1135 {
1136 size_t parsed = 0;
1137
1138 if (data_len < 2)
1139 return false;
1140
1141 while (parsed < data_len - 1) {
1142 u8 field_len = data[0];
1143
1144 if (field_len == 0)
1145 break;
1146
1147 parsed += field_len + 1;
1148
1149 if (parsed > data_len)
1150 break;
1151
1152 if (data[1] == type)
1153 return true;
1154
1155 data += field_len + 1;
1156 }
1157
1158 return false;
1159 }
1160
1161 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type)
1162 {
1163 if (addr_type != ADDR_LE_DEV_RANDOM)
1164 return false;
1165
1166 if ((bdaddr->b[5] & 0xc0) == 0x40)
1167 return true;
1168
1169 return false;
1170 }
1171
1172 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev,
1173 bdaddr_t *bdaddr, u8 addr_type)
1174 {
1175 if (!hci_bdaddr_is_rpa(bdaddr, addr_type))
1176 return NULL;
1177
1178 return hci_find_irk_by_rpa(hdev, bdaddr);
1179 }
1180
1181 int hci_register_cb(struct hci_cb *hcb);
1182 int hci_unregister_cb(struct hci_cb *hcb);
1183
1184 struct hci_request {
1185 struct hci_dev *hdev;
1186 struct sk_buff_head cmd_q;
1187
1188 /* If something goes wrong when building the HCI request, the error
1189 * value is stored in this field.
1190 */
1191 int err;
1192 };
1193
1194 void hci_req_init(struct hci_request *req, struct hci_dev *hdev);
1195 int hci_req_run(struct hci_request *req, hci_req_complete_t complete);
1196 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
1197 const void *param);
1198 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
1199 const void *param, u8 event);
1200 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status);
1201
1202 void hci_req_add_le_scan_disable(struct hci_request *req);
1203 void hci_req_add_le_passive_scan(struct hci_request *req);
1204
1205 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1206 const void *param, u32 timeout);
1207 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1208 const void *param, u8 event, u32 timeout);
1209
1210 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
1211 const void *param);
1212 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags);
1213 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb);
1214
1215 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode);
1216
1217 /* ----- HCI Sockets ----- */
1218 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb);
1219 void hci_send_to_control(struct sk_buff *skb, struct sock *skip_sk);
1220 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb);
1221
1222 void hci_sock_dev_event(struct hci_dev *hdev, int event);
1223
1224 /* Management interface */
1225 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR))
1226 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \
1227 BIT(BDADDR_LE_RANDOM))
1228 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \
1229 BIT(BDADDR_LE_PUBLIC) | \
1230 BIT(BDADDR_LE_RANDOM))
1231
1232 /* These LE scan and inquiry parameters were chosen according to LE General
1233 * Discovery Procedure specification.
1234 */
1235 #define DISCOV_LE_SCAN_WIN 0x12
1236 #define DISCOV_LE_SCAN_INT 0x12
1237 #define DISCOV_LE_TIMEOUT 10240 /* msec */
1238 #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */
1239 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04
1240 #define DISCOV_BREDR_INQUIRY_LEN 0x08
1241
1242 int mgmt_control(struct sock *sk, struct msghdr *msg, size_t len);
1243 void mgmt_index_added(struct hci_dev *hdev);
1244 void mgmt_index_removed(struct hci_dev *hdev);
1245 void mgmt_set_powered_failed(struct hci_dev *hdev, int err);
1246 int mgmt_powered(struct hci_dev *hdev, u8 powered);
1247 void mgmt_discoverable_timeout(struct hci_dev *hdev);
1248 void mgmt_discoverable(struct hci_dev *hdev, u8 discoverable);
1249 void mgmt_connectable(struct hci_dev *hdev, u8 connectable);
1250 void mgmt_advertising(struct hci_dev *hdev, u8 advertising);
1251 void mgmt_write_scan_failed(struct hci_dev *hdev, u8 scan, u8 status);
1252 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key,
1253 bool persistent);
1254 void mgmt_device_connected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1255 u8 addr_type, u32 flags, u8 *name, u8 name_len,
1256 u8 *dev_class);
1257 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr,
1258 u8 link_type, u8 addr_type, u8 reason,
1259 bool mgmt_connected);
1260 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr,
1261 u8 link_type, u8 addr_type, u8 status);
1262 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1263 u8 addr_type, u8 status);
1264 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure);
1265 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1266 u8 status);
1267 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1268 u8 status);
1269 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1270 u8 link_type, u8 addr_type, u32 value,
1271 u8 confirm_hint);
1272 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1273 u8 link_type, u8 addr_type, u8 status);
1274 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1275 u8 link_type, u8 addr_type, u8 status);
1276 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1277 u8 link_type, u8 addr_type);
1278 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1279 u8 link_type, u8 addr_type, u8 status);
1280 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1281 u8 link_type, u8 addr_type, u8 status);
1282 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr,
1283 u8 link_type, u8 addr_type, u32 passkey,
1284 u8 entered);
1285 void mgmt_auth_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1286 u8 addr_type, u8 status);
1287 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status);
1288 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1289 void mgmt_sc_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1290 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class,
1291 u8 status);
1292 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status);
1293 void mgmt_read_local_oob_data_complete(struct hci_dev *hdev, u8 *hash192,
1294 u8 *randomizer192, u8 *hash256,
1295 u8 *randomizer256, u8 status);
1296 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1297 u8 addr_type, u8 *dev_class, s8 rssi, u8 cfm_name,
1298 u8 ssp, u8 *eir, u16 eir_len, u8 *scan_rsp,
1299 u8 scan_rsp_len);
1300 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1301 u8 addr_type, s8 rssi, u8 *name, u8 name_len);
1302 void mgmt_discovering(struct hci_dev *hdev, u8 discovering);
1303 int mgmt_device_blocked(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
1304 int mgmt_device_unblocked(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
1305 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent);
1306 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk);
1307 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk,
1308 bool persistent);
1309 void mgmt_reenable_advertising(struct hci_dev *hdev);
1310 void mgmt_smp_complete(struct hci_conn *conn, bool complete);
1311
1312 /* HCI info for socket */
1313 #define hci_pi(sk) ((struct hci_pinfo *) sk)
1314
1315 struct hci_pinfo {
1316 struct bt_sock bt;
1317 struct hci_dev *hdev;
1318 struct hci_filter filter;
1319 __u32 cmsg_mask;
1320 unsigned short channel;
1321 };
1322
1323 /* HCI security filter */
1324 #define HCI_SFLT_MAX_OGF 5
1325
1326 struct hci_sec_filter {
1327 __u32 type_mask;
1328 __u32 event_mask[2];
1329 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4];
1330 };
1331
1332 /* ----- HCI requests ----- */
1333 #define HCI_REQ_DONE 0
1334 #define HCI_REQ_PEND 1
1335 #define HCI_REQ_CANCELED 2
1336
1337 #define hci_req_lock(d) mutex_lock(&d->req_lock)
1338 #define hci_req_unlock(d) mutex_unlock(&d->req_lock)
1339
1340 void hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max,
1341 u16 latency, u16 to_multiplier);
1342 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
1343 __u8 ltk[16]);
1344
1345 int hci_update_random_address(struct hci_request *req, bool require_privacy,
1346 u8 *own_addr_type);
1347 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
1348 u8 *bdaddr_type);
1349
1350 #define SCO_AIRMODE_MASK 0x0003
1351 #define SCO_AIRMODE_CVSD 0x0000
1352 #define SCO_AIRMODE_TRANSP 0x0003
1353
1354 #endif /* __HCI_CORE_H */