sched/mmcid: Protect transition on weakly ordered systems
Shrikanth reported a hard lockup which he observed once. The stack trace
shows the following CID related participants:
watchdog: CPU 23 self-detected hard LOCKUP @ mm_get_cid+0xe8/0x188
NIP: mm_get_cid+0xe8/0x188
LR: mm_get_cid+0x108/0x188
mm_cid_switch_to+0x3c4/0x52c
__schedule+0x47c/0x700
schedule_idle+0x3c/0x64
do_idle+0x160/0x1b0
cpu_startup_entry+0x48/0x50
start_secondary+0x284/0x288
start_secondary_prolog+0x10/0x14
watchdog: CPU 11 self-detected hard LOCKUP @ plpar_hcall_norets_notrace+0x18/0x2c
NIP: plpar_hcall_norets_notrace+0x18/0x2c
LR: queued_spin_lock_slowpath+0xd88/0x15d0
_raw_spin_lock+0x80/0xa0
raw_spin_rq_lock_nested+0x3c/0xf8
mm_cid_fixup_cpus_to_tasks+0xc8/0x28c
sched_mm_cid_exit+0x108/0x22c
do_exit+0xf4/0x5d0
make_task_dead+0x0/0x178
system_call_exception+0x128/0x390
system_call_vectored_common+0x15c/0x2ec
The task on CPU11 is running the CID ownership mode change fixup function
and is stuck on a runqueue lock. The task on CPU23 is trying to get a CID
from the pool with the same runqueue lock held, but the pool is empty.
After decoding a similar issue in the opposite direction switching from per
task to per CPU mode the tool which models the possible scenarios failed to
come up with a similar loop hole.
This showed up only once, was not reproducible and according to tooling not
related to a overlooked scheduling scenario permutation. But the fact that
it was observed on a PowerPC system gave the right hint: PowerPC is a
weakly ordered architecture.
The transition mechanism does:
WRITE_ONCE(mm->mm_cid.transit, MM_CID_TRANSIT);
WRITE_ONCE(mm->mm_cid.percpu, new_mode);
fixup()
WRITE_ONCE(mm->mm_cid.transit, 0);
mm_cid_schedin() does:
if (!READ_ONCE(mm->mm_cid.percpu))
...
cid |= READ_ONCE(mm->mm_cid.transit);
so weakly ordered systems can observe percpu == false and transit == 0 even
if the fixup function has not yet completed. As a consequence the task will
not drop the CID when scheduling out before the fixup is completed, which
means the CID space can be exhausted and the next task scheduling in will
loop in mm_get_cid() and the fixup thread can livelock on the held runqueue
lock as above.
This could obviously be solved by using:
smp_store_release(&mm->mm_cid.percpu, true);
and
smp_load_acquire(&mm->mm_cid.percpu);
but that brings a memory barrier back into the scheduler hotpath, which was
just designed out by the CID rewrite.
That can be completely avoided by combining the per CPU mode and the
transit storage into a single mm_cid::mode member and ordering the stores
against the fixup functions to prevent the CPU from reordering them.
That makes the update of both states atomic and a concurrent read observes
always consistent state.
The price is an additional AND operation in mm_cid_schedin() to evaluate
the per CPU or the per task path, but that's in the noise even on strongly
ordered architectures as the actual load can be significantly more
expensive and the conditional branch evaluation is there anyway.
Fixes: fbd0e71dc370 ("sched/mmcid: Provide CID ownership mode fixup functions")
Closes: https://lore.kernel.org/bdfea828-4585-40e8-8835-247c6a8a76b0@linux.ibm.com
Reported-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://patch.msgid.link/20260201192834.965217106@kernel.org