]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob
5088065
[thirdparty/kernel/stable.git] /
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94
95 struct kvm_caps kvm_caps __read_mostly = {
96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 };
98 EXPORT_SYMBOL_GPL(kvm_caps);
99
100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
101
102 #define emul_to_vcpu(ctxt) \
103 ((struct kvm_vcpu *)(ctxt)->vcpu)
104
105 /* EFER defaults:
106 * - enable syscall per default because its emulated by KVM
107 * - enable LME and LMA per default on 64 bit KVM
108 */
109 #ifdef CONFIG_X86_64
110 static
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 #else
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114 #endif
115
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137
138 #define KVM_X86_OP(func) \
139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
140 *(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
149
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
156
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
159
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
163
164 /*
165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
166 * adaptive tuning starting from default advancement of 1000ns. '0' disables
167 * advancement entirely. Any other value is used as-is and disables adaptive
168 * tuning, i.e. allows privileged userspace to set an exact advancement time.
169 */
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
172
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, S_IRUGO);
175
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, S_IRUGO);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179
180 /*
181 * Flags to manipulate forced emulation behavior (any non-zero value will
182 * enable forced emulation).
183 */
184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
187
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
190
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
195
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
198
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
202
203 /*
204 * Restoring the host value for MSRs that are only consumed when running in
205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206 * returns to userspace, i.e. the kernel can run with the guest's value.
207 */
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209
210 struct kvm_user_return_msrs {
211 struct user_return_notifier urn;
212 bool registered;
213 struct kvm_user_return_msr_values {
214 u64 host;
215 u64 curr;
216 } values[KVM_MAX_NR_USER_RETURN_MSRS];
217 };
218
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223
224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
231
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
237
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
240
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
243
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 KVM_GENERIC_VM_STATS(),
246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 STATS_DESC_COUNTER(VM, mmu_pte_write),
248 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 STATS_DESC_COUNTER(VM, mmu_flooded),
250 STATS_DESC_COUNTER(VM, mmu_recycled),
251 STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 STATS_DESC_ICOUNTER(VM, pages_4k),
254 STATS_DESC_ICOUNTER(VM, pages_2m),
255 STATS_DESC_ICOUNTER(VM, pages_1g),
256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260
261 const struct kvm_stats_header kvm_vm_stats_header = {
262 .name_size = KVM_STATS_NAME_SIZE,
263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 .id_offset = sizeof(struct kvm_stats_header),
265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 sizeof(kvm_vm_stats_desc),
268 };
269
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 KVM_GENERIC_VCPU_STATS(),
272 STATS_DESC_COUNTER(VCPU, pf_taken),
273 STATS_DESC_COUNTER(VCPU, pf_fixed),
274 STATS_DESC_COUNTER(VCPU, pf_emulate),
275 STATS_DESC_COUNTER(VCPU, pf_spurious),
276 STATS_DESC_COUNTER(VCPU, pf_fast),
277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 STATS_DESC_COUNTER(VCPU, pf_guest),
279 STATS_DESC_COUNTER(VCPU, tlb_flush),
280 STATS_DESC_COUNTER(VCPU, invlpg),
281 STATS_DESC_COUNTER(VCPU, exits),
282 STATS_DESC_COUNTER(VCPU, io_exits),
283 STATS_DESC_COUNTER(VCPU, mmio_exits),
284 STATS_DESC_COUNTER(VCPU, signal_exits),
285 STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 STATS_DESC_COUNTER(VCPU, l1d_flush),
288 STATS_DESC_COUNTER(VCPU, halt_exits),
289 STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 STATS_DESC_COUNTER(VCPU, irq_exits),
291 STATS_DESC_COUNTER(VCPU, host_state_reload),
292 STATS_DESC_COUNTER(VCPU, fpu_reload),
293 STATS_DESC_COUNTER(VCPU, insn_emulation),
294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 STATS_DESC_COUNTER(VCPU, hypercalls),
296 STATS_DESC_COUNTER(VCPU, irq_injections),
297 STATS_DESC_COUNTER(VCPU, nmi_injections),
298 STATS_DESC_COUNTER(VCPU, req_event),
299 STATS_DESC_COUNTER(VCPU, nested_run),
300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 STATS_DESC_COUNTER(VCPU, preemption_reported),
303 STATS_DESC_COUNTER(VCPU, preemption_other),
304 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309 .name_size = KVM_STATS_NAME_SIZE,
310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 .id_offset = sizeof(struct kvm_stats_header),
312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 sizeof(kvm_vcpu_stats_desc),
315 };
316
317 u64 __read_mostly host_xcr0;
318
319 static struct kmem_cache *x86_emulator_cache;
320
321 /*
322 * When called, it means the previous get/set msr reached an invalid msr.
323 * Return true if we want to ignore/silent this failed msr access.
324 */
325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326 {
327 const char *op = write ? "wrmsr" : "rdmsr";
328
329 if (ignore_msrs) {
330 if (report_ignored_msrs)
331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332 op, msr, data);
333 /* Mask the error */
334 return true;
335 } else {
336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337 op, msr, data);
338 return false;
339 }
340 }
341
342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
343 {
344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345 unsigned int size = sizeof(struct x86_emulate_ctxt);
346
347 return kmem_cache_create_usercopy("x86_emulator", size,
348 __alignof__(struct x86_emulate_ctxt),
349 SLAB_ACCOUNT, useroffset,
350 size - useroffset, NULL);
351 }
352
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354
355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356 {
357 int i;
358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359 vcpu->arch.apf.gfns[i] = ~0;
360 }
361
362 static void kvm_on_user_return(struct user_return_notifier *urn)
363 {
364 unsigned slot;
365 struct kvm_user_return_msrs *msrs
366 = container_of(urn, struct kvm_user_return_msrs, urn);
367 struct kvm_user_return_msr_values *values;
368 unsigned long flags;
369
370 /*
371 * Disabling irqs at this point since the following code could be
372 * interrupted and executed through kvm_arch_hardware_disable()
373 */
374 local_irq_save(flags);
375 if (msrs->registered) {
376 msrs->registered = false;
377 user_return_notifier_unregister(urn);
378 }
379 local_irq_restore(flags);
380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381 values = &msrs->values[slot];
382 if (values->host != values->curr) {
383 wrmsrl(kvm_uret_msrs_list[slot], values->host);
384 values->curr = values->host;
385 }
386 }
387 }
388
389 static int kvm_probe_user_return_msr(u32 msr)
390 {
391 u64 val;
392 int ret;
393
394 preempt_disable();
395 ret = rdmsrl_safe(msr, &val);
396 if (ret)
397 goto out;
398 ret = wrmsrl_safe(msr, val);
399 out:
400 preempt_enable();
401 return ret;
402 }
403
404 int kvm_add_user_return_msr(u32 msr)
405 {
406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407
408 if (kvm_probe_user_return_msr(msr))
409 return -1;
410
411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412 return kvm_nr_uret_msrs++;
413 }
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415
416 int kvm_find_user_return_msr(u32 msr)
417 {
418 int i;
419
420 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 if (kvm_uret_msrs_list[i] == msr)
422 return i;
423 }
424 return -1;
425 }
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427
428 static void kvm_user_return_msr_cpu_online(void)
429 {
430 unsigned int cpu = smp_processor_id();
431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432 u64 value;
433 int i;
434
435 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437 msrs->values[i].host = value;
438 msrs->values[i].curr = value;
439 }
440 }
441
442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443 {
444 unsigned int cpu = smp_processor_id();
445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446 int err;
447
448 value = (value & mask) | (msrs->values[slot].host & ~mask);
449 if (value == msrs->values[slot].curr)
450 return 0;
451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452 if (err)
453 return 1;
454
455 msrs->values[slot].curr = value;
456 if (!msrs->registered) {
457 msrs->urn.on_user_return = kvm_on_user_return;
458 user_return_notifier_register(&msrs->urn);
459 msrs->registered = true;
460 }
461 return 0;
462 }
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464
465 static void drop_user_return_notifiers(void)
466 {
467 unsigned int cpu = smp_processor_id();
468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469
470 if (msrs->registered)
471 kvm_on_user_return(&msrs->urn);
472 }
473
474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475 {
476 return vcpu->arch.apic_base;
477 }
478
479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480 {
481 return kvm_apic_mode(kvm_get_apic_base(vcpu));
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484
485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486 {
487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491
492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493 return 1;
494 if (!msr_info->host_initiated) {
495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496 return 1;
497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498 return 1;
499 }
500
501 kvm_lapic_set_base(vcpu, msr_info->data);
502 kvm_recalculate_apic_map(vcpu->kvm);
503 return 0;
504 }
505
506 /*
507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508 *
509 * Hardware virtualization extension instructions may fault if a reboot turns
510 * off virtualization while processes are running. Usually after catching the
511 * fault we just panic; during reboot instead the instruction is ignored.
512 */
513 noinstr void kvm_spurious_fault(void)
514 {
515 /* Fault while not rebooting. We want the trace. */
516 BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519
520 #define EXCPT_BENIGN 0
521 #define EXCPT_CONTRIBUTORY 1
522 #define EXCPT_PF 2
523
524 static int exception_class(int vector)
525 {
526 switch (vector) {
527 case PF_VECTOR:
528 return EXCPT_PF;
529 case DE_VECTOR:
530 case TS_VECTOR:
531 case NP_VECTOR:
532 case SS_VECTOR:
533 case GP_VECTOR:
534 return EXCPT_CONTRIBUTORY;
535 default:
536 break;
537 }
538 return EXCPT_BENIGN;
539 }
540
541 #define EXCPT_FAULT 0
542 #define EXCPT_TRAP 1
543 #define EXCPT_ABORT 2
544 #define EXCPT_INTERRUPT 3
545 #define EXCPT_DB 4
546
547 static int exception_type(int vector)
548 {
549 unsigned int mask;
550
551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552 return EXCPT_INTERRUPT;
553
554 mask = 1 << vector;
555
556 /*
557 * #DBs can be trap-like or fault-like, the caller must check other CPU
558 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559 */
560 if (mask & (1 << DB_VECTOR))
561 return EXCPT_DB;
562
563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564 return EXCPT_TRAP;
565
566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567 return EXCPT_ABORT;
568
569 /* Reserved exceptions will result in fault */
570 return EXCPT_FAULT;
571 }
572
573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574 struct kvm_queued_exception *ex)
575 {
576 if (!ex->has_payload)
577 return;
578
579 switch (ex->vector) {
580 case DB_VECTOR:
581 /*
582 * "Certain debug exceptions may clear bit 0-3. The
583 * remaining contents of the DR6 register are never
584 * cleared by the processor".
585 */
586 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587 /*
588 * In order to reflect the #DB exception payload in guest
589 * dr6, three components need to be considered: active low
590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591 * DR6_BS and DR6_BT)
592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593 * In the target guest dr6:
594 * FIXED_1 bits should always be set.
595 * Active low bits should be cleared if 1-setting in payload.
596 * Active high bits should be set if 1-setting in payload.
597 *
598 * Note, the payload is compatible with the pending debug
599 * exceptions/exit qualification under VMX, that active_low bits
600 * are active high in payload.
601 * So they need to be flipped for DR6.
602 */
603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604 vcpu->arch.dr6 |= ex->payload;
605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606
607 /*
608 * The #DB payload is defined as compatible with the 'pending
609 * debug exceptions' field under VMX, not DR6. While bit 12 is
610 * defined in the 'pending debug exceptions' field (enabled
611 * breakpoint), it is reserved and must be zero in DR6.
612 */
613 vcpu->arch.dr6 &= ~BIT(12);
614 break;
615 case PF_VECTOR:
616 vcpu->arch.cr2 = ex->payload;
617 break;
618 }
619
620 ex->has_payload = false;
621 ex->payload = 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624
625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626 bool has_error_code, u32 error_code,
627 bool has_payload, unsigned long payload)
628 {
629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630
631 ex->vector = vector;
632 ex->injected = false;
633 ex->pending = true;
634 ex->has_error_code = has_error_code;
635 ex->error_code = error_code;
636 ex->has_payload = has_payload;
637 ex->payload = payload;
638 }
639
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642 {
643 kvm_x86_ops.nested_ops->leave_nested(vcpu);
644 }
645
646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647 unsigned nr, bool has_error, u32 error_code,
648 bool has_payload, unsigned long payload, bool reinject)
649 {
650 u32 prev_nr;
651 int class1, class2;
652
653 kvm_make_request(KVM_REQ_EVENT, vcpu);
654
655 /*
656 * If the exception is destined for L2 and isn't being reinjected,
657 * morph it to a VM-Exit if L1 wants to intercept the exception. A
658 * previously injected exception is not checked because it was checked
659 * when it was original queued, and re-checking is incorrect if _L1_
660 * injected the exception, in which case it's exempt from interception.
661 */
662 if (!reinject && is_guest_mode(vcpu) &&
663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665 has_payload, payload);
666 return;
667 }
668
669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670 queue:
671 if (reinject) {
672 /*
673 * On VM-Entry, an exception can be pending if and only
674 * if event injection was blocked by nested_run_pending.
675 * In that case, however, vcpu_enter_guest() requests an
676 * immediate exit, and the guest shouldn't proceed far
677 * enough to need reinjection.
678 */
679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680 vcpu->arch.exception.injected = true;
681 if (WARN_ON_ONCE(has_payload)) {
682 /*
683 * A reinjected event has already
684 * delivered its payload.
685 */
686 has_payload = false;
687 payload = 0;
688 }
689 } else {
690 vcpu->arch.exception.pending = true;
691 vcpu->arch.exception.injected = false;
692 }
693 vcpu->arch.exception.has_error_code = has_error;
694 vcpu->arch.exception.vector = nr;
695 vcpu->arch.exception.error_code = error_code;
696 vcpu->arch.exception.has_payload = has_payload;
697 vcpu->arch.exception.payload = payload;
698 if (!is_guest_mode(vcpu))
699 kvm_deliver_exception_payload(vcpu,
700 &vcpu->arch.exception);
701 return;
702 }
703
704 /* to check exception */
705 prev_nr = vcpu->arch.exception.vector;
706 if (prev_nr == DF_VECTOR) {
707 /* triple fault -> shutdown */
708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709 return;
710 }
711 class1 = exception_class(prev_nr);
712 class2 = exception_class(nr);
713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715 /*
716 * Synthesize #DF. Clear the previously injected or pending
717 * exception so as not to incorrectly trigger shutdown.
718 */
719 vcpu->arch.exception.injected = false;
720 vcpu->arch.exception.pending = false;
721
722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723 } else {
724 /* replace previous exception with a new one in a hope
725 that instruction re-execution will regenerate lost
726 exception */
727 goto queue;
728 }
729 }
730
731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734 }
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
736
737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738 {
739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740 }
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742
743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744 unsigned long payload)
745 {
746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747 }
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749
750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751 u32 error_code, unsigned long payload)
752 {
753 kvm_multiple_exception(vcpu, nr, true, error_code,
754 true, payload, false);
755 }
756
757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758 {
759 if (err)
760 kvm_inject_gp(vcpu, 0);
761 else
762 return kvm_skip_emulated_instruction(vcpu);
763
764 return 1;
765 }
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767
768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769 {
770 if (err) {
771 kvm_inject_gp(vcpu, 0);
772 return 1;
773 }
774
775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776 EMULTYPE_COMPLETE_USER_EXIT);
777 }
778
779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780 {
781 ++vcpu->stat.pf_guest;
782
783 /*
784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785 * whether or not L1 wants to intercept "regular" #PF.
786 */
787 if (is_guest_mode(vcpu) && fault->async_page_fault)
788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789 true, fault->error_code,
790 true, fault->address);
791 else
792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793 fault->address);
794 }
795
796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797 struct x86_exception *fault)
798 {
799 struct kvm_mmu *fault_mmu;
800 WARN_ON_ONCE(fault->vector != PF_VECTOR);
801
802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803 vcpu->arch.walk_mmu;
804
805 /*
806 * Invalidate the TLB entry for the faulting address, if it exists,
807 * else the access will fault indefinitely (and to emulate hardware).
808 */
809 if ((fault->error_code & PFERR_PRESENT_MASK) &&
810 !(fault->error_code & PFERR_RSVD_MASK))
811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812 KVM_MMU_ROOT_CURRENT);
813
814 fault_mmu->inject_page_fault(vcpu, fault);
815 }
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817
818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819 {
820 atomic_inc(&vcpu->arch.nmi_queued);
821 kvm_make_request(KVM_REQ_NMI, vcpu);
822 }
823
824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827 }
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829
830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831 {
832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833 }
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835
836 /*
837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
838 * a #GP and return false.
839 */
840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841 {
842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843 return true;
844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845 return false;
846 }
847
848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849 {
850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851 return true;
852
853 kvm_queue_exception(vcpu, UD_VECTOR);
854 return false;
855 }
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
857
858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859 {
860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861 }
862
863 /*
864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
865 */
866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870 gpa_t real_gpa;
871 int i;
872 int ret;
873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874
875 /*
876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877 * to an L1 GPA.
878 */
879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881 if (real_gpa == INVALID_GPA)
882 return 0;
883
884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886 cr3 & GENMASK(11, 5), sizeof(pdpte));
887 if (ret < 0)
888 return 0;
889
890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891 if ((pdpte[i] & PT_PRESENT_MASK) &&
892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893 return 0;
894 }
895 }
896
897 /*
898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899 * Shadow page roots need to be reconstructed instead.
900 */
901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903
904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907 vcpu->arch.pdptrs_from_userspace = false;
908
909 return 1;
910 }
911 EXPORT_SYMBOL_GPL(load_pdptrs);
912
913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914 {
915 #ifdef CONFIG_X86_64
916 if (cr0 & 0xffffffff00000000UL)
917 return false;
918 #endif
919
920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 return false;
922
923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 return false;
925
926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927 }
928
929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930 {
931 /*
932 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933 * indirect shadow MMUs. If paging is disabled, no updates are needed
934 * as there are no permission bits to emulate. If TDP is enabled, the
935 * MMU's metadata needs to be updated, e.g. so that emulating guest
936 * translations does the right thing, but there's no need to unload the
937 * root as CR0.WP doesn't affect SPTEs.
938 */
939 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940 if (!(cr0 & X86_CR0_PG))
941 return;
942
943 if (tdp_enabled) {
944 kvm_init_mmu(vcpu);
945 return;
946 }
947 }
948
949 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950 kvm_clear_async_pf_completion_queue(vcpu);
951 kvm_async_pf_hash_reset(vcpu);
952
953 /*
954 * Clearing CR0.PG is defined to flush the TLB from the guest's
955 * perspective.
956 */
957 if (!(cr0 & X86_CR0_PG))
958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959 }
960
961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962 kvm_mmu_reset_context(vcpu);
963
964 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968 }
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970
971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972 {
973 unsigned long old_cr0 = kvm_read_cr0(vcpu);
974
975 if (!kvm_is_valid_cr0(vcpu, cr0))
976 return 1;
977
978 cr0 |= X86_CR0_ET;
979
980 /* Write to CR0 reserved bits are ignored, even on Intel. */
981 cr0 &= ~CR0_RESERVED_BITS;
982
983 #ifdef CONFIG_X86_64
984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985 (cr0 & X86_CR0_PG)) {
986 int cs_db, cs_l;
987
988 if (!is_pae(vcpu))
989 return 1;
990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991 if (cs_l)
992 return 1;
993 }
994 #endif
995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998 return 1;
999
1000 if (!(cr0 & X86_CR0_PG) &&
1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002 return 1;
1003
1004 static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005
1006 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007
1008 return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011
1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013 {
1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1017
1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019 {
1020 if (vcpu->arch.guest_state_protected)
1021 return;
1022
1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024
1025 if (vcpu->arch.xcr0 != host_xcr0)
1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027
1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029 vcpu->arch.ia32_xss != host_xss)
1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031 }
1032
1033 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037 write_pkru(vcpu->arch.pkru);
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040
1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042 {
1043 if (vcpu->arch.guest_state_protected)
1044 return;
1045
1046 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049 vcpu->arch.pkru = rdpkru();
1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051 write_pkru(vcpu->arch.host_pkru);
1052 }
1053
1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055
1056 if (vcpu->arch.xcr0 != host_xcr0)
1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058
1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060 vcpu->arch.ia32_xss != host_xss)
1061 wrmsrl(MSR_IA32_XSS, host_xss);
1062 }
1063
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066
1067 #ifdef CONFIG_X86_64
1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069 {
1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071 }
1072 #endif
1073
1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075 {
1076 u64 xcr0 = xcr;
1077 u64 old_xcr0 = vcpu->arch.xcr0;
1078 u64 valid_bits;
1079
1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1081 if (index != XCR_XFEATURE_ENABLED_MASK)
1082 return 1;
1083 if (!(xcr0 & XFEATURE_MASK_FP))
1084 return 1;
1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086 return 1;
1087
1088 /*
1089 * Do not allow the guest to set bits that we do not support
1090 * saving. However, xcr0 bit 0 is always set, even if the
1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092 */
1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094 if (xcr0 & ~valid_bits)
1095 return 1;
1096
1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099 return 1;
1100
1101 if (xcr0 & XFEATURE_MASK_AVX512) {
1102 if (!(xcr0 & XFEATURE_MASK_YMM))
1103 return 1;
1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105 return 1;
1106 }
1107
1108 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110 return 1;
1111
1112 vcpu->arch.xcr0 = xcr0;
1113
1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115 kvm_update_cpuid_runtime(vcpu);
1116 return 0;
1117 }
1118
1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120 {
1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124 kvm_inject_gp(vcpu, 0);
1125 return 1;
1126 }
1127
1128 return kvm_skip_emulated_instruction(vcpu);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131
1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 {
1134 if (cr4 & cr4_reserved_bits)
1135 return false;
1136
1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138 return false;
1139
1140 return true;
1141 }
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143
1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145 {
1146 return __kvm_is_valid_cr4(vcpu, cr4) &&
1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148 }
1149
1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151 {
1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153 kvm_mmu_reset_context(vcpu);
1154
1155 /*
1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157 * according to the SDM; however, stale prev_roots could be reused
1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161 * so fall through.
1162 */
1163 if (!tdp_enabled &&
1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165 kvm_mmu_unload(vcpu);
1166
1167 /*
1168 * The TLB has to be flushed for all PCIDs if any of the following
1169 * (architecturally required) changes happen:
1170 * - CR4.PCIDE is changed from 1 to 0
1171 * - CR4.PGE is toggled
1172 *
1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174 */
1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178
1179 /*
1180 * The TLB has to be flushed for the current PCID if any of the
1181 * following (architecturally required) changes happen:
1182 * - CR4.SMEP is changed from 0 to 1
1183 * - CR4.PAE is toggled
1184 */
1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191
1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193 {
1194 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195
1196 if (!kvm_is_valid_cr4(vcpu, cr4))
1197 return 1;
1198
1199 if (is_long_mode(vcpu)) {
1200 if (!(cr4 & X86_CR4_PAE))
1201 return 1;
1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203 return 1;
1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207 return 1;
1208
1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212 return 1;
1213 }
1214
1215 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216
1217 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218
1219 return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222
1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224 {
1225 struct kvm_mmu *mmu = vcpu->arch.mmu;
1226 unsigned long roots_to_free = 0;
1227 int i;
1228
1229 /*
1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1232 * also via the emulator. KVM's TDP page tables are not in the scope of
1233 * the invalidation, but the guest's TLB entries need to be flushed as
1234 * the CPU may have cached entries in its TLB for the target PCID.
1235 */
1236 if (unlikely(tdp_enabled)) {
1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238 return;
1239 }
1240
1241 /*
1242 * If neither the current CR3 nor any of the prev_roots use the given
1243 * PCID, then nothing needs to be done here because a resync will
1244 * happen anyway before switching to any other CR3.
1245 */
1246 if (kvm_get_active_pcid(vcpu) == pcid) {
1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249 }
1250
1251 /*
1252 * If PCID is disabled, there is no need to free prev_roots even if the
1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254 * with PCIDE=0.
1255 */
1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257 return;
1258
1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262
1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264 }
1265
1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267 {
1268 bool skip_tlb_flush = false;
1269 unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274 pcid = cr3 & X86_CR3_PCID_MASK;
1275 }
1276 #endif
1277
1278 /* PDPTRs are always reloaded for PAE paging. */
1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280 goto handle_tlb_flush;
1281
1282 /*
1283 * Do not condition the GPA check on long mode, this helper is used to
1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285 * the current vCPU mode is accurate.
1286 */
1287 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1288 return 1;
1289
1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291 return 1;
1292
1293 if (cr3 != kvm_read_cr3(vcpu))
1294 kvm_mmu_new_pgd(vcpu, cr3);
1295
1296 vcpu->arch.cr3 = cr3;
1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1299
1300 handle_tlb_flush:
1301 /*
1302 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1304 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306 * i.e. only PCID=0 can be relevant.
1307 */
1308 if (!skip_tlb_flush)
1309 kvm_invalidate_pcid(vcpu, pcid);
1310
1311 return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314
1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316 {
1317 if (cr8 & CR8_RESERVED_BITS)
1318 return 1;
1319 if (lapic_in_kernel(vcpu))
1320 kvm_lapic_set_tpr(vcpu, cr8);
1321 else
1322 vcpu->arch.cr8 = cr8;
1323 return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326
1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328 {
1329 if (lapic_in_kernel(vcpu))
1330 return kvm_lapic_get_cr8(vcpu);
1331 else
1332 return vcpu->arch.cr8;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335
1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337 {
1338 int i;
1339
1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341 for (i = 0; i < KVM_NR_DB_REGS; i++)
1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343 }
1344 }
1345
1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347 {
1348 unsigned long dr7;
1349
1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351 dr7 = vcpu->arch.guest_debug_dr7;
1352 else
1353 dr7 = vcpu->arch.dr7;
1354 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356 if (dr7 & DR7_BP_EN_MASK)
1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360
1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362 {
1363 u64 fixed = DR6_FIXED_1;
1364
1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366 fixed |= DR6_RTM;
1367
1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369 fixed |= DR6_BUS_LOCK;
1370 return fixed;
1371 }
1372
1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374 {
1375 size_t size = ARRAY_SIZE(vcpu->arch.db);
1376
1377 switch (dr) {
1378 case 0 ... 3:
1379 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381 vcpu->arch.eff_db[dr] = val;
1382 break;
1383 case 4:
1384 case 6:
1385 if (!kvm_dr6_valid(val))
1386 return 1; /* #GP */
1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388 break;
1389 case 5:
1390 default: /* 7 */
1391 if (!kvm_dr7_valid(val))
1392 return 1; /* #GP */
1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394 kvm_update_dr7(vcpu);
1395 break;
1396 }
1397
1398 return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1401
1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403 {
1404 size_t size = ARRAY_SIZE(vcpu->arch.db);
1405
1406 switch (dr) {
1407 case 0 ... 3:
1408 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1409 break;
1410 case 4:
1411 case 6:
1412 *val = vcpu->arch.dr6;
1413 break;
1414 case 5:
1415 default: /* 7 */
1416 *val = vcpu->arch.dr7;
1417 break;
1418 }
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1421
1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423 {
1424 u32 ecx = kvm_rcx_read(vcpu);
1425 u64 data;
1426
1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428 kvm_inject_gp(vcpu, 0);
1429 return 1;
1430 }
1431
1432 kvm_rax_write(vcpu, (u32)data);
1433 kvm_rdx_write(vcpu, data >> 32);
1434 return kvm_skip_emulated_instruction(vcpu);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437
1438 /*
1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
1443 * MSRs that KVM emulates without strictly requiring host support.
1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
1446 * msrs_to_save and emulated_msrs.
1447 */
1448
1449 static const u32 msrs_to_save_base[] = {
1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451 MSR_STAR,
1452 #ifdef CONFIG_X86_64
1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454 #endif
1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464 MSR_IA32_UMWAIT_CONTROL,
1465
1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468
1469 static const u32 msrs_to_save_pmu[] = {
1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475
1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485
1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488
1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494
1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498 };
1499
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501 ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1503
1504 static const u32 emulated_msrs_all[] = {
1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1508 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1509 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1510 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1511 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1512 HV_X64_MSR_RESET,
1513 HV_X64_MSR_VP_INDEX,
1514 HV_X64_MSR_VP_RUNTIME,
1515 HV_X64_MSR_SCONTROL,
1516 HV_X64_MSR_STIMER0_CONFIG,
1517 HV_X64_MSR_VP_ASSIST_PAGE,
1518 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1519 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1520 HV_X64_MSR_SYNDBG_OPTIONS,
1521 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1522 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1523 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1524
1525 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1526 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1527
1528 MSR_IA32_TSC_ADJUST,
1529 MSR_IA32_TSC_DEADLINE,
1530 MSR_IA32_ARCH_CAPABILITIES,
1531 MSR_IA32_PERF_CAPABILITIES,
1532 MSR_IA32_MISC_ENABLE,
1533 MSR_IA32_MCG_STATUS,
1534 MSR_IA32_MCG_CTL,
1535 MSR_IA32_MCG_EXT_CTL,
1536 MSR_IA32_SMBASE,
1537 MSR_SMI_COUNT,
1538 MSR_PLATFORM_INFO,
1539 MSR_MISC_FEATURES_ENABLES,
1540 MSR_AMD64_VIRT_SPEC_CTRL,
1541 MSR_AMD64_TSC_RATIO,
1542 MSR_IA32_POWER_CTL,
1543 MSR_IA32_UCODE_REV,
1544
1545 /*
1546 * KVM always supports the "true" VMX control MSRs, even if the host
1547 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
1548 * doesn't strictly require them to exist in the host (ignoring that
1549 * KVM would refuse to load in the first place if the core set of MSRs
1550 * aren't supported).
1551 */
1552 MSR_IA32_VMX_BASIC,
1553 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1554 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1555 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1556 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1557 MSR_IA32_VMX_MISC,
1558 MSR_IA32_VMX_CR0_FIXED0,
1559 MSR_IA32_VMX_CR4_FIXED0,
1560 MSR_IA32_VMX_VMCS_ENUM,
1561 MSR_IA32_VMX_PROCBASED_CTLS2,
1562 MSR_IA32_VMX_EPT_VPID_CAP,
1563 MSR_IA32_VMX_VMFUNC,
1564
1565 MSR_K7_HWCR,
1566 MSR_KVM_POLL_CONTROL,
1567 };
1568
1569 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1570 static unsigned num_emulated_msrs;
1571
1572 /*
1573 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1574 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
1575 * feature MSRs, but are handled separately to allow expedited lookups.
1576 */
1577 static const u32 msr_based_features_all_except_vmx[] = {
1578 MSR_AMD64_DE_CFG,
1579 MSR_IA32_UCODE_REV,
1580 MSR_IA32_ARCH_CAPABILITIES,
1581 MSR_IA32_PERF_CAPABILITIES,
1582 };
1583
1584 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1585 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1586 static unsigned int num_msr_based_features;
1587
1588 /*
1589 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1590 * patch, are immutable once the vCPU model is defined.
1591 */
1592 static bool kvm_is_immutable_feature_msr(u32 msr)
1593 {
1594 int i;
1595
1596 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1597 return true;
1598
1599 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1600 if (msr == msr_based_features_all_except_vmx[i])
1601 return msr != MSR_IA32_UCODE_REV;
1602 }
1603
1604 return false;
1605 }
1606
1607 /*
1608 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1609 * does not yet virtualize. These include:
1610 * 10 - MISC_PACKAGE_CTRLS
1611 * 11 - ENERGY_FILTERING_CTL
1612 * 12 - DOITM
1613 * 18 - FB_CLEAR_CTRL
1614 * 21 - XAPIC_DISABLE_STATUS
1615 * 23 - OVERCLOCKING_STATUS
1616 */
1617
1618 #define KVM_SUPPORTED_ARCH_CAP \
1619 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1620 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1621 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1622 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1623 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1624 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO)
1625
1626 static u64 kvm_get_arch_capabilities(void)
1627 {
1628 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1629
1630 /*
1631 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1632 * the nested hypervisor runs with NX huge pages. If it is not,
1633 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1634 * L1 guests, so it need not worry about its own (L2) guests.
1635 */
1636 data |= ARCH_CAP_PSCHANGE_MC_NO;
1637
1638 /*
1639 * If we're doing cache flushes (either "always" or "cond")
1640 * we will do one whenever the guest does a vmlaunch/vmresume.
1641 * If an outer hypervisor is doing the cache flush for us
1642 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1643 * capability to the guest too, and if EPT is disabled we're not
1644 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1645 * require a nested hypervisor to do a flush of its own.
1646 */
1647 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1648 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1649
1650 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1651 data |= ARCH_CAP_RDCL_NO;
1652 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1653 data |= ARCH_CAP_SSB_NO;
1654 if (!boot_cpu_has_bug(X86_BUG_MDS))
1655 data |= ARCH_CAP_MDS_NO;
1656 if (!boot_cpu_has_bug(X86_BUG_RFDS))
1657 data |= ARCH_CAP_RFDS_NO;
1658 if (!boot_cpu_has_bug(X86_BUG_ITS))
1659 data |= ARCH_CAP_ITS_NO;
1660
1661 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1662 /*
1663 * If RTM=0 because the kernel has disabled TSX, the host might
1664 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1665 * and therefore knows that there cannot be TAA) but keep
1666 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1667 * and we want to allow migrating those guests to tsx=off hosts.
1668 */
1669 data &= ~ARCH_CAP_TAA_NO;
1670 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1671 data |= ARCH_CAP_TAA_NO;
1672 } else {
1673 /*
1674 * Nothing to do here; we emulate TSX_CTRL if present on the
1675 * host so the guest can choose between disabling TSX or
1676 * using VERW to clear CPU buffers.
1677 */
1678 }
1679
1680 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1681 data |= ARCH_CAP_GDS_NO;
1682
1683 return data;
1684 }
1685
1686 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1687 {
1688 switch (msr->index) {
1689 case MSR_IA32_ARCH_CAPABILITIES:
1690 msr->data = kvm_get_arch_capabilities();
1691 break;
1692 case MSR_IA32_PERF_CAPABILITIES:
1693 msr->data = kvm_caps.supported_perf_cap;
1694 break;
1695 case MSR_IA32_UCODE_REV:
1696 rdmsrl_safe(msr->index, &msr->data);
1697 break;
1698 default:
1699 return static_call(kvm_x86_get_msr_feature)(msr);
1700 }
1701 return 0;
1702 }
1703
1704 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1705 {
1706 struct kvm_msr_entry msr;
1707 int r;
1708
1709 msr.index = index;
1710 r = kvm_get_msr_feature(&msr);
1711
1712 if (r == KVM_MSR_RET_INVALID) {
1713 /* Unconditionally clear the output for simplicity */
1714 *data = 0;
1715 if (kvm_msr_ignored_check(index, 0, false))
1716 r = 0;
1717 }
1718
1719 if (r)
1720 return r;
1721
1722 *data = msr.data;
1723
1724 return 0;
1725 }
1726
1727 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1728 {
1729 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1730 return false;
1731
1732 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1733 return false;
1734
1735 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1736 return false;
1737
1738 if (efer & (EFER_LME | EFER_LMA) &&
1739 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1740 return false;
1741
1742 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1743 return false;
1744
1745 return true;
1746
1747 }
1748 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1749 {
1750 if (efer & efer_reserved_bits)
1751 return false;
1752
1753 return __kvm_valid_efer(vcpu, efer);
1754 }
1755 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1756
1757 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1758 {
1759 u64 old_efer = vcpu->arch.efer;
1760 u64 efer = msr_info->data;
1761 int r;
1762
1763 if (efer & efer_reserved_bits)
1764 return 1;
1765
1766 if (!msr_info->host_initiated) {
1767 if (!__kvm_valid_efer(vcpu, efer))
1768 return 1;
1769
1770 if (is_paging(vcpu) &&
1771 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1772 return 1;
1773 }
1774
1775 efer &= ~EFER_LMA;
1776 efer |= vcpu->arch.efer & EFER_LMA;
1777
1778 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1779 if (r) {
1780 WARN_ON(r > 0);
1781 return r;
1782 }
1783
1784 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1785 kvm_mmu_reset_context(vcpu);
1786
1787 return 0;
1788 }
1789
1790 void kvm_enable_efer_bits(u64 mask)
1791 {
1792 efer_reserved_bits &= ~mask;
1793 }
1794 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1795
1796 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1797 {
1798 struct kvm_x86_msr_filter *msr_filter;
1799 struct msr_bitmap_range *ranges;
1800 struct kvm *kvm = vcpu->kvm;
1801 bool allowed;
1802 int idx;
1803 u32 i;
1804
1805 /* x2APIC MSRs do not support filtering. */
1806 if (index >= 0x800 && index <= 0x8ff)
1807 return true;
1808
1809 idx = srcu_read_lock(&kvm->srcu);
1810
1811 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1812 if (!msr_filter) {
1813 allowed = true;
1814 goto out;
1815 }
1816
1817 allowed = msr_filter->default_allow;
1818 ranges = msr_filter->ranges;
1819
1820 for (i = 0; i < msr_filter->count; i++) {
1821 u32 start = ranges[i].base;
1822 u32 end = start + ranges[i].nmsrs;
1823 u32 flags = ranges[i].flags;
1824 unsigned long *bitmap = ranges[i].bitmap;
1825
1826 if ((index >= start) && (index < end) && (flags & type)) {
1827 allowed = test_bit(index - start, bitmap);
1828 break;
1829 }
1830 }
1831
1832 out:
1833 srcu_read_unlock(&kvm->srcu, idx);
1834
1835 return allowed;
1836 }
1837 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1838
1839 /*
1840 * Write @data into the MSR specified by @index. Select MSR specific fault
1841 * checks are bypassed if @host_initiated is %true.
1842 * Returns 0 on success, non-0 otherwise.
1843 * Assumes vcpu_load() was already called.
1844 */
1845 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1846 bool host_initiated)
1847 {
1848 struct msr_data msr;
1849
1850 switch (index) {
1851 case MSR_FS_BASE:
1852 case MSR_GS_BASE:
1853 case MSR_KERNEL_GS_BASE:
1854 case MSR_CSTAR:
1855 case MSR_LSTAR:
1856 if (is_noncanonical_address(data, vcpu))
1857 return 1;
1858 break;
1859 case MSR_IA32_SYSENTER_EIP:
1860 case MSR_IA32_SYSENTER_ESP:
1861 /*
1862 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1863 * non-canonical address is written on Intel but not on
1864 * AMD (which ignores the top 32-bits, because it does
1865 * not implement 64-bit SYSENTER).
1866 *
1867 * 64-bit code should hence be able to write a non-canonical
1868 * value on AMD. Making the address canonical ensures that
1869 * vmentry does not fail on Intel after writing a non-canonical
1870 * value, and that something deterministic happens if the guest
1871 * invokes 64-bit SYSENTER.
1872 */
1873 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1874 break;
1875 case MSR_TSC_AUX:
1876 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1877 return 1;
1878
1879 if (!host_initiated &&
1880 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1881 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1882 return 1;
1883
1884 /*
1885 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1886 * incomplete and conflicting architectural behavior. Current
1887 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1888 * reserved and always read as zeros. Enforce Intel's reserved
1889 * bits check if and only if the guest CPU is Intel, and clear
1890 * the bits in all other cases. This ensures cross-vendor
1891 * migration will provide consistent behavior for the guest.
1892 */
1893 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1894 return 1;
1895
1896 data = (u32)data;
1897 break;
1898 }
1899
1900 msr.data = data;
1901 msr.index = index;
1902 msr.host_initiated = host_initiated;
1903
1904 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1905 }
1906
1907 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1908 u32 index, u64 data, bool host_initiated)
1909 {
1910 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1911
1912 if (ret == KVM_MSR_RET_INVALID)
1913 if (kvm_msr_ignored_check(index, data, true))
1914 ret = 0;
1915
1916 return ret;
1917 }
1918
1919 /*
1920 * Read the MSR specified by @index into @data. Select MSR specific fault
1921 * checks are bypassed if @host_initiated is %true.
1922 * Returns 0 on success, non-0 otherwise.
1923 * Assumes vcpu_load() was already called.
1924 */
1925 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1926 bool host_initiated)
1927 {
1928 struct msr_data msr;
1929 int ret;
1930
1931 switch (index) {
1932 case MSR_TSC_AUX:
1933 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1934 return 1;
1935
1936 if (!host_initiated &&
1937 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1938 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1939 return 1;
1940 break;
1941 }
1942
1943 msr.index = index;
1944 msr.host_initiated = host_initiated;
1945
1946 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1947 if (!ret)
1948 *data = msr.data;
1949 return ret;
1950 }
1951
1952 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1953 u32 index, u64 *data, bool host_initiated)
1954 {
1955 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1956
1957 if (ret == KVM_MSR_RET_INVALID) {
1958 /* Unconditionally clear *data for simplicity */
1959 *data = 0;
1960 if (kvm_msr_ignored_check(index, 0, false))
1961 ret = 0;
1962 }
1963
1964 return ret;
1965 }
1966
1967 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1968 {
1969 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1970 return KVM_MSR_RET_FILTERED;
1971 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1972 }
1973
1974 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1975 {
1976 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1977 return KVM_MSR_RET_FILTERED;
1978 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1979 }
1980
1981 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1982 {
1983 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_get_msr);
1986
1987 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1988 {
1989 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1990 }
1991 EXPORT_SYMBOL_GPL(kvm_set_msr);
1992
1993 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1994 {
1995 if (!vcpu->run->msr.error) {
1996 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1997 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1998 }
1999 }
2000
2001 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2002 {
2003 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2004 }
2005
2006 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2007 {
2008 complete_userspace_rdmsr(vcpu);
2009 return complete_emulated_msr_access(vcpu);
2010 }
2011
2012 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2013 {
2014 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2015 }
2016
2017 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2018 {
2019 complete_userspace_rdmsr(vcpu);
2020 return complete_fast_msr_access(vcpu);
2021 }
2022
2023 static u64 kvm_msr_reason(int r)
2024 {
2025 switch (r) {
2026 case KVM_MSR_RET_INVALID:
2027 return KVM_MSR_EXIT_REASON_UNKNOWN;
2028 case KVM_MSR_RET_FILTERED:
2029 return KVM_MSR_EXIT_REASON_FILTER;
2030 default:
2031 return KVM_MSR_EXIT_REASON_INVAL;
2032 }
2033 }
2034
2035 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2036 u32 exit_reason, u64 data,
2037 int (*completion)(struct kvm_vcpu *vcpu),
2038 int r)
2039 {
2040 u64 msr_reason = kvm_msr_reason(r);
2041
2042 /* Check if the user wanted to know about this MSR fault */
2043 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2044 return 0;
2045
2046 vcpu->run->exit_reason = exit_reason;
2047 vcpu->run->msr.error = 0;
2048 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2049 vcpu->run->msr.reason = msr_reason;
2050 vcpu->run->msr.index = index;
2051 vcpu->run->msr.data = data;
2052 vcpu->arch.complete_userspace_io = completion;
2053
2054 return 1;
2055 }
2056
2057 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2058 {
2059 u32 ecx = kvm_rcx_read(vcpu);
2060 u64 data;
2061 int r;
2062
2063 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2064
2065 if (!r) {
2066 trace_kvm_msr_read(ecx, data);
2067
2068 kvm_rax_write(vcpu, data & -1u);
2069 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2070 } else {
2071 /* MSR read failed? See if we should ask user space */
2072 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2073 complete_fast_rdmsr, r))
2074 return 0;
2075 trace_kvm_msr_read_ex(ecx);
2076 }
2077
2078 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2079 }
2080 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2081
2082 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2083 {
2084 u32 ecx = kvm_rcx_read(vcpu);
2085 u64 data = kvm_read_edx_eax(vcpu);
2086 int r;
2087
2088 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2089
2090 if (!r) {
2091 trace_kvm_msr_write(ecx, data);
2092 } else {
2093 /* MSR write failed? See if we should ask user space */
2094 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2095 complete_fast_msr_access, r))
2096 return 0;
2097 /* Signal all other negative errors to userspace */
2098 if (r < 0)
2099 return r;
2100 trace_kvm_msr_write_ex(ecx, data);
2101 }
2102
2103 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2104 }
2105 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2106
2107 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2108 {
2109 return kvm_skip_emulated_instruction(vcpu);
2110 }
2111
2112 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2113 {
2114 /* Treat an INVD instruction as a NOP and just skip it. */
2115 return kvm_emulate_as_nop(vcpu);
2116 }
2117 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2118
2119 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2120 {
2121 kvm_queue_exception(vcpu, UD_VECTOR);
2122 return 1;
2123 }
2124 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2125
2126
2127 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2128 {
2129 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2130 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2131 return kvm_handle_invalid_op(vcpu);
2132
2133 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2134 return kvm_emulate_as_nop(vcpu);
2135 }
2136 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2137 {
2138 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2139 }
2140 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2141
2142 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2143 {
2144 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2145 }
2146 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2147
2148 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2149 {
2150 xfer_to_guest_mode_prepare();
2151 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2152 xfer_to_guest_mode_work_pending();
2153 }
2154
2155 /*
2156 * The fast path for frequent and performance sensitive wrmsr emulation,
2157 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2158 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2159 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2160 * other cases which must be called after interrupts are enabled on the host.
2161 */
2162 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2163 {
2164 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2165 return 1;
2166
2167 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2168 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2169 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2170 ((u32)(data >> 32) != X2APIC_BROADCAST))
2171 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2172
2173 return 1;
2174 }
2175
2176 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2177 {
2178 if (!kvm_can_use_hv_timer(vcpu))
2179 return 1;
2180
2181 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2182 return 0;
2183 }
2184
2185 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2186 {
2187 u32 msr = kvm_rcx_read(vcpu);
2188 u64 data;
2189 fastpath_t ret = EXIT_FASTPATH_NONE;
2190
2191 kvm_vcpu_srcu_read_lock(vcpu);
2192
2193 switch (msr) {
2194 case APIC_BASE_MSR + (APIC_ICR >> 4):
2195 data = kvm_read_edx_eax(vcpu);
2196 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2197 kvm_skip_emulated_instruction(vcpu);
2198 ret = EXIT_FASTPATH_EXIT_HANDLED;
2199 }
2200 break;
2201 case MSR_IA32_TSC_DEADLINE:
2202 data = kvm_read_edx_eax(vcpu);
2203 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2204 kvm_skip_emulated_instruction(vcpu);
2205 ret = EXIT_FASTPATH_REENTER_GUEST;
2206 }
2207 break;
2208 default:
2209 break;
2210 }
2211
2212 if (ret != EXIT_FASTPATH_NONE)
2213 trace_kvm_msr_write(msr, data);
2214
2215 kvm_vcpu_srcu_read_unlock(vcpu);
2216
2217 return ret;
2218 }
2219 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2220
2221 /*
2222 * Adapt set_msr() to msr_io()'s calling convention
2223 */
2224 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2225 {
2226 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2227 }
2228
2229 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2230 {
2231 u64 val;
2232
2233 /*
2234 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2235 * not support modifying the guest vCPU model on the fly, e.g. changing
2236 * the nVMX capabilities while L2 is running is nonsensical. Ignore
2237 * writes of the same value, e.g. to allow userspace to blindly stuff
2238 * all MSRs when emulating RESET.
2239 */
2240 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2241 if (do_get_msr(vcpu, index, &val) || *data != val)
2242 return -EINVAL;
2243
2244 return 0;
2245 }
2246
2247 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2248 }
2249
2250 #ifdef CONFIG_X86_64
2251 struct pvclock_clock {
2252 int vclock_mode;
2253 u64 cycle_last;
2254 u64 mask;
2255 u32 mult;
2256 u32 shift;
2257 u64 base_cycles;
2258 u64 offset;
2259 };
2260
2261 struct pvclock_gtod_data {
2262 seqcount_t seq;
2263
2264 struct pvclock_clock clock; /* extract of a clocksource struct */
2265 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2266
2267 ktime_t offs_boot;
2268 u64 wall_time_sec;
2269 };
2270
2271 static struct pvclock_gtod_data pvclock_gtod_data;
2272
2273 static void update_pvclock_gtod(struct timekeeper *tk)
2274 {
2275 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2276
2277 write_seqcount_begin(&vdata->seq);
2278
2279 /* copy pvclock gtod data */
2280 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2281 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2282 vdata->clock.mask = tk->tkr_mono.mask;
2283 vdata->clock.mult = tk->tkr_mono.mult;
2284 vdata->clock.shift = tk->tkr_mono.shift;
2285 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2286 vdata->clock.offset = tk->tkr_mono.base;
2287
2288 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2289 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2290 vdata->raw_clock.mask = tk->tkr_raw.mask;
2291 vdata->raw_clock.mult = tk->tkr_raw.mult;
2292 vdata->raw_clock.shift = tk->tkr_raw.shift;
2293 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2294 vdata->raw_clock.offset = tk->tkr_raw.base;
2295
2296 vdata->wall_time_sec = tk->xtime_sec;
2297
2298 vdata->offs_boot = tk->offs_boot;
2299
2300 write_seqcount_end(&vdata->seq);
2301 }
2302
2303 static s64 get_kvmclock_base_ns(void)
2304 {
2305 /* Count up from boot time, but with the frequency of the raw clock. */
2306 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2307 }
2308 #else
2309 static s64 get_kvmclock_base_ns(void)
2310 {
2311 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2312 return ktime_get_boottime_ns();
2313 }
2314 #endif
2315
2316 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2317 {
2318 int version;
2319 int r;
2320 struct pvclock_wall_clock wc;
2321 u32 wc_sec_hi;
2322 u64 wall_nsec;
2323
2324 if (!wall_clock)
2325 return;
2326
2327 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2328 if (r)
2329 return;
2330
2331 if (version & 1)
2332 ++version; /* first time write, random junk */
2333
2334 ++version;
2335
2336 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2337 return;
2338
2339 /*
2340 * The guest calculates current wall clock time by adding
2341 * system time (updated by kvm_guest_time_update below) to the
2342 * wall clock specified here. We do the reverse here.
2343 */
2344 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2345
2346 wc.nsec = do_div(wall_nsec, 1000000000);
2347 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2348 wc.version = version;
2349
2350 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2351
2352 if (sec_hi_ofs) {
2353 wc_sec_hi = wall_nsec >> 32;
2354 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2355 &wc_sec_hi, sizeof(wc_sec_hi));
2356 }
2357
2358 version++;
2359 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2360 }
2361
2362 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2363 bool old_msr, bool host_initiated)
2364 {
2365 struct kvm_arch *ka = &vcpu->kvm->arch;
2366
2367 if (vcpu->vcpu_id == 0 && !host_initiated) {
2368 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2369 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2370
2371 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2372 }
2373
2374 vcpu->arch.time = system_time;
2375 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2376
2377 /* we verify if the enable bit is set... */
2378 if (system_time & 1)
2379 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2380 sizeof(struct pvclock_vcpu_time_info));
2381 else
2382 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2383
2384 return;
2385 }
2386
2387 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2388 {
2389 do_shl32_div32(dividend, divisor);
2390 return dividend;
2391 }
2392
2393 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2394 s8 *pshift, u32 *pmultiplier)
2395 {
2396 uint64_t scaled64;
2397 int32_t shift = 0;
2398 uint64_t tps64;
2399 uint32_t tps32;
2400
2401 tps64 = base_hz;
2402 scaled64 = scaled_hz;
2403 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2404 tps64 >>= 1;
2405 shift--;
2406 }
2407
2408 tps32 = (uint32_t)tps64;
2409 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2410 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2411 scaled64 >>= 1;
2412 else
2413 tps32 <<= 1;
2414 shift++;
2415 }
2416
2417 *pshift = shift;
2418 *pmultiplier = div_frac(scaled64, tps32);
2419 }
2420
2421 #ifdef CONFIG_X86_64
2422 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2423 #endif
2424
2425 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2426 static unsigned long max_tsc_khz;
2427
2428 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2429 {
2430 u64 v = (u64)khz * (1000000 + ppm);
2431 do_div(v, 1000000);
2432 return v;
2433 }
2434
2435 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2436
2437 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2438 {
2439 u64 ratio;
2440
2441 /* Guest TSC same frequency as host TSC? */
2442 if (!scale) {
2443 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2444 return 0;
2445 }
2446
2447 /* TSC scaling supported? */
2448 if (!kvm_caps.has_tsc_control) {
2449 if (user_tsc_khz > tsc_khz) {
2450 vcpu->arch.tsc_catchup = 1;
2451 vcpu->arch.tsc_always_catchup = 1;
2452 return 0;
2453 } else {
2454 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2455 return -1;
2456 }
2457 }
2458
2459 /* TSC scaling required - calculate ratio */
2460 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2461 user_tsc_khz, tsc_khz);
2462
2463 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2464 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2465 user_tsc_khz);
2466 return -1;
2467 }
2468
2469 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2470 return 0;
2471 }
2472
2473 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2474 {
2475 u32 thresh_lo, thresh_hi;
2476 int use_scaling = 0;
2477
2478 /* tsc_khz can be zero if TSC calibration fails */
2479 if (user_tsc_khz == 0) {
2480 /* set tsc_scaling_ratio to a safe value */
2481 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2482 return -1;
2483 }
2484
2485 /* Compute a scale to convert nanoseconds in TSC cycles */
2486 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2487 &vcpu->arch.virtual_tsc_shift,
2488 &vcpu->arch.virtual_tsc_mult);
2489 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2490
2491 /*
2492 * Compute the variation in TSC rate which is acceptable
2493 * within the range of tolerance and decide if the
2494 * rate being applied is within that bounds of the hardware
2495 * rate. If so, no scaling or compensation need be done.
2496 */
2497 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2498 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2499 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2500 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2501 user_tsc_khz, thresh_lo, thresh_hi);
2502 use_scaling = 1;
2503 }
2504 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2505 }
2506
2507 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2508 {
2509 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2510 vcpu->arch.virtual_tsc_mult,
2511 vcpu->arch.virtual_tsc_shift);
2512 tsc += vcpu->arch.this_tsc_write;
2513 return tsc;
2514 }
2515
2516 #ifdef CONFIG_X86_64
2517 static inline int gtod_is_based_on_tsc(int mode)
2518 {
2519 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2520 }
2521 #endif
2522
2523 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2524 {
2525 #ifdef CONFIG_X86_64
2526 bool vcpus_matched;
2527 struct kvm_arch *ka = &vcpu->kvm->arch;
2528 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2529
2530 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2531 atomic_read(&vcpu->kvm->online_vcpus));
2532
2533 /*
2534 * Once the masterclock is enabled, always perform request in
2535 * order to update it.
2536 *
2537 * In order to enable masterclock, the host clocksource must be TSC
2538 * and the vcpus need to have matched TSCs. When that happens,
2539 * perform request to enable masterclock.
2540 */
2541 if (ka->use_master_clock ||
2542 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2543 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2544
2545 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2546 atomic_read(&vcpu->kvm->online_vcpus),
2547 ka->use_master_clock, gtod->clock.vclock_mode);
2548 #endif
2549 }
2550
2551 /*
2552 * Multiply tsc by a fixed point number represented by ratio.
2553 *
2554 * The most significant 64-N bits (mult) of ratio represent the
2555 * integral part of the fixed point number; the remaining N bits
2556 * (frac) represent the fractional part, ie. ratio represents a fixed
2557 * point number (mult + frac * 2^(-N)).
2558 *
2559 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2560 */
2561 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2562 {
2563 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2564 }
2565
2566 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2567 {
2568 u64 _tsc = tsc;
2569
2570 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2571 _tsc = __scale_tsc(ratio, tsc);
2572
2573 return _tsc;
2574 }
2575
2576 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2577 {
2578 u64 tsc;
2579
2580 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2581
2582 return target_tsc - tsc;
2583 }
2584
2585 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2586 {
2587 return vcpu->arch.l1_tsc_offset +
2588 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2589 }
2590 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2591
2592 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2593 {
2594 u64 nested_offset;
2595
2596 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2597 nested_offset = l1_offset;
2598 else
2599 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2600 kvm_caps.tsc_scaling_ratio_frac_bits);
2601
2602 nested_offset += l2_offset;
2603 return nested_offset;
2604 }
2605 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2606
2607 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2608 {
2609 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2610 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2611 kvm_caps.tsc_scaling_ratio_frac_bits);
2612
2613 return l1_multiplier;
2614 }
2615 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2616
2617 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2618 {
2619 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2620 vcpu->arch.l1_tsc_offset,
2621 l1_offset);
2622
2623 vcpu->arch.l1_tsc_offset = l1_offset;
2624
2625 /*
2626 * If we are here because L1 chose not to trap WRMSR to TSC then
2627 * according to the spec this should set L1's TSC (as opposed to
2628 * setting L1's offset for L2).
2629 */
2630 if (is_guest_mode(vcpu))
2631 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2632 l1_offset,
2633 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2634 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2635 else
2636 vcpu->arch.tsc_offset = l1_offset;
2637
2638 static_call(kvm_x86_write_tsc_offset)(vcpu);
2639 }
2640
2641 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2642 {
2643 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2644
2645 /* Userspace is changing the multiplier while L2 is active */
2646 if (is_guest_mode(vcpu))
2647 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2648 l1_multiplier,
2649 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2650 else
2651 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2652
2653 if (kvm_caps.has_tsc_control)
2654 static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2655 }
2656
2657 static inline bool kvm_check_tsc_unstable(void)
2658 {
2659 #ifdef CONFIG_X86_64
2660 /*
2661 * TSC is marked unstable when we're running on Hyper-V,
2662 * 'TSC page' clocksource is good.
2663 */
2664 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2665 return false;
2666 #endif
2667 return check_tsc_unstable();
2668 }
2669
2670 /*
2671 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2672 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2673 * participates in.
2674 */
2675 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2676 u64 ns, bool matched)
2677 {
2678 struct kvm *kvm = vcpu->kvm;
2679
2680 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2681
2682 /*
2683 * We also track th most recent recorded KHZ, write and time to
2684 * allow the matching interval to be extended at each write.
2685 */
2686 kvm->arch.last_tsc_nsec = ns;
2687 kvm->arch.last_tsc_write = tsc;
2688 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2689 kvm->arch.last_tsc_offset = offset;
2690
2691 vcpu->arch.last_guest_tsc = tsc;
2692
2693 kvm_vcpu_write_tsc_offset(vcpu, offset);
2694
2695 if (!matched) {
2696 /*
2697 * We split periods of matched TSC writes into generations.
2698 * For each generation, we track the original measured
2699 * nanosecond time, offset, and write, so if TSCs are in
2700 * sync, we can match exact offset, and if not, we can match
2701 * exact software computation in compute_guest_tsc()
2702 *
2703 * These values are tracked in kvm->arch.cur_xxx variables.
2704 */
2705 kvm->arch.cur_tsc_generation++;
2706 kvm->arch.cur_tsc_nsec = ns;
2707 kvm->arch.cur_tsc_write = tsc;
2708 kvm->arch.cur_tsc_offset = offset;
2709 kvm->arch.nr_vcpus_matched_tsc = 0;
2710 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2711 kvm->arch.nr_vcpus_matched_tsc++;
2712 }
2713
2714 /* Keep track of which generation this VCPU has synchronized to */
2715 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2716 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2717 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2718
2719 kvm_track_tsc_matching(vcpu);
2720 }
2721
2722 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2723 {
2724 struct kvm *kvm = vcpu->kvm;
2725 u64 offset, ns, elapsed;
2726 unsigned long flags;
2727 bool matched = false;
2728 bool synchronizing = false;
2729
2730 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2731 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2732 ns = get_kvmclock_base_ns();
2733 elapsed = ns - kvm->arch.last_tsc_nsec;
2734
2735 if (vcpu->arch.virtual_tsc_khz) {
2736 if (data == 0) {
2737 /*
2738 * detection of vcpu initialization -- need to sync
2739 * with other vCPUs. This particularly helps to keep
2740 * kvm_clock stable after CPU hotplug
2741 */
2742 synchronizing = true;
2743 } else {
2744 u64 tsc_exp = kvm->arch.last_tsc_write +
2745 nsec_to_cycles(vcpu, elapsed);
2746 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2747 /*
2748 * Special case: TSC write with a small delta (1 second)
2749 * of virtual cycle time against real time is
2750 * interpreted as an attempt to synchronize the CPU.
2751 */
2752 synchronizing = data < tsc_exp + tsc_hz &&
2753 data + tsc_hz > tsc_exp;
2754 }
2755 }
2756
2757 /*
2758 * For a reliable TSC, we can match TSC offsets, and for an unstable
2759 * TSC, we add elapsed time in this computation. We could let the
2760 * compensation code attempt to catch up if we fall behind, but
2761 * it's better to try to match offsets from the beginning.
2762 */
2763 if (synchronizing &&
2764 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2765 if (!kvm_check_tsc_unstable()) {
2766 offset = kvm->arch.cur_tsc_offset;
2767 } else {
2768 u64 delta = nsec_to_cycles(vcpu, elapsed);
2769 data += delta;
2770 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2771 }
2772 matched = true;
2773 }
2774
2775 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2776 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2777 }
2778
2779 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2780 s64 adjustment)
2781 {
2782 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2783 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2784 }
2785
2786 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2787 {
2788 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2789 WARN_ON(adjustment < 0);
2790 adjustment = kvm_scale_tsc((u64) adjustment,
2791 vcpu->arch.l1_tsc_scaling_ratio);
2792 adjust_tsc_offset_guest(vcpu, adjustment);
2793 }
2794
2795 #ifdef CONFIG_X86_64
2796
2797 static u64 read_tsc(void)
2798 {
2799 u64 ret = (u64)rdtsc_ordered();
2800 u64 last = pvclock_gtod_data.clock.cycle_last;
2801
2802 if (likely(ret >= last))
2803 return ret;
2804
2805 /*
2806 * GCC likes to generate cmov here, but this branch is extremely
2807 * predictable (it's just a function of time and the likely is
2808 * very likely) and there's a data dependence, so force GCC
2809 * to generate a branch instead. I don't barrier() because
2810 * we don't actually need a barrier, and if this function
2811 * ever gets inlined it will generate worse code.
2812 */
2813 asm volatile ("");
2814 return last;
2815 }
2816
2817 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2818 int *mode)
2819 {
2820 u64 tsc_pg_val;
2821 long v;
2822
2823 switch (clock->vclock_mode) {
2824 case VDSO_CLOCKMODE_HVCLOCK:
2825 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2826 tsc_timestamp, &tsc_pg_val)) {
2827 /* TSC page valid */
2828 *mode = VDSO_CLOCKMODE_HVCLOCK;
2829 v = (tsc_pg_val - clock->cycle_last) &
2830 clock->mask;
2831 } else {
2832 /* TSC page invalid */
2833 *mode = VDSO_CLOCKMODE_NONE;
2834 }
2835 break;
2836 case VDSO_CLOCKMODE_TSC:
2837 *mode = VDSO_CLOCKMODE_TSC;
2838 *tsc_timestamp = read_tsc();
2839 v = (*tsc_timestamp - clock->cycle_last) &
2840 clock->mask;
2841 break;
2842 default:
2843 *mode = VDSO_CLOCKMODE_NONE;
2844 }
2845
2846 if (*mode == VDSO_CLOCKMODE_NONE)
2847 *tsc_timestamp = v = 0;
2848
2849 return v * clock->mult;
2850 }
2851
2852 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2853 {
2854 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2855 unsigned long seq;
2856 int mode;
2857 u64 ns;
2858
2859 do {
2860 seq = read_seqcount_begin(&gtod->seq);
2861 ns = gtod->raw_clock.base_cycles;
2862 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2863 ns >>= gtod->raw_clock.shift;
2864 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2865 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2866 *t = ns;
2867
2868 return mode;
2869 }
2870
2871 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2872 {
2873 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2874 unsigned long seq;
2875 int mode;
2876 u64 ns;
2877
2878 do {
2879 seq = read_seqcount_begin(&gtod->seq);
2880 ts->tv_sec = gtod->wall_time_sec;
2881 ns = gtod->clock.base_cycles;
2882 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2883 ns >>= gtod->clock.shift;
2884 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2885
2886 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2887 ts->tv_nsec = ns;
2888
2889 return mode;
2890 }
2891
2892 /* returns true if host is using TSC based clocksource */
2893 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2894 {
2895 /* checked again under seqlock below */
2896 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2897 return false;
2898
2899 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2900 tsc_timestamp));
2901 }
2902
2903 /* returns true if host is using TSC based clocksource */
2904 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2905 u64 *tsc_timestamp)
2906 {
2907 /* checked again under seqlock below */
2908 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2909 return false;
2910
2911 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2912 }
2913 #endif
2914
2915 /*
2916 *
2917 * Assuming a stable TSC across physical CPUS, and a stable TSC
2918 * across virtual CPUs, the following condition is possible.
2919 * Each numbered line represents an event visible to both
2920 * CPUs at the next numbered event.
2921 *
2922 * "timespecX" represents host monotonic time. "tscX" represents
2923 * RDTSC value.
2924 *
2925 * VCPU0 on CPU0 | VCPU1 on CPU1
2926 *
2927 * 1. read timespec0,tsc0
2928 * 2. | timespec1 = timespec0 + N
2929 * | tsc1 = tsc0 + M
2930 * 3. transition to guest | transition to guest
2931 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2932 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2933 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2934 *
2935 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2936 *
2937 * - ret0 < ret1
2938 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2939 * ...
2940 * - 0 < N - M => M < N
2941 *
2942 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2943 * always the case (the difference between two distinct xtime instances
2944 * might be smaller then the difference between corresponding TSC reads,
2945 * when updating guest vcpus pvclock areas).
2946 *
2947 * To avoid that problem, do not allow visibility of distinct
2948 * system_timestamp/tsc_timestamp values simultaneously: use a master
2949 * copy of host monotonic time values. Update that master copy
2950 * in lockstep.
2951 *
2952 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2953 *
2954 */
2955
2956 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2957 {
2958 #ifdef CONFIG_X86_64
2959 struct kvm_arch *ka = &kvm->arch;
2960 int vclock_mode;
2961 bool host_tsc_clocksource, vcpus_matched;
2962
2963 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2964 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2965 atomic_read(&kvm->online_vcpus));
2966
2967 /*
2968 * If the host uses TSC clock, then passthrough TSC as stable
2969 * to the guest.
2970 */
2971 host_tsc_clocksource = kvm_get_time_and_clockread(
2972 &ka->master_kernel_ns,
2973 &ka->master_cycle_now);
2974
2975 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2976 && !ka->backwards_tsc_observed
2977 && !ka->boot_vcpu_runs_old_kvmclock;
2978
2979 if (ka->use_master_clock)
2980 atomic_set(&kvm_guest_has_master_clock, 1);
2981
2982 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2983 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2984 vcpus_matched);
2985 #endif
2986 }
2987
2988 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2989 {
2990 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2991 }
2992
2993 static void __kvm_start_pvclock_update(struct kvm *kvm)
2994 {
2995 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2996 write_seqcount_begin(&kvm->arch.pvclock_sc);
2997 }
2998
2999 static void kvm_start_pvclock_update(struct kvm *kvm)
3000 {
3001 kvm_make_mclock_inprogress_request(kvm);
3002
3003 /* no guest entries from this point */
3004 __kvm_start_pvclock_update(kvm);
3005 }
3006
3007 static void kvm_end_pvclock_update(struct kvm *kvm)
3008 {
3009 struct kvm_arch *ka = &kvm->arch;
3010 struct kvm_vcpu *vcpu;
3011 unsigned long i;
3012
3013 write_seqcount_end(&ka->pvclock_sc);
3014 raw_spin_unlock_irq(&ka->tsc_write_lock);
3015 kvm_for_each_vcpu(i, vcpu, kvm)
3016 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3017
3018 /* guest entries allowed */
3019 kvm_for_each_vcpu(i, vcpu, kvm)
3020 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3021 }
3022
3023 static void kvm_update_masterclock(struct kvm *kvm)
3024 {
3025 kvm_hv_request_tsc_page_update(kvm);
3026 kvm_start_pvclock_update(kvm);
3027 pvclock_update_vm_gtod_copy(kvm);
3028 kvm_end_pvclock_update(kvm);
3029 }
3030
3031 /*
3032 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3033 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3034 * can change during boot even if the TSC is constant, as it's possible for KVM
3035 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3036 * notification when calibration completes, but practically speaking calibration
3037 * will complete before userspace is alive enough to create VMs.
3038 */
3039 static unsigned long get_cpu_tsc_khz(void)
3040 {
3041 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3042 return tsc_khz;
3043 else
3044 return __this_cpu_read(cpu_tsc_khz);
3045 }
3046
3047 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
3048 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3049 {
3050 struct kvm_arch *ka = &kvm->arch;
3051 struct pvclock_vcpu_time_info hv_clock;
3052
3053 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3054 get_cpu();
3055
3056 data->flags = 0;
3057 if (ka->use_master_clock &&
3058 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3059 #ifdef CONFIG_X86_64
3060 struct timespec64 ts;
3061
3062 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3063 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3064 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3065 } else
3066 #endif
3067 data->host_tsc = rdtsc();
3068
3069 data->flags |= KVM_CLOCK_TSC_STABLE;
3070 hv_clock.tsc_timestamp = ka->master_cycle_now;
3071 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3072 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3073 &hv_clock.tsc_shift,
3074 &hv_clock.tsc_to_system_mul);
3075 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3076 } else {
3077 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3078 }
3079
3080 put_cpu();
3081 }
3082
3083 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3084 {
3085 struct kvm_arch *ka = &kvm->arch;
3086 unsigned seq;
3087
3088 do {
3089 seq = read_seqcount_begin(&ka->pvclock_sc);
3090 __get_kvmclock(kvm, data);
3091 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3092 }
3093
3094 u64 get_kvmclock_ns(struct kvm *kvm)
3095 {
3096 struct kvm_clock_data data;
3097
3098 get_kvmclock(kvm, &data);
3099 return data.clock;
3100 }
3101
3102 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3103 struct gfn_to_pfn_cache *gpc,
3104 unsigned int offset)
3105 {
3106 struct kvm_vcpu_arch *vcpu = &v->arch;
3107 struct pvclock_vcpu_time_info *guest_hv_clock;
3108 unsigned long flags;
3109
3110 read_lock_irqsave(&gpc->lock, flags);
3111 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3112 read_unlock_irqrestore(&gpc->lock, flags);
3113
3114 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3115 return;
3116
3117 read_lock_irqsave(&gpc->lock, flags);
3118 }
3119
3120 guest_hv_clock = (void *)(gpc->khva + offset);
3121
3122 /*
3123 * This VCPU is paused, but it's legal for a guest to read another
3124 * VCPU's kvmclock, so we really have to follow the specification where
3125 * it says that version is odd if data is being modified, and even after
3126 * it is consistent.
3127 */
3128
3129 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3130 smp_wmb();
3131
3132 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3133 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3134
3135 if (vcpu->pvclock_set_guest_stopped_request) {
3136 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3137 vcpu->pvclock_set_guest_stopped_request = false;
3138 }
3139
3140 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3141 smp_wmb();
3142
3143 guest_hv_clock->version = ++vcpu->hv_clock.version;
3144
3145 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3146 read_unlock_irqrestore(&gpc->lock, flags);
3147
3148 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3149 }
3150
3151 static int kvm_guest_time_update(struct kvm_vcpu *v)
3152 {
3153 unsigned long flags, tgt_tsc_khz;
3154 unsigned seq;
3155 struct kvm_vcpu_arch *vcpu = &v->arch;
3156 struct kvm_arch *ka = &v->kvm->arch;
3157 s64 kernel_ns;
3158 u64 tsc_timestamp, host_tsc;
3159 u8 pvclock_flags;
3160 bool use_master_clock;
3161
3162 kernel_ns = 0;
3163 host_tsc = 0;
3164
3165 /*
3166 * If the host uses TSC clock, then passthrough TSC as stable
3167 * to the guest.
3168 */
3169 do {
3170 seq = read_seqcount_begin(&ka->pvclock_sc);
3171 use_master_clock = ka->use_master_clock;
3172 if (use_master_clock) {
3173 host_tsc = ka->master_cycle_now;
3174 kernel_ns = ka->master_kernel_ns;
3175 }
3176 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3177
3178 /* Keep irq disabled to prevent changes to the clock */
3179 local_irq_save(flags);
3180 tgt_tsc_khz = get_cpu_tsc_khz();
3181 if (unlikely(tgt_tsc_khz == 0)) {
3182 local_irq_restore(flags);
3183 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3184 return 1;
3185 }
3186 if (!use_master_clock) {
3187 host_tsc = rdtsc();
3188 kernel_ns = get_kvmclock_base_ns();
3189 }
3190
3191 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3192
3193 /*
3194 * We may have to catch up the TSC to match elapsed wall clock
3195 * time for two reasons, even if kvmclock is used.
3196 * 1) CPU could have been running below the maximum TSC rate
3197 * 2) Broken TSC compensation resets the base at each VCPU
3198 * entry to avoid unknown leaps of TSC even when running
3199 * again on the same CPU. This may cause apparent elapsed
3200 * time to disappear, and the guest to stand still or run
3201 * very slowly.
3202 */
3203 if (vcpu->tsc_catchup) {
3204 u64 tsc = compute_guest_tsc(v, kernel_ns);
3205 if (tsc > tsc_timestamp) {
3206 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3207 tsc_timestamp = tsc;
3208 }
3209 }
3210
3211 local_irq_restore(flags);
3212
3213 /* With all the info we got, fill in the values */
3214
3215 if (kvm_caps.has_tsc_control)
3216 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3217 v->arch.l1_tsc_scaling_ratio);
3218
3219 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3220 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3221 &vcpu->hv_clock.tsc_shift,
3222 &vcpu->hv_clock.tsc_to_system_mul);
3223 vcpu->hw_tsc_khz = tgt_tsc_khz;
3224 kvm_xen_update_tsc_info(v);
3225 }
3226
3227 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3228 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3229 vcpu->last_guest_tsc = tsc_timestamp;
3230
3231 /* If the host uses TSC clocksource, then it is stable */
3232 pvclock_flags = 0;
3233 if (use_master_clock)
3234 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3235
3236 vcpu->hv_clock.flags = pvclock_flags;
3237
3238 if (vcpu->pv_time.active)
3239 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3240 if (vcpu->xen.vcpu_info_cache.active)
3241 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3242 offsetof(struct compat_vcpu_info, time));
3243 if (vcpu->xen.vcpu_time_info_cache.active)
3244 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3245 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3246 return 0;
3247 }
3248
3249 /*
3250 * kvmclock updates which are isolated to a given vcpu, such as
3251 * vcpu->cpu migration, should not allow system_timestamp from
3252 * the rest of the vcpus to remain static. Otherwise ntp frequency
3253 * correction applies to one vcpu's system_timestamp but not
3254 * the others.
3255 *
3256 * So in those cases, request a kvmclock update for all vcpus.
3257 * We need to rate-limit these requests though, as they can
3258 * considerably slow guests that have a large number of vcpus.
3259 * The time for a remote vcpu to update its kvmclock is bound
3260 * by the delay we use to rate-limit the updates.
3261 */
3262
3263 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3264
3265 static void kvmclock_update_fn(struct work_struct *work)
3266 {
3267 unsigned long i;
3268 struct delayed_work *dwork = to_delayed_work(work);
3269 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3270 kvmclock_update_work);
3271 struct kvm *kvm = container_of(ka, struct kvm, arch);
3272 struct kvm_vcpu *vcpu;
3273
3274 kvm_for_each_vcpu(i, vcpu, kvm) {
3275 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3276 kvm_vcpu_kick(vcpu);
3277 }
3278 }
3279
3280 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3281 {
3282 struct kvm *kvm = v->kvm;
3283
3284 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3285 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3286 KVMCLOCK_UPDATE_DELAY);
3287 }
3288
3289 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3290
3291 static void kvmclock_sync_fn(struct work_struct *work)
3292 {
3293 struct delayed_work *dwork = to_delayed_work(work);
3294 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3295 kvmclock_sync_work);
3296 struct kvm *kvm = container_of(ka, struct kvm, arch);
3297
3298 if (!kvmclock_periodic_sync)
3299 return;
3300
3301 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3302 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3303 KVMCLOCK_SYNC_PERIOD);
3304 }
3305
3306 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3307 static bool is_mci_control_msr(u32 msr)
3308 {
3309 return (msr & 3) == 0;
3310 }
3311 static bool is_mci_status_msr(u32 msr)
3312 {
3313 return (msr & 3) == 1;
3314 }
3315
3316 /*
3317 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3318 */
3319 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3320 {
3321 /* McStatusWrEn enabled? */
3322 if (guest_cpuid_is_amd_compatible(vcpu))
3323 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3324
3325 return false;
3326 }
3327
3328 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3329 {
3330 u64 mcg_cap = vcpu->arch.mcg_cap;
3331 unsigned bank_num = mcg_cap & 0xff;
3332 u32 msr = msr_info->index;
3333 u64 data = msr_info->data;
3334 u32 offset, last_msr;
3335
3336 switch (msr) {
3337 case MSR_IA32_MCG_STATUS:
3338 vcpu->arch.mcg_status = data;
3339 break;
3340 case MSR_IA32_MCG_CTL:
3341 if (!(mcg_cap & MCG_CTL_P) &&
3342 (data || !msr_info->host_initiated))
3343 return 1;
3344 if (data != 0 && data != ~(u64)0)
3345 return 1;
3346 vcpu->arch.mcg_ctl = data;
3347 break;
3348 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3349 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3350 if (msr > last_msr)
3351 return 1;
3352
3353 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3354 return 1;
3355 /* An attempt to write a 1 to a reserved bit raises #GP */
3356 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3357 return 1;
3358 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3359 last_msr + 1 - MSR_IA32_MC0_CTL2);
3360 vcpu->arch.mci_ctl2_banks[offset] = data;
3361 break;
3362 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3363 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3364 if (msr > last_msr)
3365 return 1;
3366
3367 /*
3368 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3369 * values are architecturally undefined. But, some Linux
3370 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3371 * issue on AMD K8s, allow bit 10 to be clear when setting all
3372 * other bits in order to avoid an uncaught #GP in the guest.
3373 *
3374 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3375 * single-bit ECC data errors.
3376 */
3377 if (is_mci_control_msr(msr) &&
3378 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3379 return 1;
3380
3381 /*
3382 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3383 * AMD-based CPUs allow non-zero values, but if and only if
3384 * HWCR[McStatusWrEn] is set.
3385 */
3386 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3387 data != 0 && !can_set_mci_status(vcpu))
3388 return 1;
3389
3390 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3391 last_msr + 1 - MSR_IA32_MC0_CTL);
3392 vcpu->arch.mce_banks[offset] = data;
3393 break;
3394 default:
3395 return 1;
3396 }
3397 return 0;
3398 }
3399
3400 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3401 {
3402 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3403
3404 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3405 }
3406
3407 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3408 {
3409 gpa_t gpa = data & ~0x3f;
3410
3411 /* Bits 4:5 are reserved, Should be zero */
3412 if (data & 0x30)
3413 return 1;
3414
3415 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3416 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3417 return 1;
3418
3419 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3420 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3421 return 1;
3422
3423 if (!lapic_in_kernel(vcpu))
3424 return data ? 1 : 0;
3425
3426 vcpu->arch.apf.msr_en_val = data;
3427
3428 if (!kvm_pv_async_pf_enabled(vcpu)) {
3429 kvm_clear_async_pf_completion_queue(vcpu);
3430 kvm_async_pf_hash_reset(vcpu);
3431 return 0;
3432 }
3433
3434 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3435 sizeof(u64)))
3436 return 1;
3437
3438 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3439 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3440
3441 kvm_async_pf_wakeup_all(vcpu);
3442
3443 return 0;
3444 }
3445
3446 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3447 {
3448 /* Bits 8-63 are reserved */
3449 if (data >> 8)
3450 return 1;
3451
3452 if (!lapic_in_kernel(vcpu))
3453 return 1;
3454
3455 vcpu->arch.apf.msr_int_val = data;
3456
3457 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3458
3459 return 0;
3460 }
3461
3462 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3463 {
3464 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3465 vcpu->arch.time = 0;
3466 }
3467
3468 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3469 {
3470 ++vcpu->stat.tlb_flush;
3471 static_call(kvm_x86_flush_tlb_all)(vcpu);
3472
3473 /* Flushing all ASIDs flushes the current ASID... */
3474 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3475 }
3476
3477 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3478 {
3479 ++vcpu->stat.tlb_flush;
3480
3481 if (!tdp_enabled) {
3482 /*
3483 * A TLB flush on behalf of the guest is equivalent to
3484 * INVPCID(all), toggling CR4.PGE, etc., which requires
3485 * a forced sync of the shadow page tables. Ensure all the
3486 * roots are synced and the guest TLB in hardware is clean.
3487 */
3488 kvm_mmu_sync_roots(vcpu);
3489 kvm_mmu_sync_prev_roots(vcpu);
3490 }
3491
3492 static_call(kvm_x86_flush_tlb_guest)(vcpu);
3493
3494 /*
3495 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3496 * grained flushing.
3497 */
3498 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3499 }
3500
3501
3502 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3503 {
3504 ++vcpu->stat.tlb_flush;
3505 static_call(kvm_x86_flush_tlb_current)(vcpu);
3506 }
3507
3508 /*
3509 * Service "local" TLB flush requests, which are specific to the current MMU
3510 * context. In addition to the generic event handling in vcpu_enter_guest(),
3511 * TLB flushes that are targeted at an MMU context also need to be serviced
3512 * prior before nested VM-Enter/VM-Exit.
3513 */
3514 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3515 {
3516 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3517 kvm_vcpu_flush_tlb_current(vcpu);
3518
3519 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3520 kvm_vcpu_flush_tlb_guest(vcpu);
3521 }
3522 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3523
3524 static void record_steal_time(struct kvm_vcpu *vcpu)
3525 {
3526 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3527 struct kvm_steal_time __user *st;
3528 struct kvm_memslots *slots;
3529 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3530 u64 steal;
3531 u32 version;
3532
3533 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3534 kvm_xen_runstate_set_running(vcpu);
3535 return;
3536 }
3537
3538 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3539 return;
3540
3541 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3542 return;
3543
3544 slots = kvm_memslots(vcpu->kvm);
3545
3546 if (unlikely(slots->generation != ghc->generation ||
3547 gpa != ghc->gpa ||
3548 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3549 /* We rely on the fact that it fits in a single page. */
3550 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3551
3552 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3553 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3554 return;
3555 }
3556
3557 st = (struct kvm_steal_time __user *)ghc->hva;
3558 /*
3559 * Doing a TLB flush here, on the guest's behalf, can avoid
3560 * expensive IPIs.
3561 */
3562 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3563 u8 st_preempted = 0;
3564 int err = -EFAULT;
3565
3566 if (!user_access_begin(st, sizeof(*st)))
3567 return;
3568
3569 asm volatile("1: xchgb %0, %2\n"
3570 "xor %1, %1\n"
3571 "2:\n"
3572 _ASM_EXTABLE_UA(1b, 2b)
3573 : "+q" (st_preempted),
3574 "+&r" (err),
3575 "+m" (st->preempted));
3576 if (err)
3577 goto out;
3578
3579 user_access_end();
3580
3581 vcpu->arch.st.preempted = 0;
3582
3583 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3584 st_preempted & KVM_VCPU_FLUSH_TLB);
3585 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3586 kvm_vcpu_flush_tlb_guest(vcpu);
3587
3588 if (!user_access_begin(st, sizeof(*st)))
3589 goto dirty;
3590 } else {
3591 if (!user_access_begin(st, sizeof(*st)))
3592 return;
3593
3594 unsafe_put_user(0, &st->preempted, out);
3595 vcpu->arch.st.preempted = 0;
3596 }
3597
3598 unsafe_get_user(version, &st->version, out);
3599 if (version & 1)
3600 version += 1; /* first time write, random junk */
3601
3602 version += 1;
3603 unsafe_put_user(version, &st->version, out);
3604
3605 smp_wmb();
3606
3607 unsafe_get_user(steal, &st->steal, out);
3608 steal += current->sched_info.run_delay -
3609 vcpu->arch.st.last_steal;
3610 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3611 unsafe_put_user(steal, &st->steal, out);
3612
3613 version += 1;
3614 unsafe_put_user(version, &st->version, out);
3615
3616 out:
3617 user_access_end();
3618 dirty:
3619 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3620 }
3621
3622 static bool kvm_is_msr_to_save(u32 msr_index)
3623 {
3624 unsigned int i;
3625
3626 for (i = 0; i < num_msrs_to_save; i++) {
3627 if (msrs_to_save[i] == msr_index)
3628 return true;
3629 }
3630
3631 return false;
3632 }
3633
3634 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3635 {
3636 u32 msr = msr_info->index;
3637 u64 data = msr_info->data;
3638
3639 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3640 return kvm_xen_write_hypercall_page(vcpu, data);
3641
3642 switch (msr) {
3643 case MSR_AMD64_NB_CFG:
3644 case MSR_IA32_UCODE_WRITE:
3645 case MSR_VM_HSAVE_PA:
3646 case MSR_AMD64_PATCH_LOADER:
3647 case MSR_AMD64_BU_CFG2:
3648 case MSR_AMD64_DC_CFG:
3649 case MSR_AMD64_TW_CFG:
3650 case MSR_F15H_EX_CFG:
3651 break;
3652
3653 case MSR_IA32_UCODE_REV:
3654 if (msr_info->host_initiated)
3655 vcpu->arch.microcode_version = data;
3656 break;
3657 case MSR_IA32_ARCH_CAPABILITIES:
3658 if (!msr_info->host_initiated)
3659 return 1;
3660 vcpu->arch.arch_capabilities = data;
3661 break;
3662 case MSR_IA32_PERF_CAPABILITIES:
3663 if (!msr_info->host_initiated)
3664 return 1;
3665 if (data & ~kvm_caps.supported_perf_cap)
3666 return 1;
3667
3668 /*
3669 * Note, this is not just a performance optimization! KVM
3670 * disallows changing feature MSRs after the vCPU has run; PMU
3671 * refresh will bug the VM if called after the vCPU has run.
3672 */
3673 if (vcpu->arch.perf_capabilities == data)
3674 break;
3675
3676 vcpu->arch.perf_capabilities = data;
3677 kvm_pmu_refresh(vcpu);
3678 break;
3679 case MSR_IA32_PRED_CMD:
3680 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu))
3681 return 1;
3682
3683 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB))
3684 return 1;
3685 if (!data)
3686 break;
3687
3688 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3689 break;
3690 case MSR_IA32_FLUSH_CMD:
3691 if (!msr_info->host_initiated &&
3692 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3693 return 1;
3694
3695 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3696 return 1;
3697 if (!data)
3698 break;
3699
3700 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3701 break;
3702 case MSR_EFER:
3703 return set_efer(vcpu, msr_info);
3704 case MSR_K7_HWCR:
3705 data &= ~(u64)0x40; /* ignore flush filter disable */
3706 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3707 data &= ~(u64)0x8; /* ignore TLB cache disable */
3708
3709 /* Handle McStatusWrEn */
3710 if (data == BIT_ULL(18)) {
3711 vcpu->arch.msr_hwcr = data;
3712 } else if (data != 0) {
3713 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3714 return 1;
3715 }
3716 break;
3717 case MSR_FAM10H_MMIO_CONF_BASE:
3718 if (data != 0) {
3719 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3720 return 1;
3721 }
3722 break;
3723 case MSR_IA32_CR_PAT:
3724 if (!kvm_pat_valid(data))
3725 return 1;
3726
3727 vcpu->arch.pat = data;
3728 break;
3729 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3730 case MSR_MTRRdefType:
3731 return kvm_mtrr_set_msr(vcpu, msr, data);
3732 case MSR_IA32_APICBASE:
3733 return kvm_set_apic_base(vcpu, msr_info);
3734 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3735 return kvm_x2apic_msr_write(vcpu, msr, data);
3736 case MSR_IA32_TSC_DEADLINE:
3737 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3738 break;
3739 case MSR_IA32_TSC_ADJUST:
3740 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3741 if (!msr_info->host_initiated) {
3742 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3743 adjust_tsc_offset_guest(vcpu, adj);
3744 /* Before back to guest, tsc_timestamp must be adjusted
3745 * as well, otherwise guest's percpu pvclock time could jump.
3746 */
3747 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3748 }
3749 vcpu->arch.ia32_tsc_adjust_msr = data;
3750 }
3751 break;
3752 case MSR_IA32_MISC_ENABLE: {
3753 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3754
3755 if (!msr_info->host_initiated) {
3756 /* RO bits */
3757 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3758 return 1;
3759
3760 /* R bits, i.e. writes are ignored, but don't fault. */
3761 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3762 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3763 }
3764
3765 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3766 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3767 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3768 return 1;
3769 vcpu->arch.ia32_misc_enable_msr = data;
3770 kvm_update_cpuid_runtime(vcpu);
3771 } else {
3772 vcpu->arch.ia32_misc_enable_msr = data;
3773 }
3774 break;
3775 }
3776 case MSR_IA32_SMBASE:
3777 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3778 return 1;
3779 vcpu->arch.smbase = data;
3780 break;
3781 case MSR_IA32_POWER_CTL:
3782 vcpu->arch.msr_ia32_power_ctl = data;
3783 break;
3784 case MSR_IA32_TSC:
3785 if (msr_info->host_initiated) {
3786 kvm_synchronize_tsc(vcpu, data);
3787 } else {
3788 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3789 adjust_tsc_offset_guest(vcpu, adj);
3790 vcpu->arch.ia32_tsc_adjust_msr += adj;
3791 }
3792 break;
3793 case MSR_IA32_XSS:
3794 if (!msr_info->host_initiated &&
3795 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3796 return 1;
3797 /*
3798 * KVM supports exposing PT to the guest, but does not support
3799 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3800 * XSAVES/XRSTORS to save/restore PT MSRs.
3801 */
3802 if (data & ~kvm_caps.supported_xss)
3803 return 1;
3804 vcpu->arch.ia32_xss = data;
3805 kvm_update_cpuid_runtime(vcpu);
3806 break;
3807 case MSR_SMI_COUNT:
3808 if (!msr_info->host_initiated)
3809 return 1;
3810 vcpu->arch.smi_count = data;
3811 break;
3812 case MSR_KVM_WALL_CLOCK_NEW:
3813 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3814 return 1;
3815
3816 vcpu->kvm->arch.wall_clock = data;
3817 kvm_write_wall_clock(vcpu->kvm, data, 0);
3818 break;
3819 case MSR_KVM_WALL_CLOCK:
3820 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3821 return 1;
3822
3823 vcpu->kvm->arch.wall_clock = data;
3824 kvm_write_wall_clock(vcpu->kvm, data, 0);
3825 break;
3826 case MSR_KVM_SYSTEM_TIME_NEW:
3827 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3828 return 1;
3829
3830 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3831 break;
3832 case MSR_KVM_SYSTEM_TIME:
3833 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3834 return 1;
3835
3836 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3837 break;
3838 case MSR_KVM_ASYNC_PF_EN:
3839 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3840 return 1;
3841
3842 if (kvm_pv_enable_async_pf(vcpu, data))
3843 return 1;
3844 break;
3845 case MSR_KVM_ASYNC_PF_INT:
3846 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3847 return 1;
3848
3849 if (kvm_pv_enable_async_pf_int(vcpu, data))
3850 return 1;
3851 break;
3852 case MSR_KVM_ASYNC_PF_ACK:
3853 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3854 return 1;
3855 if (data & 0x1) {
3856 vcpu->arch.apf.pageready_pending = false;
3857 kvm_check_async_pf_completion(vcpu);
3858 }
3859 break;
3860 case MSR_KVM_STEAL_TIME:
3861 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3862 return 1;
3863
3864 if (unlikely(!sched_info_on()))
3865 return 1;
3866
3867 if (data & KVM_STEAL_RESERVED_MASK)
3868 return 1;
3869
3870 vcpu->arch.st.msr_val = data;
3871
3872 if (!(data & KVM_MSR_ENABLED))
3873 break;
3874
3875 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3876
3877 break;
3878 case MSR_KVM_PV_EOI_EN:
3879 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3880 return 1;
3881
3882 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3883 return 1;
3884 break;
3885
3886 case MSR_KVM_POLL_CONTROL:
3887 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3888 return 1;
3889
3890 /* only enable bit supported */
3891 if (data & (-1ULL << 1))
3892 return 1;
3893
3894 vcpu->arch.msr_kvm_poll_control = data;
3895 break;
3896
3897 case MSR_IA32_MCG_CTL:
3898 case MSR_IA32_MCG_STATUS:
3899 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3900 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3901 return set_msr_mce(vcpu, msr_info);
3902
3903 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3904 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3905 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3906 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3907 if (kvm_pmu_is_valid_msr(vcpu, msr))
3908 return kvm_pmu_set_msr(vcpu, msr_info);
3909
3910 if (data)
3911 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3912 break;
3913 case MSR_K7_CLK_CTL:
3914 /*
3915 * Ignore all writes to this no longer documented MSR.
3916 * Writes are only relevant for old K7 processors,
3917 * all pre-dating SVM, but a recommended workaround from
3918 * AMD for these chips. It is possible to specify the
3919 * affected processor models on the command line, hence
3920 * the need to ignore the workaround.
3921 */
3922 break;
3923 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3924 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3925 case HV_X64_MSR_SYNDBG_OPTIONS:
3926 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3927 case HV_X64_MSR_CRASH_CTL:
3928 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3929 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3930 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3931 case HV_X64_MSR_TSC_EMULATION_STATUS:
3932 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3933 return kvm_hv_set_msr_common(vcpu, msr, data,
3934 msr_info->host_initiated);
3935 case MSR_IA32_BBL_CR_CTL3:
3936 /* Drop writes to this legacy MSR -- see rdmsr
3937 * counterpart for further detail.
3938 */
3939 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3940 break;
3941 case MSR_AMD64_OSVW_ID_LENGTH:
3942 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3943 return 1;
3944 vcpu->arch.osvw.length = data;
3945 break;
3946 case MSR_AMD64_OSVW_STATUS:
3947 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3948 return 1;
3949 vcpu->arch.osvw.status = data;
3950 break;
3951 case MSR_PLATFORM_INFO:
3952 if (!msr_info->host_initiated ||
3953 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3954 cpuid_fault_enabled(vcpu)))
3955 return 1;
3956 vcpu->arch.msr_platform_info = data;
3957 break;
3958 case MSR_MISC_FEATURES_ENABLES:
3959 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3960 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3961 !supports_cpuid_fault(vcpu)))
3962 return 1;
3963 vcpu->arch.msr_misc_features_enables = data;
3964 break;
3965 #ifdef CONFIG_X86_64
3966 case MSR_IA32_XFD:
3967 if (!msr_info->host_initiated &&
3968 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3969 return 1;
3970
3971 if (data & ~kvm_guest_supported_xfd(vcpu))
3972 return 1;
3973
3974 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3975 break;
3976 case MSR_IA32_XFD_ERR:
3977 if (!msr_info->host_initiated &&
3978 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3979 return 1;
3980
3981 if (data & ~kvm_guest_supported_xfd(vcpu))
3982 return 1;
3983
3984 vcpu->arch.guest_fpu.xfd_err = data;
3985 break;
3986 #endif
3987 default:
3988 if (kvm_pmu_is_valid_msr(vcpu, msr))
3989 return kvm_pmu_set_msr(vcpu, msr_info);
3990
3991 /*
3992 * Userspace is allowed to write '0' to MSRs that KVM reports
3993 * as to-be-saved, even if an MSRs isn't fully supported.
3994 */
3995 if (msr_info->host_initiated && !data &&
3996 kvm_is_msr_to_save(msr))
3997 break;
3998
3999 return KVM_MSR_RET_INVALID;
4000 }
4001 return 0;
4002 }
4003 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4004
4005 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4006 {
4007 u64 data;
4008 u64 mcg_cap = vcpu->arch.mcg_cap;
4009 unsigned bank_num = mcg_cap & 0xff;
4010 u32 offset, last_msr;
4011
4012 switch (msr) {
4013 case MSR_IA32_P5_MC_ADDR:
4014 case MSR_IA32_P5_MC_TYPE:
4015 data = 0;
4016 break;
4017 case MSR_IA32_MCG_CAP:
4018 data = vcpu->arch.mcg_cap;
4019 break;
4020 case MSR_IA32_MCG_CTL:
4021 if (!(mcg_cap & MCG_CTL_P) && !host)
4022 return 1;
4023 data = vcpu->arch.mcg_ctl;
4024 break;
4025 case MSR_IA32_MCG_STATUS:
4026 data = vcpu->arch.mcg_status;
4027 break;
4028 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4029 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4030 if (msr > last_msr)
4031 return 1;
4032
4033 if (!(mcg_cap & MCG_CMCI_P) && !host)
4034 return 1;
4035 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4036 last_msr + 1 - MSR_IA32_MC0_CTL2);
4037 data = vcpu->arch.mci_ctl2_banks[offset];
4038 break;
4039 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4040 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4041 if (msr > last_msr)
4042 return 1;
4043
4044 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4045 last_msr + 1 - MSR_IA32_MC0_CTL);
4046 data = vcpu->arch.mce_banks[offset];
4047 break;
4048 default:
4049 return 1;
4050 }
4051 *pdata = data;
4052 return 0;
4053 }
4054
4055 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4056 {
4057 switch (msr_info->index) {
4058 case MSR_IA32_PLATFORM_ID:
4059 case MSR_IA32_EBL_CR_POWERON:
4060 case MSR_IA32_LASTBRANCHFROMIP:
4061 case MSR_IA32_LASTBRANCHTOIP:
4062 case MSR_IA32_LASTINTFROMIP:
4063 case MSR_IA32_LASTINTTOIP:
4064 case MSR_AMD64_SYSCFG:
4065 case MSR_K8_TSEG_ADDR:
4066 case MSR_K8_TSEG_MASK:
4067 case MSR_VM_HSAVE_PA:
4068 case MSR_K8_INT_PENDING_MSG:
4069 case MSR_AMD64_NB_CFG:
4070 case MSR_FAM10H_MMIO_CONF_BASE:
4071 case MSR_AMD64_BU_CFG2:
4072 case MSR_IA32_PERF_CTL:
4073 case MSR_AMD64_DC_CFG:
4074 case MSR_AMD64_TW_CFG:
4075 case MSR_F15H_EX_CFG:
4076 /*
4077 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4078 * limit) MSRs. Just return 0, as we do not want to expose the host
4079 * data here. Do not conditionalize this on CPUID, as KVM does not do
4080 * so for existing CPU-specific MSRs.
4081 */
4082 case MSR_RAPL_POWER_UNIT:
4083 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4084 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4085 case MSR_PKG_ENERGY_STATUS: /* Total package */
4086 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4087 msr_info->data = 0;
4088 break;
4089 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4090 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4091 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4092 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4093 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4094 return kvm_pmu_get_msr(vcpu, msr_info);
4095 msr_info->data = 0;
4096 break;
4097 case MSR_IA32_UCODE_REV:
4098 msr_info->data = vcpu->arch.microcode_version;
4099 break;
4100 case MSR_IA32_ARCH_CAPABILITIES:
4101 if (!msr_info->host_initiated &&
4102 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4103 return 1;
4104 msr_info->data = vcpu->arch.arch_capabilities;
4105 break;
4106 case MSR_IA32_PERF_CAPABILITIES:
4107 if (!msr_info->host_initiated &&
4108 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4109 return 1;
4110 msr_info->data = vcpu->arch.perf_capabilities;
4111 break;
4112 case MSR_IA32_POWER_CTL:
4113 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4114 break;
4115 case MSR_IA32_TSC: {
4116 /*
4117 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4118 * even when not intercepted. AMD manual doesn't explicitly
4119 * state this but appears to behave the same.
4120 *
4121 * On userspace reads and writes, however, we unconditionally
4122 * return L1's TSC value to ensure backwards-compatible
4123 * behavior for migration.
4124 */
4125 u64 offset, ratio;
4126
4127 if (msr_info->host_initiated) {
4128 offset = vcpu->arch.l1_tsc_offset;
4129 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4130 } else {
4131 offset = vcpu->arch.tsc_offset;
4132 ratio = vcpu->arch.tsc_scaling_ratio;
4133 }
4134
4135 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4136 break;
4137 }
4138 case MSR_IA32_CR_PAT:
4139 msr_info->data = vcpu->arch.pat;
4140 break;
4141 case MSR_MTRRcap:
4142 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4143 case MSR_MTRRdefType:
4144 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4145 case 0xcd: /* fsb frequency */
4146 msr_info->data = 3;
4147 break;
4148 /*
4149 * MSR_EBC_FREQUENCY_ID
4150 * Conservative value valid for even the basic CPU models.
4151 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4152 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4153 * and 266MHz for model 3, or 4. Set Core Clock
4154 * Frequency to System Bus Frequency Ratio to 1 (bits
4155 * 31:24) even though these are only valid for CPU
4156 * models > 2, however guests may end up dividing or
4157 * multiplying by zero otherwise.
4158 */
4159 case MSR_EBC_FREQUENCY_ID:
4160 msr_info->data = 1 << 24;
4161 break;
4162 case MSR_IA32_APICBASE:
4163 msr_info->data = kvm_get_apic_base(vcpu);
4164 break;
4165 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4166 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4167 case MSR_IA32_TSC_DEADLINE:
4168 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4169 break;
4170 case MSR_IA32_TSC_ADJUST:
4171 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4172 break;
4173 case MSR_IA32_MISC_ENABLE:
4174 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4175 break;
4176 case MSR_IA32_SMBASE:
4177 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4178 return 1;
4179 msr_info->data = vcpu->arch.smbase;
4180 break;
4181 case MSR_SMI_COUNT:
4182 msr_info->data = vcpu->arch.smi_count;
4183 break;
4184 case MSR_IA32_PERF_STATUS:
4185 /* TSC increment by tick */
4186 msr_info->data = 1000ULL;
4187 /* CPU multiplier */
4188 msr_info->data |= (((uint64_t)4ULL) << 40);
4189 break;
4190 case MSR_EFER:
4191 msr_info->data = vcpu->arch.efer;
4192 break;
4193 case MSR_KVM_WALL_CLOCK:
4194 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4195 return 1;
4196
4197 msr_info->data = vcpu->kvm->arch.wall_clock;
4198 break;
4199 case MSR_KVM_WALL_CLOCK_NEW:
4200 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4201 return 1;
4202
4203 msr_info->data = vcpu->kvm->arch.wall_clock;
4204 break;
4205 case MSR_KVM_SYSTEM_TIME:
4206 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4207 return 1;
4208
4209 msr_info->data = vcpu->arch.time;
4210 break;
4211 case MSR_KVM_SYSTEM_TIME_NEW:
4212 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4213 return 1;
4214
4215 msr_info->data = vcpu->arch.time;
4216 break;
4217 case MSR_KVM_ASYNC_PF_EN:
4218 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4219 return 1;
4220
4221 msr_info->data = vcpu->arch.apf.msr_en_val;
4222 break;
4223 case MSR_KVM_ASYNC_PF_INT:
4224 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4225 return 1;
4226
4227 msr_info->data = vcpu->arch.apf.msr_int_val;
4228 break;
4229 case MSR_KVM_ASYNC_PF_ACK:
4230 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4231 return 1;
4232
4233 msr_info->data = 0;
4234 break;
4235 case MSR_KVM_STEAL_TIME:
4236 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4237 return 1;
4238
4239 msr_info->data = vcpu->arch.st.msr_val;
4240 break;
4241 case MSR_KVM_PV_EOI_EN:
4242 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4243 return 1;
4244
4245 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4246 break;
4247 case MSR_KVM_POLL_CONTROL:
4248 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4249 return 1;
4250
4251 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4252 break;
4253 case MSR_IA32_P5_MC_ADDR:
4254 case MSR_IA32_P5_MC_TYPE:
4255 case MSR_IA32_MCG_CAP:
4256 case MSR_IA32_MCG_CTL:
4257 case MSR_IA32_MCG_STATUS:
4258 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4259 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4260 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4261 msr_info->host_initiated);
4262 case MSR_IA32_XSS:
4263 if (!msr_info->host_initiated &&
4264 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4265 return 1;
4266 msr_info->data = vcpu->arch.ia32_xss;
4267 break;
4268 case MSR_K7_CLK_CTL:
4269 /*
4270 * Provide expected ramp-up count for K7. All other
4271 * are set to zero, indicating minimum divisors for
4272 * every field.
4273 *
4274 * This prevents guest kernels on AMD host with CPU
4275 * type 6, model 8 and higher from exploding due to
4276 * the rdmsr failing.
4277 */
4278 msr_info->data = 0x20000000;
4279 break;
4280 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4281 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4282 case HV_X64_MSR_SYNDBG_OPTIONS:
4283 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4284 case HV_X64_MSR_CRASH_CTL:
4285 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4286 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4287 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4288 case HV_X64_MSR_TSC_EMULATION_STATUS:
4289 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4290 return kvm_hv_get_msr_common(vcpu,
4291 msr_info->index, &msr_info->data,
4292 msr_info->host_initiated);
4293 case MSR_IA32_BBL_CR_CTL3:
4294 /* This legacy MSR exists but isn't fully documented in current
4295 * silicon. It is however accessed by winxp in very narrow
4296 * scenarios where it sets bit #19, itself documented as
4297 * a "reserved" bit. Best effort attempt to source coherent
4298 * read data here should the balance of the register be
4299 * interpreted by the guest:
4300 *
4301 * L2 cache control register 3: 64GB range, 256KB size,
4302 * enabled, latency 0x1, configured
4303 */
4304 msr_info->data = 0xbe702111;
4305 break;
4306 case MSR_AMD64_OSVW_ID_LENGTH:
4307 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4308 return 1;
4309 msr_info->data = vcpu->arch.osvw.length;
4310 break;
4311 case MSR_AMD64_OSVW_STATUS:
4312 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4313 return 1;
4314 msr_info->data = vcpu->arch.osvw.status;
4315 break;
4316 case MSR_PLATFORM_INFO:
4317 if (!msr_info->host_initiated &&
4318 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4319 return 1;
4320 msr_info->data = vcpu->arch.msr_platform_info;
4321 break;
4322 case MSR_MISC_FEATURES_ENABLES:
4323 msr_info->data = vcpu->arch.msr_misc_features_enables;
4324 break;
4325 case MSR_K7_HWCR:
4326 msr_info->data = vcpu->arch.msr_hwcr;
4327 break;
4328 #ifdef CONFIG_X86_64
4329 case MSR_IA32_XFD:
4330 if (!msr_info->host_initiated &&
4331 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4332 return 1;
4333
4334 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4335 break;
4336 case MSR_IA32_XFD_ERR:
4337 if (!msr_info->host_initiated &&
4338 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4339 return 1;
4340
4341 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4342 break;
4343 #endif
4344 default:
4345 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4346 return kvm_pmu_get_msr(vcpu, msr_info);
4347
4348 /*
4349 * Userspace is allowed to read MSRs that KVM reports as
4350 * to-be-saved, even if an MSR isn't fully supported.
4351 */
4352 if (msr_info->host_initiated &&
4353 kvm_is_msr_to_save(msr_info->index)) {
4354 msr_info->data = 0;
4355 break;
4356 }
4357
4358 return KVM_MSR_RET_INVALID;
4359 }
4360 return 0;
4361 }
4362 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4363
4364 /*
4365 * Read or write a bunch of msrs. All parameters are kernel addresses.
4366 *
4367 * @return number of msrs set successfully.
4368 */
4369 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4370 struct kvm_msr_entry *entries,
4371 int (*do_msr)(struct kvm_vcpu *vcpu,
4372 unsigned index, u64 *data))
4373 {
4374 int i;
4375
4376 for (i = 0; i < msrs->nmsrs; ++i)
4377 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4378 break;
4379
4380 return i;
4381 }
4382
4383 /*
4384 * Read or write a bunch of msrs. Parameters are user addresses.
4385 *
4386 * @return number of msrs set successfully.
4387 */
4388 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4389 int (*do_msr)(struct kvm_vcpu *vcpu,
4390 unsigned index, u64 *data),
4391 int writeback)
4392 {
4393 struct kvm_msrs msrs;
4394 struct kvm_msr_entry *entries;
4395 unsigned size;
4396 int r;
4397
4398 r = -EFAULT;
4399 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4400 goto out;
4401
4402 r = -E2BIG;
4403 if (msrs.nmsrs >= MAX_IO_MSRS)
4404 goto out;
4405
4406 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4407 entries = memdup_user(user_msrs->entries, size);
4408 if (IS_ERR(entries)) {
4409 r = PTR_ERR(entries);
4410 goto out;
4411 }
4412
4413 r = __msr_io(vcpu, &msrs, entries, do_msr);
4414
4415 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4416 r = -EFAULT;
4417
4418 kfree(entries);
4419 out:
4420 return r;
4421 }
4422
4423 static inline bool kvm_can_mwait_in_guest(void)
4424 {
4425 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4426 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4427 boot_cpu_has(X86_FEATURE_ARAT);
4428 }
4429
4430 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4431 struct kvm_cpuid2 __user *cpuid_arg)
4432 {
4433 struct kvm_cpuid2 cpuid;
4434 int r;
4435
4436 r = -EFAULT;
4437 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4438 return r;
4439
4440 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4441 if (r)
4442 return r;
4443
4444 r = -EFAULT;
4445 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4446 return r;
4447
4448 return 0;
4449 }
4450
4451 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4452 {
4453 int r = 0;
4454
4455 switch (ext) {
4456 case KVM_CAP_IRQCHIP:
4457 case KVM_CAP_HLT:
4458 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4459 case KVM_CAP_SET_TSS_ADDR:
4460 case KVM_CAP_EXT_CPUID:
4461 case KVM_CAP_EXT_EMUL_CPUID:
4462 case KVM_CAP_CLOCKSOURCE:
4463 case KVM_CAP_PIT:
4464 case KVM_CAP_NOP_IO_DELAY:
4465 case KVM_CAP_MP_STATE:
4466 case KVM_CAP_SYNC_MMU:
4467 case KVM_CAP_USER_NMI:
4468 case KVM_CAP_REINJECT_CONTROL:
4469 case KVM_CAP_IRQ_INJECT_STATUS:
4470 case KVM_CAP_IOEVENTFD:
4471 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4472 case KVM_CAP_PIT2:
4473 case KVM_CAP_PIT_STATE2:
4474 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4475 case KVM_CAP_VCPU_EVENTS:
4476 case KVM_CAP_HYPERV:
4477 case KVM_CAP_HYPERV_VAPIC:
4478 case KVM_CAP_HYPERV_SPIN:
4479 case KVM_CAP_HYPERV_SYNIC:
4480 case KVM_CAP_HYPERV_SYNIC2:
4481 case KVM_CAP_HYPERV_VP_INDEX:
4482 case KVM_CAP_HYPERV_EVENTFD:
4483 case KVM_CAP_HYPERV_TLBFLUSH:
4484 case KVM_CAP_HYPERV_SEND_IPI:
4485 case KVM_CAP_HYPERV_CPUID:
4486 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4487 case KVM_CAP_SYS_HYPERV_CPUID:
4488 case KVM_CAP_PCI_SEGMENT:
4489 case KVM_CAP_DEBUGREGS:
4490 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4491 case KVM_CAP_XSAVE:
4492 case KVM_CAP_ASYNC_PF:
4493 case KVM_CAP_ASYNC_PF_INT:
4494 case KVM_CAP_GET_TSC_KHZ:
4495 case KVM_CAP_KVMCLOCK_CTRL:
4496 case KVM_CAP_READONLY_MEM:
4497 case KVM_CAP_HYPERV_TIME:
4498 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4499 case KVM_CAP_TSC_DEADLINE_TIMER:
4500 case KVM_CAP_DISABLE_QUIRKS:
4501 case KVM_CAP_SET_BOOT_CPU_ID:
4502 case KVM_CAP_SPLIT_IRQCHIP:
4503 case KVM_CAP_IMMEDIATE_EXIT:
4504 case KVM_CAP_PMU_EVENT_FILTER:
4505 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4506 case KVM_CAP_GET_MSR_FEATURES:
4507 case KVM_CAP_MSR_PLATFORM_INFO:
4508 case KVM_CAP_EXCEPTION_PAYLOAD:
4509 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4510 case KVM_CAP_SET_GUEST_DEBUG:
4511 case KVM_CAP_LAST_CPU:
4512 case KVM_CAP_X86_USER_SPACE_MSR:
4513 case KVM_CAP_X86_MSR_FILTER:
4514 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4515 #ifdef CONFIG_X86_SGX_KVM
4516 case KVM_CAP_SGX_ATTRIBUTE:
4517 #endif
4518 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4519 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4520 case KVM_CAP_SREGS2:
4521 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4522 case KVM_CAP_VCPU_ATTRIBUTES:
4523 case KVM_CAP_SYS_ATTRIBUTES:
4524 case KVM_CAP_VAPIC:
4525 case KVM_CAP_ENABLE_CAP:
4526 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4527 case KVM_CAP_IRQFD_RESAMPLE:
4528 r = 1;
4529 break;
4530 case KVM_CAP_EXIT_HYPERCALL:
4531 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4532 break;
4533 case KVM_CAP_SET_GUEST_DEBUG2:
4534 return KVM_GUESTDBG_VALID_MASK;
4535 #ifdef CONFIG_KVM_XEN
4536 case KVM_CAP_XEN_HVM:
4537 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4538 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4539 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4540 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4541 KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4542 if (sched_info_on())
4543 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4544 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4545 break;
4546 #endif
4547 case KVM_CAP_SYNC_REGS:
4548 r = KVM_SYNC_X86_VALID_FIELDS;
4549 break;
4550 case KVM_CAP_ADJUST_CLOCK:
4551 r = KVM_CLOCK_VALID_FLAGS;
4552 break;
4553 case KVM_CAP_X86_DISABLE_EXITS:
4554 r = KVM_X86_DISABLE_EXITS_PAUSE;
4555
4556 if (!mitigate_smt_rsb) {
4557 r |= KVM_X86_DISABLE_EXITS_HLT |
4558 KVM_X86_DISABLE_EXITS_CSTATE;
4559
4560 if (kvm_can_mwait_in_guest())
4561 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4562 }
4563 break;
4564 case KVM_CAP_X86_SMM:
4565 if (!IS_ENABLED(CONFIG_KVM_SMM))
4566 break;
4567
4568 /* SMBASE is usually relocated above 1M on modern chipsets,
4569 * and SMM handlers might indeed rely on 4G segment limits,
4570 * so do not report SMM to be available if real mode is
4571 * emulated via vm86 mode. Still, do not go to great lengths
4572 * to avoid userspace's usage of the feature, because it is a
4573 * fringe case that is not enabled except via specific settings
4574 * of the module parameters.
4575 */
4576 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4577 break;
4578 case KVM_CAP_NR_VCPUS:
4579 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4580 break;
4581 case KVM_CAP_MAX_VCPUS:
4582 r = KVM_MAX_VCPUS;
4583 break;
4584 case KVM_CAP_MAX_VCPU_ID:
4585 r = KVM_MAX_VCPU_IDS;
4586 break;
4587 case KVM_CAP_PV_MMU: /* obsolete */
4588 r = 0;
4589 break;
4590 case KVM_CAP_MCE:
4591 r = KVM_MAX_MCE_BANKS;
4592 break;
4593 case KVM_CAP_XCRS:
4594 r = boot_cpu_has(X86_FEATURE_XSAVE);
4595 break;
4596 case KVM_CAP_TSC_CONTROL:
4597 case KVM_CAP_VM_TSC_CONTROL:
4598 r = kvm_caps.has_tsc_control;
4599 break;
4600 case KVM_CAP_X2APIC_API:
4601 r = KVM_X2APIC_API_VALID_FLAGS;
4602 break;
4603 case KVM_CAP_NESTED_STATE:
4604 r = kvm_x86_ops.nested_ops->get_state ?
4605 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4606 break;
4607 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4608 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4609 break;
4610 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4611 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4612 break;
4613 case KVM_CAP_SMALLER_MAXPHYADDR:
4614 r = (int) allow_smaller_maxphyaddr;
4615 break;
4616 case KVM_CAP_STEAL_TIME:
4617 r = sched_info_on();
4618 break;
4619 case KVM_CAP_X86_BUS_LOCK_EXIT:
4620 if (kvm_caps.has_bus_lock_exit)
4621 r = KVM_BUS_LOCK_DETECTION_OFF |
4622 KVM_BUS_LOCK_DETECTION_EXIT;
4623 else
4624 r = 0;
4625 break;
4626 case KVM_CAP_XSAVE2: {
4627 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4628 if (r < sizeof(struct kvm_xsave))
4629 r = sizeof(struct kvm_xsave);
4630 break;
4631 }
4632 case KVM_CAP_PMU_CAPABILITY:
4633 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4634 break;
4635 case KVM_CAP_DISABLE_QUIRKS2:
4636 r = KVM_X86_VALID_QUIRKS;
4637 break;
4638 case KVM_CAP_X86_NOTIFY_VMEXIT:
4639 r = kvm_caps.has_notify_vmexit;
4640 break;
4641 default:
4642 break;
4643 }
4644 return r;
4645 }
4646
4647 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4648 {
4649 void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4650
4651 if ((u64)(unsigned long)uaddr != attr->addr)
4652 return ERR_PTR_USR(-EFAULT);
4653 return uaddr;
4654 }
4655
4656 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4657 {
4658 u64 __user *uaddr = kvm_get_attr_addr(attr);
4659
4660 if (attr->group)
4661 return -ENXIO;
4662
4663 if (IS_ERR(uaddr))
4664 return PTR_ERR(uaddr);
4665
4666 switch (attr->attr) {
4667 case KVM_X86_XCOMP_GUEST_SUPP:
4668 if (put_user(kvm_caps.supported_xcr0, uaddr))
4669 return -EFAULT;
4670 return 0;
4671 default:
4672 return -ENXIO;
4673 }
4674 }
4675
4676 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4677 {
4678 if (attr->group)
4679 return -ENXIO;
4680
4681 switch (attr->attr) {
4682 case KVM_X86_XCOMP_GUEST_SUPP:
4683 return 0;
4684 default:
4685 return -ENXIO;
4686 }
4687 }
4688
4689 long kvm_arch_dev_ioctl(struct file *filp,
4690 unsigned int ioctl, unsigned long arg)
4691 {
4692 void __user *argp = (void __user *)arg;
4693 long r;
4694
4695 switch (ioctl) {
4696 case KVM_GET_MSR_INDEX_LIST: {
4697 struct kvm_msr_list __user *user_msr_list = argp;
4698 struct kvm_msr_list msr_list;
4699 unsigned n;
4700
4701 r = -EFAULT;
4702 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4703 goto out;
4704 n = msr_list.nmsrs;
4705 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4706 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4707 goto out;
4708 r = -E2BIG;
4709 if (n < msr_list.nmsrs)
4710 goto out;
4711 r = -EFAULT;
4712 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4713 num_msrs_to_save * sizeof(u32)))
4714 goto out;
4715 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4716 &emulated_msrs,
4717 num_emulated_msrs * sizeof(u32)))
4718 goto out;
4719 r = 0;
4720 break;
4721 }
4722 case KVM_GET_SUPPORTED_CPUID:
4723 case KVM_GET_EMULATED_CPUID: {
4724 struct kvm_cpuid2 __user *cpuid_arg = argp;
4725 struct kvm_cpuid2 cpuid;
4726
4727 r = -EFAULT;
4728 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4729 goto out;
4730
4731 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4732 ioctl);
4733 if (r)
4734 goto out;
4735
4736 r = -EFAULT;
4737 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4738 goto out;
4739 r = 0;
4740 break;
4741 }
4742 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4743 r = -EFAULT;
4744 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4745 sizeof(kvm_caps.supported_mce_cap)))
4746 goto out;
4747 r = 0;
4748 break;
4749 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4750 struct kvm_msr_list __user *user_msr_list = argp;
4751 struct kvm_msr_list msr_list;
4752 unsigned int n;
4753
4754 r = -EFAULT;
4755 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4756 goto out;
4757 n = msr_list.nmsrs;
4758 msr_list.nmsrs = num_msr_based_features;
4759 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4760 goto out;
4761 r = -E2BIG;
4762 if (n < msr_list.nmsrs)
4763 goto out;
4764 r = -EFAULT;
4765 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4766 num_msr_based_features * sizeof(u32)))
4767 goto out;
4768 r = 0;
4769 break;
4770 }
4771 case KVM_GET_MSRS:
4772 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4773 break;
4774 case KVM_GET_SUPPORTED_HV_CPUID:
4775 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4776 break;
4777 case KVM_GET_DEVICE_ATTR: {
4778 struct kvm_device_attr attr;
4779 r = -EFAULT;
4780 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4781 break;
4782 r = kvm_x86_dev_get_attr(&attr);
4783 break;
4784 }
4785 case KVM_HAS_DEVICE_ATTR: {
4786 struct kvm_device_attr attr;
4787 r = -EFAULT;
4788 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4789 break;
4790 r = kvm_x86_dev_has_attr(&attr);
4791 break;
4792 }
4793 default:
4794 r = -EINVAL;
4795 break;
4796 }
4797 out:
4798 return r;
4799 }
4800
4801 static void wbinvd_ipi(void *garbage)
4802 {
4803 wbinvd();
4804 }
4805
4806 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4807 {
4808 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4809 }
4810
4811 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4812 {
4813 /* Address WBINVD may be executed by guest */
4814 if (need_emulate_wbinvd(vcpu)) {
4815 if (static_call(kvm_x86_has_wbinvd_exit)())
4816 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4817 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4818 smp_call_function_single(vcpu->cpu,
4819 wbinvd_ipi, NULL, 1);
4820 }
4821
4822 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4823
4824 /* Save host pkru register if supported */
4825 vcpu->arch.host_pkru = read_pkru();
4826
4827 /* Apply any externally detected TSC adjustments (due to suspend) */
4828 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4829 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4830 vcpu->arch.tsc_offset_adjustment = 0;
4831 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4832 }
4833
4834 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4835 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4836 rdtsc() - vcpu->arch.last_host_tsc;
4837 if (tsc_delta < 0)
4838 mark_tsc_unstable("KVM discovered backwards TSC");
4839
4840 if (kvm_check_tsc_unstable()) {
4841 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4842 vcpu->arch.last_guest_tsc);
4843 kvm_vcpu_write_tsc_offset(vcpu, offset);
4844 vcpu->arch.tsc_catchup = 1;
4845 }
4846
4847 if (kvm_lapic_hv_timer_in_use(vcpu))
4848 kvm_lapic_restart_hv_timer(vcpu);
4849
4850 /*
4851 * On a host with synchronized TSC, there is no need to update
4852 * kvmclock on vcpu->cpu migration
4853 */
4854 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4855 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4856 if (vcpu->cpu != cpu)
4857 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4858 vcpu->cpu = cpu;
4859 }
4860
4861 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4862 }
4863
4864 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4865 {
4866 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4867 struct kvm_steal_time __user *st;
4868 struct kvm_memslots *slots;
4869 static const u8 preempted = KVM_VCPU_PREEMPTED;
4870 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4871
4872 /*
4873 * The vCPU can be marked preempted if and only if the VM-Exit was on
4874 * an instruction boundary and will not trigger guest emulation of any
4875 * kind (see vcpu_run). Vendor specific code controls (conservatively)
4876 * when this is true, for example allowing the vCPU to be marked
4877 * preempted if and only if the VM-Exit was due to a host interrupt.
4878 */
4879 if (!vcpu->arch.at_instruction_boundary) {
4880 vcpu->stat.preemption_other++;
4881 return;
4882 }
4883
4884 vcpu->stat.preemption_reported++;
4885 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4886 return;
4887
4888 if (vcpu->arch.st.preempted)
4889 return;
4890
4891 /* This happens on process exit */
4892 if (unlikely(current->mm != vcpu->kvm->mm))
4893 return;
4894
4895 slots = kvm_memslots(vcpu->kvm);
4896
4897 if (unlikely(slots->generation != ghc->generation ||
4898 gpa != ghc->gpa ||
4899 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4900 return;
4901
4902 st = (struct kvm_steal_time __user *)ghc->hva;
4903 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4904
4905 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4906 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4907
4908 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4909 }
4910
4911 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4912 {
4913 int idx;
4914
4915 if (vcpu->preempted) {
4916 if (!vcpu->arch.guest_state_protected)
4917 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4918
4919 /*
4920 * Take the srcu lock as memslots will be accessed to check the gfn
4921 * cache generation against the memslots generation.
4922 */
4923 idx = srcu_read_lock(&vcpu->kvm->srcu);
4924 if (kvm_xen_msr_enabled(vcpu->kvm))
4925 kvm_xen_runstate_set_preempted(vcpu);
4926 else
4927 kvm_steal_time_set_preempted(vcpu);
4928 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4929 }
4930
4931 static_call(kvm_x86_vcpu_put)(vcpu);
4932 vcpu->arch.last_host_tsc = rdtsc();
4933 }
4934
4935 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4936 struct kvm_lapic_state *s)
4937 {
4938 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4939
4940 return kvm_apic_get_state(vcpu, s);
4941 }
4942
4943 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4944 struct kvm_lapic_state *s)
4945 {
4946 int r;
4947
4948 r = kvm_apic_set_state(vcpu, s);
4949 if (r)
4950 return r;
4951 update_cr8_intercept(vcpu);
4952
4953 return 0;
4954 }
4955
4956 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4957 {
4958 /*
4959 * We can accept userspace's request for interrupt injection
4960 * as long as we have a place to store the interrupt number.
4961 * The actual injection will happen when the CPU is able to
4962 * deliver the interrupt.
4963 */
4964 if (kvm_cpu_has_extint(vcpu))
4965 return false;
4966
4967 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4968 return (!lapic_in_kernel(vcpu) ||
4969 kvm_apic_accept_pic_intr(vcpu));
4970 }
4971
4972 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4973 {
4974 /*
4975 * Do not cause an interrupt window exit if an exception
4976 * is pending or an event needs reinjection; userspace
4977 * might want to inject the interrupt manually using KVM_SET_REGS
4978 * or KVM_SET_SREGS. For that to work, we must be at an
4979 * instruction boundary and with no events half-injected.
4980 */
4981 return (kvm_arch_interrupt_allowed(vcpu) &&
4982 kvm_cpu_accept_dm_intr(vcpu) &&
4983 !kvm_event_needs_reinjection(vcpu) &&
4984 !kvm_is_exception_pending(vcpu));
4985 }
4986
4987 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4988 struct kvm_interrupt *irq)
4989 {
4990 if (irq->irq >= KVM_NR_INTERRUPTS)
4991 return -EINVAL;
4992
4993 if (!irqchip_in_kernel(vcpu->kvm)) {
4994 kvm_queue_interrupt(vcpu, irq->irq, false);
4995 kvm_make_request(KVM_REQ_EVENT, vcpu);
4996 return 0;
4997 }
4998
4999 /*
5000 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5001 * fail for in-kernel 8259.
5002 */
5003 if (pic_in_kernel(vcpu->kvm))
5004 return -ENXIO;
5005
5006 if (vcpu->arch.pending_external_vector != -1)
5007 return -EEXIST;
5008
5009 vcpu->arch.pending_external_vector = irq->irq;
5010 kvm_make_request(KVM_REQ_EVENT, vcpu);
5011 return 0;
5012 }
5013
5014 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5015 {
5016 kvm_inject_nmi(vcpu);
5017
5018 return 0;
5019 }
5020
5021 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5022 struct kvm_tpr_access_ctl *tac)
5023 {
5024 if (tac->flags)
5025 return -EINVAL;
5026 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5027 return 0;
5028 }
5029
5030 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5031 u64 mcg_cap)
5032 {
5033 int r;
5034 unsigned bank_num = mcg_cap & 0xff, bank;
5035
5036 r = -EINVAL;
5037 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5038 goto out;
5039 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5040 goto out;
5041 r = 0;
5042 vcpu->arch.mcg_cap = mcg_cap;
5043 /* Init IA32_MCG_CTL to all 1s */
5044 if (mcg_cap & MCG_CTL_P)
5045 vcpu->arch.mcg_ctl = ~(u64)0;
5046 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5047 for (bank = 0; bank < bank_num; bank++) {
5048 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5049 if (mcg_cap & MCG_CMCI_P)
5050 vcpu->arch.mci_ctl2_banks[bank] = 0;
5051 }
5052
5053 kvm_apic_after_set_mcg_cap(vcpu);
5054
5055 static_call(kvm_x86_setup_mce)(vcpu);
5056 out:
5057 return r;
5058 }
5059
5060 /*
5061 * Validate this is an UCNA (uncorrectable no action) error by checking the
5062 * MCG_STATUS and MCi_STATUS registers:
5063 * - none of the bits for Machine Check Exceptions are set
5064 * - both the VAL (valid) and UC (uncorrectable) bits are set
5065 * MCI_STATUS_PCC - Processor Context Corrupted
5066 * MCI_STATUS_S - Signaled as a Machine Check Exception
5067 * MCI_STATUS_AR - Software recoverable Action Required
5068 */
5069 static bool is_ucna(struct kvm_x86_mce *mce)
5070 {
5071 return !mce->mcg_status &&
5072 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5073 (mce->status & MCI_STATUS_VAL) &&
5074 (mce->status & MCI_STATUS_UC);
5075 }
5076
5077 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5078 {
5079 u64 mcg_cap = vcpu->arch.mcg_cap;
5080
5081 banks[1] = mce->status;
5082 banks[2] = mce->addr;
5083 banks[3] = mce->misc;
5084 vcpu->arch.mcg_status = mce->mcg_status;
5085
5086 if (!(mcg_cap & MCG_CMCI_P) ||
5087 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5088 return 0;
5089
5090 if (lapic_in_kernel(vcpu))
5091 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5092
5093 return 0;
5094 }
5095
5096 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5097 struct kvm_x86_mce *mce)
5098 {
5099 u64 mcg_cap = vcpu->arch.mcg_cap;
5100 unsigned bank_num = mcg_cap & 0xff;
5101 u64 *banks = vcpu->arch.mce_banks;
5102
5103 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5104 return -EINVAL;
5105
5106 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5107
5108 if (is_ucna(mce))
5109 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5110
5111 /*
5112 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5113 * reporting is disabled
5114 */
5115 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5116 vcpu->arch.mcg_ctl != ~(u64)0)
5117 return 0;
5118 /*
5119 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5120 * reporting is disabled for the bank
5121 */
5122 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5123 return 0;
5124 if (mce->status & MCI_STATUS_UC) {
5125 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5126 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5127 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5128 return 0;
5129 }
5130 if (banks[1] & MCI_STATUS_VAL)
5131 mce->status |= MCI_STATUS_OVER;
5132 banks[2] = mce->addr;
5133 banks[3] = mce->misc;
5134 vcpu->arch.mcg_status = mce->mcg_status;
5135 banks[1] = mce->status;
5136 kvm_queue_exception(vcpu, MC_VECTOR);
5137 } else if (!(banks[1] & MCI_STATUS_VAL)
5138 || !(banks[1] & MCI_STATUS_UC)) {
5139 if (banks[1] & MCI_STATUS_VAL)
5140 mce->status |= MCI_STATUS_OVER;
5141 banks[2] = mce->addr;
5142 banks[3] = mce->misc;
5143 banks[1] = mce->status;
5144 } else
5145 banks[1] |= MCI_STATUS_OVER;
5146 return 0;
5147 }
5148
5149 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5150 struct kvm_vcpu_events *events)
5151 {
5152 struct kvm_queued_exception *ex;
5153
5154 process_nmi(vcpu);
5155
5156 #ifdef CONFIG_KVM_SMM
5157 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5158 process_smi(vcpu);
5159 #endif
5160
5161 /*
5162 * KVM's ABI only allows for one exception to be migrated. Luckily,
5163 * the only time there can be two queued exceptions is if there's a
5164 * non-exiting _injected_ exception, and a pending exiting exception.
5165 * In that case, ignore the VM-Exiting exception as it's an extension
5166 * of the injected exception.
5167 */
5168 if (vcpu->arch.exception_vmexit.pending &&
5169 !vcpu->arch.exception.pending &&
5170 !vcpu->arch.exception.injected)
5171 ex = &vcpu->arch.exception_vmexit;
5172 else
5173 ex = &vcpu->arch.exception;
5174
5175 /*
5176 * In guest mode, payload delivery should be deferred if the exception
5177 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5178 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5179 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5180 * propagate the payload and so it cannot be safely deferred. Deliver
5181 * the payload if the capability hasn't been requested.
5182 */
5183 if (!vcpu->kvm->arch.exception_payload_enabled &&
5184 ex->pending && ex->has_payload)
5185 kvm_deliver_exception_payload(vcpu, ex);
5186
5187 memset(events, 0, sizeof(*events));
5188
5189 /*
5190 * The API doesn't provide the instruction length for software
5191 * exceptions, so don't report them. As long as the guest RIP
5192 * isn't advanced, we should expect to encounter the exception
5193 * again.
5194 */
5195 if (!kvm_exception_is_soft(ex->vector)) {
5196 events->exception.injected = ex->injected;
5197 events->exception.pending = ex->pending;
5198 /*
5199 * For ABI compatibility, deliberately conflate
5200 * pending and injected exceptions when
5201 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5202 */
5203 if (!vcpu->kvm->arch.exception_payload_enabled)
5204 events->exception.injected |= ex->pending;
5205 }
5206 events->exception.nr = ex->vector;
5207 events->exception.has_error_code = ex->has_error_code;
5208 events->exception.error_code = ex->error_code;
5209 events->exception_has_payload = ex->has_payload;
5210 events->exception_payload = ex->payload;
5211
5212 events->interrupt.injected =
5213 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5214 events->interrupt.nr = vcpu->arch.interrupt.nr;
5215 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5216
5217 events->nmi.injected = vcpu->arch.nmi_injected;
5218 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5219 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5220
5221 /* events->sipi_vector is never valid when reporting to user space */
5222
5223 #ifdef CONFIG_KVM_SMM
5224 events->smi.smm = is_smm(vcpu);
5225 events->smi.pending = vcpu->arch.smi_pending;
5226 events->smi.smm_inside_nmi =
5227 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5228 #endif
5229 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5230
5231 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5232 | KVM_VCPUEVENT_VALID_SHADOW
5233 | KVM_VCPUEVENT_VALID_SMM);
5234 if (vcpu->kvm->arch.exception_payload_enabled)
5235 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5236 if (vcpu->kvm->arch.triple_fault_event) {
5237 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5238 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5239 }
5240 }
5241
5242 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5243 struct kvm_vcpu_events *events)
5244 {
5245 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5246 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5247 | KVM_VCPUEVENT_VALID_SHADOW
5248 | KVM_VCPUEVENT_VALID_SMM
5249 | KVM_VCPUEVENT_VALID_PAYLOAD
5250 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5251 return -EINVAL;
5252
5253 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5254 if (!vcpu->kvm->arch.exception_payload_enabled)
5255 return -EINVAL;
5256 if (events->exception.pending)
5257 events->exception.injected = 0;
5258 else
5259 events->exception_has_payload = 0;
5260 } else {
5261 events->exception.pending = 0;
5262 events->exception_has_payload = 0;
5263 }
5264
5265 if ((events->exception.injected || events->exception.pending) &&
5266 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5267 return -EINVAL;
5268
5269 /* INITs are latched while in SMM */
5270 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5271 (events->smi.smm || events->smi.pending) &&
5272 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5273 return -EINVAL;
5274
5275 process_nmi(vcpu);
5276
5277 /*
5278 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5279 * morph the exception to a VM-Exit if appropriate. Do this only for
5280 * pending exceptions, already-injected exceptions are not subject to
5281 * intercpetion. Note, userspace that conflates pending and injected
5282 * is hosed, and will incorrectly convert an injected exception into a
5283 * pending exception, which in turn may cause a spurious VM-Exit.
5284 */
5285 vcpu->arch.exception_from_userspace = events->exception.pending;
5286
5287 vcpu->arch.exception_vmexit.pending = false;
5288
5289 vcpu->arch.exception.injected = events->exception.injected;
5290 vcpu->arch.exception.pending = events->exception.pending;
5291 vcpu->arch.exception.vector = events->exception.nr;
5292 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5293 vcpu->arch.exception.error_code = events->exception.error_code;
5294 vcpu->arch.exception.has_payload = events->exception_has_payload;
5295 vcpu->arch.exception.payload = events->exception_payload;
5296
5297 vcpu->arch.interrupt.injected = events->interrupt.injected;
5298 vcpu->arch.interrupt.nr = events->interrupt.nr;
5299 vcpu->arch.interrupt.soft = events->interrupt.soft;
5300 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5301 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5302 events->interrupt.shadow);
5303
5304 vcpu->arch.nmi_injected = events->nmi.injected;
5305 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5306 vcpu->arch.nmi_pending = 0;
5307 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5308 if (events->nmi.pending)
5309 kvm_make_request(KVM_REQ_NMI, vcpu);
5310 }
5311 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5312
5313 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5314 lapic_in_kernel(vcpu))
5315 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5316
5317 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5318 #ifdef CONFIG_KVM_SMM
5319 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5320 kvm_leave_nested(vcpu);
5321 kvm_smm_changed(vcpu, events->smi.smm);
5322 }
5323
5324 vcpu->arch.smi_pending = events->smi.pending;
5325
5326 if (events->smi.smm) {
5327 if (events->smi.smm_inside_nmi)
5328 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5329 else
5330 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5331 }
5332
5333 #else
5334 if (events->smi.smm || events->smi.pending ||
5335 events->smi.smm_inside_nmi)
5336 return -EINVAL;
5337 #endif
5338
5339 if (lapic_in_kernel(vcpu)) {
5340 if (events->smi.latched_init)
5341 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5342 else
5343 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5344 }
5345 }
5346
5347 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5348 if (!vcpu->kvm->arch.triple_fault_event)
5349 return -EINVAL;
5350 if (events->triple_fault.pending)
5351 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5352 else
5353 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5354 }
5355
5356 kvm_make_request(KVM_REQ_EVENT, vcpu);
5357
5358 return 0;
5359 }
5360
5361 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5362 struct kvm_debugregs *dbgregs)
5363 {
5364 unsigned long val;
5365
5366 memset(dbgregs, 0, sizeof(*dbgregs));
5367 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5368 kvm_get_dr(vcpu, 6, &val);
5369 dbgregs->dr6 = val;
5370 dbgregs->dr7 = vcpu->arch.dr7;
5371 }
5372
5373 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5374 struct kvm_debugregs *dbgregs)
5375 {
5376 if (dbgregs->flags)
5377 return -EINVAL;
5378
5379 if (!kvm_dr6_valid(dbgregs->dr6))
5380 return -EINVAL;
5381 if (!kvm_dr7_valid(dbgregs->dr7))
5382 return -EINVAL;
5383
5384 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5385 kvm_update_dr0123(vcpu);
5386 vcpu->arch.dr6 = dbgregs->dr6;
5387 vcpu->arch.dr7 = dbgregs->dr7;
5388 kvm_update_dr7(vcpu);
5389
5390 return 0;
5391 }
5392
5393
5394 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5395 u8 *state, unsigned int size)
5396 {
5397 /*
5398 * Only copy state for features that are enabled for the guest. The
5399 * state itself isn't problematic, but setting bits in the header for
5400 * features that are supported in *this* host but not exposed to the
5401 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5402 * compatible host without the features that are NOT exposed to the
5403 * guest.
5404 *
5405 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5406 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5407 * supported by the host.
5408 */
5409 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5410 XFEATURE_MASK_FPSSE;
5411
5412 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5413 return;
5414
5415 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5416 supported_xcr0, vcpu->arch.pkru);
5417 }
5418
5419 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5420 struct kvm_xsave *guest_xsave)
5421 {
5422 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5423 sizeof(guest_xsave->region));
5424 }
5425
5426 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5427 struct kvm_xsave *guest_xsave)
5428 {
5429 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5430 return 0;
5431
5432 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5433 guest_xsave->region,
5434 kvm_caps.supported_xcr0,
5435 &vcpu->arch.pkru);
5436 }
5437
5438 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5439 struct kvm_xcrs *guest_xcrs)
5440 {
5441 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5442 guest_xcrs->nr_xcrs = 0;
5443 return;
5444 }
5445
5446 guest_xcrs->nr_xcrs = 1;
5447 guest_xcrs->flags = 0;
5448 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5449 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5450 }
5451
5452 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5453 struct kvm_xcrs *guest_xcrs)
5454 {
5455 int i, r = 0;
5456
5457 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5458 return -EINVAL;
5459
5460 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5461 return -EINVAL;
5462
5463 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5464 /* Only support XCR0 currently */
5465 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5466 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5467 guest_xcrs->xcrs[i].value);
5468 break;
5469 }
5470 if (r)
5471 r = -EINVAL;
5472 return r;
5473 }
5474
5475 /*
5476 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5477 * stopped by the hypervisor. This function will be called from the host only.
5478 * EINVAL is returned when the host attempts to set the flag for a guest that
5479 * does not support pv clocks.
5480 */
5481 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5482 {
5483 if (!vcpu->arch.pv_time.active)
5484 return -EINVAL;
5485 vcpu->arch.pvclock_set_guest_stopped_request = true;
5486 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5487 return 0;
5488 }
5489
5490 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5491 struct kvm_device_attr *attr)
5492 {
5493 int r;
5494
5495 switch (attr->attr) {
5496 case KVM_VCPU_TSC_OFFSET:
5497 r = 0;
5498 break;
5499 default:
5500 r = -ENXIO;
5501 }
5502
5503 return r;
5504 }
5505
5506 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5507 struct kvm_device_attr *attr)
5508 {
5509 u64 __user *uaddr = kvm_get_attr_addr(attr);
5510 int r;
5511
5512 if (IS_ERR(uaddr))
5513 return PTR_ERR(uaddr);
5514
5515 switch (attr->attr) {
5516 case KVM_VCPU_TSC_OFFSET:
5517 r = -EFAULT;
5518 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5519 break;
5520 r = 0;
5521 break;
5522 default:
5523 r = -ENXIO;
5524 }
5525
5526 return r;
5527 }
5528
5529 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5530 struct kvm_device_attr *attr)
5531 {
5532 u64 __user *uaddr = kvm_get_attr_addr(attr);
5533 struct kvm *kvm = vcpu->kvm;
5534 int r;
5535
5536 if (IS_ERR(uaddr))
5537 return PTR_ERR(uaddr);
5538
5539 switch (attr->attr) {
5540 case KVM_VCPU_TSC_OFFSET: {
5541 u64 offset, tsc, ns;
5542 unsigned long flags;
5543 bool matched;
5544
5545 r = -EFAULT;
5546 if (get_user(offset, uaddr))
5547 break;
5548
5549 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5550
5551 matched = (vcpu->arch.virtual_tsc_khz &&
5552 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5553 kvm->arch.last_tsc_offset == offset);
5554
5555 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5556 ns = get_kvmclock_base_ns();
5557
5558 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5559 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5560
5561 r = 0;
5562 break;
5563 }
5564 default:
5565 r = -ENXIO;
5566 }
5567
5568 return r;
5569 }
5570
5571 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5572 unsigned int ioctl,
5573 void __user *argp)
5574 {
5575 struct kvm_device_attr attr;
5576 int r;
5577
5578 if (copy_from_user(&attr, argp, sizeof(attr)))
5579 return -EFAULT;
5580
5581 if (attr.group != KVM_VCPU_TSC_CTRL)
5582 return -ENXIO;
5583
5584 switch (ioctl) {
5585 case KVM_HAS_DEVICE_ATTR:
5586 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5587 break;
5588 case KVM_GET_DEVICE_ATTR:
5589 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5590 break;
5591 case KVM_SET_DEVICE_ATTR:
5592 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5593 break;
5594 }
5595
5596 return r;
5597 }
5598
5599 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5600 struct kvm_enable_cap *cap)
5601 {
5602 int r;
5603 uint16_t vmcs_version;
5604 void __user *user_ptr;
5605
5606 if (cap->flags)
5607 return -EINVAL;
5608
5609 switch (cap->cap) {
5610 case KVM_CAP_HYPERV_SYNIC2:
5611 if (cap->args[0])
5612 return -EINVAL;
5613 fallthrough;
5614
5615 case KVM_CAP_HYPERV_SYNIC:
5616 if (!irqchip_in_kernel(vcpu->kvm))
5617 return -EINVAL;
5618 return kvm_hv_activate_synic(vcpu, cap->cap ==
5619 KVM_CAP_HYPERV_SYNIC2);
5620 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5621 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5622 return -ENOTTY;
5623 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5624 if (!r) {
5625 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5626 if (copy_to_user(user_ptr, &vmcs_version,
5627 sizeof(vmcs_version)))
5628 r = -EFAULT;
5629 }
5630 return r;
5631 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5632 if (!kvm_x86_ops.enable_l2_tlb_flush)
5633 return -ENOTTY;
5634
5635 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5636
5637 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5638 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5639
5640 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5641 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5642 if (vcpu->arch.pv_cpuid.enforce)
5643 kvm_update_pv_runtime(vcpu);
5644
5645 return 0;
5646 default:
5647 return -EINVAL;
5648 }
5649 }
5650
5651 long kvm_arch_vcpu_ioctl(struct file *filp,
5652 unsigned int ioctl, unsigned long arg)
5653 {
5654 struct kvm_vcpu *vcpu = filp->private_data;
5655 void __user *argp = (void __user *)arg;
5656 int r;
5657 union {
5658 struct kvm_sregs2 *sregs2;
5659 struct kvm_lapic_state *lapic;
5660 struct kvm_xsave *xsave;
5661 struct kvm_xcrs *xcrs;
5662 void *buffer;
5663 } u;
5664
5665 vcpu_load(vcpu);
5666
5667 u.buffer = NULL;
5668 switch (ioctl) {
5669 case KVM_GET_LAPIC: {
5670 r = -EINVAL;
5671 if (!lapic_in_kernel(vcpu))
5672 goto out;
5673 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5674 GFP_KERNEL_ACCOUNT);
5675
5676 r = -ENOMEM;
5677 if (!u.lapic)
5678 goto out;
5679 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5680 if (r)
5681 goto out;
5682 r = -EFAULT;
5683 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5684 goto out;
5685 r = 0;
5686 break;
5687 }
5688 case KVM_SET_LAPIC: {
5689 r = -EINVAL;
5690 if (!lapic_in_kernel(vcpu))
5691 goto out;
5692 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5693 if (IS_ERR(u.lapic)) {
5694 r = PTR_ERR(u.lapic);
5695 goto out_nofree;
5696 }
5697
5698 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5699 break;
5700 }
5701 case KVM_INTERRUPT: {
5702 struct kvm_interrupt irq;
5703
5704 r = -EFAULT;
5705 if (copy_from_user(&irq, argp, sizeof(irq)))
5706 goto out;
5707 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5708 break;
5709 }
5710 case KVM_NMI: {
5711 r = kvm_vcpu_ioctl_nmi(vcpu);
5712 break;
5713 }
5714 case KVM_SMI: {
5715 r = kvm_inject_smi(vcpu);
5716 break;
5717 }
5718 case KVM_SET_CPUID: {
5719 struct kvm_cpuid __user *cpuid_arg = argp;
5720 struct kvm_cpuid cpuid;
5721
5722 r = -EFAULT;
5723 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5724 goto out;
5725 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5726 break;
5727 }
5728 case KVM_SET_CPUID2: {
5729 struct kvm_cpuid2 __user *cpuid_arg = argp;
5730 struct kvm_cpuid2 cpuid;
5731
5732 r = -EFAULT;
5733 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5734 goto out;
5735 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5736 cpuid_arg->entries);
5737 break;
5738 }
5739 case KVM_GET_CPUID2: {
5740 struct kvm_cpuid2 __user *cpuid_arg = argp;
5741 struct kvm_cpuid2 cpuid;
5742
5743 r = -EFAULT;
5744 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5745 goto out;
5746 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5747 cpuid_arg->entries);
5748 if (r)
5749 goto out;
5750 r = -EFAULT;
5751 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5752 goto out;
5753 r = 0;
5754 break;
5755 }
5756 case KVM_GET_MSRS: {
5757 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5758 r = msr_io(vcpu, argp, do_get_msr, 1);
5759 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5760 break;
5761 }
5762 case KVM_SET_MSRS: {
5763 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5764 r = msr_io(vcpu, argp, do_set_msr, 0);
5765 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5766 break;
5767 }
5768 case KVM_TPR_ACCESS_REPORTING: {
5769 struct kvm_tpr_access_ctl tac;
5770
5771 r = -EFAULT;
5772 if (copy_from_user(&tac, argp, sizeof(tac)))
5773 goto out;
5774 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5775 if (r)
5776 goto out;
5777 r = -EFAULT;
5778 if (copy_to_user(argp, &tac, sizeof(tac)))
5779 goto out;
5780 r = 0;
5781 break;
5782 };
5783 case KVM_SET_VAPIC_ADDR: {
5784 struct kvm_vapic_addr va;
5785 int idx;
5786
5787 r = -EINVAL;
5788 if (!lapic_in_kernel(vcpu))
5789 goto out;
5790 r = -EFAULT;
5791 if (copy_from_user(&va, argp, sizeof(va)))
5792 goto out;
5793 idx = srcu_read_lock(&vcpu->kvm->srcu);
5794 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5795 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5796 break;
5797 }
5798 case KVM_X86_SETUP_MCE: {
5799 u64 mcg_cap;
5800
5801 r = -EFAULT;
5802 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5803 goto out;
5804 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5805 break;
5806 }
5807 case KVM_X86_SET_MCE: {
5808 struct kvm_x86_mce mce;
5809
5810 r = -EFAULT;
5811 if (copy_from_user(&mce, argp, sizeof(mce)))
5812 goto out;
5813 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5814 break;
5815 }
5816 case KVM_GET_VCPU_EVENTS: {
5817 struct kvm_vcpu_events events;
5818
5819 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5820
5821 r = -EFAULT;
5822 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5823 break;
5824 r = 0;
5825 break;
5826 }
5827 case KVM_SET_VCPU_EVENTS: {
5828 struct kvm_vcpu_events events;
5829
5830 r = -EFAULT;
5831 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5832 break;
5833
5834 kvm_vcpu_srcu_read_lock(vcpu);
5835 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5836 kvm_vcpu_srcu_read_unlock(vcpu);
5837 break;
5838 }
5839 case KVM_GET_DEBUGREGS: {
5840 struct kvm_debugregs dbgregs;
5841
5842 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5843
5844 r = -EFAULT;
5845 if (copy_to_user(argp, &dbgregs,
5846 sizeof(struct kvm_debugregs)))
5847 break;
5848 r = 0;
5849 break;
5850 }
5851 case KVM_SET_DEBUGREGS: {
5852 struct kvm_debugregs dbgregs;
5853
5854 r = -EFAULT;
5855 if (copy_from_user(&dbgregs, argp,
5856 sizeof(struct kvm_debugregs)))
5857 break;
5858
5859 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5860 break;
5861 }
5862 case KVM_GET_XSAVE: {
5863 r = -EINVAL;
5864 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5865 break;
5866
5867 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5868 r = -ENOMEM;
5869 if (!u.xsave)
5870 break;
5871
5872 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5873
5874 r = -EFAULT;
5875 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5876 break;
5877 r = 0;
5878 break;
5879 }
5880 case KVM_SET_XSAVE: {
5881 int size = vcpu->arch.guest_fpu.uabi_size;
5882
5883 u.xsave = memdup_user(argp, size);
5884 if (IS_ERR(u.xsave)) {
5885 r = PTR_ERR(u.xsave);
5886 goto out_nofree;
5887 }
5888
5889 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5890 break;
5891 }
5892
5893 case KVM_GET_XSAVE2: {
5894 int size = vcpu->arch.guest_fpu.uabi_size;
5895
5896 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5897 r = -ENOMEM;
5898 if (!u.xsave)
5899 break;
5900
5901 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5902
5903 r = -EFAULT;
5904 if (copy_to_user(argp, u.xsave, size))
5905 break;
5906
5907 r = 0;
5908 break;
5909 }
5910
5911 case KVM_GET_XCRS: {
5912 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5913 r = -ENOMEM;
5914 if (!u.xcrs)
5915 break;
5916
5917 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5918
5919 r = -EFAULT;
5920 if (copy_to_user(argp, u.xcrs,
5921 sizeof(struct kvm_xcrs)))
5922 break;
5923 r = 0;
5924 break;
5925 }
5926 case KVM_SET_XCRS: {
5927 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5928 if (IS_ERR(u.xcrs)) {
5929 r = PTR_ERR(u.xcrs);
5930 goto out_nofree;
5931 }
5932
5933 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5934 break;
5935 }
5936 case KVM_SET_TSC_KHZ: {
5937 u32 user_tsc_khz;
5938
5939 r = -EINVAL;
5940 user_tsc_khz = (u32)arg;
5941
5942 if (kvm_caps.has_tsc_control &&
5943 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5944 goto out;
5945
5946 if (user_tsc_khz == 0)
5947 user_tsc_khz = tsc_khz;
5948
5949 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5950 r = 0;
5951
5952 goto out;
5953 }
5954 case KVM_GET_TSC_KHZ: {
5955 r = vcpu->arch.virtual_tsc_khz;
5956 goto out;
5957 }
5958 case KVM_KVMCLOCK_CTRL: {
5959 r = kvm_set_guest_paused(vcpu);
5960 goto out;
5961 }
5962 case KVM_ENABLE_CAP: {
5963 struct kvm_enable_cap cap;
5964
5965 r = -EFAULT;
5966 if (copy_from_user(&cap, argp, sizeof(cap)))
5967 goto out;
5968 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5969 break;
5970 }
5971 case KVM_GET_NESTED_STATE: {
5972 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5973 u32 user_data_size;
5974
5975 r = -EINVAL;
5976 if (!kvm_x86_ops.nested_ops->get_state)
5977 break;
5978
5979 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5980 r = -EFAULT;
5981 if (get_user(user_data_size, &user_kvm_nested_state->size))
5982 break;
5983
5984 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5985 user_data_size);
5986 if (r < 0)
5987 break;
5988
5989 if (r > user_data_size) {
5990 if (put_user(r, &user_kvm_nested_state->size))
5991 r = -EFAULT;
5992 else
5993 r = -E2BIG;
5994 break;
5995 }
5996
5997 r = 0;
5998 break;
5999 }
6000 case KVM_SET_NESTED_STATE: {
6001 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6002 struct kvm_nested_state kvm_state;
6003 int idx;
6004
6005 r = -EINVAL;
6006 if (!kvm_x86_ops.nested_ops->set_state)
6007 break;
6008
6009 r = -EFAULT;
6010 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6011 break;
6012
6013 r = -EINVAL;
6014 if (kvm_state.size < sizeof(kvm_state))
6015 break;
6016
6017 if (kvm_state.flags &
6018 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6019 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6020 | KVM_STATE_NESTED_GIF_SET))
6021 break;
6022
6023 /* nested_run_pending implies guest_mode. */
6024 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6025 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6026 break;
6027
6028 idx = srcu_read_lock(&vcpu->kvm->srcu);
6029 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6030 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6031 break;
6032 }
6033 case KVM_GET_SUPPORTED_HV_CPUID:
6034 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6035 break;
6036 #ifdef CONFIG_KVM_XEN
6037 case KVM_XEN_VCPU_GET_ATTR: {
6038 struct kvm_xen_vcpu_attr xva;
6039
6040 r = -EFAULT;
6041 if (copy_from_user(&xva, argp, sizeof(xva)))
6042 goto out;
6043 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6044 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6045 r = -EFAULT;
6046 break;
6047 }
6048 case KVM_XEN_VCPU_SET_ATTR: {
6049 struct kvm_xen_vcpu_attr xva;
6050
6051 r = -EFAULT;
6052 if (copy_from_user(&xva, argp, sizeof(xva)))
6053 goto out;
6054 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6055 break;
6056 }
6057 #endif
6058 case KVM_GET_SREGS2: {
6059 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6060 r = -ENOMEM;
6061 if (!u.sregs2)
6062 goto out;
6063 __get_sregs2(vcpu, u.sregs2);
6064 r = -EFAULT;
6065 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6066 goto out;
6067 r = 0;
6068 break;
6069 }
6070 case KVM_SET_SREGS2: {
6071 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6072 if (IS_ERR(u.sregs2)) {
6073 r = PTR_ERR(u.sregs2);
6074 u.sregs2 = NULL;
6075 goto out;
6076 }
6077 r = __set_sregs2(vcpu, u.sregs2);
6078 break;
6079 }
6080 case KVM_HAS_DEVICE_ATTR:
6081 case KVM_GET_DEVICE_ATTR:
6082 case KVM_SET_DEVICE_ATTR:
6083 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6084 break;
6085 default:
6086 r = -EINVAL;
6087 }
6088 out:
6089 kfree(u.buffer);
6090 out_nofree:
6091 vcpu_put(vcpu);
6092 return r;
6093 }
6094
6095 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6096 {
6097 return VM_FAULT_SIGBUS;
6098 }
6099
6100 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6101 {
6102 int ret;
6103
6104 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6105 return -EINVAL;
6106 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6107 return ret;
6108 }
6109
6110 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6111 u64 ident_addr)
6112 {
6113 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6114 }
6115
6116 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6117 unsigned long kvm_nr_mmu_pages)
6118 {
6119 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6120 return -EINVAL;
6121
6122 mutex_lock(&kvm->slots_lock);
6123
6124 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6125 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6126
6127 mutex_unlock(&kvm->slots_lock);
6128 return 0;
6129 }
6130
6131 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6132 {
6133 struct kvm_pic *pic = kvm->arch.vpic;
6134 int r;
6135
6136 r = 0;
6137 switch (chip->chip_id) {
6138 case KVM_IRQCHIP_PIC_MASTER:
6139 memcpy(&chip->chip.pic, &pic->pics[0],
6140 sizeof(struct kvm_pic_state));
6141 break;
6142 case KVM_IRQCHIP_PIC_SLAVE:
6143 memcpy(&chip->chip.pic, &pic->pics[1],
6144 sizeof(struct kvm_pic_state));
6145 break;
6146 case KVM_IRQCHIP_IOAPIC:
6147 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6148 break;
6149 default:
6150 r = -EINVAL;
6151 break;
6152 }
6153 return r;
6154 }
6155
6156 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6157 {
6158 struct kvm_pic *pic = kvm->arch.vpic;
6159 int r;
6160
6161 r = 0;
6162 switch (chip->chip_id) {
6163 case KVM_IRQCHIP_PIC_MASTER:
6164 spin_lock(&pic->lock);
6165 memcpy(&pic->pics[0], &chip->chip.pic,
6166 sizeof(struct kvm_pic_state));
6167 spin_unlock(&pic->lock);
6168 break;
6169 case KVM_IRQCHIP_PIC_SLAVE:
6170 spin_lock(&pic->lock);
6171 memcpy(&pic->pics[1], &chip->chip.pic,
6172 sizeof(struct kvm_pic_state));
6173 spin_unlock(&pic->lock);
6174 break;
6175 case KVM_IRQCHIP_IOAPIC:
6176 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6177 break;
6178 default:
6179 r = -EINVAL;
6180 break;
6181 }
6182 kvm_pic_update_irq(pic);
6183 return r;
6184 }
6185
6186 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6187 {
6188 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6189
6190 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6191
6192 mutex_lock(&kps->lock);
6193 memcpy(ps, &kps->channels, sizeof(*ps));
6194 mutex_unlock(&kps->lock);
6195 return 0;
6196 }
6197
6198 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6199 {
6200 int i;
6201 struct kvm_pit *pit = kvm->arch.vpit;
6202
6203 mutex_lock(&pit->pit_state.lock);
6204 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6205 for (i = 0; i < 3; i++)
6206 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6207 mutex_unlock(&pit->pit_state.lock);
6208 return 0;
6209 }
6210
6211 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6212 {
6213 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6214 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6215 sizeof(ps->channels));
6216 ps->flags = kvm->arch.vpit->pit_state.flags;
6217 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6218 memset(&ps->reserved, 0, sizeof(ps->reserved));
6219 return 0;
6220 }
6221
6222 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6223 {
6224 int start = 0;
6225 int i;
6226 u32 prev_legacy, cur_legacy;
6227 struct kvm_pit *pit = kvm->arch.vpit;
6228
6229 mutex_lock(&pit->pit_state.lock);
6230 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6231 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6232 if (!prev_legacy && cur_legacy)
6233 start = 1;
6234 memcpy(&pit->pit_state.channels, &ps->channels,
6235 sizeof(pit->pit_state.channels));
6236 pit->pit_state.flags = ps->flags;
6237 for (i = 0; i < 3; i++)
6238 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6239 start && i == 0);
6240 mutex_unlock(&pit->pit_state.lock);
6241 return 0;
6242 }
6243
6244 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6245 struct kvm_reinject_control *control)
6246 {
6247 struct kvm_pit *pit = kvm->arch.vpit;
6248
6249 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6250 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6251 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6252 */
6253 mutex_lock(&pit->pit_state.lock);
6254 kvm_pit_set_reinject(pit, control->pit_reinject);
6255 mutex_unlock(&pit->pit_state.lock);
6256
6257 return 0;
6258 }
6259
6260 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6261 {
6262
6263 /*
6264 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6265 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6266 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6267 * VM-Exit.
6268 */
6269 struct kvm_vcpu *vcpu;
6270 unsigned long i;
6271
6272 kvm_for_each_vcpu(i, vcpu, kvm)
6273 kvm_vcpu_kick(vcpu);
6274 }
6275
6276 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6277 bool line_status)
6278 {
6279 if (!irqchip_in_kernel(kvm))
6280 return -ENXIO;
6281
6282 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6283 irq_event->irq, irq_event->level,
6284 line_status);
6285 return 0;
6286 }
6287
6288 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6289 struct kvm_enable_cap *cap)
6290 {
6291 int r;
6292
6293 if (cap->flags)
6294 return -EINVAL;
6295
6296 switch (cap->cap) {
6297 case KVM_CAP_DISABLE_QUIRKS2:
6298 r = -EINVAL;
6299 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6300 break;
6301 fallthrough;
6302 case KVM_CAP_DISABLE_QUIRKS:
6303 kvm->arch.disabled_quirks = cap->args[0];
6304 r = 0;
6305 break;
6306 case KVM_CAP_SPLIT_IRQCHIP: {
6307 mutex_lock(&kvm->lock);
6308 r = -EINVAL;
6309 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6310 goto split_irqchip_unlock;
6311 r = -EEXIST;
6312 if (irqchip_in_kernel(kvm))
6313 goto split_irqchip_unlock;
6314 if (kvm->created_vcpus)
6315 goto split_irqchip_unlock;
6316 r = kvm_setup_empty_irq_routing(kvm);
6317 if (r)
6318 goto split_irqchip_unlock;
6319 /* Pairs with irqchip_in_kernel. */
6320 smp_wmb();
6321 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6322 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6323 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6324 r = 0;
6325 split_irqchip_unlock:
6326 mutex_unlock(&kvm->lock);
6327 break;
6328 }
6329 case KVM_CAP_X2APIC_API:
6330 r = -EINVAL;
6331 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6332 break;
6333
6334 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6335 kvm->arch.x2apic_format = true;
6336 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6337 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6338
6339 r = 0;
6340 break;
6341 case KVM_CAP_X86_DISABLE_EXITS:
6342 r = -EINVAL;
6343 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6344 break;
6345
6346 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6347 kvm->arch.pause_in_guest = true;
6348
6349 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6350 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6351
6352 if (!mitigate_smt_rsb) {
6353 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6354 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6355 pr_warn_once(SMT_RSB_MSG);
6356
6357 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6358 kvm_can_mwait_in_guest())
6359 kvm->arch.mwait_in_guest = true;
6360 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6361 kvm->arch.hlt_in_guest = true;
6362 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6363 kvm->arch.cstate_in_guest = true;
6364 }
6365
6366 r = 0;
6367 break;
6368 case KVM_CAP_MSR_PLATFORM_INFO:
6369 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6370 r = 0;
6371 break;
6372 case KVM_CAP_EXCEPTION_PAYLOAD:
6373 kvm->arch.exception_payload_enabled = cap->args[0];
6374 r = 0;
6375 break;
6376 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6377 kvm->arch.triple_fault_event = cap->args[0];
6378 r = 0;
6379 break;
6380 case KVM_CAP_X86_USER_SPACE_MSR:
6381 r = -EINVAL;
6382 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6383 break;
6384 kvm->arch.user_space_msr_mask = cap->args[0];
6385 r = 0;
6386 break;
6387 case KVM_CAP_X86_BUS_LOCK_EXIT:
6388 r = -EINVAL;
6389 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6390 break;
6391
6392 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6393 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6394 break;
6395
6396 if (kvm_caps.has_bus_lock_exit &&
6397 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6398 kvm->arch.bus_lock_detection_enabled = true;
6399 r = 0;
6400 break;
6401 #ifdef CONFIG_X86_SGX_KVM
6402 case KVM_CAP_SGX_ATTRIBUTE: {
6403 unsigned long allowed_attributes = 0;
6404
6405 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6406 if (r)
6407 break;
6408
6409 /* KVM only supports the PROVISIONKEY privileged attribute. */
6410 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6411 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6412 kvm->arch.sgx_provisioning_allowed = true;
6413 else
6414 r = -EINVAL;
6415 break;
6416 }
6417 #endif
6418 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6419 r = -EINVAL;
6420 if (!kvm_x86_ops.vm_copy_enc_context_from)
6421 break;
6422
6423 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6424 break;
6425 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6426 r = -EINVAL;
6427 if (!kvm_x86_ops.vm_move_enc_context_from)
6428 break;
6429
6430 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6431 break;
6432 case KVM_CAP_EXIT_HYPERCALL:
6433 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6434 r = -EINVAL;
6435 break;
6436 }
6437 kvm->arch.hypercall_exit_enabled = cap->args[0];
6438 r = 0;
6439 break;
6440 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6441 r = -EINVAL;
6442 if (cap->args[0] & ~1)
6443 break;
6444 kvm->arch.exit_on_emulation_error = cap->args[0];
6445 r = 0;
6446 break;
6447 case KVM_CAP_PMU_CAPABILITY:
6448 r = -EINVAL;
6449 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6450 break;
6451
6452 mutex_lock(&kvm->lock);
6453 if (!kvm->created_vcpus) {
6454 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6455 r = 0;
6456 }
6457 mutex_unlock(&kvm->lock);
6458 break;
6459 case KVM_CAP_MAX_VCPU_ID:
6460 r = -EINVAL;
6461 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6462 break;
6463
6464 mutex_lock(&kvm->lock);
6465 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6466 r = 0;
6467 } else if (!kvm->arch.max_vcpu_ids) {
6468 kvm->arch.max_vcpu_ids = cap->args[0];
6469 r = 0;
6470 }
6471 mutex_unlock(&kvm->lock);
6472 break;
6473 case KVM_CAP_X86_NOTIFY_VMEXIT:
6474 r = -EINVAL;
6475 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6476 break;
6477 if (!kvm_caps.has_notify_vmexit)
6478 break;
6479 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6480 break;
6481 mutex_lock(&kvm->lock);
6482 if (!kvm->created_vcpus) {
6483 kvm->arch.notify_window = cap->args[0] >> 32;
6484 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6485 r = 0;
6486 }
6487 mutex_unlock(&kvm->lock);
6488 break;
6489 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6490 r = -EINVAL;
6491
6492 /*
6493 * Since the risk of disabling NX hugepages is a guest crashing
6494 * the system, ensure the userspace process has permission to
6495 * reboot the system.
6496 *
6497 * Note that unlike the reboot() syscall, the process must have
6498 * this capability in the root namespace because exposing
6499 * /dev/kvm into a container does not limit the scope of the
6500 * iTLB multihit bug to that container. In other words,
6501 * this must use capable(), not ns_capable().
6502 */
6503 if (!capable(CAP_SYS_BOOT)) {
6504 r = -EPERM;
6505 break;
6506 }
6507
6508 if (cap->args[0])
6509 break;
6510
6511 mutex_lock(&kvm->lock);
6512 if (!kvm->created_vcpus) {
6513 kvm->arch.disable_nx_huge_pages = true;
6514 r = 0;
6515 }
6516 mutex_unlock(&kvm->lock);
6517 break;
6518 default:
6519 r = -EINVAL;
6520 break;
6521 }
6522 return r;
6523 }
6524
6525 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6526 {
6527 struct kvm_x86_msr_filter *msr_filter;
6528
6529 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6530 if (!msr_filter)
6531 return NULL;
6532
6533 msr_filter->default_allow = default_allow;
6534 return msr_filter;
6535 }
6536
6537 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6538 {
6539 u32 i;
6540
6541 if (!msr_filter)
6542 return;
6543
6544 for (i = 0; i < msr_filter->count; i++)
6545 kfree(msr_filter->ranges[i].bitmap);
6546
6547 kfree(msr_filter);
6548 }
6549
6550 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6551 struct kvm_msr_filter_range *user_range)
6552 {
6553 unsigned long *bitmap;
6554 size_t bitmap_size;
6555
6556 if (!user_range->nmsrs)
6557 return 0;
6558
6559 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6560 return -EINVAL;
6561
6562 if (!user_range->flags)
6563 return -EINVAL;
6564
6565 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6566 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6567 return -EINVAL;
6568
6569 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6570 if (IS_ERR(bitmap))
6571 return PTR_ERR(bitmap);
6572
6573 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6574 .flags = user_range->flags,
6575 .base = user_range->base,
6576 .nmsrs = user_range->nmsrs,
6577 .bitmap = bitmap,
6578 };
6579
6580 msr_filter->count++;
6581 return 0;
6582 }
6583
6584 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6585 struct kvm_msr_filter *filter)
6586 {
6587 struct kvm_x86_msr_filter *new_filter, *old_filter;
6588 bool default_allow;
6589 bool empty = true;
6590 int r;
6591 u32 i;
6592
6593 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6594 return -EINVAL;
6595
6596 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6597 empty &= !filter->ranges[i].nmsrs;
6598
6599 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6600 if (empty && !default_allow)
6601 return -EINVAL;
6602
6603 new_filter = kvm_alloc_msr_filter(default_allow);
6604 if (!new_filter)
6605 return -ENOMEM;
6606
6607 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6608 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6609 if (r) {
6610 kvm_free_msr_filter(new_filter);
6611 return r;
6612 }
6613 }
6614
6615 mutex_lock(&kvm->lock);
6616 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6617 mutex_is_locked(&kvm->lock));
6618 mutex_unlock(&kvm->lock);
6619 synchronize_srcu(&kvm->srcu);
6620
6621 kvm_free_msr_filter(old_filter);
6622
6623 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6624
6625 return 0;
6626 }
6627
6628 #ifdef CONFIG_KVM_COMPAT
6629 /* for KVM_X86_SET_MSR_FILTER */
6630 struct kvm_msr_filter_range_compat {
6631 __u32 flags;
6632 __u32 nmsrs;
6633 __u32 base;
6634 __u32 bitmap;
6635 };
6636
6637 struct kvm_msr_filter_compat {
6638 __u32 flags;
6639 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6640 };
6641
6642 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6643
6644 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6645 unsigned long arg)
6646 {
6647 void __user *argp = (void __user *)arg;
6648 struct kvm *kvm = filp->private_data;
6649 long r = -ENOTTY;
6650
6651 switch (ioctl) {
6652 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6653 struct kvm_msr_filter __user *user_msr_filter = argp;
6654 struct kvm_msr_filter_compat filter_compat;
6655 struct kvm_msr_filter filter;
6656 int i;
6657
6658 if (copy_from_user(&filter_compat, user_msr_filter,
6659 sizeof(filter_compat)))
6660 return -EFAULT;
6661
6662 filter.flags = filter_compat.flags;
6663 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6664 struct kvm_msr_filter_range_compat *cr;
6665
6666 cr = &filter_compat.ranges[i];
6667 filter.ranges[i] = (struct kvm_msr_filter_range) {
6668 .flags = cr->flags,
6669 .nmsrs = cr->nmsrs,
6670 .base = cr->base,
6671 .bitmap = (__u8 *)(ulong)cr->bitmap,
6672 };
6673 }
6674
6675 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6676 break;
6677 }
6678 }
6679
6680 return r;
6681 }
6682 #endif
6683
6684 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6685 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6686 {
6687 struct kvm_vcpu *vcpu;
6688 unsigned long i;
6689 int ret = 0;
6690
6691 mutex_lock(&kvm->lock);
6692 kvm_for_each_vcpu(i, vcpu, kvm) {
6693 if (!vcpu->arch.pv_time.active)
6694 continue;
6695
6696 ret = kvm_set_guest_paused(vcpu);
6697 if (ret) {
6698 kvm_err("Failed to pause guest VCPU%d: %d\n",
6699 vcpu->vcpu_id, ret);
6700 break;
6701 }
6702 }
6703 mutex_unlock(&kvm->lock);
6704
6705 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6706 }
6707
6708 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6709 {
6710 switch (state) {
6711 case PM_HIBERNATION_PREPARE:
6712 case PM_SUSPEND_PREPARE:
6713 return kvm_arch_suspend_notifier(kvm);
6714 }
6715
6716 return NOTIFY_DONE;
6717 }
6718 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6719
6720 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6721 {
6722 struct kvm_clock_data data = { 0 };
6723
6724 get_kvmclock(kvm, &data);
6725 if (copy_to_user(argp, &data, sizeof(data)))
6726 return -EFAULT;
6727
6728 return 0;
6729 }
6730
6731 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6732 {
6733 struct kvm_arch *ka = &kvm->arch;
6734 struct kvm_clock_data data;
6735 u64 now_raw_ns;
6736
6737 if (copy_from_user(&data, argp, sizeof(data)))
6738 return -EFAULT;
6739
6740 /*
6741 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6742 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6743 */
6744 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6745 return -EINVAL;
6746
6747 kvm_hv_request_tsc_page_update(kvm);
6748 kvm_start_pvclock_update(kvm);
6749 pvclock_update_vm_gtod_copy(kvm);
6750
6751 /*
6752 * This pairs with kvm_guest_time_update(): when masterclock is
6753 * in use, we use master_kernel_ns + kvmclock_offset to set
6754 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6755 * is slightly ahead) here we risk going negative on unsigned
6756 * 'system_time' when 'data.clock' is very small.
6757 */
6758 if (data.flags & KVM_CLOCK_REALTIME) {
6759 u64 now_real_ns = ktime_get_real_ns();
6760
6761 /*
6762 * Avoid stepping the kvmclock backwards.
6763 */
6764 if (now_real_ns > data.realtime)
6765 data.clock += now_real_ns - data.realtime;
6766 }
6767
6768 if (ka->use_master_clock)
6769 now_raw_ns = ka->master_kernel_ns;
6770 else
6771 now_raw_ns = get_kvmclock_base_ns();
6772 ka->kvmclock_offset = data.clock - now_raw_ns;
6773 kvm_end_pvclock_update(kvm);
6774 return 0;
6775 }
6776
6777 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6778 {
6779 struct kvm *kvm = filp->private_data;
6780 void __user *argp = (void __user *)arg;
6781 int r = -ENOTTY;
6782 /*
6783 * This union makes it completely explicit to gcc-3.x
6784 * that these two variables' stack usage should be
6785 * combined, not added together.
6786 */
6787 union {
6788 struct kvm_pit_state ps;
6789 struct kvm_pit_state2 ps2;
6790 struct kvm_pit_config pit_config;
6791 } u;
6792
6793 switch (ioctl) {
6794 case KVM_SET_TSS_ADDR:
6795 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6796 break;
6797 case KVM_SET_IDENTITY_MAP_ADDR: {
6798 u64 ident_addr;
6799
6800 mutex_lock(&kvm->lock);
6801 r = -EINVAL;
6802 if (kvm->created_vcpus)
6803 goto set_identity_unlock;
6804 r = -EFAULT;
6805 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6806 goto set_identity_unlock;
6807 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6808 set_identity_unlock:
6809 mutex_unlock(&kvm->lock);
6810 break;
6811 }
6812 case KVM_SET_NR_MMU_PAGES:
6813 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6814 break;
6815 case KVM_CREATE_IRQCHIP: {
6816 mutex_lock(&kvm->lock);
6817
6818 r = -EEXIST;
6819 if (irqchip_in_kernel(kvm))
6820 goto create_irqchip_unlock;
6821
6822 r = -EINVAL;
6823 if (kvm->created_vcpus)
6824 goto create_irqchip_unlock;
6825
6826 r = kvm_pic_init(kvm);
6827 if (r)
6828 goto create_irqchip_unlock;
6829
6830 r = kvm_ioapic_init(kvm);
6831 if (r) {
6832 kvm_pic_destroy(kvm);
6833 goto create_irqchip_unlock;
6834 }
6835
6836 r = kvm_setup_default_irq_routing(kvm);
6837 if (r) {
6838 kvm_ioapic_destroy(kvm);
6839 kvm_pic_destroy(kvm);
6840 goto create_irqchip_unlock;
6841 }
6842 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6843 smp_wmb();
6844 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6845 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6846 create_irqchip_unlock:
6847 mutex_unlock(&kvm->lock);
6848 break;
6849 }
6850 case KVM_CREATE_PIT:
6851 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6852 goto create_pit;
6853 case KVM_CREATE_PIT2:
6854 r = -EFAULT;
6855 if (copy_from_user(&u.pit_config, argp,
6856 sizeof(struct kvm_pit_config)))
6857 goto out;
6858 create_pit:
6859 mutex_lock(&kvm->lock);
6860 r = -EEXIST;
6861 if (kvm->arch.vpit)
6862 goto create_pit_unlock;
6863 r = -ENOMEM;
6864 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6865 if (kvm->arch.vpit)
6866 r = 0;
6867 create_pit_unlock:
6868 mutex_unlock(&kvm->lock);
6869 break;
6870 case KVM_GET_IRQCHIP: {
6871 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6872 struct kvm_irqchip *chip;
6873
6874 chip = memdup_user(argp, sizeof(*chip));
6875 if (IS_ERR(chip)) {
6876 r = PTR_ERR(chip);
6877 goto out;
6878 }
6879
6880 r = -ENXIO;
6881 if (!irqchip_kernel(kvm))
6882 goto get_irqchip_out;
6883 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6884 if (r)
6885 goto get_irqchip_out;
6886 r = -EFAULT;
6887 if (copy_to_user(argp, chip, sizeof(*chip)))
6888 goto get_irqchip_out;
6889 r = 0;
6890 get_irqchip_out:
6891 kfree(chip);
6892 break;
6893 }
6894 case KVM_SET_IRQCHIP: {
6895 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6896 struct kvm_irqchip *chip;
6897
6898 chip = memdup_user(argp, sizeof(*chip));
6899 if (IS_ERR(chip)) {
6900 r = PTR_ERR(chip);
6901 goto out;
6902 }
6903
6904 r = -ENXIO;
6905 if (!irqchip_kernel(kvm))
6906 goto set_irqchip_out;
6907 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6908 set_irqchip_out:
6909 kfree(chip);
6910 break;
6911 }
6912 case KVM_GET_PIT: {
6913 r = -EFAULT;
6914 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6915 goto out;
6916 r = -ENXIO;
6917 if (!kvm->arch.vpit)
6918 goto out;
6919 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6920 if (r)
6921 goto out;
6922 r = -EFAULT;
6923 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6924 goto out;
6925 r = 0;
6926 break;
6927 }
6928 case KVM_SET_PIT: {
6929 r = -EFAULT;
6930 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6931 goto out;
6932 mutex_lock(&kvm->lock);
6933 r = -ENXIO;
6934 if (!kvm->arch.vpit)
6935 goto set_pit_out;
6936 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6937 set_pit_out:
6938 mutex_unlock(&kvm->lock);
6939 break;
6940 }
6941 case KVM_GET_PIT2: {
6942 r = -ENXIO;
6943 if (!kvm->arch.vpit)
6944 goto out;
6945 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6946 if (r)
6947 goto out;
6948 r = -EFAULT;
6949 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6950 goto out;
6951 r = 0;
6952 break;
6953 }
6954 case KVM_SET_PIT2: {
6955 r = -EFAULT;
6956 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6957 goto out;
6958 mutex_lock(&kvm->lock);
6959 r = -ENXIO;
6960 if (!kvm->arch.vpit)
6961 goto set_pit2_out;
6962 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6963 set_pit2_out:
6964 mutex_unlock(&kvm->lock);
6965 break;
6966 }
6967 case KVM_REINJECT_CONTROL: {
6968 struct kvm_reinject_control control;
6969 r = -EFAULT;
6970 if (copy_from_user(&control, argp, sizeof(control)))
6971 goto out;
6972 r = -ENXIO;
6973 if (!kvm->arch.vpit)
6974 goto out;
6975 r = kvm_vm_ioctl_reinject(kvm, &control);
6976 break;
6977 }
6978 case KVM_SET_BOOT_CPU_ID:
6979 r = 0;
6980 mutex_lock(&kvm->lock);
6981 if (kvm->created_vcpus)
6982 r = -EBUSY;
6983 else
6984 kvm->arch.bsp_vcpu_id = arg;
6985 mutex_unlock(&kvm->lock);
6986 break;
6987 #ifdef CONFIG_KVM_XEN
6988 case KVM_XEN_HVM_CONFIG: {
6989 struct kvm_xen_hvm_config xhc;
6990 r = -EFAULT;
6991 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6992 goto out;
6993 r = kvm_xen_hvm_config(kvm, &xhc);
6994 break;
6995 }
6996 case KVM_XEN_HVM_GET_ATTR: {
6997 struct kvm_xen_hvm_attr xha;
6998
6999 r = -EFAULT;
7000 if (copy_from_user(&xha, argp, sizeof(xha)))
7001 goto out;
7002 r = kvm_xen_hvm_get_attr(kvm, &xha);
7003 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7004 r = -EFAULT;
7005 break;
7006 }
7007 case KVM_XEN_HVM_SET_ATTR: {
7008 struct kvm_xen_hvm_attr xha;
7009
7010 r = -EFAULT;
7011 if (copy_from_user(&xha, argp, sizeof(xha)))
7012 goto out;
7013 r = kvm_xen_hvm_set_attr(kvm, &xha);
7014 break;
7015 }
7016 case KVM_XEN_HVM_EVTCHN_SEND: {
7017 struct kvm_irq_routing_xen_evtchn uxe;
7018
7019 r = -EFAULT;
7020 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7021 goto out;
7022 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7023 break;
7024 }
7025 #endif
7026 case KVM_SET_CLOCK:
7027 r = kvm_vm_ioctl_set_clock(kvm, argp);
7028 break;
7029 case KVM_GET_CLOCK:
7030 r = kvm_vm_ioctl_get_clock(kvm, argp);
7031 break;
7032 case KVM_SET_TSC_KHZ: {
7033 u32 user_tsc_khz;
7034
7035 r = -EINVAL;
7036 user_tsc_khz = (u32)arg;
7037
7038 if (kvm_caps.has_tsc_control &&
7039 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7040 goto out;
7041
7042 if (user_tsc_khz == 0)
7043 user_tsc_khz = tsc_khz;
7044
7045 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7046 r = 0;
7047
7048 goto out;
7049 }
7050 case KVM_GET_TSC_KHZ: {
7051 r = READ_ONCE(kvm->arch.default_tsc_khz);
7052 goto out;
7053 }
7054 case KVM_MEMORY_ENCRYPT_OP: {
7055 r = -ENOTTY;
7056 if (!kvm_x86_ops.mem_enc_ioctl)
7057 goto out;
7058
7059 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7060 break;
7061 }
7062 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7063 struct kvm_enc_region region;
7064
7065 r = -EFAULT;
7066 if (copy_from_user(&region, argp, sizeof(region)))
7067 goto out;
7068
7069 r = -ENOTTY;
7070 if (!kvm_x86_ops.mem_enc_register_region)
7071 goto out;
7072
7073 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7074 break;
7075 }
7076 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7077 struct kvm_enc_region region;
7078
7079 r = -EFAULT;
7080 if (copy_from_user(&region, argp, sizeof(region)))
7081 goto out;
7082
7083 r = -ENOTTY;
7084 if (!kvm_x86_ops.mem_enc_unregister_region)
7085 goto out;
7086
7087 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7088 break;
7089 }
7090 case KVM_HYPERV_EVENTFD: {
7091 struct kvm_hyperv_eventfd hvevfd;
7092
7093 r = -EFAULT;
7094 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7095 goto out;
7096 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7097 break;
7098 }
7099 case KVM_SET_PMU_EVENT_FILTER:
7100 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7101 break;
7102 case KVM_X86_SET_MSR_FILTER: {
7103 struct kvm_msr_filter __user *user_msr_filter = argp;
7104 struct kvm_msr_filter filter;
7105
7106 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7107 return -EFAULT;
7108
7109 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7110 break;
7111 }
7112 default:
7113 r = -ENOTTY;
7114 }
7115 out:
7116 return r;
7117 }
7118
7119 static void kvm_probe_feature_msr(u32 msr_index)
7120 {
7121 struct kvm_msr_entry msr = {
7122 .index = msr_index,
7123 };
7124
7125 if (kvm_get_msr_feature(&msr))
7126 return;
7127
7128 msr_based_features[num_msr_based_features++] = msr_index;
7129 }
7130
7131 static void kvm_probe_msr_to_save(u32 msr_index)
7132 {
7133 u32 dummy[2];
7134
7135 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7136 return;
7137
7138 /*
7139 * Even MSRs that are valid in the host may not be exposed to guests in
7140 * some cases.
7141 */
7142 switch (msr_index) {
7143 case MSR_IA32_BNDCFGS:
7144 if (!kvm_mpx_supported())
7145 return;
7146 break;
7147 case MSR_TSC_AUX:
7148 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7149 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7150 return;
7151 break;
7152 case MSR_IA32_UMWAIT_CONTROL:
7153 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7154 return;
7155 break;
7156 case MSR_IA32_RTIT_CTL:
7157 case MSR_IA32_RTIT_STATUS:
7158 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7159 return;
7160 break;
7161 case MSR_IA32_RTIT_CR3_MATCH:
7162 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7163 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7164 return;
7165 break;
7166 case MSR_IA32_RTIT_OUTPUT_BASE:
7167 case MSR_IA32_RTIT_OUTPUT_MASK:
7168 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7169 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7170 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7171 return;
7172 break;
7173 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7174 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7175 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7176 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7177 return;
7178 break;
7179 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7180 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7181 kvm_pmu_cap.num_counters_gp)
7182 return;
7183 break;
7184 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7185 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7186 kvm_pmu_cap.num_counters_gp)
7187 return;
7188 break;
7189 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7190 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7191 kvm_pmu_cap.num_counters_fixed)
7192 return;
7193 break;
7194 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7195 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7196 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7197 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7198 return;
7199 break;
7200 case MSR_IA32_XFD:
7201 case MSR_IA32_XFD_ERR:
7202 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7203 return;
7204 break;
7205 case MSR_IA32_TSX_CTRL:
7206 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7207 return;
7208 break;
7209 default:
7210 break;
7211 }
7212
7213 msrs_to_save[num_msrs_to_save++] = msr_index;
7214 }
7215
7216 static void kvm_init_msr_lists(void)
7217 {
7218 unsigned i;
7219
7220 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7221 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7222
7223 num_msrs_to_save = 0;
7224 num_emulated_msrs = 0;
7225 num_msr_based_features = 0;
7226
7227 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7228 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7229
7230 if (enable_pmu) {
7231 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7232 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7233 }
7234
7235 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7236 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7237 continue;
7238
7239 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7240 }
7241
7242 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7243 kvm_probe_feature_msr(i);
7244
7245 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7246 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7247 }
7248
7249 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7250 const void *v)
7251 {
7252 int handled = 0;
7253 int n;
7254
7255 do {
7256 n = min(len, 8);
7257 if (!(lapic_in_kernel(vcpu) &&
7258 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7259 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7260 break;
7261 handled += n;
7262 addr += n;
7263 len -= n;
7264 v += n;
7265 } while (len);
7266
7267 return handled;
7268 }
7269
7270 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7271 {
7272 int handled = 0;
7273 int n;
7274
7275 do {
7276 n = min(len, 8);
7277 if (!(lapic_in_kernel(vcpu) &&
7278 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7279 addr, n, v))
7280 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7281 break;
7282 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7283 handled += n;
7284 addr += n;
7285 len -= n;
7286 v += n;
7287 } while (len);
7288
7289 return handled;
7290 }
7291
7292 void kvm_set_segment(struct kvm_vcpu *vcpu,
7293 struct kvm_segment *var, int seg)
7294 {
7295 static_call(kvm_x86_set_segment)(vcpu, var, seg);
7296 }
7297
7298 void kvm_get_segment(struct kvm_vcpu *vcpu,
7299 struct kvm_segment *var, int seg)
7300 {
7301 static_call(kvm_x86_get_segment)(vcpu, var, seg);
7302 }
7303
7304 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7305 struct x86_exception *exception)
7306 {
7307 struct kvm_mmu *mmu = vcpu->arch.mmu;
7308 gpa_t t_gpa;
7309
7310 BUG_ON(!mmu_is_nested(vcpu));
7311
7312 /* NPT walks are always user-walks */
7313 access |= PFERR_USER_MASK;
7314 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7315
7316 return t_gpa;
7317 }
7318
7319 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7320 struct x86_exception *exception)
7321 {
7322 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7323
7324 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7325 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7326 }
7327 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7328
7329 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7330 struct x86_exception *exception)
7331 {
7332 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7333
7334 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7335 access |= PFERR_WRITE_MASK;
7336 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7337 }
7338 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7339
7340 /* uses this to access any guest's mapped memory without checking CPL */
7341 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7342 struct x86_exception *exception)
7343 {
7344 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7345
7346 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7347 }
7348
7349 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7350 struct kvm_vcpu *vcpu, u64 access,
7351 struct x86_exception *exception)
7352 {
7353 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7354 void *data = val;
7355 int r = X86EMUL_CONTINUE;
7356
7357 while (bytes) {
7358 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7359 unsigned offset = addr & (PAGE_SIZE-1);
7360 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7361 int ret;
7362
7363 if (gpa == INVALID_GPA)
7364 return X86EMUL_PROPAGATE_FAULT;
7365 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7366 offset, toread);
7367 if (ret < 0) {
7368 r = X86EMUL_IO_NEEDED;
7369 goto out;
7370 }
7371
7372 bytes -= toread;
7373 data += toread;
7374 addr += toread;
7375 }
7376 out:
7377 return r;
7378 }
7379
7380 /* used for instruction fetching */
7381 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7382 gva_t addr, void *val, unsigned int bytes,
7383 struct x86_exception *exception)
7384 {
7385 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7386 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7387 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7388 unsigned offset;
7389 int ret;
7390
7391 /* Inline kvm_read_guest_virt_helper for speed. */
7392 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7393 exception);
7394 if (unlikely(gpa == INVALID_GPA))
7395 return X86EMUL_PROPAGATE_FAULT;
7396
7397 offset = addr & (PAGE_SIZE-1);
7398 if (WARN_ON(offset + bytes > PAGE_SIZE))
7399 bytes = (unsigned)PAGE_SIZE - offset;
7400 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7401 offset, bytes);
7402 if (unlikely(ret < 0))
7403 return X86EMUL_IO_NEEDED;
7404
7405 return X86EMUL_CONTINUE;
7406 }
7407
7408 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7409 gva_t addr, void *val, unsigned int bytes,
7410 struct x86_exception *exception)
7411 {
7412 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7413
7414 /*
7415 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7416 * is returned, but our callers are not ready for that and they blindly
7417 * call kvm_inject_page_fault. Ensure that they at least do not leak
7418 * uninitialized kernel stack memory into cr2 and error code.
7419 */
7420 memset(exception, 0, sizeof(*exception));
7421 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7422 exception);
7423 }
7424 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7425
7426 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7427 gva_t addr, void *val, unsigned int bytes,
7428 struct x86_exception *exception, bool system)
7429 {
7430 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7431 u64 access = 0;
7432
7433 if (system)
7434 access |= PFERR_IMPLICIT_ACCESS;
7435 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7436 access |= PFERR_USER_MASK;
7437
7438 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7439 }
7440
7441 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7442 struct kvm_vcpu *vcpu, u64 access,
7443 struct x86_exception *exception)
7444 {
7445 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7446 void *data = val;
7447 int r = X86EMUL_CONTINUE;
7448
7449 while (bytes) {
7450 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7451 unsigned offset = addr & (PAGE_SIZE-1);
7452 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7453 int ret;
7454
7455 if (gpa == INVALID_GPA)
7456 return X86EMUL_PROPAGATE_FAULT;
7457 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7458 if (ret < 0) {
7459 r = X86EMUL_IO_NEEDED;
7460 goto out;
7461 }
7462
7463 bytes -= towrite;
7464 data += towrite;
7465 addr += towrite;
7466 }
7467 out:
7468 return r;
7469 }
7470
7471 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7472 unsigned int bytes, struct x86_exception *exception,
7473 bool system)
7474 {
7475 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7476 u64 access = PFERR_WRITE_MASK;
7477
7478 if (system)
7479 access |= PFERR_IMPLICIT_ACCESS;
7480 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7481 access |= PFERR_USER_MASK;
7482
7483 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7484 access, exception);
7485 }
7486
7487 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7488 unsigned int bytes, struct x86_exception *exception)
7489 {
7490 /* kvm_write_guest_virt_system can pull in tons of pages. */
7491 vcpu->arch.l1tf_flush_l1d = true;
7492
7493 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7494 PFERR_WRITE_MASK, exception);
7495 }
7496 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7497
7498 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7499 void *insn, int insn_len)
7500 {
7501 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7502 insn, insn_len);
7503 }
7504
7505 int handle_ud(struct kvm_vcpu *vcpu)
7506 {
7507 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7508 int fep_flags = READ_ONCE(force_emulation_prefix);
7509 int emul_type = EMULTYPE_TRAP_UD;
7510 char sig[5]; /* ud2; .ascii "kvm" */
7511 struct x86_exception e;
7512
7513 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7514 return 1;
7515
7516 if (fep_flags &&
7517 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7518 sig, sizeof(sig), &e) == 0 &&
7519 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7520 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7521 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7522 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7523 emul_type = EMULTYPE_TRAP_UD_FORCED;
7524 }
7525
7526 return kvm_emulate_instruction(vcpu, emul_type);
7527 }
7528 EXPORT_SYMBOL_GPL(handle_ud);
7529
7530 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7531 gpa_t gpa, bool write)
7532 {
7533 /* For APIC access vmexit */
7534 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7535 return 1;
7536
7537 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7538 trace_vcpu_match_mmio(gva, gpa, write, true);
7539 return 1;
7540 }
7541
7542 return 0;
7543 }
7544
7545 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7546 gpa_t *gpa, struct x86_exception *exception,
7547 bool write)
7548 {
7549 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7550 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7551 | (write ? PFERR_WRITE_MASK : 0);
7552
7553 /*
7554 * currently PKRU is only applied to ept enabled guest so
7555 * there is no pkey in EPT page table for L1 guest or EPT
7556 * shadow page table for L2 guest.
7557 */
7558 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7559 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7560 vcpu->arch.mmio_access, 0, access))) {
7561 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7562 (gva & (PAGE_SIZE - 1));
7563 trace_vcpu_match_mmio(gva, *gpa, write, false);
7564 return 1;
7565 }
7566
7567 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7568
7569 if (*gpa == INVALID_GPA)
7570 return -1;
7571
7572 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7573 }
7574
7575 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7576 const void *val, int bytes)
7577 {
7578 int ret;
7579
7580 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7581 if (ret < 0)
7582 return 0;
7583 kvm_page_track_write(vcpu, gpa, val, bytes);
7584 return 1;
7585 }
7586
7587 struct read_write_emulator_ops {
7588 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7589 int bytes);
7590 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7591 void *val, int bytes);
7592 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7593 int bytes, void *val);
7594 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7595 void *val, int bytes);
7596 bool write;
7597 };
7598
7599 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7600 {
7601 if (vcpu->mmio_read_completed) {
7602 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7603 vcpu->mmio_fragments[0].gpa, val);
7604 vcpu->mmio_read_completed = 0;
7605 return 1;
7606 }
7607
7608 return 0;
7609 }
7610
7611 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7612 void *val, int bytes)
7613 {
7614 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7615 }
7616
7617 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7618 void *val, int bytes)
7619 {
7620 return emulator_write_phys(vcpu, gpa, val, bytes);
7621 }
7622
7623 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7624 {
7625 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7626 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7627 }
7628
7629 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7630 void *val, int bytes)
7631 {
7632 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7633 return X86EMUL_IO_NEEDED;
7634 }
7635
7636 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7637 void *val, int bytes)
7638 {
7639 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7640
7641 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7642 return X86EMUL_CONTINUE;
7643 }
7644
7645 static const struct read_write_emulator_ops read_emultor = {
7646 .read_write_prepare = read_prepare,
7647 .read_write_emulate = read_emulate,
7648 .read_write_mmio = vcpu_mmio_read,
7649 .read_write_exit_mmio = read_exit_mmio,
7650 };
7651
7652 static const struct read_write_emulator_ops write_emultor = {
7653 .read_write_emulate = write_emulate,
7654 .read_write_mmio = write_mmio,
7655 .read_write_exit_mmio = write_exit_mmio,
7656 .write = true,
7657 };
7658
7659 static int emulator_read_write_onepage(unsigned long addr, void *val,
7660 unsigned int bytes,
7661 struct x86_exception *exception,
7662 struct kvm_vcpu *vcpu,
7663 const struct read_write_emulator_ops *ops)
7664 {
7665 gpa_t gpa;
7666 int handled, ret;
7667 bool write = ops->write;
7668 struct kvm_mmio_fragment *frag;
7669 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7670
7671 /*
7672 * If the exit was due to a NPF we may already have a GPA.
7673 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7674 * Note, this cannot be used on string operations since string
7675 * operation using rep will only have the initial GPA from the NPF
7676 * occurred.
7677 */
7678 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7679 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7680 gpa = ctxt->gpa_val;
7681 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7682 } else {
7683 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7684 if (ret < 0)
7685 return X86EMUL_PROPAGATE_FAULT;
7686 }
7687
7688 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7689 return X86EMUL_CONTINUE;
7690
7691 /*
7692 * Is this MMIO handled locally?
7693 */
7694 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7695 if (handled == bytes)
7696 return X86EMUL_CONTINUE;
7697
7698 gpa += handled;
7699 bytes -= handled;
7700 val += handled;
7701
7702 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7703 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7704 frag->gpa = gpa;
7705 frag->data = val;
7706 frag->len = bytes;
7707 return X86EMUL_CONTINUE;
7708 }
7709
7710 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7711 unsigned long addr,
7712 void *val, unsigned int bytes,
7713 struct x86_exception *exception,
7714 const struct read_write_emulator_ops *ops)
7715 {
7716 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7717 gpa_t gpa;
7718 int rc;
7719
7720 if (ops->read_write_prepare &&
7721 ops->read_write_prepare(vcpu, val, bytes))
7722 return X86EMUL_CONTINUE;
7723
7724 vcpu->mmio_nr_fragments = 0;
7725
7726 /* Crossing a page boundary? */
7727 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7728 int now;
7729
7730 now = -addr & ~PAGE_MASK;
7731 rc = emulator_read_write_onepage(addr, val, now, exception,
7732 vcpu, ops);
7733
7734 if (rc != X86EMUL_CONTINUE)
7735 return rc;
7736 addr += now;
7737 if (ctxt->mode != X86EMUL_MODE_PROT64)
7738 addr = (u32)addr;
7739 val += now;
7740 bytes -= now;
7741 }
7742
7743 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7744 vcpu, ops);
7745 if (rc != X86EMUL_CONTINUE)
7746 return rc;
7747
7748 if (!vcpu->mmio_nr_fragments)
7749 return rc;
7750
7751 gpa = vcpu->mmio_fragments[0].gpa;
7752
7753 vcpu->mmio_needed = 1;
7754 vcpu->mmio_cur_fragment = 0;
7755
7756 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7757 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7758 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7759 vcpu->run->mmio.phys_addr = gpa;
7760
7761 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7762 }
7763
7764 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7765 unsigned long addr,
7766 void *val,
7767 unsigned int bytes,
7768 struct x86_exception *exception)
7769 {
7770 return emulator_read_write(ctxt, addr, val, bytes,
7771 exception, &read_emultor);
7772 }
7773
7774 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7775 unsigned long addr,
7776 const void *val,
7777 unsigned int bytes,
7778 struct x86_exception *exception)
7779 {
7780 return emulator_read_write(ctxt, addr, (void *)val, bytes,
7781 exception, &write_emultor);
7782 }
7783
7784 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7785 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7786
7787 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7788 unsigned long addr,
7789 const void *old,
7790 const void *new,
7791 unsigned int bytes,
7792 struct x86_exception *exception)
7793 {
7794 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7795 u64 page_line_mask;
7796 unsigned long hva;
7797 gpa_t gpa;
7798 int r;
7799
7800 /* guests cmpxchg8b have to be emulated atomically */
7801 if (bytes > 8 || (bytes & (bytes - 1)))
7802 goto emul_write;
7803
7804 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7805
7806 if (gpa == INVALID_GPA ||
7807 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7808 goto emul_write;
7809
7810 /*
7811 * Emulate the atomic as a straight write to avoid #AC if SLD is
7812 * enabled in the host and the access splits a cache line.
7813 */
7814 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7815 page_line_mask = ~(cache_line_size() - 1);
7816 else
7817 page_line_mask = PAGE_MASK;
7818
7819 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7820 goto emul_write;
7821
7822 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7823 if (kvm_is_error_hva(hva))
7824 goto emul_write;
7825
7826 hva += offset_in_page(gpa);
7827
7828 switch (bytes) {
7829 case 1:
7830 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7831 break;
7832 case 2:
7833 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7834 break;
7835 case 4:
7836 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7837 break;
7838 case 8:
7839 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7840 break;
7841 default:
7842 BUG();
7843 }
7844
7845 if (r < 0)
7846 return X86EMUL_UNHANDLEABLE;
7847
7848 /*
7849 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
7850 * successful, as the old value is written back on failure. Note, for
7851 * live migration, this is unnecessarily conservative as CMPXCHG writes
7852 * back the original value and the access is atomic, but KVM's ABI is
7853 * that all writes are dirty logged, regardless of the value written.
7854 */
7855 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
7856
7857 if (r)
7858 return X86EMUL_CMPXCHG_FAILED;
7859
7860 kvm_page_track_write(vcpu, gpa, new, bytes);
7861
7862 return X86EMUL_CONTINUE;
7863
7864 emul_write:
7865 pr_warn_once("emulating exchange as write\n");
7866
7867 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7868 }
7869
7870 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7871 unsigned short port, void *data,
7872 unsigned int count, bool in)
7873 {
7874 unsigned i;
7875 int r;
7876
7877 WARN_ON_ONCE(vcpu->arch.pio.count);
7878 for (i = 0; i < count; i++) {
7879 if (in)
7880 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7881 else
7882 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7883
7884 if (r) {
7885 if (i == 0)
7886 goto userspace_io;
7887
7888 /*
7889 * Userspace must have unregistered the device while PIO
7890 * was running. Drop writes / read as 0.
7891 */
7892 if (in)
7893 memset(data, 0, size * (count - i));
7894 break;
7895 }
7896
7897 data += size;
7898 }
7899 return 1;
7900
7901 userspace_io:
7902 vcpu->arch.pio.port = port;
7903 vcpu->arch.pio.in = in;
7904 vcpu->arch.pio.count = count;
7905 vcpu->arch.pio.size = size;
7906
7907 if (in)
7908 memset(vcpu->arch.pio_data, 0, size * count);
7909 else
7910 memcpy(vcpu->arch.pio_data, data, size * count);
7911
7912 vcpu->run->exit_reason = KVM_EXIT_IO;
7913 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7914 vcpu->run->io.size = size;
7915 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7916 vcpu->run->io.count = count;
7917 vcpu->run->io.port = port;
7918 return 0;
7919 }
7920
7921 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7922 unsigned short port, void *val, unsigned int count)
7923 {
7924 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7925 if (r)
7926 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7927
7928 return r;
7929 }
7930
7931 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7932 {
7933 int size = vcpu->arch.pio.size;
7934 unsigned int count = vcpu->arch.pio.count;
7935 memcpy(val, vcpu->arch.pio_data, size * count);
7936 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7937 vcpu->arch.pio.count = 0;
7938 }
7939
7940 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7941 int size, unsigned short port, void *val,
7942 unsigned int count)
7943 {
7944 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7945 if (vcpu->arch.pio.count) {
7946 /*
7947 * Complete a previous iteration that required userspace I/O.
7948 * Note, @count isn't guaranteed to match pio.count as userspace
7949 * can modify ECX before rerunning the vCPU. Ignore any such
7950 * shenanigans as KVM doesn't support modifying the rep count,
7951 * and the emulator ensures @count doesn't overflow the buffer.
7952 */
7953 complete_emulator_pio_in(vcpu, val);
7954 return 1;
7955 }
7956
7957 return emulator_pio_in(vcpu, size, port, val, count);
7958 }
7959
7960 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7961 unsigned short port, const void *val,
7962 unsigned int count)
7963 {
7964 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7965 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7966 }
7967
7968 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7969 int size, unsigned short port,
7970 const void *val, unsigned int count)
7971 {
7972 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7973 }
7974
7975 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7976 {
7977 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7978 }
7979
7980 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7981 {
7982 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7983 }
7984
7985 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7986 {
7987 if (!need_emulate_wbinvd(vcpu))
7988 return X86EMUL_CONTINUE;
7989
7990 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7991 int cpu = get_cpu();
7992
7993 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7994 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7995 wbinvd_ipi, NULL, 1);
7996 put_cpu();
7997 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7998 } else
7999 wbinvd();
8000 return X86EMUL_CONTINUE;
8001 }
8002
8003 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8004 {
8005 kvm_emulate_wbinvd_noskip(vcpu);
8006 return kvm_skip_emulated_instruction(vcpu);
8007 }
8008 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8009
8010
8011
8012 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8013 {
8014 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8015 }
8016
8017 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8018 unsigned long *dest)
8019 {
8020 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8021 }
8022
8023 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8024 unsigned long value)
8025 {
8026
8027 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8028 }
8029
8030 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8031 {
8032 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8033 }
8034
8035 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8036 {
8037 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8038 unsigned long value;
8039
8040 switch (cr) {
8041 case 0:
8042 value = kvm_read_cr0(vcpu);
8043 break;
8044 case 2:
8045 value = vcpu->arch.cr2;
8046 break;
8047 case 3:
8048 value = kvm_read_cr3(vcpu);
8049 break;
8050 case 4:
8051 value = kvm_read_cr4(vcpu);
8052 break;
8053 case 8:
8054 value = kvm_get_cr8(vcpu);
8055 break;
8056 default:
8057 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8058 return 0;
8059 }
8060
8061 return value;
8062 }
8063
8064 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8065 {
8066 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8067 int res = 0;
8068
8069 switch (cr) {
8070 case 0:
8071 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8072 break;
8073 case 2:
8074 vcpu->arch.cr2 = val;
8075 break;
8076 case 3:
8077 res = kvm_set_cr3(vcpu, val);
8078 break;
8079 case 4:
8080 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8081 break;
8082 case 8:
8083 res = kvm_set_cr8(vcpu, val);
8084 break;
8085 default:
8086 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8087 res = -1;
8088 }
8089
8090 return res;
8091 }
8092
8093 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8094 {
8095 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8096 }
8097
8098 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8099 {
8100 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8101 }
8102
8103 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8104 {
8105 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8106 }
8107
8108 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8109 {
8110 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8111 }
8112
8113 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8114 {
8115 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8116 }
8117
8118 static unsigned long emulator_get_cached_segment_base(
8119 struct x86_emulate_ctxt *ctxt, int seg)
8120 {
8121 return get_segment_base(emul_to_vcpu(ctxt), seg);
8122 }
8123
8124 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8125 struct desc_struct *desc, u32 *base3,
8126 int seg)
8127 {
8128 struct kvm_segment var;
8129
8130 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8131 *selector = var.selector;
8132
8133 if (var.unusable) {
8134 memset(desc, 0, sizeof(*desc));
8135 if (base3)
8136 *base3 = 0;
8137 return false;
8138 }
8139
8140 if (var.g)
8141 var.limit >>= 12;
8142 set_desc_limit(desc, var.limit);
8143 set_desc_base(desc, (unsigned long)var.base);
8144 #ifdef CONFIG_X86_64
8145 if (base3)
8146 *base3 = var.base >> 32;
8147 #endif
8148 desc->type = var.type;
8149 desc->s = var.s;
8150 desc->dpl = var.dpl;
8151 desc->p = var.present;
8152 desc->avl = var.avl;
8153 desc->l = var.l;
8154 desc->d = var.db;
8155 desc->g = var.g;
8156
8157 return true;
8158 }
8159
8160 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8161 struct desc_struct *desc, u32 base3,
8162 int seg)
8163 {
8164 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8165 struct kvm_segment var;
8166
8167 var.selector = selector;
8168 var.base = get_desc_base(desc);
8169 #ifdef CONFIG_X86_64
8170 var.base |= ((u64)base3) << 32;
8171 #endif
8172 var.limit = get_desc_limit(desc);
8173 if (desc->g)
8174 var.limit = (var.limit << 12) | 0xfff;
8175 var.type = desc->type;
8176 var.dpl = desc->dpl;
8177 var.db = desc->d;
8178 var.s = desc->s;
8179 var.l = desc->l;
8180 var.g = desc->g;
8181 var.avl = desc->avl;
8182 var.present = desc->p;
8183 var.unusable = !var.present;
8184 var.padding = 0;
8185
8186 kvm_set_segment(vcpu, &var, seg);
8187 return;
8188 }
8189
8190 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8191 u32 msr_index, u64 *pdata)
8192 {
8193 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8194 int r;
8195
8196 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8197 if (r < 0)
8198 return X86EMUL_UNHANDLEABLE;
8199
8200 if (r) {
8201 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8202 complete_emulated_rdmsr, r))
8203 return X86EMUL_IO_NEEDED;
8204
8205 trace_kvm_msr_read_ex(msr_index);
8206 return X86EMUL_PROPAGATE_FAULT;
8207 }
8208
8209 trace_kvm_msr_read(msr_index, *pdata);
8210 return X86EMUL_CONTINUE;
8211 }
8212
8213 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8214 u32 msr_index, u64 data)
8215 {
8216 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8217 int r;
8218
8219 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8220 if (r < 0)
8221 return X86EMUL_UNHANDLEABLE;
8222
8223 if (r) {
8224 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8225 complete_emulated_msr_access, r))
8226 return X86EMUL_IO_NEEDED;
8227
8228 trace_kvm_msr_write_ex(msr_index, data);
8229 return X86EMUL_PROPAGATE_FAULT;
8230 }
8231
8232 trace_kvm_msr_write(msr_index, data);
8233 return X86EMUL_CONTINUE;
8234 }
8235
8236 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8237 u32 msr_index, u64 *pdata)
8238 {
8239 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8240 }
8241
8242 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8243 u32 pmc)
8244 {
8245 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8246 return 0;
8247 return -EINVAL;
8248 }
8249
8250 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8251 u32 pmc, u64 *pdata)
8252 {
8253 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8254 }
8255
8256 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8257 {
8258 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8259 }
8260
8261 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8262 struct x86_instruction_info *info,
8263 enum x86_intercept_stage stage)
8264 {
8265 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8266 &ctxt->exception);
8267 }
8268
8269 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8270 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8271 bool exact_only)
8272 {
8273 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8274 }
8275
8276 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8277 {
8278 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8279 }
8280
8281 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8282 {
8283 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8284 }
8285
8286 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8287 {
8288 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8289 }
8290
8291 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8292 {
8293 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8294 }
8295
8296 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8297 {
8298 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8299 }
8300
8301 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8302 {
8303 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8304 }
8305
8306 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8307 {
8308 return is_smm(emul_to_vcpu(ctxt));
8309 }
8310
8311 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8312 {
8313 return is_guest_mode(emul_to_vcpu(ctxt));
8314 }
8315
8316 #ifndef CONFIG_KVM_SMM
8317 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8318 {
8319 WARN_ON_ONCE(1);
8320 return X86EMUL_UNHANDLEABLE;
8321 }
8322 #endif
8323
8324 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8325 {
8326 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8327 }
8328
8329 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8330 {
8331 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8332 }
8333
8334 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8335 {
8336 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8337
8338 if (!kvm->vm_bugged)
8339 kvm_vm_bugged(kvm);
8340 }
8341
8342 static const struct x86_emulate_ops emulate_ops = {
8343 .vm_bugged = emulator_vm_bugged,
8344 .read_gpr = emulator_read_gpr,
8345 .write_gpr = emulator_write_gpr,
8346 .read_std = emulator_read_std,
8347 .write_std = emulator_write_std,
8348 .fetch = kvm_fetch_guest_virt,
8349 .read_emulated = emulator_read_emulated,
8350 .write_emulated = emulator_write_emulated,
8351 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8352 .invlpg = emulator_invlpg,
8353 .pio_in_emulated = emulator_pio_in_emulated,
8354 .pio_out_emulated = emulator_pio_out_emulated,
8355 .get_segment = emulator_get_segment,
8356 .set_segment = emulator_set_segment,
8357 .get_cached_segment_base = emulator_get_cached_segment_base,
8358 .get_gdt = emulator_get_gdt,
8359 .get_idt = emulator_get_idt,
8360 .set_gdt = emulator_set_gdt,
8361 .set_idt = emulator_set_idt,
8362 .get_cr = emulator_get_cr,
8363 .set_cr = emulator_set_cr,
8364 .cpl = emulator_get_cpl,
8365 .get_dr = emulator_get_dr,
8366 .set_dr = emulator_set_dr,
8367 .set_msr_with_filter = emulator_set_msr_with_filter,
8368 .get_msr_with_filter = emulator_get_msr_with_filter,
8369 .get_msr = emulator_get_msr,
8370 .check_pmc = emulator_check_pmc,
8371 .read_pmc = emulator_read_pmc,
8372 .halt = emulator_halt,
8373 .wbinvd = emulator_wbinvd,
8374 .fix_hypercall = emulator_fix_hypercall,
8375 .intercept = emulator_intercept,
8376 .get_cpuid = emulator_get_cpuid,
8377 .guest_has_movbe = emulator_guest_has_movbe,
8378 .guest_has_fxsr = emulator_guest_has_fxsr,
8379 .guest_has_rdpid = emulator_guest_has_rdpid,
8380 .set_nmi_mask = emulator_set_nmi_mask,
8381 .is_smm = emulator_is_smm,
8382 .is_guest_mode = emulator_is_guest_mode,
8383 .leave_smm = emulator_leave_smm,
8384 .triple_fault = emulator_triple_fault,
8385 .set_xcr = emulator_set_xcr,
8386 };
8387
8388 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8389 {
8390 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8391 /*
8392 * an sti; sti; sequence only disable interrupts for the first
8393 * instruction. So, if the last instruction, be it emulated or
8394 * not, left the system with the INT_STI flag enabled, it
8395 * means that the last instruction is an sti. We should not
8396 * leave the flag on in this case. The same goes for mov ss
8397 */
8398 if (int_shadow & mask)
8399 mask = 0;
8400 if (unlikely(int_shadow || mask)) {
8401 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8402 if (!mask)
8403 kvm_make_request(KVM_REQ_EVENT, vcpu);
8404 }
8405 }
8406
8407 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8408 {
8409 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8410
8411 if (ctxt->exception.vector == PF_VECTOR)
8412 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8413 else if (ctxt->exception.error_code_valid)
8414 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8415 ctxt->exception.error_code);
8416 else
8417 kvm_queue_exception(vcpu, ctxt->exception.vector);
8418 }
8419
8420 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8421 {
8422 struct x86_emulate_ctxt *ctxt;
8423
8424 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8425 if (!ctxt) {
8426 pr_err("failed to allocate vcpu's emulator\n");
8427 return NULL;
8428 }
8429
8430 ctxt->vcpu = vcpu;
8431 ctxt->ops = &emulate_ops;
8432 vcpu->arch.emulate_ctxt = ctxt;
8433
8434 return ctxt;
8435 }
8436
8437 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8438 {
8439 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8440 int cs_db, cs_l;
8441
8442 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8443
8444 ctxt->gpa_available = false;
8445 ctxt->eflags = kvm_get_rflags(vcpu);
8446 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8447
8448 ctxt->eip = kvm_rip_read(vcpu);
8449 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8450 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8451 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8452 cs_db ? X86EMUL_MODE_PROT32 :
8453 X86EMUL_MODE_PROT16;
8454 ctxt->interruptibility = 0;
8455 ctxt->have_exception = false;
8456 ctxt->exception.vector = -1;
8457 ctxt->perm_ok = false;
8458
8459 init_decode_cache(ctxt);
8460 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8461 }
8462
8463 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8464 {
8465 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8466 int ret;
8467
8468 init_emulate_ctxt(vcpu);
8469
8470 ctxt->op_bytes = 2;
8471 ctxt->ad_bytes = 2;
8472 ctxt->_eip = ctxt->eip + inc_eip;
8473 ret = emulate_int_real(ctxt, irq);
8474
8475 if (ret != X86EMUL_CONTINUE) {
8476 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8477 } else {
8478 ctxt->eip = ctxt->_eip;
8479 kvm_rip_write(vcpu, ctxt->eip);
8480 kvm_set_rflags(vcpu, ctxt->eflags);
8481 }
8482 }
8483 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8484
8485 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8486 u8 ndata, u8 *insn_bytes, u8 insn_size)
8487 {
8488 struct kvm_run *run = vcpu->run;
8489 u64 info[5];
8490 u8 info_start;
8491
8492 /*
8493 * Zero the whole array used to retrieve the exit info, as casting to
8494 * u32 for select entries will leave some chunks uninitialized.
8495 */
8496 memset(&info, 0, sizeof(info));
8497
8498 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8499 &info[2], (u32 *)&info[3],
8500 (u32 *)&info[4]);
8501
8502 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8503 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8504
8505 /*
8506 * There's currently space for 13 entries, but 5 are used for the exit
8507 * reason and info. Restrict to 4 to reduce the maintenance burden
8508 * when expanding kvm_run.emulation_failure in the future.
8509 */
8510 if (WARN_ON_ONCE(ndata > 4))
8511 ndata = 4;
8512
8513 /* Always include the flags as a 'data' entry. */
8514 info_start = 1;
8515 run->emulation_failure.flags = 0;
8516
8517 if (insn_size) {
8518 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8519 sizeof(run->emulation_failure.insn_bytes) != 16));
8520 info_start += 2;
8521 run->emulation_failure.flags |=
8522 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8523 run->emulation_failure.insn_size = insn_size;
8524 memset(run->emulation_failure.insn_bytes, 0x90,
8525 sizeof(run->emulation_failure.insn_bytes));
8526 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8527 }
8528
8529 memcpy(&run->internal.data[info_start], info, sizeof(info));
8530 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8531 ndata * sizeof(data[0]));
8532
8533 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8534 }
8535
8536 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8537 {
8538 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8539
8540 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8541 ctxt->fetch.end - ctxt->fetch.data);
8542 }
8543
8544 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8545 u8 ndata)
8546 {
8547 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8548 }
8549 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8550
8551 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8552 {
8553 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8554 }
8555 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8556
8557 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8558 {
8559 struct kvm *kvm = vcpu->kvm;
8560
8561 ++vcpu->stat.insn_emulation_fail;
8562 trace_kvm_emulate_insn_failed(vcpu);
8563
8564 if (emulation_type & EMULTYPE_VMWARE_GP) {
8565 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8566 return 1;
8567 }
8568
8569 if (kvm->arch.exit_on_emulation_error ||
8570 (emulation_type & EMULTYPE_SKIP)) {
8571 prepare_emulation_ctxt_failure_exit(vcpu);
8572 return 0;
8573 }
8574
8575 kvm_queue_exception(vcpu, UD_VECTOR);
8576
8577 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8578 prepare_emulation_ctxt_failure_exit(vcpu);
8579 return 0;
8580 }
8581
8582 return 1;
8583 }
8584
8585 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8586 int emulation_type)
8587 {
8588 gpa_t gpa = cr2_or_gpa;
8589 kvm_pfn_t pfn;
8590
8591 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8592 return false;
8593
8594 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8595 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8596 return false;
8597
8598 if (!vcpu->arch.mmu->root_role.direct) {
8599 /*
8600 * Write permission should be allowed since only
8601 * write access need to be emulated.
8602 */
8603 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8604
8605 /*
8606 * If the mapping is invalid in guest, let cpu retry
8607 * it to generate fault.
8608 */
8609 if (gpa == INVALID_GPA)
8610 return true;
8611 }
8612
8613 /*
8614 * Do not retry the unhandleable instruction if it faults on the
8615 * readonly host memory, otherwise it will goto a infinite loop:
8616 * retry instruction -> write #PF -> emulation fail -> retry
8617 * instruction -> ...
8618 */
8619 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8620
8621 /*
8622 * If the instruction failed on the error pfn, it can not be fixed,
8623 * report the error to userspace.
8624 */
8625 if (is_error_noslot_pfn(pfn))
8626 return false;
8627
8628 kvm_release_pfn_clean(pfn);
8629
8630 /* The instructions are well-emulated on direct mmu. */
8631 if (vcpu->arch.mmu->root_role.direct) {
8632 unsigned int indirect_shadow_pages;
8633
8634 write_lock(&vcpu->kvm->mmu_lock);
8635 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8636 write_unlock(&vcpu->kvm->mmu_lock);
8637
8638 if (indirect_shadow_pages)
8639 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8640
8641 return true;
8642 }
8643
8644 /*
8645 * if emulation was due to access to shadowed page table
8646 * and it failed try to unshadow page and re-enter the
8647 * guest to let CPU execute the instruction.
8648 */
8649 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8650
8651 /*
8652 * If the access faults on its page table, it can not
8653 * be fixed by unprotecting shadow page and it should
8654 * be reported to userspace.
8655 */
8656 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8657 }
8658
8659 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8660 gpa_t cr2_or_gpa, int emulation_type)
8661 {
8662 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8663 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8664
8665 last_retry_eip = vcpu->arch.last_retry_eip;
8666 last_retry_addr = vcpu->arch.last_retry_addr;
8667
8668 /*
8669 * If the emulation is caused by #PF and it is non-page_table
8670 * writing instruction, it means the VM-EXIT is caused by shadow
8671 * page protected, we can zap the shadow page and retry this
8672 * instruction directly.
8673 *
8674 * Note: if the guest uses a non-page-table modifying instruction
8675 * on the PDE that points to the instruction, then we will unmap
8676 * the instruction and go to an infinite loop. So, we cache the
8677 * last retried eip and the last fault address, if we meet the eip
8678 * and the address again, we can break out of the potential infinite
8679 * loop.
8680 */
8681 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8682
8683 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8684 return false;
8685
8686 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8687 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8688 return false;
8689
8690 if (x86_page_table_writing_insn(ctxt))
8691 return false;
8692
8693 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8694 return false;
8695
8696 vcpu->arch.last_retry_eip = ctxt->eip;
8697 vcpu->arch.last_retry_addr = cr2_or_gpa;
8698
8699 if (!vcpu->arch.mmu->root_role.direct)
8700 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8701
8702 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8703
8704 return true;
8705 }
8706
8707 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8708 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8709
8710 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8711 unsigned long *db)
8712 {
8713 u32 dr6 = 0;
8714 int i;
8715 u32 enable, rwlen;
8716
8717 enable = dr7;
8718 rwlen = dr7 >> 16;
8719 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8720 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8721 dr6 |= (1 << i);
8722 return dr6;
8723 }
8724
8725 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8726 {
8727 struct kvm_run *kvm_run = vcpu->run;
8728
8729 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8730 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8731 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8732 kvm_run->debug.arch.exception = DB_VECTOR;
8733 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8734 return 0;
8735 }
8736 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8737 return 1;
8738 }
8739
8740 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8741 {
8742 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8743 int r;
8744
8745 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8746 if (unlikely(!r))
8747 return 0;
8748
8749 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8750
8751 /*
8752 * rflags is the old, "raw" value of the flags. The new value has
8753 * not been saved yet.
8754 *
8755 * This is correct even for TF set by the guest, because "the
8756 * processor will not generate this exception after the instruction
8757 * that sets the TF flag".
8758 */
8759 if (unlikely(rflags & X86_EFLAGS_TF))
8760 r = kvm_vcpu_do_singlestep(vcpu);
8761 return r;
8762 }
8763 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8764
8765 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8766 {
8767 u32 shadow;
8768
8769 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8770 return true;
8771
8772 /*
8773 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8774 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first
8775 * to avoid the relatively expensive CPUID lookup.
8776 */
8777 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8778 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8779 guest_cpuid_is_intel(vcpu);
8780 }
8781
8782 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8783 int emulation_type, int *r)
8784 {
8785 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8786
8787 /*
8788 * Do not check for code breakpoints if hardware has already done the
8789 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8790 * the instruction has passed all exception checks, and all intercepted
8791 * exceptions that trigger emulation have lower priority than code
8792 * breakpoints, i.e. the fact that the intercepted exception occurred
8793 * means any code breakpoints have already been serviced.
8794 *
8795 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8796 * hardware has checked the RIP of the magic prefix, but not the RIP of
8797 * the instruction being emulated. The intent of forced emulation is
8798 * to behave as if KVM intercepted the instruction without an exception
8799 * and without a prefix.
8800 */
8801 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8802 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8803 return false;
8804
8805 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8806 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8807 struct kvm_run *kvm_run = vcpu->run;
8808 unsigned long eip = kvm_get_linear_rip(vcpu);
8809 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8810 vcpu->arch.guest_debug_dr7,
8811 vcpu->arch.eff_db);
8812
8813 if (dr6 != 0) {
8814 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8815 kvm_run->debug.arch.pc = eip;
8816 kvm_run->debug.arch.exception = DB_VECTOR;
8817 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8818 *r = 0;
8819 return true;
8820 }
8821 }
8822
8823 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8824 !kvm_is_code_breakpoint_inhibited(vcpu)) {
8825 unsigned long eip = kvm_get_linear_rip(vcpu);
8826 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8827 vcpu->arch.dr7,
8828 vcpu->arch.db);
8829
8830 if (dr6 != 0) {
8831 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8832 *r = 1;
8833 return true;
8834 }
8835 }
8836
8837 return false;
8838 }
8839
8840 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8841 {
8842 switch (ctxt->opcode_len) {
8843 case 1:
8844 switch (ctxt->b) {
8845 case 0xe4: /* IN */
8846 case 0xe5:
8847 case 0xec:
8848 case 0xed:
8849 case 0xe6: /* OUT */
8850 case 0xe7:
8851 case 0xee:
8852 case 0xef:
8853 case 0x6c: /* INS */
8854 case 0x6d:
8855 case 0x6e: /* OUTS */
8856 case 0x6f:
8857 return true;
8858 }
8859 break;
8860 case 2:
8861 switch (ctxt->b) {
8862 case 0x33: /* RDPMC */
8863 return true;
8864 }
8865 break;
8866 }
8867
8868 return false;
8869 }
8870
8871 /*
8872 * Decode an instruction for emulation. The caller is responsible for handling
8873 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
8874 * (and wrong) when emulating on an intercepted fault-like exception[*], as
8875 * code breakpoints have higher priority and thus have already been done by
8876 * hardware.
8877 *
8878 * [*] Except #MC, which is higher priority, but KVM should never emulate in
8879 * response to a machine check.
8880 */
8881 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8882 void *insn, int insn_len)
8883 {
8884 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8885 int r;
8886
8887 init_emulate_ctxt(vcpu);
8888
8889 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8890
8891 trace_kvm_emulate_insn_start(vcpu);
8892 ++vcpu->stat.insn_emulation;
8893
8894 return r;
8895 }
8896 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8897
8898 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8899 int emulation_type, void *insn, int insn_len)
8900 {
8901 int r;
8902 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8903 bool writeback = true;
8904
8905 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8906 return 1;
8907
8908 vcpu->arch.l1tf_flush_l1d = true;
8909
8910 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8911 kvm_clear_exception_queue(vcpu);
8912
8913 /*
8914 * Return immediately if RIP hits a code breakpoint, such #DBs
8915 * are fault-like and are higher priority than any faults on
8916 * the code fetch itself.
8917 */
8918 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8919 return r;
8920
8921 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8922 insn, insn_len);
8923 if (r != EMULATION_OK) {
8924 if ((emulation_type & EMULTYPE_TRAP_UD) ||
8925 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8926 kvm_queue_exception(vcpu, UD_VECTOR);
8927 return 1;
8928 }
8929 if (reexecute_instruction(vcpu, cr2_or_gpa,
8930 emulation_type))
8931 return 1;
8932
8933 if (ctxt->have_exception &&
8934 !(emulation_type & EMULTYPE_SKIP)) {
8935 /*
8936 * #UD should result in just EMULATION_FAILED, and trap-like
8937 * exception should not be encountered during decode.
8938 */
8939 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8940 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8941 inject_emulated_exception(vcpu);
8942 return 1;
8943 }
8944 return handle_emulation_failure(vcpu, emulation_type);
8945 }
8946 }
8947
8948 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8949 !is_vmware_backdoor_opcode(ctxt)) {
8950 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8951 return 1;
8952 }
8953
8954 /*
8955 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8956 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8957 * The caller is responsible for updating interruptibility state and
8958 * injecting single-step #DBs.
8959 */
8960 if (emulation_type & EMULTYPE_SKIP) {
8961 if (ctxt->mode != X86EMUL_MODE_PROT64)
8962 ctxt->eip = (u32)ctxt->_eip;
8963 else
8964 ctxt->eip = ctxt->_eip;
8965
8966 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8967 r = 1;
8968 goto writeback;
8969 }
8970
8971 kvm_rip_write(vcpu, ctxt->eip);
8972 if (ctxt->eflags & X86_EFLAGS_RF)
8973 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8974 return 1;
8975 }
8976
8977 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8978 return 1;
8979
8980 /* this is needed for vmware backdoor interface to work since it
8981 changes registers values during IO operation */
8982 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8983 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8984 emulator_invalidate_register_cache(ctxt);
8985 }
8986
8987 restart:
8988 if (emulation_type & EMULTYPE_PF) {
8989 /* Save the faulting GPA (cr2) in the address field */
8990 ctxt->exception.address = cr2_or_gpa;
8991
8992 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8993 if (vcpu->arch.mmu->root_role.direct) {
8994 ctxt->gpa_available = true;
8995 ctxt->gpa_val = cr2_or_gpa;
8996 }
8997 } else {
8998 /* Sanitize the address out of an abundance of paranoia. */
8999 ctxt->exception.address = 0;
9000 }
9001
9002 r = x86_emulate_insn(ctxt);
9003
9004 if (r == EMULATION_INTERCEPTED)
9005 return 1;
9006
9007 if (r == EMULATION_FAILED) {
9008 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9009 return 1;
9010
9011 return handle_emulation_failure(vcpu, emulation_type);
9012 }
9013
9014 if (ctxt->have_exception) {
9015 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9016 vcpu->mmio_needed = false;
9017 r = 1;
9018 inject_emulated_exception(vcpu);
9019 } else if (vcpu->arch.pio.count) {
9020 if (!vcpu->arch.pio.in) {
9021 /* FIXME: return into emulator if single-stepping. */
9022 vcpu->arch.pio.count = 0;
9023 } else {
9024 writeback = false;
9025 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9026 }
9027 r = 0;
9028 } else if (vcpu->mmio_needed) {
9029 ++vcpu->stat.mmio_exits;
9030
9031 if (!vcpu->mmio_is_write)
9032 writeback = false;
9033 r = 0;
9034 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9035 } else if (vcpu->arch.complete_userspace_io) {
9036 writeback = false;
9037 r = 0;
9038 } else if (r == EMULATION_RESTART)
9039 goto restart;
9040 else
9041 r = 1;
9042
9043 writeback:
9044 if (writeback) {
9045 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9046 toggle_interruptibility(vcpu, ctxt->interruptibility);
9047 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9048
9049 /*
9050 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9051 * only supports code breakpoints and general detect #DB, both
9052 * of which are fault-like.
9053 */
9054 if (!ctxt->have_exception ||
9055 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9056 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9057 if (ctxt->is_branch)
9058 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9059 kvm_rip_write(vcpu, ctxt->eip);
9060 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9061 r = kvm_vcpu_do_singlestep(vcpu);
9062 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9063 __kvm_set_rflags(vcpu, ctxt->eflags);
9064 }
9065
9066 /*
9067 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9068 * do nothing, and it will be requested again as soon as
9069 * the shadow expires. But we still need to check here,
9070 * because POPF has no interrupt shadow.
9071 */
9072 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9073 kvm_make_request(KVM_REQ_EVENT, vcpu);
9074 } else
9075 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9076
9077 return r;
9078 }
9079
9080 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9081 {
9082 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9083 }
9084 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9085
9086 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9087 void *insn, int insn_len)
9088 {
9089 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9090 }
9091 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9092
9093 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9094 {
9095 vcpu->arch.pio.count = 0;
9096 return 1;
9097 }
9098
9099 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9100 {
9101 vcpu->arch.pio.count = 0;
9102
9103 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9104 return 1;
9105
9106 return kvm_skip_emulated_instruction(vcpu);
9107 }
9108
9109 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9110 unsigned short port)
9111 {
9112 unsigned long val = kvm_rax_read(vcpu);
9113 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9114
9115 if (ret)
9116 return ret;
9117
9118 /*
9119 * Workaround userspace that relies on old KVM behavior of %rip being
9120 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9121 */
9122 if (port == 0x7e &&
9123 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9124 vcpu->arch.complete_userspace_io =
9125 complete_fast_pio_out_port_0x7e;
9126 kvm_skip_emulated_instruction(vcpu);
9127 } else {
9128 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9129 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9130 }
9131 return 0;
9132 }
9133
9134 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9135 {
9136 unsigned long val;
9137
9138 /* We should only ever be called with arch.pio.count equal to 1 */
9139 BUG_ON(vcpu->arch.pio.count != 1);
9140
9141 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9142 vcpu->arch.pio.count = 0;
9143 return 1;
9144 }
9145
9146 /* For size less than 4 we merge, else we zero extend */
9147 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9148
9149 complete_emulator_pio_in(vcpu, &val);
9150 kvm_rax_write(vcpu, val);
9151
9152 return kvm_skip_emulated_instruction(vcpu);
9153 }
9154
9155 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9156 unsigned short port)
9157 {
9158 unsigned long val;
9159 int ret;
9160
9161 /* For size less than 4 we merge, else we zero extend */
9162 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9163
9164 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9165 if (ret) {
9166 kvm_rax_write(vcpu, val);
9167 return ret;
9168 }
9169
9170 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9171 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9172
9173 return 0;
9174 }
9175
9176 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9177 {
9178 int ret;
9179
9180 if (in)
9181 ret = kvm_fast_pio_in(vcpu, size, port);
9182 else
9183 ret = kvm_fast_pio_out(vcpu, size, port);
9184 return ret && kvm_skip_emulated_instruction(vcpu);
9185 }
9186 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9187
9188 static int kvmclock_cpu_down_prep(unsigned int cpu)
9189 {
9190 __this_cpu_write(cpu_tsc_khz, 0);
9191 return 0;
9192 }
9193
9194 static void tsc_khz_changed(void *data)
9195 {
9196 struct cpufreq_freqs *freq = data;
9197 unsigned long khz;
9198
9199 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9200
9201 if (data)
9202 khz = freq->new;
9203 else
9204 khz = cpufreq_quick_get(raw_smp_processor_id());
9205 if (!khz)
9206 khz = tsc_khz;
9207 __this_cpu_write(cpu_tsc_khz, khz);
9208 }
9209
9210 #ifdef CONFIG_X86_64
9211 static void kvm_hyperv_tsc_notifier(void)
9212 {
9213 struct kvm *kvm;
9214 int cpu;
9215
9216 mutex_lock(&kvm_lock);
9217 list_for_each_entry(kvm, &vm_list, vm_list)
9218 kvm_make_mclock_inprogress_request(kvm);
9219
9220 /* no guest entries from this point */
9221 hyperv_stop_tsc_emulation();
9222
9223 /* TSC frequency always matches when on Hyper-V */
9224 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9225 for_each_present_cpu(cpu)
9226 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9227 }
9228 kvm_caps.max_guest_tsc_khz = tsc_khz;
9229
9230 list_for_each_entry(kvm, &vm_list, vm_list) {
9231 __kvm_start_pvclock_update(kvm);
9232 pvclock_update_vm_gtod_copy(kvm);
9233 kvm_end_pvclock_update(kvm);
9234 }
9235
9236 mutex_unlock(&kvm_lock);
9237 }
9238 #endif
9239
9240 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9241 {
9242 struct kvm *kvm;
9243 struct kvm_vcpu *vcpu;
9244 int send_ipi = 0;
9245 unsigned long i;
9246
9247 /*
9248 * We allow guests to temporarily run on slowing clocks,
9249 * provided we notify them after, or to run on accelerating
9250 * clocks, provided we notify them before. Thus time never
9251 * goes backwards.
9252 *
9253 * However, we have a problem. We can't atomically update
9254 * the frequency of a given CPU from this function; it is
9255 * merely a notifier, which can be called from any CPU.
9256 * Changing the TSC frequency at arbitrary points in time
9257 * requires a recomputation of local variables related to
9258 * the TSC for each VCPU. We must flag these local variables
9259 * to be updated and be sure the update takes place with the
9260 * new frequency before any guests proceed.
9261 *
9262 * Unfortunately, the combination of hotplug CPU and frequency
9263 * change creates an intractable locking scenario; the order
9264 * of when these callouts happen is undefined with respect to
9265 * CPU hotplug, and they can race with each other. As such,
9266 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9267 * undefined; you can actually have a CPU frequency change take
9268 * place in between the computation of X and the setting of the
9269 * variable. To protect against this problem, all updates of
9270 * the per_cpu tsc_khz variable are done in an interrupt
9271 * protected IPI, and all callers wishing to update the value
9272 * must wait for a synchronous IPI to complete (which is trivial
9273 * if the caller is on the CPU already). This establishes the
9274 * necessary total order on variable updates.
9275 *
9276 * Note that because a guest time update may take place
9277 * anytime after the setting of the VCPU's request bit, the
9278 * correct TSC value must be set before the request. However,
9279 * to ensure the update actually makes it to any guest which
9280 * starts running in hardware virtualization between the set
9281 * and the acquisition of the spinlock, we must also ping the
9282 * CPU after setting the request bit.
9283 *
9284 */
9285
9286 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9287
9288 mutex_lock(&kvm_lock);
9289 list_for_each_entry(kvm, &vm_list, vm_list) {
9290 kvm_for_each_vcpu(i, vcpu, kvm) {
9291 if (vcpu->cpu != cpu)
9292 continue;
9293 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9294 if (vcpu->cpu != raw_smp_processor_id())
9295 send_ipi = 1;
9296 }
9297 }
9298 mutex_unlock(&kvm_lock);
9299
9300 if (freq->old < freq->new && send_ipi) {
9301 /*
9302 * We upscale the frequency. Must make the guest
9303 * doesn't see old kvmclock values while running with
9304 * the new frequency, otherwise we risk the guest sees
9305 * time go backwards.
9306 *
9307 * In case we update the frequency for another cpu
9308 * (which might be in guest context) send an interrupt
9309 * to kick the cpu out of guest context. Next time
9310 * guest context is entered kvmclock will be updated,
9311 * so the guest will not see stale values.
9312 */
9313 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9314 }
9315 }
9316
9317 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9318 void *data)
9319 {
9320 struct cpufreq_freqs *freq = data;
9321 int cpu;
9322
9323 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9324 return 0;
9325 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9326 return 0;
9327
9328 for_each_cpu(cpu, freq->policy->cpus)
9329 __kvmclock_cpufreq_notifier(freq, cpu);
9330
9331 return 0;
9332 }
9333
9334 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9335 .notifier_call = kvmclock_cpufreq_notifier
9336 };
9337
9338 static int kvmclock_cpu_online(unsigned int cpu)
9339 {
9340 tsc_khz_changed(NULL);
9341 return 0;
9342 }
9343
9344 static void kvm_timer_init(void)
9345 {
9346 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9347 max_tsc_khz = tsc_khz;
9348
9349 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9350 struct cpufreq_policy *policy;
9351 int cpu;
9352
9353 cpu = get_cpu();
9354 policy = cpufreq_cpu_get(cpu);
9355 if (policy) {
9356 if (policy->cpuinfo.max_freq)
9357 max_tsc_khz = policy->cpuinfo.max_freq;
9358 cpufreq_cpu_put(policy);
9359 }
9360 put_cpu();
9361 }
9362 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9363 CPUFREQ_TRANSITION_NOTIFIER);
9364
9365 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9366 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9367 }
9368 }
9369
9370 #ifdef CONFIG_X86_64
9371 static void pvclock_gtod_update_fn(struct work_struct *work)
9372 {
9373 struct kvm *kvm;
9374 struct kvm_vcpu *vcpu;
9375 unsigned long i;
9376
9377 mutex_lock(&kvm_lock);
9378 list_for_each_entry(kvm, &vm_list, vm_list)
9379 kvm_for_each_vcpu(i, vcpu, kvm)
9380 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9381 atomic_set(&kvm_guest_has_master_clock, 0);
9382 mutex_unlock(&kvm_lock);
9383 }
9384
9385 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9386
9387 /*
9388 * Indirection to move queue_work() out of the tk_core.seq write held
9389 * region to prevent possible deadlocks against time accessors which
9390 * are invoked with work related locks held.
9391 */
9392 static void pvclock_irq_work_fn(struct irq_work *w)
9393 {
9394 queue_work(system_long_wq, &pvclock_gtod_work);
9395 }
9396
9397 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9398
9399 /*
9400 * Notification about pvclock gtod data update.
9401 */
9402 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9403 void *priv)
9404 {
9405 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9406 struct timekeeper *tk = priv;
9407
9408 update_pvclock_gtod(tk);
9409
9410 /*
9411 * Disable master clock if host does not trust, or does not use,
9412 * TSC based clocksource. Delegate queue_work() to irq_work as
9413 * this is invoked with tk_core.seq write held.
9414 */
9415 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9416 atomic_read(&kvm_guest_has_master_clock) != 0)
9417 irq_work_queue(&pvclock_irq_work);
9418 return 0;
9419 }
9420
9421 static struct notifier_block pvclock_gtod_notifier = {
9422 .notifier_call = pvclock_gtod_notify,
9423 };
9424 #endif
9425
9426 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9427 {
9428 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9429
9430 #define __KVM_X86_OP(func) \
9431 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9432 #define KVM_X86_OP(func) \
9433 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9434 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9435 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9436 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9437 (void *)__static_call_return0);
9438 #include <asm/kvm-x86-ops.h>
9439 #undef __KVM_X86_OP
9440
9441 kvm_pmu_ops_update(ops->pmu_ops);
9442 }
9443
9444 static int kvm_x86_check_processor_compatibility(void)
9445 {
9446 int cpu = smp_processor_id();
9447 struct cpuinfo_x86 *c = &cpu_data(cpu);
9448
9449 /*
9450 * Compatibility checks are done when loading KVM and when enabling
9451 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9452 * compatible, i.e. KVM should never perform a compatibility check on
9453 * an offline CPU.
9454 */
9455 WARN_ON(!cpu_online(cpu));
9456
9457 if (__cr4_reserved_bits(cpu_has, c) !=
9458 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9459 return -EIO;
9460
9461 return static_call(kvm_x86_check_processor_compatibility)();
9462 }
9463
9464 static void kvm_x86_check_cpu_compat(void *ret)
9465 {
9466 *(int *)ret = kvm_x86_check_processor_compatibility();
9467 }
9468
9469 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9470 {
9471 u64 host_pat;
9472 int r, cpu;
9473
9474 if (kvm_x86_ops.hardware_enable) {
9475 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9476 return -EEXIST;
9477 }
9478
9479 /*
9480 * KVM explicitly assumes that the guest has an FPU and
9481 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9482 * vCPU's FPU state as a fxregs_state struct.
9483 */
9484 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9485 pr_err("inadequate fpu\n");
9486 return -EOPNOTSUPP;
9487 }
9488
9489 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9490 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9491 return -EOPNOTSUPP;
9492 }
9493
9494 /*
9495 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9496 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9497 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9498 * with an exception. PAT[0] is set to WB on RESET and also by the
9499 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9500 */
9501 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9502 (host_pat & GENMASK(2, 0)) != 6) {
9503 pr_err("host PAT[0] is not WB\n");
9504 return -EIO;
9505 }
9506
9507 x86_emulator_cache = kvm_alloc_emulator_cache();
9508 if (!x86_emulator_cache) {
9509 pr_err("failed to allocate cache for x86 emulator\n");
9510 return -ENOMEM;
9511 }
9512
9513 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9514 if (!user_return_msrs) {
9515 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9516 r = -ENOMEM;
9517 goto out_free_x86_emulator_cache;
9518 }
9519 kvm_nr_uret_msrs = 0;
9520
9521 r = kvm_mmu_vendor_module_init();
9522 if (r)
9523 goto out_free_percpu;
9524
9525 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9526 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9527 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9528 }
9529
9530 rdmsrl_safe(MSR_EFER, &host_efer);
9531
9532 if (boot_cpu_has(X86_FEATURE_XSAVES))
9533 rdmsrl(MSR_IA32_XSS, host_xss);
9534
9535 kvm_init_pmu_capability(ops->pmu_ops);
9536
9537 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9538 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9539
9540 r = ops->hardware_setup();
9541 if (r != 0)
9542 goto out_mmu_exit;
9543
9544 kvm_ops_update(ops);
9545
9546 for_each_online_cpu(cpu) {
9547 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9548 if (r < 0)
9549 goto out_unwind_ops;
9550 }
9551
9552 /*
9553 * Point of no return! DO NOT add error paths below this point unless
9554 * absolutely necessary, as most operations from this point forward
9555 * require unwinding.
9556 */
9557 kvm_timer_init();
9558
9559 if (pi_inject_timer == -1)
9560 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9561 #ifdef CONFIG_X86_64
9562 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9563
9564 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9565 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9566 #endif
9567
9568 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9569
9570 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9571 kvm_caps.supported_xss = 0;
9572
9573 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9574 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9575 #undef __kvm_cpu_cap_has
9576
9577 if (kvm_caps.has_tsc_control) {
9578 /*
9579 * Make sure the user can only configure tsc_khz values that
9580 * fit into a signed integer.
9581 * A min value is not calculated because it will always
9582 * be 1 on all machines.
9583 */
9584 u64 max = min(0x7fffffffULL,
9585 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9586 kvm_caps.max_guest_tsc_khz = max;
9587 }
9588 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9589 kvm_init_msr_lists();
9590 return 0;
9591
9592 out_unwind_ops:
9593 kvm_x86_ops.hardware_enable = NULL;
9594 static_call(kvm_x86_hardware_unsetup)();
9595 out_mmu_exit:
9596 kvm_mmu_vendor_module_exit();
9597 out_free_percpu:
9598 free_percpu(user_return_msrs);
9599 out_free_x86_emulator_cache:
9600 kmem_cache_destroy(x86_emulator_cache);
9601 return r;
9602 }
9603
9604 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9605 {
9606 int r;
9607
9608 mutex_lock(&vendor_module_lock);
9609 r = __kvm_x86_vendor_init(ops);
9610 mutex_unlock(&vendor_module_lock);
9611
9612 return r;
9613 }
9614 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9615
9616 void kvm_x86_vendor_exit(void)
9617 {
9618 kvm_unregister_perf_callbacks();
9619
9620 #ifdef CONFIG_X86_64
9621 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9622 clear_hv_tscchange_cb();
9623 #endif
9624 kvm_lapic_exit();
9625
9626 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9627 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9628 CPUFREQ_TRANSITION_NOTIFIER);
9629 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9630 }
9631 #ifdef CONFIG_X86_64
9632 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9633 irq_work_sync(&pvclock_irq_work);
9634 cancel_work_sync(&pvclock_gtod_work);
9635 #endif
9636 static_call(kvm_x86_hardware_unsetup)();
9637 kvm_mmu_vendor_module_exit();
9638 free_percpu(user_return_msrs);
9639 kmem_cache_destroy(x86_emulator_cache);
9640 #ifdef CONFIG_KVM_XEN
9641 static_key_deferred_flush(&kvm_xen_enabled);
9642 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9643 #endif
9644 mutex_lock(&vendor_module_lock);
9645 kvm_x86_ops.hardware_enable = NULL;
9646 mutex_unlock(&vendor_module_lock);
9647 }
9648 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9649
9650 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9651 {
9652 /*
9653 * The vCPU has halted, e.g. executed HLT. Update the run state if the
9654 * local APIC is in-kernel, the run loop will detect the non-runnable
9655 * state and halt the vCPU. Exit to userspace if the local APIC is
9656 * managed by userspace, in which case userspace is responsible for
9657 * handling wake events.
9658 */
9659 ++vcpu->stat.halt_exits;
9660 if (lapic_in_kernel(vcpu)) {
9661 vcpu->arch.mp_state = state;
9662 return 1;
9663 } else {
9664 vcpu->run->exit_reason = reason;
9665 return 0;
9666 }
9667 }
9668
9669 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9670 {
9671 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9672 }
9673 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9674
9675 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9676 {
9677 int ret = kvm_skip_emulated_instruction(vcpu);
9678 /*
9679 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9680 * KVM_EXIT_DEBUG here.
9681 */
9682 return kvm_emulate_halt_noskip(vcpu) && ret;
9683 }
9684 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9685
9686 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9687 {
9688 int ret = kvm_skip_emulated_instruction(vcpu);
9689
9690 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9691 KVM_EXIT_AP_RESET_HOLD) && ret;
9692 }
9693 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9694
9695 #ifdef CONFIG_X86_64
9696 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9697 unsigned long clock_type)
9698 {
9699 struct kvm_clock_pairing clock_pairing;
9700 struct timespec64 ts;
9701 u64 cycle;
9702 int ret;
9703
9704 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9705 return -KVM_EOPNOTSUPP;
9706
9707 /*
9708 * When tsc is in permanent catchup mode guests won't be able to use
9709 * pvclock_read_retry loop to get consistent view of pvclock
9710 */
9711 if (vcpu->arch.tsc_always_catchup)
9712 return -KVM_EOPNOTSUPP;
9713
9714 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9715 return -KVM_EOPNOTSUPP;
9716
9717 clock_pairing.sec = ts.tv_sec;
9718 clock_pairing.nsec = ts.tv_nsec;
9719 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9720 clock_pairing.flags = 0;
9721 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9722
9723 ret = 0;
9724 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9725 sizeof(struct kvm_clock_pairing)))
9726 ret = -KVM_EFAULT;
9727
9728 return ret;
9729 }
9730 #endif
9731
9732 /*
9733 * kvm_pv_kick_cpu_op: Kick a vcpu.
9734 *
9735 * @apicid - apicid of vcpu to be kicked.
9736 */
9737 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9738 {
9739 /*
9740 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9741 * common code, e.g. for tracing. Defer initialization to the compiler.
9742 */
9743 struct kvm_lapic_irq lapic_irq = {
9744 .delivery_mode = APIC_DM_REMRD,
9745 .dest_mode = APIC_DEST_PHYSICAL,
9746 .shorthand = APIC_DEST_NOSHORT,
9747 .dest_id = apicid,
9748 };
9749
9750 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9751 }
9752
9753 bool kvm_apicv_activated(struct kvm *kvm)
9754 {
9755 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9756 }
9757 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9758
9759 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9760 {
9761 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9762 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9763
9764 return (vm_reasons | vcpu_reasons) == 0;
9765 }
9766 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9767
9768 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9769 enum kvm_apicv_inhibit reason, bool set)
9770 {
9771 if (set)
9772 __set_bit(reason, inhibits);
9773 else
9774 __clear_bit(reason, inhibits);
9775
9776 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9777 }
9778
9779 static void kvm_apicv_init(struct kvm *kvm)
9780 {
9781 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9782
9783 init_rwsem(&kvm->arch.apicv_update_lock);
9784
9785 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9786
9787 if (!enable_apicv)
9788 set_or_clear_apicv_inhibit(inhibits,
9789 APICV_INHIBIT_REASON_DISABLE, true);
9790 }
9791
9792 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9793 {
9794 struct kvm_vcpu *target = NULL;
9795 struct kvm_apic_map *map;
9796
9797 vcpu->stat.directed_yield_attempted++;
9798
9799 if (single_task_running())
9800 goto no_yield;
9801
9802 rcu_read_lock();
9803 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9804
9805 if (likely(map) && dest_id <= map->max_apic_id) {
9806 dest_id = array_index_nospec(dest_id, map->max_apic_id + 1);
9807 if (map->phys_map[dest_id])
9808 target = map->phys_map[dest_id]->vcpu;
9809 }
9810
9811 rcu_read_unlock();
9812
9813 if (!target || !READ_ONCE(target->ready))
9814 goto no_yield;
9815
9816 /* Ignore requests to yield to self */
9817 if (vcpu == target)
9818 goto no_yield;
9819
9820 if (kvm_vcpu_yield_to(target) <= 0)
9821 goto no_yield;
9822
9823 vcpu->stat.directed_yield_successful++;
9824
9825 no_yield:
9826 return;
9827 }
9828
9829 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9830 {
9831 u64 ret = vcpu->run->hypercall.ret;
9832
9833 if (!is_64_bit_hypercall(vcpu))
9834 ret = (u32)ret;
9835 kvm_rax_write(vcpu, ret);
9836 ++vcpu->stat.hypercalls;
9837 return kvm_skip_emulated_instruction(vcpu);
9838 }
9839
9840 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9841 {
9842 unsigned long nr, a0, a1, a2, a3, ret;
9843 int op_64_bit;
9844
9845 if (kvm_xen_hypercall_enabled(vcpu->kvm))
9846 return kvm_xen_hypercall(vcpu);
9847
9848 if (kvm_hv_hypercall_enabled(vcpu))
9849 return kvm_hv_hypercall(vcpu);
9850
9851 nr = kvm_rax_read(vcpu);
9852 a0 = kvm_rbx_read(vcpu);
9853 a1 = kvm_rcx_read(vcpu);
9854 a2 = kvm_rdx_read(vcpu);
9855 a3 = kvm_rsi_read(vcpu);
9856
9857 trace_kvm_hypercall(nr, a0, a1, a2, a3);
9858
9859 op_64_bit = is_64_bit_hypercall(vcpu);
9860 if (!op_64_bit) {
9861 nr &= 0xFFFFFFFF;
9862 a0 &= 0xFFFFFFFF;
9863 a1 &= 0xFFFFFFFF;
9864 a2 &= 0xFFFFFFFF;
9865 a3 &= 0xFFFFFFFF;
9866 }
9867
9868 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9869 ret = -KVM_EPERM;
9870 goto out;
9871 }
9872
9873 ret = -KVM_ENOSYS;
9874
9875 switch (nr) {
9876 case KVM_HC_VAPIC_POLL_IRQ:
9877 ret = 0;
9878 break;
9879 case KVM_HC_KICK_CPU:
9880 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9881 break;
9882
9883 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9884 kvm_sched_yield(vcpu, a1);
9885 ret = 0;
9886 break;
9887 #ifdef CONFIG_X86_64
9888 case KVM_HC_CLOCK_PAIRING:
9889 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9890 break;
9891 #endif
9892 case KVM_HC_SEND_IPI:
9893 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9894 break;
9895
9896 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9897 break;
9898 case KVM_HC_SCHED_YIELD:
9899 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9900 break;
9901
9902 kvm_sched_yield(vcpu, a0);
9903 ret = 0;
9904 break;
9905 case KVM_HC_MAP_GPA_RANGE: {
9906 u64 gpa = a0, npages = a1, attrs = a2;
9907
9908 ret = -KVM_ENOSYS;
9909 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9910 break;
9911
9912 if (!PAGE_ALIGNED(gpa) || !npages ||
9913 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9914 ret = -KVM_EINVAL;
9915 break;
9916 }
9917
9918 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
9919 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
9920 vcpu->run->hypercall.args[0] = gpa;
9921 vcpu->run->hypercall.args[1] = npages;
9922 vcpu->run->hypercall.args[2] = attrs;
9923 vcpu->run->hypercall.flags = 0;
9924 if (op_64_bit)
9925 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
9926
9927 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
9928 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9929 return 0;
9930 }
9931 default:
9932 ret = -KVM_ENOSYS;
9933 break;
9934 }
9935 out:
9936 if (!op_64_bit)
9937 ret = (u32)ret;
9938 kvm_rax_write(vcpu, ret);
9939
9940 ++vcpu->stat.hypercalls;
9941 return kvm_skip_emulated_instruction(vcpu);
9942 }
9943 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9944
9945 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9946 {
9947 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9948 char instruction[3];
9949 unsigned long rip = kvm_rip_read(vcpu);
9950
9951 /*
9952 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9953 * the pieces.
9954 */
9955 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9956 ctxt->exception.error_code_valid = false;
9957 ctxt->exception.vector = UD_VECTOR;
9958 ctxt->have_exception = true;
9959 return X86EMUL_PROPAGATE_FAULT;
9960 }
9961
9962 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9963
9964 return emulator_write_emulated(ctxt, rip, instruction, 3,
9965 &ctxt->exception);
9966 }
9967
9968 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9969 {
9970 return vcpu->run->request_interrupt_window &&
9971 likely(!pic_in_kernel(vcpu->kvm));
9972 }
9973
9974 /* Called within kvm->srcu read side. */
9975 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9976 {
9977 struct kvm_run *kvm_run = vcpu->run;
9978
9979 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9980 kvm_run->cr8 = kvm_get_cr8(vcpu);
9981 kvm_run->apic_base = kvm_get_apic_base(vcpu);
9982
9983 kvm_run->ready_for_interrupt_injection =
9984 pic_in_kernel(vcpu->kvm) ||
9985 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9986
9987 if (is_smm(vcpu))
9988 kvm_run->flags |= KVM_RUN_X86_SMM;
9989 }
9990
9991 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9992 {
9993 int max_irr, tpr;
9994
9995 if (!kvm_x86_ops.update_cr8_intercept)
9996 return;
9997
9998 if (!lapic_in_kernel(vcpu))
9999 return;
10000
10001 if (vcpu->arch.apic->apicv_active)
10002 return;
10003
10004 if (!vcpu->arch.apic->vapic_addr)
10005 max_irr = kvm_lapic_find_highest_irr(vcpu);
10006 else
10007 max_irr = -1;
10008
10009 if (max_irr != -1)
10010 max_irr >>= 4;
10011
10012 tpr = kvm_lapic_get_cr8(vcpu);
10013
10014 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10015 }
10016
10017
10018 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10019 {
10020 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10021 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10022 return 1;
10023 }
10024
10025 return kvm_x86_ops.nested_ops->check_events(vcpu);
10026 }
10027
10028 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10029 {
10030 /*
10031 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10032 * exceptions don't report error codes. The presence of an error code
10033 * is carried with the exception and only stripped when the exception
10034 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10035 * report an error code despite the CPU being in Real Mode.
10036 */
10037 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10038
10039 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10040 vcpu->arch.exception.has_error_code,
10041 vcpu->arch.exception.error_code,
10042 vcpu->arch.exception.injected);
10043
10044 static_call(kvm_x86_inject_exception)(vcpu);
10045 }
10046
10047 /*
10048 * Check for any event (interrupt or exception) that is ready to be injected,
10049 * and if there is at least one event, inject the event with the highest
10050 * priority. This handles both "pending" events, i.e. events that have never
10051 * been injected into the guest, and "injected" events, i.e. events that were
10052 * injected as part of a previous VM-Enter, but weren't successfully delivered
10053 * and need to be re-injected.
10054 *
10055 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10056 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10057 * be able to inject exceptions in the "middle" of an instruction, and so must
10058 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10059 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10060 * boundaries is necessary and correct.
10061 *
10062 * For simplicity, KVM uses a single path to inject all events (except events
10063 * that are injected directly from L1 to L2) and doesn't explicitly track
10064 * instruction boundaries for asynchronous events. However, because VM-Exits
10065 * that can occur during instruction execution typically result in KVM skipping
10066 * the instruction or injecting an exception, e.g. instruction and exception
10067 * intercepts, and because pending exceptions have higher priority than pending
10068 * interrupts, KVM still honors instruction boundaries in most scenarios.
10069 *
10070 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10071 * the instruction or inject an exception, then KVM can incorrecty inject a new
10072 * asynchrounous event if the event became pending after the CPU fetched the
10073 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10074 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10075 * injected on the restarted instruction instead of being deferred until the
10076 * instruction completes.
10077 *
10078 * In practice, this virtualization hole is unlikely to be observed by the
10079 * guest, and even less likely to cause functional problems. To detect the
10080 * hole, the guest would have to trigger an event on a side effect of an early
10081 * phase of instruction execution, e.g. on the instruction fetch from memory.
10082 * And for it to be a functional problem, the guest would need to depend on the
10083 * ordering between that side effect, the instruction completing, _and_ the
10084 * delivery of the asynchronous event.
10085 */
10086 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10087 bool *req_immediate_exit)
10088 {
10089 bool can_inject;
10090 int r;
10091
10092 /*
10093 * Process nested events first, as nested VM-Exit supercedes event
10094 * re-injection. If there's an event queued for re-injection, it will
10095 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10096 */
10097 if (is_guest_mode(vcpu))
10098 r = kvm_check_nested_events(vcpu);
10099 else
10100 r = 0;
10101
10102 /*
10103 * Re-inject exceptions and events *especially* if immediate entry+exit
10104 * to/from L2 is needed, as any event that has already been injected
10105 * into L2 needs to complete its lifecycle before injecting a new event.
10106 *
10107 * Don't re-inject an NMI or interrupt if there is a pending exception.
10108 * This collision arises if an exception occurred while vectoring the
10109 * injected event, KVM intercepted said exception, and KVM ultimately
10110 * determined the fault belongs to the guest and queues the exception
10111 * for injection back into the guest.
10112 *
10113 * "Injected" interrupts can also collide with pending exceptions if
10114 * userspace ignores the "ready for injection" flag and blindly queues
10115 * an interrupt. In that case, prioritizing the exception is correct,
10116 * as the exception "occurred" before the exit to userspace. Trap-like
10117 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10118 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10119 * priority, they're only generated (pended) during instruction
10120 * execution, and interrupts are recognized at instruction boundaries.
10121 * Thus a pending fault-like exception means the fault occurred on the
10122 * *previous* instruction and must be serviced prior to recognizing any
10123 * new events in order to fully complete the previous instruction.
10124 */
10125 if (vcpu->arch.exception.injected)
10126 kvm_inject_exception(vcpu);
10127 else if (kvm_is_exception_pending(vcpu))
10128 ; /* see above */
10129 else if (vcpu->arch.nmi_injected)
10130 static_call(kvm_x86_inject_nmi)(vcpu);
10131 else if (vcpu->arch.interrupt.injected)
10132 static_call(kvm_x86_inject_irq)(vcpu, true);
10133
10134 /*
10135 * Exceptions that morph to VM-Exits are handled above, and pending
10136 * exceptions on top of injected exceptions that do not VM-Exit should
10137 * either morph to #DF or, sadly, override the injected exception.
10138 */
10139 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10140 vcpu->arch.exception.pending);
10141
10142 /*
10143 * Bail if immediate entry+exit to/from the guest is needed to complete
10144 * nested VM-Enter or event re-injection so that a different pending
10145 * event can be serviced (or if KVM needs to exit to userspace).
10146 *
10147 * Otherwise, continue processing events even if VM-Exit occurred. The
10148 * VM-Exit will have cleared exceptions that were meant for L2, but
10149 * there may now be events that can be injected into L1.
10150 */
10151 if (r < 0)
10152 goto out;
10153
10154 /*
10155 * A pending exception VM-Exit should either result in nested VM-Exit
10156 * or force an immediate re-entry and exit to/from L2, and exception
10157 * VM-Exits cannot be injected (flag should _never_ be set).
10158 */
10159 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10160 vcpu->arch.exception_vmexit.pending);
10161
10162 /*
10163 * New events, other than exceptions, cannot be injected if KVM needs
10164 * to re-inject a previous event. See above comments on re-injecting
10165 * for why pending exceptions get priority.
10166 */
10167 can_inject = !kvm_event_needs_reinjection(vcpu);
10168
10169 if (vcpu->arch.exception.pending) {
10170 /*
10171 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10172 * value pushed on the stack. Trap-like exception and all #DBs
10173 * leave RF as-is (KVM follows Intel's behavior in this regard;
10174 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10175 *
10176 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10177 * describe the behavior of General Detect #DBs, which are
10178 * fault-like. They do _not_ set RF, a la code breakpoints.
10179 */
10180 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10181 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10182 X86_EFLAGS_RF);
10183
10184 if (vcpu->arch.exception.vector == DB_VECTOR) {
10185 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10186 if (vcpu->arch.dr7 & DR7_GD) {
10187 vcpu->arch.dr7 &= ~DR7_GD;
10188 kvm_update_dr7(vcpu);
10189 }
10190 }
10191
10192 kvm_inject_exception(vcpu);
10193
10194 vcpu->arch.exception.pending = false;
10195 vcpu->arch.exception.injected = true;
10196
10197 can_inject = false;
10198 }
10199
10200 /* Don't inject interrupts if the user asked to avoid doing so */
10201 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10202 return 0;
10203
10204 /*
10205 * Finally, inject interrupt events. If an event cannot be injected
10206 * due to architectural conditions (e.g. IF=0) a window-open exit
10207 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10208 * and can architecturally be injected, but we cannot do it right now:
10209 * an interrupt could have arrived just now and we have to inject it
10210 * as a vmexit, or there could already an event in the queue, which is
10211 * indicated by can_inject. In that case we request an immediate exit
10212 * in order to make progress and get back here for another iteration.
10213 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10214 */
10215 #ifdef CONFIG_KVM_SMM
10216 if (vcpu->arch.smi_pending) {
10217 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10218 if (r < 0)
10219 goto out;
10220 if (r) {
10221 vcpu->arch.smi_pending = false;
10222 ++vcpu->arch.smi_count;
10223 enter_smm(vcpu);
10224 can_inject = false;
10225 } else
10226 static_call(kvm_x86_enable_smi_window)(vcpu);
10227 }
10228 #endif
10229
10230 if (vcpu->arch.nmi_pending) {
10231 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10232 if (r < 0)
10233 goto out;
10234 if (r) {
10235 --vcpu->arch.nmi_pending;
10236 vcpu->arch.nmi_injected = true;
10237 static_call(kvm_x86_inject_nmi)(vcpu);
10238 can_inject = false;
10239 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10240 }
10241 if (vcpu->arch.nmi_pending)
10242 static_call(kvm_x86_enable_nmi_window)(vcpu);
10243 }
10244
10245 if (kvm_cpu_has_injectable_intr(vcpu)) {
10246 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10247 if (r < 0)
10248 goto out;
10249 if (r) {
10250 int irq = kvm_cpu_get_interrupt(vcpu);
10251
10252 if (!WARN_ON_ONCE(irq == -1)) {
10253 kvm_queue_interrupt(vcpu, irq, false);
10254 static_call(kvm_x86_inject_irq)(vcpu, false);
10255 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10256 }
10257 }
10258 if (kvm_cpu_has_injectable_intr(vcpu))
10259 static_call(kvm_x86_enable_irq_window)(vcpu);
10260 }
10261
10262 if (is_guest_mode(vcpu) &&
10263 kvm_x86_ops.nested_ops->has_events &&
10264 kvm_x86_ops.nested_ops->has_events(vcpu, true))
10265 *req_immediate_exit = true;
10266
10267 /*
10268 * KVM must never queue a new exception while injecting an event; KVM
10269 * is done emulating and should only propagate the to-be-injected event
10270 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10271 * infinite loop as KVM will bail from VM-Enter to inject the pending
10272 * exception and start the cycle all over.
10273 *
10274 * Exempt triple faults as they have special handling and won't put the
10275 * vCPU into an infinite loop. Triple fault can be queued when running
10276 * VMX without unrestricted guest, as that requires KVM to emulate Real
10277 * Mode events (see kvm_inject_realmode_interrupt()).
10278 */
10279 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10280 vcpu->arch.exception_vmexit.pending);
10281 return 0;
10282
10283 out:
10284 if (r == -EBUSY) {
10285 *req_immediate_exit = true;
10286 r = 0;
10287 }
10288 return r;
10289 }
10290
10291 static void process_nmi(struct kvm_vcpu *vcpu)
10292 {
10293 unsigned int limit;
10294
10295 /*
10296 * x86 is limited to one NMI pending, but because KVM can't react to
10297 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10298 * scheduled out, KVM needs to play nice with two queued NMIs showing
10299 * up at the same time. To handle this scenario, allow two NMIs to be
10300 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10301 * waiting for a previous NMI injection to complete (which effectively
10302 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10303 * will request an NMI window to handle the second NMI.
10304 */
10305 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10306 limit = 1;
10307 else
10308 limit = 2;
10309
10310 /*
10311 * Adjust the limit to account for pending virtual NMIs, which aren't
10312 * tracked in vcpu->arch.nmi_pending.
10313 */
10314 if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10315 limit--;
10316
10317 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10318 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10319
10320 if (vcpu->arch.nmi_pending &&
10321 (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10322 vcpu->arch.nmi_pending--;
10323
10324 if (vcpu->arch.nmi_pending)
10325 kvm_make_request(KVM_REQ_EVENT, vcpu);
10326 }
10327
10328 /* Return total number of NMIs pending injection to the VM */
10329 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10330 {
10331 return vcpu->arch.nmi_pending +
10332 static_call(kvm_x86_is_vnmi_pending)(vcpu);
10333 }
10334
10335 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10336 unsigned long *vcpu_bitmap)
10337 {
10338 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10339 }
10340
10341 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10342 {
10343 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10344 }
10345
10346 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10347 {
10348 struct kvm_lapic *apic = vcpu->arch.apic;
10349 bool activate;
10350
10351 if (!lapic_in_kernel(vcpu))
10352 return;
10353
10354 down_read(&vcpu->kvm->arch.apicv_update_lock);
10355 preempt_disable();
10356
10357 /* Do not activate APICV when APIC is disabled */
10358 activate = kvm_vcpu_apicv_activated(vcpu) &&
10359 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10360
10361 if (apic->apicv_active == activate)
10362 goto out;
10363
10364 apic->apicv_active = activate;
10365 kvm_apic_update_apicv(vcpu);
10366 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10367
10368 /*
10369 * When APICv gets disabled, we may still have injected interrupts
10370 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10371 * still active when the interrupt got accepted. Make sure
10372 * kvm_check_and_inject_events() is called to check for that.
10373 */
10374 if (!apic->apicv_active)
10375 kvm_make_request(KVM_REQ_EVENT, vcpu);
10376
10377 out:
10378 preempt_enable();
10379 up_read(&vcpu->kvm->arch.apicv_update_lock);
10380 }
10381 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10382
10383 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10384 {
10385 if (!lapic_in_kernel(vcpu))
10386 return;
10387
10388 /*
10389 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10390 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10391 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10392 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10393 * this case so that KVM can the AVIC doorbell to inject interrupts to
10394 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10395 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10396 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10397 * access page is sticky.
10398 */
10399 if (apic_x2apic_mode(vcpu->arch.apic) &&
10400 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10401 kvm_inhibit_apic_access_page(vcpu);
10402
10403 __kvm_vcpu_update_apicv(vcpu);
10404 }
10405
10406 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10407 enum kvm_apicv_inhibit reason, bool set)
10408 {
10409 unsigned long old, new;
10410
10411 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10412
10413 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10414 return;
10415
10416 old = new = kvm->arch.apicv_inhibit_reasons;
10417
10418 set_or_clear_apicv_inhibit(&new, reason, set);
10419
10420 if (!!old != !!new) {
10421 /*
10422 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10423 * false positives in the sanity check WARN in svm_vcpu_run().
10424 * This task will wait for all vCPUs to ack the kick IRQ before
10425 * updating apicv_inhibit_reasons, and all other vCPUs will
10426 * block on acquiring apicv_update_lock so that vCPUs can't
10427 * redo svm_vcpu_run() without seeing the new inhibit state.
10428 *
10429 * Note, holding apicv_update_lock and taking it in the read
10430 * side (handling the request) also prevents other vCPUs from
10431 * servicing the request with a stale apicv_inhibit_reasons.
10432 */
10433 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10434 kvm->arch.apicv_inhibit_reasons = new;
10435 if (new) {
10436 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10437 int idx = srcu_read_lock(&kvm->srcu);
10438
10439 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10440 srcu_read_unlock(&kvm->srcu, idx);
10441 }
10442 } else {
10443 kvm->arch.apicv_inhibit_reasons = new;
10444 }
10445 }
10446
10447 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10448 enum kvm_apicv_inhibit reason, bool set)
10449 {
10450 if (!enable_apicv)
10451 return;
10452
10453 down_write(&kvm->arch.apicv_update_lock);
10454 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10455 up_write(&kvm->arch.apicv_update_lock);
10456 }
10457 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10458
10459 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10460 {
10461 if (!kvm_apic_present(vcpu))
10462 return;
10463
10464 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10465
10466 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10467
10468 if (irqchip_split(vcpu->kvm))
10469 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10470 else if (ioapic_in_kernel(vcpu->kvm))
10471 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10472
10473 if (is_guest_mode(vcpu))
10474 vcpu->arch.load_eoi_exitmap_pending = true;
10475 else
10476 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10477 }
10478
10479 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10480 {
10481 u64 eoi_exit_bitmap[4];
10482
10483 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10484 return;
10485
10486 if (to_hv_vcpu(vcpu)) {
10487 bitmap_or((ulong *)eoi_exit_bitmap,
10488 vcpu->arch.ioapic_handled_vectors,
10489 to_hv_synic(vcpu)->vec_bitmap, 256);
10490 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10491 return;
10492 }
10493
10494 static_call_cond(kvm_x86_load_eoi_exitmap)(
10495 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10496 }
10497
10498 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10499 {
10500 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10501 }
10502
10503 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10504 {
10505 if (!lapic_in_kernel(vcpu))
10506 return;
10507
10508 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10509 }
10510
10511 /*
10512 * Called within kvm->srcu read side.
10513 * Returns 1 to let vcpu_run() continue the guest execution loop without
10514 * exiting to the userspace. Otherwise, the value will be returned to the
10515 * userspace.
10516 */
10517 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10518 {
10519 int r;
10520 bool req_int_win =
10521 dm_request_for_irq_injection(vcpu) &&
10522 kvm_cpu_accept_dm_intr(vcpu);
10523 fastpath_t exit_fastpath;
10524 u64 run_flags, debug_ctl;
10525
10526 bool req_immediate_exit = false;
10527
10528 if (kvm_request_pending(vcpu)) {
10529 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10530 r = -EIO;
10531 goto out;
10532 }
10533
10534 if (kvm_dirty_ring_check_request(vcpu)) {
10535 r = 0;
10536 goto out;
10537 }
10538
10539 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10540 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10541 r = 0;
10542 goto out;
10543 }
10544 }
10545 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10546 kvm_mmu_free_obsolete_roots(vcpu);
10547 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10548 __kvm_migrate_timers(vcpu);
10549 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10550 kvm_update_masterclock(vcpu->kvm);
10551 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10552 kvm_gen_kvmclock_update(vcpu);
10553 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10554 r = kvm_guest_time_update(vcpu);
10555 if (unlikely(r))
10556 goto out;
10557 }
10558 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10559 kvm_mmu_sync_roots(vcpu);
10560 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10561 kvm_mmu_load_pgd(vcpu);
10562
10563 /*
10564 * Note, the order matters here, as flushing "all" TLB entries
10565 * also flushes the "current" TLB entries, i.e. servicing the
10566 * flush "all" will clear any request to flush "current".
10567 */
10568 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10569 kvm_vcpu_flush_tlb_all(vcpu);
10570
10571 kvm_service_local_tlb_flush_requests(vcpu);
10572
10573 /*
10574 * Fall back to a "full" guest flush if Hyper-V's precise
10575 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10576 * the flushes are considered "remote" and not "local" because
10577 * the requests can be initiated from other vCPUs.
10578 */
10579 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10580 kvm_hv_vcpu_flush_tlb(vcpu))
10581 kvm_vcpu_flush_tlb_guest(vcpu);
10582
10583 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10584 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10585 r = 0;
10586 goto out;
10587 }
10588 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10589 if (is_guest_mode(vcpu))
10590 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10591
10592 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10593 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10594 vcpu->mmio_needed = 0;
10595 r = 0;
10596 goto out;
10597 }
10598 }
10599 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10600 /* Page is swapped out. Do synthetic halt */
10601 vcpu->arch.apf.halted = true;
10602 r = 1;
10603 goto out;
10604 }
10605 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10606 record_steal_time(vcpu);
10607 #ifdef CONFIG_KVM_SMM
10608 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10609 process_smi(vcpu);
10610 #endif
10611 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10612 process_nmi(vcpu);
10613 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10614 kvm_pmu_handle_event(vcpu);
10615 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10616 kvm_pmu_deliver_pmi(vcpu);
10617 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10618 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10619 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10620 vcpu->arch.ioapic_handled_vectors)) {
10621 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10622 vcpu->run->eoi.vector =
10623 vcpu->arch.pending_ioapic_eoi;
10624 r = 0;
10625 goto out;
10626 }
10627 }
10628 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10629 vcpu_scan_ioapic(vcpu);
10630 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10631 vcpu_load_eoi_exitmap(vcpu);
10632 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10633 kvm_vcpu_reload_apic_access_page(vcpu);
10634 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10635 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10636 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10637 vcpu->run->system_event.ndata = 0;
10638 r = 0;
10639 goto out;
10640 }
10641 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10642 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10643 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10644 vcpu->run->system_event.ndata = 0;
10645 r = 0;
10646 goto out;
10647 }
10648 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10649 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10650
10651 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10652 vcpu->run->hyperv = hv_vcpu->exit;
10653 r = 0;
10654 goto out;
10655 }
10656
10657 /*
10658 * KVM_REQ_HV_STIMER has to be processed after
10659 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10660 * depend on the guest clock being up-to-date
10661 */
10662 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10663 kvm_hv_process_stimers(vcpu);
10664 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10665 kvm_vcpu_update_apicv(vcpu);
10666 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10667 kvm_check_async_pf_completion(vcpu);
10668 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10669 static_call(kvm_x86_msr_filter_changed)(vcpu);
10670
10671 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10672 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10673 }
10674
10675 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10676 kvm_xen_has_interrupt(vcpu)) {
10677 ++vcpu->stat.req_event;
10678 r = kvm_apic_accept_events(vcpu);
10679 if (r < 0) {
10680 r = 0;
10681 goto out;
10682 }
10683 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10684 r = 1;
10685 goto out;
10686 }
10687
10688 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10689 if (r < 0) {
10690 r = 0;
10691 goto out;
10692 }
10693 if (req_int_win)
10694 static_call(kvm_x86_enable_irq_window)(vcpu);
10695
10696 if (kvm_lapic_enabled(vcpu)) {
10697 update_cr8_intercept(vcpu);
10698 kvm_lapic_sync_to_vapic(vcpu);
10699 }
10700 }
10701
10702 r = kvm_mmu_reload(vcpu);
10703 if (unlikely(r)) {
10704 goto cancel_injection;
10705 }
10706
10707 preempt_disable();
10708
10709 static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10710
10711 /*
10712 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10713 * IPI are then delayed after guest entry, which ensures that they
10714 * result in virtual interrupt delivery.
10715 */
10716 local_irq_disable();
10717
10718 /* Store vcpu->apicv_active before vcpu->mode. */
10719 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10720
10721 kvm_vcpu_srcu_read_unlock(vcpu);
10722
10723 /*
10724 * 1) We should set ->mode before checking ->requests. Please see
10725 * the comment in kvm_vcpu_exiting_guest_mode().
10726 *
10727 * 2) For APICv, we should set ->mode before checking PID.ON. This
10728 * pairs with the memory barrier implicit in pi_test_and_set_on
10729 * (see vmx_deliver_posted_interrupt).
10730 *
10731 * 3) This also orders the write to mode from any reads to the page
10732 * tables done while the VCPU is running. Please see the comment
10733 * in kvm_flush_remote_tlbs.
10734 */
10735 smp_mb__after_srcu_read_unlock();
10736
10737 /*
10738 * Process pending posted interrupts to handle the case where the
10739 * notification IRQ arrived in the host, or was never sent (because the
10740 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10741 * status, KVM doesn't update assigned devices when APICv is inhibited,
10742 * i.e. they can post interrupts even if APICv is temporarily disabled.
10743 */
10744 if (kvm_lapic_enabled(vcpu))
10745 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10746
10747 if (kvm_vcpu_exit_request(vcpu)) {
10748 vcpu->mode = OUTSIDE_GUEST_MODE;
10749 smp_wmb();
10750 local_irq_enable();
10751 preempt_enable();
10752 kvm_vcpu_srcu_read_lock(vcpu);
10753 r = 1;
10754 goto cancel_injection;
10755 }
10756
10757 run_flags = 0;
10758 if (req_immediate_exit) {
10759 run_flags |= KVM_RUN_FORCE_IMMEDIATE_EXIT;
10760 kvm_make_request(KVM_REQ_EVENT, vcpu);
10761 }
10762
10763 fpregs_assert_state_consistent();
10764 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10765 switch_fpu_return();
10766
10767 if (vcpu->arch.guest_fpu.xfd_err)
10768 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10769
10770 if (unlikely(vcpu->arch.switch_db_regs)) {
10771 set_debugreg(0, 7);
10772 set_debugreg(vcpu->arch.eff_db[0], 0);
10773 set_debugreg(vcpu->arch.eff_db[1], 1);
10774 set_debugreg(vcpu->arch.eff_db[2], 2);
10775 set_debugreg(vcpu->arch.eff_db[3], 3);
10776 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
10777 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
10778 run_flags |= KVM_RUN_LOAD_GUEST_DR6;
10779 } else if (unlikely(hw_breakpoint_active())) {
10780 set_debugreg(0, 7);
10781 }
10782
10783 /*
10784 * Refresh the host DEBUGCTL snapshot after disabling IRQs, as DEBUGCTL
10785 * can be modified in IRQ context, e.g. via SMP function calls. Inform
10786 * vendor code if any host-owned bits were changed, e.g. so that the
10787 * value loaded into hardware while running the guest can be updated.
10788 */
10789 debug_ctl = get_debugctlmsr();
10790 if ((debug_ctl ^ vcpu->arch.host_debugctl) & kvm_x86_ops.HOST_OWNED_DEBUGCTL &&
10791 !vcpu->arch.guest_state_protected)
10792 run_flags |= KVM_RUN_LOAD_DEBUGCTL;
10793 vcpu->arch.host_debugctl = debug_ctl;
10794
10795 guest_timing_enter_irqoff();
10796
10797 for (;;) {
10798 /*
10799 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10800 * update must kick and wait for all vCPUs before toggling the
10801 * per-VM state, and responsing vCPUs must wait for the update
10802 * to complete before servicing KVM_REQ_APICV_UPDATE.
10803 */
10804 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10805 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10806
10807 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu, run_flags);
10808 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10809 break;
10810
10811 if (kvm_lapic_enabled(vcpu))
10812 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10813
10814 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10815 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10816 break;
10817 }
10818
10819 run_flags = 0;
10820
10821 /* Note, VM-Exits that go down the "slow" path are accounted below. */
10822 ++vcpu->stat.exits;
10823 }
10824
10825 /*
10826 * Do this here before restoring debug registers on the host. And
10827 * since we do this before handling the vmexit, a DR access vmexit
10828 * can (a) read the correct value of the debug registers, (b) set
10829 * KVM_DEBUGREG_WONT_EXIT again.
10830 */
10831 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10832 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10833 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10834 kvm_update_dr0123(vcpu);
10835 kvm_update_dr7(vcpu);
10836 }
10837
10838 /*
10839 * If the guest has used debug registers, at least dr7
10840 * will be disabled while returning to the host.
10841 * If we don't have active breakpoints in the host, we don't
10842 * care about the messed up debug address registers. But if
10843 * we have some of them active, restore the old state.
10844 */
10845 if (hw_breakpoint_active())
10846 hw_breakpoint_restore();
10847
10848 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10849 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10850
10851 vcpu->mode = OUTSIDE_GUEST_MODE;
10852 smp_wmb();
10853
10854 /*
10855 * Sync xfd before calling handle_exit_irqoff() which may
10856 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10857 * in #NM irqoff handler).
10858 */
10859 if (vcpu->arch.xfd_no_write_intercept)
10860 fpu_sync_guest_vmexit_xfd_state();
10861
10862 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10863
10864 if (vcpu->arch.guest_fpu.xfd_err)
10865 wrmsrl(MSR_IA32_XFD_ERR, 0);
10866
10867 /*
10868 * Consume any pending interrupts, including the possible source of
10869 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10870 * An instruction is required after local_irq_enable() to fully unblock
10871 * interrupts on processors that implement an interrupt shadow, the
10872 * stat.exits increment will do nicely.
10873 */
10874 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10875 local_irq_enable();
10876 ++vcpu->stat.exits;
10877 local_irq_disable();
10878 kvm_after_interrupt(vcpu);
10879
10880 /*
10881 * Wait until after servicing IRQs to account guest time so that any
10882 * ticks that occurred while running the guest are properly accounted
10883 * to the guest. Waiting until IRQs are enabled degrades the accuracy
10884 * of accounting via context tracking, but the loss of accuracy is
10885 * acceptable for all known use cases.
10886 */
10887 guest_timing_exit_irqoff();
10888
10889 local_irq_enable();
10890 preempt_enable();
10891
10892 kvm_vcpu_srcu_read_lock(vcpu);
10893
10894 /*
10895 * Profile KVM exit RIPs:
10896 */
10897 if (unlikely(prof_on == KVM_PROFILING)) {
10898 unsigned long rip = kvm_rip_read(vcpu);
10899 profile_hit(KVM_PROFILING, (void *)rip);
10900 }
10901
10902 if (unlikely(vcpu->arch.tsc_always_catchup))
10903 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10904
10905 if (vcpu->arch.apic_attention)
10906 kvm_lapic_sync_from_vapic(vcpu);
10907
10908 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10909 return r;
10910
10911 cancel_injection:
10912 if (req_immediate_exit)
10913 kvm_make_request(KVM_REQ_EVENT, vcpu);
10914 static_call(kvm_x86_cancel_injection)(vcpu);
10915 if (unlikely(vcpu->arch.apic_attention))
10916 kvm_lapic_sync_from_vapic(vcpu);
10917 out:
10918 return r;
10919 }
10920
10921 /* Called within kvm->srcu read side. */
10922 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10923 {
10924 bool hv_timer;
10925
10926 if (!kvm_arch_vcpu_runnable(vcpu)) {
10927 /*
10928 * Switch to the software timer before halt-polling/blocking as
10929 * the guest's timer may be a break event for the vCPU, and the
10930 * hypervisor timer runs only when the CPU is in guest mode.
10931 * Switch before halt-polling so that KVM recognizes an expired
10932 * timer before blocking.
10933 */
10934 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10935 if (hv_timer)
10936 kvm_lapic_switch_to_sw_timer(vcpu);
10937
10938 kvm_vcpu_srcu_read_unlock(vcpu);
10939 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10940 kvm_vcpu_halt(vcpu);
10941 else
10942 kvm_vcpu_block(vcpu);
10943 kvm_vcpu_srcu_read_lock(vcpu);
10944
10945 if (hv_timer)
10946 kvm_lapic_switch_to_hv_timer(vcpu);
10947
10948 /*
10949 * If the vCPU is not runnable, a signal or another host event
10950 * of some kind is pending; service it without changing the
10951 * vCPU's activity state.
10952 */
10953 if (!kvm_arch_vcpu_runnable(vcpu))
10954 return 1;
10955 }
10956
10957 /*
10958 * Evaluate nested events before exiting the halted state. This allows
10959 * the halt state to be recorded properly in the VMCS12's activity
10960 * state field (AMD does not have a similar field and a VM-Exit always
10961 * causes a spurious wakeup from HLT).
10962 */
10963 if (is_guest_mode(vcpu)) {
10964 if (kvm_check_nested_events(vcpu) < 0)
10965 return 0;
10966 }
10967
10968 if (kvm_apic_accept_events(vcpu) < 0)
10969 return 0;
10970 switch(vcpu->arch.mp_state) {
10971 case KVM_MP_STATE_HALTED:
10972 case KVM_MP_STATE_AP_RESET_HOLD:
10973 vcpu->arch.pv.pv_unhalted = false;
10974 vcpu->arch.mp_state =
10975 KVM_MP_STATE_RUNNABLE;
10976 fallthrough;
10977 case KVM_MP_STATE_RUNNABLE:
10978 vcpu->arch.apf.halted = false;
10979 break;
10980 case KVM_MP_STATE_INIT_RECEIVED:
10981 break;
10982 default:
10983 WARN_ON_ONCE(1);
10984 break;
10985 }
10986 return 1;
10987 }
10988
10989 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10990 {
10991 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10992 !vcpu->arch.apf.halted);
10993 }
10994
10995 /* Called within kvm->srcu read side. */
10996 static int vcpu_run(struct kvm_vcpu *vcpu)
10997 {
10998 int r;
10999
11000 vcpu->arch.l1tf_flush_l1d = true;
11001
11002 for (;;) {
11003 /*
11004 * If another guest vCPU requests a PV TLB flush in the middle
11005 * of instruction emulation, the rest of the emulation could
11006 * use a stale page translation. Assume that any code after
11007 * this point can start executing an instruction.
11008 */
11009 vcpu->arch.at_instruction_boundary = false;
11010 if (kvm_vcpu_running(vcpu)) {
11011 r = vcpu_enter_guest(vcpu);
11012 } else {
11013 r = vcpu_block(vcpu);
11014 }
11015
11016 if (r <= 0)
11017 break;
11018
11019 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11020 if (kvm_xen_has_pending_events(vcpu))
11021 kvm_xen_inject_pending_events(vcpu);
11022
11023 if (kvm_cpu_has_pending_timer(vcpu))
11024 kvm_inject_pending_timer_irqs(vcpu);
11025
11026 if (dm_request_for_irq_injection(vcpu) &&
11027 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11028 r = 0;
11029 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11030 ++vcpu->stat.request_irq_exits;
11031 break;
11032 }
11033
11034 if (__xfer_to_guest_mode_work_pending()) {
11035 kvm_vcpu_srcu_read_unlock(vcpu);
11036 r = xfer_to_guest_mode_handle_work(vcpu);
11037 kvm_vcpu_srcu_read_lock(vcpu);
11038 if (r)
11039 return r;
11040 }
11041 }
11042
11043 return r;
11044 }
11045
11046 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11047 {
11048 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11049 }
11050
11051 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11052 {
11053 BUG_ON(!vcpu->arch.pio.count);
11054
11055 return complete_emulated_io(vcpu);
11056 }
11057
11058 /*
11059 * Implements the following, as a state machine:
11060 *
11061 * read:
11062 * for each fragment
11063 * for each mmio piece in the fragment
11064 * write gpa, len
11065 * exit
11066 * copy data
11067 * execute insn
11068 *
11069 * write:
11070 * for each fragment
11071 * for each mmio piece in the fragment
11072 * write gpa, len
11073 * copy data
11074 * exit
11075 */
11076 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11077 {
11078 struct kvm_run *run = vcpu->run;
11079 struct kvm_mmio_fragment *frag;
11080 unsigned len;
11081
11082 BUG_ON(!vcpu->mmio_needed);
11083
11084 /* Complete previous fragment */
11085 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11086 len = min(8u, frag->len);
11087 if (!vcpu->mmio_is_write)
11088 memcpy(frag->data, run->mmio.data, len);
11089
11090 if (frag->len <= 8) {
11091 /* Switch to the next fragment. */
11092 frag++;
11093 vcpu->mmio_cur_fragment++;
11094 } else {
11095 /* Go forward to the next mmio piece. */
11096 frag->data += len;
11097 frag->gpa += len;
11098 frag->len -= len;
11099 }
11100
11101 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11102 vcpu->mmio_needed = 0;
11103
11104 /* FIXME: return into emulator if single-stepping. */
11105 if (vcpu->mmio_is_write)
11106 return 1;
11107 vcpu->mmio_read_completed = 1;
11108 return complete_emulated_io(vcpu);
11109 }
11110
11111 run->exit_reason = KVM_EXIT_MMIO;
11112 run->mmio.phys_addr = frag->gpa;
11113 if (vcpu->mmio_is_write)
11114 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11115 run->mmio.len = min(8u, frag->len);
11116 run->mmio.is_write = vcpu->mmio_is_write;
11117 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11118 return 0;
11119 }
11120
11121 /* Swap (qemu) user FPU context for the guest FPU context. */
11122 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11123 {
11124 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11125 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11126 trace_kvm_fpu(1);
11127 }
11128
11129 /* When vcpu_run ends, restore user space FPU context. */
11130 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11131 {
11132 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11133 ++vcpu->stat.fpu_reload;
11134 trace_kvm_fpu(0);
11135 }
11136
11137 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11138 {
11139 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11140 struct kvm_run *kvm_run = vcpu->run;
11141 int r;
11142
11143 vcpu_load(vcpu);
11144 kvm_sigset_activate(vcpu);
11145 kvm_run->flags = 0;
11146 kvm_load_guest_fpu(vcpu);
11147
11148 kvm_vcpu_srcu_read_lock(vcpu);
11149 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11150 if (kvm_run->immediate_exit) {
11151 r = -EINTR;
11152 goto out;
11153 }
11154
11155 /*
11156 * Don't bother switching APIC timer emulation from the
11157 * hypervisor timer to the software timer, the only way for the
11158 * APIC timer to be active is if userspace stuffed vCPU state,
11159 * i.e. put the vCPU into a nonsensical state. Only an INIT
11160 * will transition the vCPU out of UNINITIALIZED (without more
11161 * state stuffing from userspace), which will reset the local
11162 * APIC and thus cancel the timer or drop the IRQ (if the timer
11163 * already expired).
11164 */
11165 kvm_vcpu_srcu_read_unlock(vcpu);
11166 kvm_vcpu_block(vcpu);
11167 kvm_vcpu_srcu_read_lock(vcpu);
11168
11169 if (kvm_apic_accept_events(vcpu) < 0) {
11170 r = 0;
11171 goto out;
11172 }
11173 r = -EAGAIN;
11174 if (signal_pending(current)) {
11175 r = -EINTR;
11176 kvm_run->exit_reason = KVM_EXIT_INTR;
11177 ++vcpu->stat.signal_exits;
11178 }
11179 goto out;
11180 }
11181
11182 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11183 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11184 r = -EINVAL;
11185 goto out;
11186 }
11187
11188 if (kvm_run->kvm_dirty_regs) {
11189 r = sync_regs(vcpu);
11190 if (r != 0)
11191 goto out;
11192 }
11193
11194 /* re-sync apic's tpr */
11195 if (!lapic_in_kernel(vcpu)) {
11196 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11197 r = -EINVAL;
11198 goto out;
11199 }
11200 }
11201
11202 /*
11203 * If userspace set a pending exception and L2 is active, convert it to
11204 * a pending VM-Exit if L1 wants to intercept the exception.
11205 */
11206 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11207 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11208 ex->error_code)) {
11209 kvm_queue_exception_vmexit(vcpu, ex->vector,
11210 ex->has_error_code, ex->error_code,
11211 ex->has_payload, ex->payload);
11212 ex->injected = false;
11213 ex->pending = false;
11214 }
11215 vcpu->arch.exception_from_userspace = false;
11216
11217 if (unlikely(vcpu->arch.complete_userspace_io)) {
11218 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11219 vcpu->arch.complete_userspace_io = NULL;
11220 r = cui(vcpu);
11221 if (r <= 0)
11222 goto out;
11223 } else {
11224 WARN_ON_ONCE(vcpu->arch.pio.count);
11225 WARN_ON_ONCE(vcpu->mmio_needed);
11226 }
11227
11228 if (kvm_run->immediate_exit) {
11229 r = -EINTR;
11230 goto out;
11231 }
11232
11233 r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11234 if (r <= 0)
11235 goto out;
11236
11237 r = vcpu_run(vcpu);
11238
11239 out:
11240 kvm_put_guest_fpu(vcpu);
11241 if (kvm_run->kvm_valid_regs)
11242 store_regs(vcpu);
11243 post_kvm_run_save(vcpu);
11244 kvm_vcpu_srcu_read_unlock(vcpu);
11245
11246 kvm_sigset_deactivate(vcpu);
11247 vcpu_put(vcpu);
11248 return r;
11249 }
11250
11251 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11252 {
11253 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11254 /*
11255 * We are here if userspace calls get_regs() in the middle of
11256 * instruction emulation. Registers state needs to be copied
11257 * back from emulation context to vcpu. Userspace shouldn't do
11258 * that usually, but some bad designed PV devices (vmware
11259 * backdoor interface) need this to work
11260 */
11261 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11262 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11263 }
11264 regs->rax = kvm_rax_read(vcpu);
11265 regs->rbx = kvm_rbx_read(vcpu);
11266 regs->rcx = kvm_rcx_read(vcpu);
11267 regs->rdx = kvm_rdx_read(vcpu);
11268 regs->rsi = kvm_rsi_read(vcpu);
11269 regs->rdi = kvm_rdi_read(vcpu);
11270 regs->rsp = kvm_rsp_read(vcpu);
11271 regs->rbp = kvm_rbp_read(vcpu);
11272 #ifdef CONFIG_X86_64
11273 regs->r8 = kvm_r8_read(vcpu);
11274 regs->r9 = kvm_r9_read(vcpu);
11275 regs->r10 = kvm_r10_read(vcpu);
11276 regs->r11 = kvm_r11_read(vcpu);
11277 regs->r12 = kvm_r12_read(vcpu);
11278 regs->r13 = kvm_r13_read(vcpu);
11279 regs->r14 = kvm_r14_read(vcpu);
11280 regs->r15 = kvm_r15_read(vcpu);
11281 #endif
11282
11283 regs->rip = kvm_rip_read(vcpu);
11284 regs->rflags = kvm_get_rflags(vcpu);
11285 }
11286
11287 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11288 {
11289 vcpu_load(vcpu);
11290 __get_regs(vcpu, regs);
11291 vcpu_put(vcpu);
11292 return 0;
11293 }
11294
11295 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11296 {
11297 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11298 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11299
11300 kvm_rax_write(vcpu, regs->rax);
11301 kvm_rbx_write(vcpu, regs->rbx);
11302 kvm_rcx_write(vcpu, regs->rcx);
11303 kvm_rdx_write(vcpu, regs->rdx);
11304 kvm_rsi_write(vcpu, regs->rsi);
11305 kvm_rdi_write(vcpu, regs->rdi);
11306 kvm_rsp_write(vcpu, regs->rsp);
11307 kvm_rbp_write(vcpu, regs->rbp);
11308 #ifdef CONFIG_X86_64
11309 kvm_r8_write(vcpu, regs->r8);
11310 kvm_r9_write(vcpu, regs->r9);
11311 kvm_r10_write(vcpu, regs->r10);
11312 kvm_r11_write(vcpu, regs->r11);
11313 kvm_r12_write(vcpu, regs->r12);
11314 kvm_r13_write(vcpu, regs->r13);
11315 kvm_r14_write(vcpu, regs->r14);
11316 kvm_r15_write(vcpu, regs->r15);
11317 #endif
11318
11319 kvm_rip_write(vcpu, regs->rip);
11320 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11321
11322 vcpu->arch.exception.pending = false;
11323 vcpu->arch.exception_vmexit.pending = false;
11324
11325 kvm_make_request(KVM_REQ_EVENT, vcpu);
11326 }
11327
11328 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11329 {
11330 vcpu_load(vcpu);
11331 __set_regs(vcpu, regs);
11332 vcpu_put(vcpu);
11333 return 0;
11334 }
11335
11336 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11337 {
11338 struct desc_ptr dt;
11339
11340 if (vcpu->arch.guest_state_protected)
11341 goto skip_protected_regs;
11342
11343 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11344 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11345 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11346 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11347 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11348 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11349
11350 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11351 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11352
11353 static_call(kvm_x86_get_idt)(vcpu, &dt);
11354 sregs->idt.limit = dt.size;
11355 sregs->idt.base = dt.address;
11356 static_call(kvm_x86_get_gdt)(vcpu, &dt);
11357 sregs->gdt.limit = dt.size;
11358 sregs->gdt.base = dt.address;
11359
11360 sregs->cr2 = vcpu->arch.cr2;
11361 sregs->cr3 = kvm_read_cr3(vcpu);
11362
11363 skip_protected_regs:
11364 sregs->cr0 = kvm_read_cr0(vcpu);
11365 sregs->cr4 = kvm_read_cr4(vcpu);
11366 sregs->cr8 = kvm_get_cr8(vcpu);
11367 sregs->efer = vcpu->arch.efer;
11368 sregs->apic_base = kvm_get_apic_base(vcpu);
11369 }
11370
11371 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11372 {
11373 __get_sregs_common(vcpu, sregs);
11374
11375 if (vcpu->arch.guest_state_protected)
11376 return;
11377
11378 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11379 set_bit(vcpu->arch.interrupt.nr,
11380 (unsigned long *)sregs->interrupt_bitmap);
11381 }
11382
11383 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11384 {
11385 int i;
11386
11387 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11388
11389 if (vcpu->arch.guest_state_protected)
11390 return;
11391
11392 if (is_pae_paging(vcpu)) {
11393 for (i = 0 ; i < 4 ; i++)
11394 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11395 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11396 }
11397 }
11398
11399 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11400 struct kvm_sregs *sregs)
11401 {
11402 vcpu_load(vcpu);
11403 __get_sregs(vcpu, sregs);
11404 vcpu_put(vcpu);
11405 return 0;
11406 }
11407
11408 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11409 struct kvm_mp_state *mp_state)
11410 {
11411 int r;
11412
11413 vcpu_load(vcpu);
11414 if (kvm_mpx_supported())
11415 kvm_load_guest_fpu(vcpu);
11416
11417 kvm_vcpu_srcu_read_lock(vcpu);
11418
11419 r = kvm_apic_accept_events(vcpu);
11420 if (r < 0)
11421 goto out;
11422 r = 0;
11423
11424 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11425 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11426 vcpu->arch.pv.pv_unhalted)
11427 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11428 else
11429 mp_state->mp_state = vcpu->arch.mp_state;
11430
11431 out:
11432 kvm_vcpu_srcu_read_unlock(vcpu);
11433
11434 if (kvm_mpx_supported())
11435 kvm_put_guest_fpu(vcpu);
11436 vcpu_put(vcpu);
11437 return r;
11438 }
11439
11440 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11441 struct kvm_mp_state *mp_state)
11442 {
11443 int ret = -EINVAL;
11444
11445 vcpu_load(vcpu);
11446
11447 switch (mp_state->mp_state) {
11448 case KVM_MP_STATE_UNINITIALIZED:
11449 case KVM_MP_STATE_HALTED:
11450 case KVM_MP_STATE_AP_RESET_HOLD:
11451 case KVM_MP_STATE_INIT_RECEIVED:
11452 case KVM_MP_STATE_SIPI_RECEIVED:
11453 if (!lapic_in_kernel(vcpu))
11454 goto out;
11455 break;
11456
11457 case KVM_MP_STATE_RUNNABLE:
11458 break;
11459
11460 default:
11461 goto out;
11462 }
11463
11464 /*
11465 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11466 * forcing the guest into INIT/SIPI if those events are supposed to be
11467 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11468 * if an SMI is pending as well.
11469 */
11470 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11471 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11472 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11473 goto out;
11474
11475 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11476 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11477 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11478 } else
11479 vcpu->arch.mp_state = mp_state->mp_state;
11480 kvm_make_request(KVM_REQ_EVENT, vcpu);
11481
11482 ret = 0;
11483 out:
11484 vcpu_put(vcpu);
11485 return ret;
11486 }
11487
11488 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11489 int reason, bool has_error_code, u32 error_code)
11490 {
11491 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11492 int ret;
11493
11494 init_emulate_ctxt(vcpu);
11495
11496 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11497 has_error_code, error_code);
11498 if (ret) {
11499 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11500 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11501 vcpu->run->internal.ndata = 0;
11502 return 0;
11503 }
11504
11505 kvm_rip_write(vcpu, ctxt->eip);
11506 kvm_set_rflags(vcpu, ctxt->eflags);
11507 return 1;
11508 }
11509 EXPORT_SYMBOL_GPL(kvm_task_switch);
11510
11511 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11512 {
11513 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11514 /*
11515 * When EFER.LME and CR0.PG are set, the processor is in
11516 * 64-bit mode (though maybe in a 32-bit code segment).
11517 * CR4.PAE and EFER.LMA must be set.
11518 */
11519 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11520 return false;
11521 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11522 return false;
11523 } else {
11524 /*
11525 * Not in 64-bit mode: EFER.LMA is clear and the code
11526 * segment cannot be 64-bit.
11527 */
11528 if (sregs->efer & EFER_LMA || sregs->cs.l)
11529 return false;
11530 }
11531
11532 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11533 kvm_is_valid_cr0(vcpu, sregs->cr0);
11534 }
11535
11536 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11537 int *mmu_reset_needed, bool update_pdptrs)
11538 {
11539 struct msr_data apic_base_msr;
11540 int idx;
11541 struct desc_ptr dt;
11542
11543 if (!kvm_is_valid_sregs(vcpu, sregs))
11544 return -EINVAL;
11545
11546 apic_base_msr.data = sregs->apic_base;
11547 apic_base_msr.host_initiated = true;
11548 if (kvm_set_apic_base(vcpu, &apic_base_msr))
11549 return -EINVAL;
11550
11551 if (vcpu->arch.guest_state_protected)
11552 return 0;
11553
11554 dt.size = sregs->idt.limit;
11555 dt.address = sregs->idt.base;
11556 static_call(kvm_x86_set_idt)(vcpu, &dt);
11557 dt.size = sregs->gdt.limit;
11558 dt.address = sregs->gdt.base;
11559 static_call(kvm_x86_set_gdt)(vcpu, &dt);
11560
11561 vcpu->arch.cr2 = sregs->cr2;
11562 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11563 vcpu->arch.cr3 = sregs->cr3;
11564 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11565 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11566
11567 kvm_set_cr8(vcpu, sregs->cr8);
11568
11569 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11570 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11571
11572 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11573 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11574 vcpu->arch.cr0 = sregs->cr0;
11575
11576 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11577 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11578
11579 if (update_pdptrs) {
11580 idx = srcu_read_lock(&vcpu->kvm->srcu);
11581 if (is_pae_paging(vcpu)) {
11582 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11583 *mmu_reset_needed = 1;
11584 }
11585 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11586 }
11587
11588 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11589 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11590 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11591 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11592 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11593 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11594
11595 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11596 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11597
11598 update_cr8_intercept(vcpu);
11599
11600 /* Older userspace won't unhalt the vcpu on reset. */
11601 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11602 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11603 !is_protmode(vcpu))
11604 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11605
11606 return 0;
11607 }
11608
11609 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11610 {
11611 int pending_vec, max_bits;
11612 int mmu_reset_needed = 0;
11613 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11614
11615 if (ret)
11616 return ret;
11617
11618 if (mmu_reset_needed)
11619 kvm_mmu_reset_context(vcpu);
11620
11621 max_bits = KVM_NR_INTERRUPTS;
11622 pending_vec = find_first_bit(
11623 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11624
11625 if (pending_vec < max_bits) {
11626 kvm_queue_interrupt(vcpu, pending_vec, false);
11627 pr_debug("Set back pending irq %d\n", pending_vec);
11628 kvm_make_request(KVM_REQ_EVENT, vcpu);
11629 }
11630 return 0;
11631 }
11632
11633 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11634 {
11635 int mmu_reset_needed = 0;
11636 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11637 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11638 !(sregs2->efer & EFER_LMA);
11639 int i, ret;
11640
11641 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11642 return -EINVAL;
11643
11644 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11645 return -EINVAL;
11646
11647 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11648 &mmu_reset_needed, !valid_pdptrs);
11649 if (ret)
11650 return ret;
11651
11652 if (valid_pdptrs) {
11653 for (i = 0; i < 4 ; i++)
11654 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11655
11656 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11657 mmu_reset_needed = 1;
11658 vcpu->arch.pdptrs_from_userspace = true;
11659 }
11660 if (mmu_reset_needed)
11661 kvm_mmu_reset_context(vcpu);
11662 return 0;
11663 }
11664
11665 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11666 struct kvm_sregs *sregs)
11667 {
11668 int ret;
11669
11670 vcpu_load(vcpu);
11671 ret = __set_sregs(vcpu, sregs);
11672 vcpu_put(vcpu);
11673 return ret;
11674 }
11675
11676 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11677 {
11678 bool set = false;
11679 struct kvm_vcpu *vcpu;
11680 unsigned long i;
11681
11682 if (!enable_apicv)
11683 return;
11684
11685 down_write(&kvm->arch.apicv_update_lock);
11686
11687 kvm_for_each_vcpu(i, vcpu, kvm) {
11688 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11689 set = true;
11690 break;
11691 }
11692 }
11693 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11694 up_write(&kvm->arch.apicv_update_lock);
11695 }
11696
11697 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11698 struct kvm_guest_debug *dbg)
11699 {
11700 unsigned long rflags;
11701 int i, r;
11702
11703 if (vcpu->arch.guest_state_protected)
11704 return -EINVAL;
11705
11706 vcpu_load(vcpu);
11707
11708 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11709 r = -EBUSY;
11710 if (kvm_is_exception_pending(vcpu))
11711 goto out;
11712 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11713 kvm_queue_exception(vcpu, DB_VECTOR);
11714 else
11715 kvm_queue_exception(vcpu, BP_VECTOR);
11716 }
11717
11718 /*
11719 * Read rflags as long as potentially injected trace flags are still
11720 * filtered out.
11721 */
11722 rflags = kvm_get_rflags(vcpu);
11723
11724 vcpu->guest_debug = dbg->control;
11725 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11726 vcpu->guest_debug = 0;
11727
11728 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11729 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11730 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11731 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11732 } else {
11733 for (i = 0; i < KVM_NR_DB_REGS; i++)
11734 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11735 }
11736 kvm_update_dr7(vcpu);
11737
11738 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11739 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11740
11741 /*
11742 * Trigger an rflags update that will inject or remove the trace
11743 * flags.
11744 */
11745 kvm_set_rflags(vcpu, rflags);
11746
11747 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11748
11749 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11750
11751 r = 0;
11752
11753 out:
11754 vcpu_put(vcpu);
11755 return r;
11756 }
11757
11758 /*
11759 * Translate a guest virtual address to a guest physical address.
11760 */
11761 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11762 struct kvm_translation *tr)
11763 {
11764 unsigned long vaddr = tr->linear_address;
11765 gpa_t gpa;
11766 int idx;
11767
11768 vcpu_load(vcpu);
11769
11770 idx = srcu_read_lock(&vcpu->kvm->srcu);
11771 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11772 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11773 tr->physical_address = gpa;
11774 tr->valid = gpa != INVALID_GPA;
11775 tr->writeable = 1;
11776 tr->usermode = 0;
11777
11778 vcpu_put(vcpu);
11779 return 0;
11780 }
11781
11782 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11783 {
11784 struct fxregs_state *fxsave;
11785
11786 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11787 return 0;
11788
11789 vcpu_load(vcpu);
11790
11791 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11792 memcpy(fpu->fpr, fxsave->st_space, 128);
11793 fpu->fcw = fxsave->cwd;
11794 fpu->fsw = fxsave->swd;
11795 fpu->ftwx = fxsave->twd;
11796 fpu->last_opcode = fxsave->fop;
11797 fpu->last_ip = fxsave->rip;
11798 fpu->last_dp = fxsave->rdp;
11799 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11800
11801 vcpu_put(vcpu);
11802 return 0;
11803 }
11804
11805 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11806 {
11807 struct fxregs_state *fxsave;
11808
11809 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11810 return 0;
11811
11812 vcpu_load(vcpu);
11813
11814 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11815
11816 memcpy(fxsave->st_space, fpu->fpr, 128);
11817 fxsave->cwd = fpu->fcw;
11818 fxsave->swd = fpu->fsw;
11819 fxsave->twd = fpu->ftwx;
11820 fxsave->fop = fpu->last_opcode;
11821 fxsave->rip = fpu->last_ip;
11822 fxsave->rdp = fpu->last_dp;
11823 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11824
11825 vcpu_put(vcpu);
11826 return 0;
11827 }
11828
11829 static void store_regs(struct kvm_vcpu *vcpu)
11830 {
11831 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11832
11833 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11834 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11835
11836 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11837 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11838
11839 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11840 kvm_vcpu_ioctl_x86_get_vcpu_events(
11841 vcpu, &vcpu->run->s.regs.events);
11842 }
11843
11844 static int sync_regs(struct kvm_vcpu *vcpu)
11845 {
11846 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11847 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11848 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11849 }
11850
11851 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11852 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
11853
11854 if (__set_sregs(vcpu, &sregs))
11855 return -EINVAL;
11856
11857 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11858 }
11859
11860 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11861 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
11862
11863 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
11864 return -EINVAL;
11865
11866 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11867 }
11868
11869 return 0;
11870 }
11871
11872 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11873 {
11874 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11875 pr_warn_once("SMP vm created on host with unstable TSC; "
11876 "guest TSC will not be reliable\n");
11877
11878 if (!kvm->arch.max_vcpu_ids)
11879 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11880
11881 if (id >= kvm->arch.max_vcpu_ids)
11882 return -EINVAL;
11883
11884 return static_call(kvm_x86_vcpu_precreate)(kvm);
11885 }
11886
11887 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11888 {
11889 struct page *page;
11890 int r;
11891
11892 vcpu->arch.last_vmentry_cpu = -1;
11893 vcpu->arch.regs_avail = ~0;
11894 vcpu->arch.regs_dirty = ~0;
11895
11896 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11897
11898 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11899 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11900 else
11901 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11902
11903 r = kvm_mmu_create(vcpu);
11904 if (r < 0)
11905 return r;
11906
11907 if (irqchip_in_kernel(vcpu->kvm)) {
11908 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11909 if (r < 0)
11910 goto fail_mmu_destroy;
11911
11912 /*
11913 * Defer evaluating inhibits until the vCPU is first run, as
11914 * this vCPU will not get notified of any changes until this
11915 * vCPU is visible to other vCPUs (marked online and added to
11916 * the set of vCPUs). Opportunistically mark APICv active as
11917 * VMX in particularly is highly unlikely to have inhibits.
11918 * Ignore the current per-VM APICv state so that vCPU creation
11919 * is guaranteed to run with a deterministic value, the request
11920 * will ensure the vCPU gets the correct state before VM-Entry.
11921 */
11922 if (enable_apicv) {
11923 vcpu->arch.apic->apicv_active = true;
11924 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11925 }
11926 } else
11927 static_branch_inc(&kvm_has_noapic_vcpu);
11928
11929 r = -ENOMEM;
11930
11931 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11932 if (!page)
11933 goto fail_free_lapic;
11934 vcpu->arch.pio_data = page_address(page);
11935
11936 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11937 GFP_KERNEL_ACCOUNT);
11938 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11939 GFP_KERNEL_ACCOUNT);
11940 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11941 goto fail_free_mce_banks;
11942 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11943
11944 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11945 GFP_KERNEL_ACCOUNT))
11946 goto fail_free_mce_banks;
11947
11948 if (!alloc_emulate_ctxt(vcpu))
11949 goto free_wbinvd_dirty_mask;
11950
11951 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11952 pr_err("failed to allocate vcpu's fpu\n");
11953 goto free_emulate_ctxt;
11954 }
11955
11956 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11957 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11958
11959 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11960
11961 kvm_async_pf_hash_reset(vcpu);
11962
11963 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11964 kvm_pmu_init(vcpu);
11965
11966 vcpu->arch.pending_external_vector = -1;
11967 vcpu->arch.preempted_in_kernel = false;
11968
11969 #if IS_ENABLED(CONFIG_HYPERV)
11970 vcpu->arch.hv_root_tdp = INVALID_PAGE;
11971 #endif
11972
11973 r = static_call(kvm_x86_vcpu_create)(vcpu);
11974 if (r)
11975 goto free_guest_fpu;
11976
11977 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11978 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11979 kvm_xen_init_vcpu(vcpu);
11980 kvm_vcpu_mtrr_init(vcpu);
11981 vcpu_load(vcpu);
11982 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11983 kvm_vcpu_reset(vcpu, false);
11984 kvm_init_mmu(vcpu);
11985 vcpu_put(vcpu);
11986 return 0;
11987
11988 free_guest_fpu:
11989 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11990 free_emulate_ctxt:
11991 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11992 free_wbinvd_dirty_mask:
11993 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11994 fail_free_mce_banks:
11995 kfree(vcpu->arch.mce_banks);
11996 kfree(vcpu->arch.mci_ctl2_banks);
11997 free_page((unsigned long)vcpu->arch.pio_data);
11998 fail_free_lapic:
11999 kvm_free_lapic(vcpu);
12000 fail_mmu_destroy:
12001 kvm_mmu_destroy(vcpu);
12002 return r;
12003 }
12004
12005 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12006 {
12007 struct kvm *kvm = vcpu->kvm;
12008
12009 if (mutex_lock_killable(&vcpu->mutex))
12010 return;
12011 vcpu_load(vcpu);
12012 kvm_synchronize_tsc(vcpu, 0);
12013 vcpu_put(vcpu);
12014
12015 /* poll control enabled by default */
12016 vcpu->arch.msr_kvm_poll_control = 1;
12017
12018 mutex_unlock(&vcpu->mutex);
12019
12020 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12021 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12022 KVMCLOCK_SYNC_PERIOD);
12023 }
12024
12025 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12026 {
12027 int idx;
12028
12029 kvmclock_reset(vcpu);
12030
12031 static_call(kvm_x86_vcpu_free)(vcpu);
12032
12033 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12034 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12035 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12036
12037 kvm_xen_destroy_vcpu(vcpu);
12038 kvm_hv_vcpu_uninit(vcpu);
12039 kvm_pmu_destroy(vcpu);
12040 kfree(vcpu->arch.mce_banks);
12041 kfree(vcpu->arch.mci_ctl2_banks);
12042 kvm_free_lapic(vcpu);
12043 idx = srcu_read_lock(&vcpu->kvm->srcu);
12044 kvm_mmu_destroy(vcpu);
12045 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12046 free_page((unsigned long)vcpu->arch.pio_data);
12047 kvfree(vcpu->arch.cpuid_entries);
12048 if (!lapic_in_kernel(vcpu))
12049 static_branch_dec(&kvm_has_noapic_vcpu);
12050 }
12051
12052 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12053 {
12054 struct kvm_cpuid_entry2 *cpuid_0x1;
12055 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12056 unsigned long new_cr0;
12057
12058 /*
12059 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12060 * to handle side effects. RESET emulation hits those flows and relies
12061 * on emulated/virtualized registers, including those that are loaded
12062 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12063 * to detect improper or missing initialization.
12064 */
12065 WARN_ON_ONCE(!init_event &&
12066 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12067
12068 /*
12069 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12070 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12071 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12072 * bits), i.e. virtualization is disabled.
12073 */
12074 if (is_guest_mode(vcpu))
12075 kvm_leave_nested(vcpu);
12076
12077 kvm_lapic_reset(vcpu, init_event);
12078
12079 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12080 vcpu->arch.hflags = 0;
12081
12082 vcpu->arch.smi_pending = 0;
12083 vcpu->arch.smi_count = 0;
12084 atomic_set(&vcpu->arch.nmi_queued, 0);
12085 vcpu->arch.nmi_pending = 0;
12086 vcpu->arch.nmi_injected = false;
12087 kvm_clear_interrupt_queue(vcpu);
12088 kvm_clear_exception_queue(vcpu);
12089
12090 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12091 kvm_update_dr0123(vcpu);
12092 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12093 vcpu->arch.dr7 = DR7_FIXED_1;
12094 kvm_update_dr7(vcpu);
12095
12096 vcpu->arch.cr2 = 0;
12097
12098 kvm_make_request(KVM_REQ_EVENT, vcpu);
12099 vcpu->arch.apf.msr_en_val = 0;
12100 vcpu->arch.apf.msr_int_val = 0;
12101 vcpu->arch.st.msr_val = 0;
12102
12103 kvmclock_reset(vcpu);
12104
12105 kvm_clear_async_pf_completion_queue(vcpu);
12106 kvm_async_pf_hash_reset(vcpu);
12107 vcpu->arch.apf.halted = false;
12108
12109 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12110 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12111
12112 /*
12113 * All paths that lead to INIT are required to load the guest's
12114 * FPU state (because most paths are buried in KVM_RUN).
12115 */
12116 if (init_event)
12117 kvm_put_guest_fpu(vcpu);
12118
12119 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12120 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12121
12122 if (init_event)
12123 kvm_load_guest_fpu(vcpu);
12124 }
12125
12126 if (!init_event) {
12127 kvm_pmu_reset(vcpu);
12128 vcpu->arch.smbase = 0x30000;
12129
12130 vcpu->arch.msr_misc_features_enables = 0;
12131 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12132 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12133
12134 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12135 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12136 }
12137
12138 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12139 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12140 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12141
12142 /*
12143 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12144 * if no CPUID match is found. Note, it's impossible to get a match at
12145 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12146 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12147 * on RESET. But, go through the motions in case that's ever remedied.
12148 */
12149 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12150 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12151
12152 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12153
12154 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12155 kvm_rip_write(vcpu, 0xfff0);
12156
12157 vcpu->arch.cr3 = 0;
12158 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12159
12160 /*
12161 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12162 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12163 * (or qualify) that with a footnote stating that CD/NW are preserved.
12164 */
12165 new_cr0 = X86_CR0_ET;
12166 if (init_event)
12167 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12168 else
12169 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12170
12171 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12172 static_call(kvm_x86_set_cr4)(vcpu, 0);
12173 static_call(kvm_x86_set_efer)(vcpu, 0);
12174 static_call(kvm_x86_update_exception_bitmap)(vcpu);
12175
12176 /*
12177 * On the standard CR0/CR4/EFER modification paths, there are several
12178 * complex conditions determining whether the MMU has to be reset and/or
12179 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12180 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12181 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12182 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12183 */
12184 if (old_cr0 & X86_CR0_PG) {
12185 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12186 kvm_mmu_reset_context(vcpu);
12187 }
12188
12189 /*
12190 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12191 * APM states the TLBs are untouched by INIT, but it also states that
12192 * the TLBs are flushed on "External initialization of the processor."
12193 * Flush the guest TLB regardless of vendor, there is no meaningful
12194 * benefit in relying on the guest to flush the TLB immediately after
12195 * INIT. A spurious TLB flush is benign and likely negligible from a
12196 * performance perspective.
12197 */
12198 if (init_event)
12199 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12200 }
12201 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12202
12203 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12204 {
12205 struct kvm_segment cs;
12206
12207 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12208 cs.selector = vector << 8;
12209 cs.base = vector << 12;
12210 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12211 kvm_rip_write(vcpu, 0);
12212 }
12213 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12214
12215 int kvm_arch_hardware_enable(void)
12216 {
12217 struct kvm *kvm;
12218 struct kvm_vcpu *vcpu;
12219 unsigned long i;
12220 int ret;
12221 u64 local_tsc;
12222 u64 max_tsc = 0;
12223 bool stable, backwards_tsc = false;
12224
12225 kvm_user_return_msr_cpu_online();
12226
12227 ret = kvm_x86_check_processor_compatibility();
12228 if (ret)
12229 return ret;
12230
12231 ret = static_call(kvm_x86_hardware_enable)();
12232 if (ret != 0)
12233 return ret;
12234
12235 local_tsc = rdtsc();
12236 stable = !kvm_check_tsc_unstable();
12237 list_for_each_entry(kvm, &vm_list, vm_list) {
12238 kvm_for_each_vcpu(i, vcpu, kvm) {
12239 if (!stable && vcpu->cpu == smp_processor_id())
12240 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12241 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12242 backwards_tsc = true;
12243 if (vcpu->arch.last_host_tsc > max_tsc)
12244 max_tsc = vcpu->arch.last_host_tsc;
12245 }
12246 }
12247 }
12248
12249 /*
12250 * Sometimes, even reliable TSCs go backwards. This happens on
12251 * platforms that reset TSC during suspend or hibernate actions, but
12252 * maintain synchronization. We must compensate. Fortunately, we can
12253 * detect that condition here, which happens early in CPU bringup,
12254 * before any KVM threads can be running. Unfortunately, we can't
12255 * bring the TSCs fully up to date with real time, as we aren't yet far
12256 * enough into CPU bringup that we know how much real time has actually
12257 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12258 * variables that haven't been updated yet.
12259 *
12260 * So we simply find the maximum observed TSC above, then record the
12261 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12262 * the adjustment will be applied. Note that we accumulate
12263 * adjustments, in case multiple suspend cycles happen before some VCPU
12264 * gets a chance to run again. In the event that no KVM threads get a
12265 * chance to run, we will miss the entire elapsed period, as we'll have
12266 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12267 * loose cycle time. This isn't too big a deal, since the loss will be
12268 * uniform across all VCPUs (not to mention the scenario is extremely
12269 * unlikely). It is possible that a second hibernate recovery happens
12270 * much faster than a first, causing the observed TSC here to be
12271 * smaller; this would require additional padding adjustment, which is
12272 * why we set last_host_tsc to the local tsc observed here.
12273 *
12274 * N.B. - this code below runs only on platforms with reliable TSC,
12275 * as that is the only way backwards_tsc is set above. Also note
12276 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12277 * have the same delta_cyc adjustment applied if backwards_tsc
12278 * is detected. Note further, this adjustment is only done once,
12279 * as we reset last_host_tsc on all VCPUs to stop this from being
12280 * called multiple times (one for each physical CPU bringup).
12281 *
12282 * Platforms with unreliable TSCs don't have to deal with this, they
12283 * will be compensated by the logic in vcpu_load, which sets the TSC to
12284 * catchup mode. This will catchup all VCPUs to real time, but cannot
12285 * guarantee that they stay in perfect synchronization.
12286 */
12287 if (backwards_tsc) {
12288 u64 delta_cyc = max_tsc - local_tsc;
12289 list_for_each_entry(kvm, &vm_list, vm_list) {
12290 kvm->arch.backwards_tsc_observed = true;
12291 kvm_for_each_vcpu(i, vcpu, kvm) {
12292 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12293 vcpu->arch.last_host_tsc = local_tsc;
12294 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12295 }
12296
12297 /*
12298 * We have to disable TSC offset matching.. if you were
12299 * booting a VM while issuing an S4 host suspend....
12300 * you may have some problem. Solving this issue is
12301 * left as an exercise to the reader.
12302 */
12303 kvm->arch.last_tsc_nsec = 0;
12304 kvm->arch.last_tsc_write = 0;
12305 }
12306
12307 }
12308 return 0;
12309 }
12310
12311 void kvm_arch_hardware_disable(void)
12312 {
12313 static_call(kvm_x86_hardware_disable)();
12314 drop_user_return_notifiers();
12315 }
12316
12317 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12318 {
12319 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12320 }
12321
12322 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12323 {
12324 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12325 }
12326
12327 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12328 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12329
12330 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12331 {
12332 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12333
12334 vcpu->arch.l1tf_flush_l1d = true;
12335 if (pmu->version && unlikely(pmu->event_count)) {
12336 pmu->need_cleanup = true;
12337 kvm_make_request(KVM_REQ_PMU, vcpu);
12338 }
12339 static_call(kvm_x86_sched_in)(vcpu, cpu);
12340 }
12341
12342 void kvm_arch_free_vm(struct kvm *kvm)
12343 {
12344 kfree(to_kvm_hv(kvm)->hv_pa_pg);
12345 __kvm_arch_free_vm(kvm);
12346 }
12347
12348
12349 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12350 {
12351 int ret;
12352 unsigned long flags;
12353
12354 if (type)
12355 return -EINVAL;
12356
12357 ret = kvm_page_track_init(kvm);
12358 if (ret)
12359 goto out;
12360
12361 kvm_mmu_init_vm(kvm);
12362
12363 ret = static_call(kvm_x86_vm_init)(kvm);
12364 if (ret)
12365 goto out_uninit_mmu;
12366
12367 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12368 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12369 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12370
12371 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12372 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12373 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12374 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12375 &kvm->arch.irq_sources_bitmap);
12376
12377 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12378 mutex_init(&kvm->arch.apic_map_lock);
12379 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12380 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12381
12382 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12383 pvclock_update_vm_gtod_copy(kvm);
12384 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12385
12386 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12387 kvm->arch.guest_can_read_msr_platform_info = true;
12388 kvm->arch.enable_pmu = enable_pmu;
12389
12390 #if IS_ENABLED(CONFIG_HYPERV)
12391 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12392 kvm->arch.hv_root_tdp = INVALID_PAGE;
12393 #endif
12394
12395 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12396 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12397
12398 kvm_apicv_init(kvm);
12399 kvm_hv_init_vm(kvm);
12400 kvm_xen_init_vm(kvm);
12401
12402 return 0;
12403
12404 out_uninit_mmu:
12405 kvm_mmu_uninit_vm(kvm);
12406 kvm_page_track_cleanup(kvm);
12407 out:
12408 return ret;
12409 }
12410
12411 int kvm_arch_post_init_vm(struct kvm *kvm)
12412 {
12413 return kvm_mmu_post_init_vm(kvm);
12414 }
12415
12416 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12417 {
12418 vcpu_load(vcpu);
12419 kvm_mmu_unload(vcpu);
12420 vcpu_put(vcpu);
12421 }
12422
12423 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12424 {
12425 unsigned long i;
12426 struct kvm_vcpu *vcpu;
12427
12428 kvm_for_each_vcpu(i, vcpu, kvm) {
12429 kvm_clear_async_pf_completion_queue(vcpu);
12430 kvm_unload_vcpu_mmu(vcpu);
12431 }
12432 }
12433
12434 void kvm_arch_sync_events(struct kvm *kvm)
12435 {
12436 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12437 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12438 kvm_free_pit(kvm);
12439 }
12440
12441 /**
12442 * __x86_set_memory_region: Setup KVM internal memory slot
12443 *
12444 * @kvm: the kvm pointer to the VM.
12445 * @id: the slot ID to setup.
12446 * @gpa: the GPA to install the slot (unused when @size == 0).
12447 * @size: the size of the slot. Set to zero to uninstall a slot.
12448 *
12449 * This function helps to setup a KVM internal memory slot. Specify
12450 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12451 * slot. The return code can be one of the following:
12452 *
12453 * HVA: on success (uninstall will return a bogus HVA)
12454 * -errno: on error
12455 *
12456 * The caller should always use IS_ERR() to check the return value
12457 * before use. Note, the KVM internal memory slots are guaranteed to
12458 * remain valid and unchanged until the VM is destroyed, i.e., the
12459 * GPA->HVA translation will not change. However, the HVA is a user
12460 * address, i.e. its accessibility is not guaranteed, and must be
12461 * accessed via __copy_{to,from}_user().
12462 */
12463 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12464 u32 size)
12465 {
12466 int i, r;
12467 unsigned long hva, old_npages;
12468 struct kvm_memslots *slots = kvm_memslots(kvm);
12469 struct kvm_memory_slot *slot;
12470
12471 /* Called with kvm->slots_lock held. */
12472 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12473 return ERR_PTR_USR(-EINVAL);
12474
12475 slot = id_to_memslot(slots, id);
12476 if (size) {
12477 if (slot && slot->npages)
12478 return ERR_PTR_USR(-EEXIST);
12479
12480 /*
12481 * MAP_SHARED to prevent internal slot pages from being moved
12482 * by fork()/COW.
12483 */
12484 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12485 MAP_SHARED | MAP_ANONYMOUS, 0);
12486 if (IS_ERR_VALUE(hva))
12487 return (void __user *)hva;
12488 } else {
12489 if (!slot || !slot->npages)
12490 return NULL;
12491
12492 old_npages = slot->npages;
12493 hva = slot->userspace_addr;
12494 }
12495
12496 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12497 struct kvm_userspace_memory_region m;
12498
12499 m.slot = id | (i << 16);
12500 m.flags = 0;
12501 m.guest_phys_addr = gpa;
12502 m.userspace_addr = hva;
12503 m.memory_size = size;
12504 r = __kvm_set_memory_region(kvm, &m);
12505 if (r < 0)
12506 return ERR_PTR_USR(r);
12507 }
12508
12509 if (!size)
12510 vm_munmap(hva, old_npages * PAGE_SIZE);
12511
12512 return (void __user *)hva;
12513 }
12514 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12515
12516 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12517 {
12518 kvm_mmu_pre_destroy_vm(kvm);
12519 }
12520
12521 void kvm_arch_destroy_vm(struct kvm *kvm)
12522 {
12523 if (current->mm == kvm->mm) {
12524 /*
12525 * Free memory regions allocated on behalf of userspace,
12526 * unless the memory map has changed due to process exit
12527 * or fd copying.
12528 */
12529 mutex_lock(&kvm->slots_lock);
12530 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12531 0, 0);
12532 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12533 0, 0);
12534 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12535 mutex_unlock(&kvm->slots_lock);
12536 }
12537 kvm_unload_vcpu_mmus(kvm);
12538 static_call_cond(kvm_x86_vm_destroy)(kvm);
12539 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12540 kvm_pic_destroy(kvm);
12541 kvm_ioapic_destroy(kvm);
12542 kvm_destroy_vcpus(kvm);
12543 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12544 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12545 kvm_mmu_uninit_vm(kvm);
12546 kvm_page_track_cleanup(kvm);
12547 kvm_xen_destroy_vm(kvm);
12548 kvm_hv_destroy_vm(kvm);
12549 }
12550
12551 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12552 {
12553 int i;
12554
12555 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12556 kvfree(slot->arch.rmap[i]);
12557 slot->arch.rmap[i] = NULL;
12558 }
12559 }
12560
12561 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12562 {
12563 int i;
12564
12565 memslot_rmap_free(slot);
12566
12567 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12568 kvfree(slot->arch.lpage_info[i - 1]);
12569 slot->arch.lpage_info[i - 1] = NULL;
12570 }
12571
12572 kvm_page_track_free_memslot(slot);
12573 }
12574
12575 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12576 {
12577 const int sz = sizeof(*slot->arch.rmap[0]);
12578 int i;
12579
12580 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12581 int level = i + 1;
12582 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12583
12584 if (slot->arch.rmap[i])
12585 continue;
12586
12587 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12588 if (!slot->arch.rmap[i]) {
12589 memslot_rmap_free(slot);
12590 return -ENOMEM;
12591 }
12592 }
12593
12594 return 0;
12595 }
12596
12597 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12598 struct kvm_memory_slot *slot)
12599 {
12600 unsigned long npages = slot->npages;
12601 int i, r;
12602
12603 /*
12604 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12605 * old arrays will be freed by __kvm_set_memory_region() if installing
12606 * the new memslot is successful.
12607 */
12608 memset(&slot->arch, 0, sizeof(slot->arch));
12609
12610 if (kvm_memslots_have_rmaps(kvm)) {
12611 r = memslot_rmap_alloc(slot, npages);
12612 if (r)
12613 return r;
12614 }
12615
12616 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12617 struct kvm_lpage_info *linfo;
12618 unsigned long ugfn;
12619 int lpages;
12620 int level = i + 1;
12621
12622 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12623
12624 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12625 if (!linfo)
12626 goto out_free;
12627
12628 slot->arch.lpage_info[i - 1] = linfo;
12629
12630 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12631 linfo[0].disallow_lpage = 1;
12632 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12633 linfo[lpages - 1].disallow_lpage = 1;
12634 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12635 /*
12636 * If the gfn and userspace address are not aligned wrt each
12637 * other, disable large page support for this slot.
12638 */
12639 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12640 unsigned long j;
12641
12642 for (j = 0; j < lpages; ++j)
12643 linfo[j].disallow_lpage = 1;
12644 }
12645 }
12646
12647 if (kvm_page_track_create_memslot(kvm, slot, npages))
12648 goto out_free;
12649
12650 return 0;
12651
12652 out_free:
12653 memslot_rmap_free(slot);
12654
12655 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12656 kvfree(slot->arch.lpage_info[i - 1]);
12657 slot->arch.lpage_info[i - 1] = NULL;
12658 }
12659 return -ENOMEM;
12660 }
12661
12662 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12663 {
12664 struct kvm_vcpu *vcpu;
12665 unsigned long i;
12666
12667 /*
12668 * memslots->generation has been incremented.
12669 * mmio generation may have reached its maximum value.
12670 */
12671 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12672
12673 /* Force re-initialization of steal_time cache */
12674 kvm_for_each_vcpu(i, vcpu, kvm)
12675 kvm_vcpu_kick(vcpu);
12676 }
12677
12678 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12679 const struct kvm_memory_slot *old,
12680 struct kvm_memory_slot *new,
12681 enum kvm_mr_change change)
12682 {
12683 /*
12684 * KVM doesn't support moving memslots when there are external page
12685 * trackers attached to the VM, i.e. if KVMGT is in use.
12686 */
12687 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12688 return -EINVAL;
12689
12690 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12691 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12692 return -EINVAL;
12693
12694 return kvm_alloc_memslot_metadata(kvm, new);
12695 }
12696
12697 if (change == KVM_MR_FLAGS_ONLY)
12698 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12699 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12700 return -EIO;
12701
12702 return 0;
12703 }
12704
12705
12706 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12707 {
12708 int nr_slots;
12709
12710 if (!kvm_x86_ops.cpu_dirty_log_size)
12711 return;
12712
12713 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12714 if ((enable && nr_slots == 1) || !nr_slots)
12715 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12716 }
12717
12718 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12719 struct kvm_memory_slot *old,
12720 const struct kvm_memory_slot *new,
12721 enum kvm_mr_change change)
12722 {
12723 u32 old_flags = old ? old->flags : 0;
12724 u32 new_flags = new ? new->flags : 0;
12725 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12726
12727 /*
12728 * Update CPU dirty logging if dirty logging is being toggled. This
12729 * applies to all operations.
12730 */
12731 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12732 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12733
12734 /*
12735 * Nothing more to do for RO slots (which can't be dirtied and can't be
12736 * made writable) or CREATE/MOVE/DELETE of a slot.
12737 *
12738 * For a memslot with dirty logging disabled:
12739 * CREATE: No dirty mappings will already exist.
12740 * MOVE/DELETE: The old mappings will already have been cleaned up by
12741 * kvm_arch_flush_shadow_memslot()
12742 *
12743 * For a memslot with dirty logging enabled:
12744 * CREATE: No shadow pages exist, thus nothing to write-protect
12745 * and no dirty bits to clear.
12746 * MOVE/DELETE: The old mappings will already have been cleaned up by
12747 * kvm_arch_flush_shadow_memslot().
12748 */
12749 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12750 return;
12751
12752 /*
12753 * READONLY and non-flags changes were filtered out above, and the only
12754 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12755 * logging isn't being toggled on or off.
12756 */
12757 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12758 return;
12759
12760 if (!log_dirty_pages) {
12761 /*
12762 * Dirty logging tracks sptes in 4k granularity, meaning that
12763 * large sptes have to be split. If live migration succeeds,
12764 * the guest in the source machine will be destroyed and large
12765 * sptes will be created in the destination. However, if the
12766 * guest continues to run in the source machine (for example if
12767 * live migration fails), small sptes will remain around and
12768 * cause bad performance.
12769 *
12770 * Scan sptes if dirty logging has been stopped, dropping those
12771 * which can be collapsed into a single large-page spte. Later
12772 * page faults will create the large-page sptes.
12773 */
12774 kvm_mmu_zap_collapsible_sptes(kvm, new);
12775 } else {
12776 /*
12777 * Initially-all-set does not require write protecting any page,
12778 * because they're all assumed to be dirty.
12779 */
12780 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12781 return;
12782
12783 if (READ_ONCE(eager_page_split))
12784 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12785
12786 if (kvm_x86_ops.cpu_dirty_log_size) {
12787 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12788 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12789 } else {
12790 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12791 }
12792
12793 /*
12794 * Unconditionally flush the TLBs after enabling dirty logging.
12795 * A flush is almost always going to be necessary (see below),
12796 * and unconditionally flushing allows the helpers to omit
12797 * the subtly complex checks when removing write access.
12798 *
12799 * Do the flush outside of mmu_lock to reduce the amount of
12800 * time mmu_lock is held. Flushing after dropping mmu_lock is
12801 * safe as KVM only needs to guarantee the slot is fully
12802 * write-protected before returning to userspace, i.e. before
12803 * userspace can consume the dirty status.
12804 *
12805 * Flushing outside of mmu_lock requires KVM to be careful when
12806 * making decisions based on writable status of an SPTE, e.g. a
12807 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12808 *
12809 * Specifically, KVM also write-protects guest page tables to
12810 * monitor changes when using shadow paging, and must guarantee
12811 * no CPUs can write to those page before mmu_lock is dropped.
12812 * Because CPUs may have stale TLB entries at this point, a
12813 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12814 *
12815 * KVM also allows making SPTES writable outside of mmu_lock,
12816 * e.g. to allow dirty logging without taking mmu_lock.
12817 *
12818 * To handle these scenarios, KVM uses a separate software-only
12819 * bit (MMU-writable) to track if a SPTE is !writable due to
12820 * a guest page table being write-protected (KVM clears the
12821 * MMU-writable flag when write-protecting for shadow paging).
12822 *
12823 * The use of MMU-writable is also the primary motivation for
12824 * the unconditional flush. Because KVM must guarantee that a
12825 * CPU doesn't contain stale, writable TLB entries for a
12826 * !MMU-writable SPTE, KVM must flush if it encounters any
12827 * MMU-writable SPTE regardless of whether the actual hardware
12828 * writable bit was set. I.e. KVM is almost guaranteed to need
12829 * to flush, while unconditionally flushing allows the "remove
12830 * write access" helpers to ignore MMU-writable entirely.
12831 *
12832 * See is_writable_pte() for more details (the case involving
12833 * access-tracked SPTEs is particularly relevant).
12834 */
12835 kvm_flush_remote_tlbs_memslot(kvm, new);
12836 }
12837 }
12838
12839 void kvm_arch_commit_memory_region(struct kvm *kvm,
12840 struct kvm_memory_slot *old,
12841 const struct kvm_memory_slot *new,
12842 enum kvm_mr_change change)
12843 {
12844 if (change == KVM_MR_DELETE)
12845 kvm_page_track_delete_slot(kvm, old);
12846
12847 if (!kvm->arch.n_requested_mmu_pages &&
12848 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12849 unsigned long nr_mmu_pages;
12850
12851 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12852 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12853 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12854 }
12855
12856 kvm_mmu_slot_apply_flags(kvm, old, new, change);
12857
12858 /* Free the arrays associated with the old memslot. */
12859 if (change == KVM_MR_MOVE)
12860 kvm_arch_free_memslot(kvm, old);
12861 }
12862
12863 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12864 {
12865 return (is_guest_mode(vcpu) &&
12866 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12867 }
12868
12869 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12870 {
12871 if (!list_empty_careful(&vcpu->async_pf.done))
12872 return true;
12873
12874 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12875 kvm_apic_init_sipi_allowed(vcpu))
12876 return true;
12877
12878 if (vcpu->arch.pv.pv_unhalted)
12879 return true;
12880
12881 if (kvm_is_exception_pending(vcpu))
12882 return true;
12883
12884 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12885 (vcpu->arch.nmi_pending &&
12886 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12887 return true;
12888
12889 #ifdef CONFIG_KVM_SMM
12890 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12891 (vcpu->arch.smi_pending &&
12892 static_call(kvm_x86_smi_allowed)(vcpu, false)))
12893 return true;
12894 #endif
12895
12896 if (kvm_test_request(KVM_REQ_PMI, vcpu))
12897 return true;
12898
12899 if (kvm_arch_interrupt_allowed(vcpu) &&
12900 (kvm_cpu_has_interrupt(vcpu) ||
12901 kvm_guest_apic_has_interrupt(vcpu)))
12902 return true;
12903
12904 if (kvm_hv_has_stimer_pending(vcpu))
12905 return true;
12906
12907 if (is_guest_mode(vcpu) &&
12908 kvm_x86_ops.nested_ops->has_events &&
12909 kvm_x86_ops.nested_ops->has_events(vcpu, false))
12910 return true;
12911
12912 if (kvm_xen_has_pending_events(vcpu))
12913 return true;
12914
12915 return false;
12916 }
12917
12918 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12919 {
12920 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12921 }
12922
12923 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12924 {
12925 if (kvm_vcpu_apicv_active(vcpu) &&
12926 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12927 return true;
12928
12929 return false;
12930 }
12931
12932 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12933 {
12934 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12935 return true;
12936
12937 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12938 #ifdef CONFIG_KVM_SMM
12939 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12940 #endif
12941 kvm_test_request(KVM_REQ_EVENT, vcpu))
12942 return true;
12943
12944 return kvm_arch_dy_has_pending_interrupt(vcpu);
12945 }
12946
12947 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12948 {
12949 if (vcpu->arch.guest_state_protected)
12950 return true;
12951
12952 return vcpu->arch.preempted_in_kernel;
12953 }
12954
12955 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12956 {
12957 return kvm_rip_read(vcpu);
12958 }
12959
12960 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12961 {
12962 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12963 }
12964
12965 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12966 {
12967 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12968 }
12969
12970 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12971 {
12972 /* Can't read the RIP when guest state is protected, just return 0 */
12973 if (vcpu->arch.guest_state_protected)
12974 return 0;
12975
12976 if (is_64_bit_mode(vcpu))
12977 return kvm_rip_read(vcpu);
12978 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12979 kvm_rip_read(vcpu));
12980 }
12981 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12982
12983 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12984 {
12985 return kvm_get_linear_rip(vcpu) == linear_rip;
12986 }
12987 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12988
12989 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12990 {
12991 unsigned long rflags;
12992
12993 rflags = static_call(kvm_x86_get_rflags)(vcpu);
12994 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12995 rflags &= ~X86_EFLAGS_TF;
12996 return rflags;
12997 }
12998 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12999
13000 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13001 {
13002 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13003 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13004 rflags |= X86_EFLAGS_TF;
13005 static_call(kvm_x86_set_rflags)(vcpu, rflags);
13006 }
13007
13008 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13009 {
13010 __kvm_set_rflags(vcpu, rflags);
13011 kvm_make_request(KVM_REQ_EVENT, vcpu);
13012 }
13013 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13014
13015 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13016 {
13017 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13018
13019 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13020 }
13021
13022 static inline u32 kvm_async_pf_next_probe(u32 key)
13023 {
13024 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13025 }
13026
13027 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13028 {
13029 u32 key = kvm_async_pf_hash_fn(gfn);
13030
13031 while (vcpu->arch.apf.gfns[key] != ~0)
13032 key = kvm_async_pf_next_probe(key);
13033
13034 vcpu->arch.apf.gfns[key] = gfn;
13035 }
13036
13037 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13038 {
13039 int i;
13040 u32 key = kvm_async_pf_hash_fn(gfn);
13041
13042 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13043 (vcpu->arch.apf.gfns[key] != gfn &&
13044 vcpu->arch.apf.gfns[key] != ~0); i++)
13045 key = kvm_async_pf_next_probe(key);
13046
13047 return key;
13048 }
13049
13050 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13051 {
13052 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13053 }
13054
13055 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13056 {
13057 u32 i, j, k;
13058
13059 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13060
13061 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13062 return;
13063
13064 while (true) {
13065 vcpu->arch.apf.gfns[i] = ~0;
13066 do {
13067 j = kvm_async_pf_next_probe(j);
13068 if (vcpu->arch.apf.gfns[j] == ~0)
13069 return;
13070 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13071 /*
13072 * k lies cyclically in ]i,j]
13073 * | i.k.j |
13074 * |....j i.k.| or |.k..j i...|
13075 */
13076 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13077 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13078 i = j;
13079 }
13080 }
13081
13082 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13083 {
13084 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13085
13086 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13087 sizeof(reason));
13088 }
13089
13090 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13091 {
13092 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13093
13094 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13095 &token, offset, sizeof(token));
13096 }
13097
13098 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13099 {
13100 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13101 u32 val;
13102
13103 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13104 &val, offset, sizeof(val)))
13105 return false;
13106
13107 return !val;
13108 }
13109
13110 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13111 {
13112
13113 if (!kvm_pv_async_pf_enabled(vcpu))
13114 return false;
13115
13116 if (vcpu->arch.apf.send_user_only &&
13117 static_call(kvm_x86_get_cpl)(vcpu) == 0)
13118 return false;
13119
13120 if (is_guest_mode(vcpu)) {
13121 /*
13122 * L1 needs to opt into the special #PF vmexits that are
13123 * used to deliver async page faults.
13124 */
13125 return vcpu->arch.apf.delivery_as_pf_vmexit;
13126 } else {
13127 /*
13128 * Play it safe in case the guest temporarily disables paging.
13129 * The real mode IDT in particular is unlikely to have a #PF
13130 * exception setup.
13131 */
13132 return is_paging(vcpu);
13133 }
13134 }
13135
13136 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13137 {
13138 if (unlikely(!lapic_in_kernel(vcpu) ||
13139 kvm_event_needs_reinjection(vcpu) ||
13140 kvm_is_exception_pending(vcpu)))
13141 return false;
13142
13143 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13144 return false;
13145
13146 /*
13147 * If interrupts are off we cannot even use an artificial
13148 * halt state.
13149 */
13150 return kvm_arch_interrupt_allowed(vcpu);
13151 }
13152
13153 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13154 struct kvm_async_pf *work)
13155 {
13156 struct x86_exception fault;
13157
13158 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13159 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13160
13161 if (kvm_can_deliver_async_pf(vcpu) &&
13162 !apf_put_user_notpresent(vcpu)) {
13163 fault.vector = PF_VECTOR;
13164 fault.error_code_valid = true;
13165 fault.error_code = 0;
13166 fault.nested_page_fault = false;
13167 fault.address = work->arch.token;
13168 fault.async_page_fault = true;
13169 kvm_inject_page_fault(vcpu, &fault);
13170 return true;
13171 } else {
13172 /*
13173 * It is not possible to deliver a paravirtualized asynchronous
13174 * page fault, but putting the guest in an artificial halt state
13175 * can be beneficial nevertheless: if an interrupt arrives, we
13176 * can deliver it timely and perhaps the guest will schedule
13177 * another process. When the instruction that triggered a page
13178 * fault is retried, hopefully the page will be ready in the host.
13179 */
13180 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13181 return false;
13182 }
13183 }
13184
13185 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13186 struct kvm_async_pf *work)
13187 {
13188 struct kvm_lapic_irq irq = {
13189 .delivery_mode = APIC_DM_FIXED,
13190 .vector = vcpu->arch.apf.vec
13191 };
13192
13193 if (work->wakeup_all)
13194 work->arch.token = ~0; /* broadcast wakeup */
13195 else
13196 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13197 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13198
13199 if ((work->wakeup_all || work->notpresent_injected) &&
13200 kvm_pv_async_pf_enabled(vcpu) &&
13201 !apf_put_user_ready(vcpu, work->arch.token)) {
13202 vcpu->arch.apf.pageready_pending = true;
13203 kvm_apic_set_irq(vcpu, &irq, NULL);
13204 }
13205
13206 vcpu->arch.apf.halted = false;
13207 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13208 }
13209
13210 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13211 {
13212 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13213 if (!vcpu->arch.apf.pageready_pending)
13214 kvm_vcpu_kick(vcpu);
13215 }
13216
13217 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13218 {
13219 if (!kvm_pv_async_pf_enabled(vcpu))
13220 return true;
13221 else
13222 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13223 }
13224
13225 void kvm_arch_start_assignment(struct kvm *kvm)
13226 {
13227 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13228 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13229 }
13230 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13231
13232 void kvm_arch_end_assignment(struct kvm *kvm)
13233 {
13234 atomic_dec(&kvm->arch.assigned_device_count);
13235 }
13236 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13237
13238 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13239 {
13240 return raw_atomic_read(&kvm->arch.assigned_device_count);
13241 }
13242 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13243
13244 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13245 {
13246 atomic_inc(&kvm->arch.noncoherent_dma_count);
13247 }
13248 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13249
13250 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13251 {
13252 atomic_dec(&kvm->arch.noncoherent_dma_count);
13253 }
13254 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13255
13256 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13257 {
13258 return atomic_read(&kvm->arch.noncoherent_dma_count);
13259 }
13260 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13261
13262 bool kvm_arch_has_irq_bypass(void)
13263 {
13264 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13265 }
13266
13267 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13268 struct irq_bypass_producer *prod)
13269 {
13270 struct kvm_kernel_irqfd *irqfd =
13271 container_of(cons, struct kvm_kernel_irqfd, consumer);
13272 struct kvm *kvm = irqfd->kvm;
13273 int ret;
13274
13275 kvm_arch_start_assignment(irqfd->kvm);
13276
13277 spin_lock_irq(&kvm->irqfds.lock);
13278 irqfd->producer = prod;
13279
13280 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13281 prod->irq, irqfd->gsi, 1);
13282 if (ret)
13283 kvm_arch_end_assignment(irqfd->kvm);
13284
13285 spin_unlock_irq(&kvm->irqfds.lock);
13286
13287
13288 return ret;
13289 }
13290
13291 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13292 struct irq_bypass_producer *prod)
13293 {
13294 int ret;
13295 struct kvm_kernel_irqfd *irqfd =
13296 container_of(cons, struct kvm_kernel_irqfd, consumer);
13297 struct kvm *kvm = irqfd->kvm;
13298
13299 WARN_ON(irqfd->producer != prod);
13300
13301 /*
13302 * When producer of consumer is unregistered, we change back to
13303 * remapped mode, so we can re-use the current implementation
13304 * when the irq is masked/disabled or the consumer side (KVM
13305 * int this case doesn't want to receive the interrupts.
13306 */
13307 spin_lock_irq(&kvm->irqfds.lock);
13308 irqfd->producer = NULL;
13309
13310 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13311 if (ret)
13312 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13313 " fails: %d\n", irqfd->consumer.token, ret);
13314
13315 spin_unlock_irq(&kvm->irqfds.lock);
13316
13317
13318 kvm_arch_end_assignment(irqfd->kvm);
13319 }
13320
13321 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13322 uint32_t guest_irq, bool set)
13323 {
13324 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13325 }
13326
13327 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13328 struct kvm_kernel_irq_routing_entry *new)
13329 {
13330 if (old->type != KVM_IRQ_ROUTING_MSI ||
13331 new->type != KVM_IRQ_ROUTING_MSI)
13332 return true;
13333
13334 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13335 }
13336
13337 bool kvm_vector_hashing_enabled(void)
13338 {
13339 return vector_hashing;
13340 }
13341
13342 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13343 {
13344 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13345 }
13346 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13347
13348
13349 int kvm_spec_ctrl_test_value(u64 value)
13350 {
13351 /*
13352 * test that setting IA32_SPEC_CTRL to given value
13353 * is allowed by the host processor
13354 */
13355
13356 u64 saved_value;
13357 unsigned long flags;
13358 int ret = 0;
13359
13360 local_irq_save(flags);
13361
13362 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13363 ret = 1;
13364 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13365 ret = 1;
13366 else
13367 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13368
13369 local_irq_restore(flags);
13370
13371 return ret;
13372 }
13373 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13374
13375 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13376 {
13377 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13378 struct x86_exception fault;
13379 u64 access = error_code &
13380 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13381
13382 if (!(error_code & PFERR_PRESENT_MASK) ||
13383 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13384 /*
13385 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13386 * tables probably do not match the TLB. Just proceed
13387 * with the error code that the processor gave.
13388 */
13389 fault.vector = PF_VECTOR;
13390 fault.error_code_valid = true;
13391 fault.error_code = error_code;
13392 fault.nested_page_fault = false;
13393 fault.address = gva;
13394 fault.async_page_fault = false;
13395 }
13396 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13397 }
13398 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13399
13400 /*
13401 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13402 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13403 * indicates whether exit to userspace is needed.
13404 */
13405 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13406 struct x86_exception *e)
13407 {
13408 if (r == X86EMUL_PROPAGATE_FAULT) {
13409 if (KVM_BUG_ON(!e, vcpu->kvm))
13410 return -EIO;
13411
13412 kvm_inject_emulated_page_fault(vcpu, e);
13413 return 1;
13414 }
13415
13416 /*
13417 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13418 * while handling a VMX instruction KVM could've handled the request
13419 * correctly by exiting to userspace and performing I/O but there
13420 * doesn't seem to be a real use-case behind such requests, just return
13421 * KVM_EXIT_INTERNAL_ERROR for now.
13422 */
13423 kvm_prepare_emulation_failure_exit(vcpu);
13424
13425 return 0;
13426 }
13427 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13428
13429 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13430 {
13431 bool pcid_enabled;
13432 struct x86_exception e;
13433 struct {
13434 u64 pcid;
13435 u64 gla;
13436 } operand;
13437 int r;
13438
13439 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13440 if (r != X86EMUL_CONTINUE)
13441 return kvm_handle_memory_failure(vcpu, r, &e);
13442
13443 if (operand.pcid >> 12 != 0) {
13444 kvm_inject_gp(vcpu, 0);
13445 return 1;
13446 }
13447
13448 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13449
13450 switch (type) {
13451 case INVPCID_TYPE_INDIV_ADDR:
13452 if ((!pcid_enabled && (operand.pcid != 0)) ||
13453 is_noncanonical_address(operand.gla, vcpu)) {
13454 kvm_inject_gp(vcpu, 0);
13455 return 1;
13456 }
13457 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13458 return kvm_skip_emulated_instruction(vcpu);
13459
13460 case INVPCID_TYPE_SINGLE_CTXT:
13461 if (!pcid_enabled && (operand.pcid != 0)) {
13462 kvm_inject_gp(vcpu, 0);
13463 return 1;
13464 }
13465
13466 kvm_invalidate_pcid(vcpu, operand.pcid);
13467 return kvm_skip_emulated_instruction(vcpu);
13468
13469 case INVPCID_TYPE_ALL_NON_GLOBAL:
13470 /*
13471 * Currently, KVM doesn't mark global entries in the shadow
13472 * page tables, so a non-global flush just degenerates to a
13473 * global flush. If needed, we could optimize this later by
13474 * keeping track of global entries in shadow page tables.
13475 */
13476
13477 fallthrough;
13478 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13479 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13480 return kvm_skip_emulated_instruction(vcpu);
13481
13482 default:
13483 kvm_inject_gp(vcpu, 0);
13484 return 1;
13485 }
13486 }
13487 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13488
13489 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13490 {
13491 struct kvm_run *run = vcpu->run;
13492 struct kvm_mmio_fragment *frag;
13493 unsigned int len;
13494
13495 BUG_ON(!vcpu->mmio_needed);
13496
13497 /* Complete previous fragment */
13498 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13499 len = min(8u, frag->len);
13500 if (!vcpu->mmio_is_write)
13501 memcpy(frag->data, run->mmio.data, len);
13502
13503 if (frag->len <= 8) {
13504 /* Switch to the next fragment. */
13505 frag++;
13506 vcpu->mmio_cur_fragment++;
13507 } else {
13508 /* Go forward to the next mmio piece. */
13509 frag->data += len;
13510 frag->gpa += len;
13511 frag->len -= len;
13512 }
13513
13514 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13515 vcpu->mmio_needed = 0;
13516
13517 // VMG change, at this point, we're always done
13518 // RIP has already been advanced
13519 return 1;
13520 }
13521
13522 // More MMIO is needed
13523 run->mmio.phys_addr = frag->gpa;
13524 run->mmio.len = min(8u, frag->len);
13525 run->mmio.is_write = vcpu->mmio_is_write;
13526 if (run->mmio.is_write)
13527 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13528 run->exit_reason = KVM_EXIT_MMIO;
13529
13530 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13531
13532 return 0;
13533 }
13534
13535 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13536 void *data)
13537 {
13538 int handled;
13539 struct kvm_mmio_fragment *frag;
13540
13541 if (!data)
13542 return -EINVAL;
13543
13544 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13545 if (handled == bytes)
13546 return 1;
13547
13548 bytes -= handled;
13549 gpa += handled;
13550 data += handled;
13551
13552 /*TODO: Check if need to increment number of frags */
13553 frag = vcpu->mmio_fragments;
13554 vcpu->mmio_nr_fragments = 1;
13555 frag->len = bytes;
13556 frag->gpa = gpa;
13557 frag->data = data;
13558
13559 vcpu->mmio_needed = 1;
13560 vcpu->mmio_cur_fragment = 0;
13561
13562 vcpu->run->mmio.phys_addr = gpa;
13563 vcpu->run->mmio.len = min(8u, frag->len);
13564 vcpu->run->mmio.is_write = 1;
13565 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13566 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13567
13568 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13569
13570 return 0;
13571 }
13572 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13573
13574 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13575 void *data)
13576 {
13577 int handled;
13578 struct kvm_mmio_fragment *frag;
13579
13580 if (!data)
13581 return -EINVAL;
13582
13583 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13584 if (handled == bytes)
13585 return 1;
13586
13587 bytes -= handled;
13588 gpa += handled;
13589 data += handled;
13590
13591 /*TODO: Check if need to increment number of frags */
13592 frag = vcpu->mmio_fragments;
13593 vcpu->mmio_nr_fragments = 1;
13594 frag->len = bytes;
13595 frag->gpa = gpa;
13596 frag->data = data;
13597
13598 vcpu->mmio_needed = 1;
13599 vcpu->mmio_cur_fragment = 0;
13600
13601 vcpu->run->mmio.phys_addr = gpa;
13602 vcpu->run->mmio.len = min(8u, frag->len);
13603 vcpu->run->mmio.is_write = 0;
13604 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13605
13606 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13607
13608 return 0;
13609 }
13610 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13611
13612 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13613 {
13614 vcpu->arch.sev_pio_count -= count;
13615 vcpu->arch.sev_pio_data += count * size;
13616 }
13617
13618 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13619 unsigned int port);
13620
13621 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13622 {
13623 int size = vcpu->arch.pio.size;
13624 int port = vcpu->arch.pio.port;
13625
13626 vcpu->arch.pio.count = 0;
13627 if (vcpu->arch.sev_pio_count)
13628 return kvm_sev_es_outs(vcpu, size, port);
13629 return 1;
13630 }
13631
13632 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13633 unsigned int port)
13634 {
13635 for (;;) {
13636 unsigned int count =
13637 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13638 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13639
13640 /* memcpy done already by emulator_pio_out. */
13641 advance_sev_es_emulated_pio(vcpu, count, size);
13642 if (!ret)
13643 break;
13644
13645 /* Emulation done by the kernel. */
13646 if (!vcpu->arch.sev_pio_count)
13647 return 1;
13648 }
13649
13650 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13651 return 0;
13652 }
13653
13654 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13655 unsigned int port);
13656
13657 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13658 {
13659 unsigned count = vcpu->arch.pio.count;
13660 int size = vcpu->arch.pio.size;
13661 int port = vcpu->arch.pio.port;
13662
13663 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13664 advance_sev_es_emulated_pio(vcpu, count, size);
13665 if (vcpu->arch.sev_pio_count)
13666 return kvm_sev_es_ins(vcpu, size, port);
13667 return 1;
13668 }
13669
13670 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13671 unsigned int port)
13672 {
13673 for (;;) {
13674 unsigned int count =
13675 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13676 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13677 break;
13678
13679 /* Emulation done by the kernel. */
13680 advance_sev_es_emulated_pio(vcpu, count, size);
13681 if (!vcpu->arch.sev_pio_count)
13682 return 1;
13683 }
13684
13685 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13686 return 0;
13687 }
13688
13689 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13690 unsigned int port, void *data, unsigned int count,
13691 int in)
13692 {
13693 vcpu->arch.sev_pio_data = data;
13694 vcpu->arch.sev_pio_count = count;
13695 return in ? kvm_sev_es_ins(vcpu, size, port)
13696 : kvm_sev_es_outs(vcpu, size, port);
13697 }
13698 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13699
13700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13720 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13721 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13723 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13724 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13725 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13729
13730 static int __init kvm_x86_init(void)
13731 {
13732 kvm_init_xstate_sizes();
13733
13734 kvm_mmu_x86_module_init();
13735 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13736 return 0;
13737 }
13738 module_init(kvm_x86_init);
13739
13740 static void __exit kvm_x86_exit(void)
13741 {
13742 /*
13743 * If module_init() is implemented, module_exit() must also be
13744 * implemented to allow module unload.
13745 */
13746 }
13747 module_exit(kvm_x86_exit);