err_status_t
-aes_cbc_alloc(cipher_t **c, int key_len) {
+aes_cbc_alloc(cipher_t **c, int key_len, int tlen) {
extern cipher_type_t aes_cbc;
uint8_t *pointer;
int tmp;
aes_cbc_test_case_0_ciphertext, /* ciphertext */
0,
NULL,
+ 0,
NULL /* pointer to next testcase */
};
aes_cbc_test_case_1_ciphertext, /* ciphertext */
0,
NULL,
+ 0,
&aes_cbc_test_case_0 /* pointer to next testcase */
};
aes_cbc_test_case_2_ciphertext, /* ciphertext */
0,
NULL,
+ 0,
&aes_cbc_test_case_1 /* pointer to next testcase */
};
aes_cbc_test_case_3_ciphertext, /* ciphertext */
0,
NULL,
+ 0,
&aes_cbc_test_case_2 /* pointer to next testcase */
};
extern cipher_type_t aes_gcm_256_openssl;
/*
- * For now we only support 8 octet tags. The spec allows for
- * optional 12 and 16 byte tags. These longer tag lengths may
- * be implemented in the future.
+ * For now we only support 8 and 16 octet tags. The spec allows for
+ * optional 12 byte tag, which may be supported in the future.
*/
-#define GCM_AUTH_TAG_LEN 8
+#define GCM_AUTH_TAG_LEN 16
+#define GCM_AUTH_TAG_LEN_8 8
/*
* key length includes the 14 byte salt value that is used when
* initializing the KDF.
*/
-err_status_t aes_gcm_openssl_alloc (cipher_t **c, int key_len)
+err_status_t aes_gcm_openssl_alloc (cipher_t **c, int key_len, int tlen)
{
aes_gcm_ctx_t *gcm;
int tmp;
uint8_t *allptr;
debug_print(mod_aes_gcm, "allocating cipher with key length %d", key_len);
+ debug_print(mod_aes_gcm, "allocating cipher with tag length %d", tlen);
/*
* Verify the key_len is valid for one of: AES-128/256
return (err_status_bad_param);
}
+ if (tlen != GCM_AUTH_TAG_LEN &&
+ tlen != GCM_AUTH_TAG_LEN_8) {
+ return (err_status_bad_param);
+ }
+
/* allocate memory a cipher of type aes_gcm */
tmp = sizeof(cipher_t) + sizeof(aes_gcm_ctx_t);
allptr = crypto_alloc(tmp);
(*c)->algorithm = AES_128_GCM;
aes_gcm_128_openssl.ref_count++;
((aes_gcm_ctx_t*)(*c)->state)->key_size = AES_128_KEYSIZE;
- ((aes_gcm_ctx_t*)(*c)->state)->tag_len = GCM_AUTH_TAG_LEN;
+ ((aes_gcm_ctx_t*)(*c)->state)->tag_len = tlen;
break;
case AES_256_GCM_KEYSIZE_WSALT:
(*c)->type = &aes_gcm_256_openssl;
(*c)->algorithm = AES_256_GCM;
aes_gcm_256_openssl.ref_count++;
((aes_gcm_ctx_t*)(*c)->state)->key_size = AES_256_KEYSIZE;
- ((aes_gcm_ctx_t*)(*c)->state)->tag_len = GCM_AUTH_TAG_LEN;
+ ((aes_gcm_ctx_t*)(*c)->state)->tag_len = tlen;
break;
}
0xab, 0xad, 0xda, 0xd2
};
-uint8_t aes_gcm_test_case_0_ciphertext[68] = {
+uint8_t aes_gcm_test_case_0_ciphertext[76] = {
0x42, 0x83, 0x1e, 0xc2, 0x21, 0x77, 0x74, 0x24,
0x4b, 0x72, 0x21, 0xb7, 0x84, 0xd0, 0xd4, 0x9c,
0xe3, 0xaa, 0x21, 0x2f, 0x2c, 0x02, 0xa4, 0xe0,
0x7d, 0x8f, 0x6a, 0x5a, 0xac, 0x84, 0xaa, 0x05,
0x1b, 0xa3, 0x0b, 0x39, 0x6a, 0x0a, 0xac, 0x97,
0x3d, 0x58, 0xe0, 0x91,
- /* the last 8 bytes are the tag */
+ /* the last 16 bytes are the tag */
0x5b, 0xc9, 0x4f, 0xbc, 0x32, 0x21, 0xa5, 0xdb,
+ 0x94, 0xfa, 0xe9, 0x5a, 0xe7, 0x12, 0x1a, 0x47,
};
-cipher_test_case_t aes_gcm_test_case_0 = {
+cipher_test_case_t aes_gcm_test_case_0a = {
AES_128_GCM_KEYSIZE_WSALT, /* octets in key */
aes_gcm_test_case_0_key, /* key */
aes_gcm_test_case_0_iv, /* packet index */
aes_gcm_test_case_0_ciphertext, /* ciphertext + tag */
20, /* octets in AAD */
aes_gcm_test_case_0_aad, /* AAD */
+ GCM_AUTH_TAG_LEN_8,
NULL /* pointer to next testcase */
};
+cipher_test_case_t aes_gcm_test_case_0 = {
+ AES_128_GCM_KEYSIZE_WSALT, /* octets in key */
+ aes_gcm_test_case_0_key, /* key */
+ aes_gcm_test_case_0_iv, /* packet index */
+ 60, /* octets in plaintext */
+ aes_gcm_test_case_0_plaintext, /* plaintext */
+ 76, /* octets in ciphertext */
+ aes_gcm_test_case_0_ciphertext, /* ciphertext + tag */
+ 20, /* octets in AAD */
+ aes_gcm_test_case_0_aad, /* AAD */
+ GCM_AUTH_TAG_LEN,
+ &aes_gcm_test_case_0a /* pointer to next testcase */
+};
+
uint8_t aes_gcm_test_case_1_key[AES_256_GCM_KEYSIZE_WSALT] = {
0xfe, 0xff, 0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c,
0xa5, 0x59, 0x09, 0xc5, 0x54, 0x66, 0x93, 0x1c,
0xab, 0xad, 0xda, 0xd2
};
-uint8_t aes_gcm_test_case_1_ciphertext[68] = {
+uint8_t aes_gcm_test_case_1_ciphertext[76] = {
0x0b, 0x11, 0xcf, 0xaf, 0x68, 0x4d, 0xae, 0x46,
0xc7, 0x90, 0xb8, 0x8e, 0xb7, 0x6a, 0x76, 0x2a,
0x94, 0x82, 0xca, 0xab, 0x3e, 0x39, 0xd7, 0x86,
0x6d, 0xd7, 0xe2, 0x6a, 0x7d, 0x5f, 0xb4, 0x80,
0xef, 0xef, 0xc5, 0x29, 0x12, 0xd1, 0xaa, 0x10,
0x09, 0xc9, 0x86, 0xc1,
- /* the last 8 bytes are the tag */
+ /* the last 16 bytes are the tag */
0x45, 0xbc, 0x03, 0xe6, 0xe1, 0xac, 0x0a, 0x9f,
+ 0x81, 0xcb, 0x8e, 0x5b, 0x46, 0x65, 0x63, 0x1d,
};
-cipher_test_case_t aes_gcm_test_case_1 = {
+cipher_test_case_t aes_gcm_test_case_1a = {
AES_256_GCM_KEYSIZE_WSALT, /* octets in key */
aes_gcm_test_case_1_key, /* key */
aes_gcm_test_case_1_iv, /* packet index */
aes_gcm_test_case_1_ciphertext, /* ciphertext + tag */
20, /* octets in AAD */
aes_gcm_test_case_1_aad, /* AAD */
+ GCM_AUTH_TAG_LEN_8,
NULL /* pointer to next testcase */
};
+cipher_test_case_t aes_gcm_test_case_1 = {
+ AES_256_GCM_KEYSIZE_WSALT, /* octets in key */
+ aes_gcm_test_case_1_key, /* key */
+ aes_gcm_test_case_1_iv, /* packet index */
+ 60, /* octets in plaintext */
+ aes_gcm_test_case_1_plaintext, /* plaintext */
+ 76, /* octets in ciphertext */
+ aes_gcm_test_case_1_ciphertext, /* ciphertext + tag */
+ 20, /* octets in AAD */
+ aes_gcm_test_case_1_aad, /* AAD */
+ GCM_AUTH_TAG_LEN,
+ &aes_gcm_test_case_1a /* pointer to next testcase */
+};
+
/*
* This is the vector function table for this crypto engine.
*/
aes_icm_test_case_0_ciphertext, /* ciphertext */
0,
NULL,
+ 0,
NULL /* pointer to next testcase */
};
aes_icm_test_case_1_ciphertext, /* ciphertext */
0,
NULL,
+ 0,
&aes_icm_test_case_0 /* pointer to next testcase */
};
* The key_len parameter should be one of 30, 38, or 46 for
* AES-128, AES-192, and AES-256 respectively. Note, this key_len
* value is inflated, as it also accounts for the 112 bit salt
- * value.
+ * value. The tlen argument is for the AEAD tag length, which
+ * isn't used in counter mode.
*/
-err_status_t aes_icm_openssl_alloc (cipher_t **c, int key_len, int x)
+err_status_t aes_icm_openssl_alloc (cipher_t **c, int key_len, int tlen)
{
aes_icm_ctx_t *icm;
int tmp;
aes_icm_test_case_0_ciphertext, /* ciphertext */
0,
NULL,
+ 0,
NULL /* pointer to next testcase */
};
aes_icm_192_test_case_1_ciphertext, /* ciphertext */
0,
NULL,
+ 0,
NULL /* pointer to next testcase */
};
aes_icm_256_test_case_2_ciphertext, /* ciphertext */
0,
NULL,
+ 0,
NULL /* pointer to next testcase */
};
*/
while (test_case != NULL) {
/* allocate cipher */
- status = cipher_type_alloc(ct, &c, test_case->key_length_octets);
+ status = cipher_type_alloc(ct, &c, test_case->key_length_octets, test_case->tag_length_octets);
if (status)
return status;
/* allocate cipher, using paramaters from the first test case */
test_case = test_data;
- status = cipher_type_alloc(ct, &c, test_case->key_length_octets);
+ status = cipher_type_alloc(ct, &c, test_case->key_length_octets, test_case->tag_length_octets);
if (status)
return status;
extern debug_module_t mod_cipher;
err_status_t
-null_cipher_alloc(cipher_t **c, int key_len) {
+null_cipher_alloc(cipher_t **c, int key_len, int tlen) {
extern cipher_type_t null_cipher;
uint8_t *pointer;
NULL, /* ciphertext */
0,
NULL,
+ 0,
NULL /* pointer to next testcase */
};
*/
typedef err_status_t (*cipher_alloc_func_t)
- (cipher_pointer_t *cp, int key_len);
+ (cipher_pointer_t *cp, int key_len, int tag_len);
/*
* a cipher_init_func_t [re-]initializes a cipher_t with a given key
uint8_t *ciphertext; /* ciphertext */
int aad_length_octets; /* octets in AAD */
uint8_t *aad; /* AAD */
+ int tag_length_octets; /* Length of AEAD tag */
struct cipher_test_case_t *next_test_case; /* pointer to next testcase */
} cipher_test_case_t;
/* some syntactic sugar on these function types */
-#define cipher_type_alloc(ct, c, klen) ((ct)->alloc((c), (klen)))
+#define cipher_type_alloc(ct, c, klen, tlen) ((ct)->alloc((c), (klen), (tlen)))
#define cipher_dealloc(c) (((c)->type)->dealloc(c))
err_status_t
crypto_kernel_alloc_cipher(cipher_type_id_t id,
cipher_pointer_t *cp,
- int key_len);
+ int key_len,
+ int tag_len);
/*
* crypto_kernel_alloc_auth(id, ap, key_len, tag_len);
err_status_t
crypto_kernel_alloc_cipher(cipher_type_id_t id,
cipher_pointer_t *cp,
- int key_len) {
+ int key_len,
+ int tag_len) {
cipher_type_t *ct;
/*
if (!ct)
return err_status_fail;
- return ((ct)->alloc(cp, key_len));
+ return ((ct)->alloc(cp, key_len, tag_len));
}
}
/* do timing and/or buffer_test on null_cipher */
- status = cipher_type_alloc(&null_cipher, &c, 0);
+ status = cipher_type_alloc(&null_cipher, &c, 0, 0);
check_status(status);
status = cipher_init(c, NULL);
/* run the throughput test on the aes_icm cipher (128-bit key) */
- status = cipher_type_alloc(&aes_icm, &c, 30);
+ status = cipher_type_alloc(&aes_icm, &c, 30, 0);
if (status) {
fprintf(stderr, "error: can't allocate cipher\n");
exit(status);
/* repeat the tests with 256-bit keys */
#ifndef OPENSSL
- status = cipher_type_alloc(&aes_icm, &c, 46);
+ status = cipher_type_alloc(&aes_icm, &c, 46, 0);
#else
- status = cipher_type_alloc(&aes_icm_256, &c, 46);
+ status = cipher_type_alloc(&aes_icm_256, &c, 46, 0);
#endif
if (status) {
fprintf(stderr, "error: can't allocate cipher\n");
#ifdef OPENSSL
/* run the throughput test on the aes_gcm_128_openssl cipher */
- status = cipher_type_alloc(&aes_gcm_128_openssl, &c, AES_128_GCM_KEYSIZE_WSALT);
+ status = cipher_type_alloc(&aes_gcm_128_openssl, &c, AES_128_GCM_KEYSIZE_WSALT, 8);
if (status) {
fprintf(stderr, "error: can't allocate GCM 128 cipher\n");
exit(status);
check_status(status);
/* run the throughput test on the aes_gcm_256_openssl cipher */
- status = cipher_type_alloc(&aes_gcm_256_openssl, &c, AES_256_GCM_KEYSIZE_WSALT);
+ status = cipher_type_alloc(&aes_gcm_256_openssl, &c, AES_256_GCM_KEYSIZE_WSALT, 16);
if (status) {
fprintf(stderr, "error: can't allocate GCM 256 cipher\n");
exit(status);
for (i=0; i < num_ciphers; i++) {
/* allocate cipher */
- status = cipher_type_alloc(ctype, cipher_array, klen);
+ status = cipher_type_alloc(ctype, cipher_array, klen, 16);
if (status)
return status;
/* set buffer to cipher output */
for (i=0; i < 2500; i++)
buffer[i] = 0;
- err_check(cipher_type_alloc(&aes_icm, &c, 30));
+ err_check(cipher_type_alloc(&aes_icm, &c, 30, 0));
err_check(cipher_init(c, key));
err_check(cipher_set_iv(c, &nonce, direction_encrypt));
err_check(cipher_encrypt(c, buffer, &buf_len));
/* set buffer to cipher output */
for (i=0; i < 2500; i++)
buffer[i] = 0;
- err_check(cipher_type_alloc(&aes_icm, &c, 46));
+ err_check(cipher_type_alloc(&aes_icm, &c, 46, 0));
err_check(cipher_init(c, key));
err_check(cipher_set_iv(c, &nonce, direction_encrypt));
err_check(cipher_encrypt(c, buffer, &buf_len));
for (i=0; i < 2500; i++) {
buffer[i] = 0;
}
- err_check(cipher_type_alloc(&aes_gcm_128_openssl, &c, AES_128_GCM_KEYSIZE_WSALT));
+ err_check(cipher_type_alloc(&aes_gcm_128_openssl, &c, AES_128_GCM_KEYSIZE_WSALT, 8));
err_check(cipher_init(c, key));
err_check(cipher_set_iv(c, &nonce, direction_encrypt));
err_check(cipher_encrypt(c, buffer, &buf_len));
for (i=0; i < 2500; i++) {
buffer[i] = 0;
}
- err_check(cipher_type_alloc(&aes_gcm_256_openssl, &c, AES_256_GCM_KEYSIZE_WSALT));
+ err_check(cipher_type_alloc(&aes_gcm_256_openssl, &c, AES_256_GCM_KEYSIZE_WSALT, 16));
err_check(cipher_init(c, key));
err_check(cipher_set_iv(c, &nonce, direction_encrypt));
err_check(cipher_encrypt(c, buffer, &buf_len));
void
crypto_policy_set_aes_gcm_256_8_only_auth(crypto_policy_t *p);
+/**
+ * @brief crypto_policy_set_aes_gcm_128_16_auth() sets a crypto
+ * policy structure to an AEAD encryption policy.
+ *
+ * @param p is a pointer to the policy structure to be set
+ *
+ * The function call crypto_policy_set_aes_gcm_128_16_auth(&p) sets
+ * the crypto_policy_t at location p to use the SRTP default cipher
+ * (AES-128 Galois Counter Mode) with 16 octet auth tag. This
+ * policy applies confidentiality and authentication to both the
+ * RTP and RTCP packets.
+ *
+ * This function is a convenience that helps to avoid dealing directly
+ * with the policy data structure. You are encouraged to initialize
+ * policy elements with this function call. Doing so may allow your
+ * code to be forward compatible with later versions of libSRTP that
+ * include more elements in the crypto_policy_t datatype.
+ *
+ * @return void.
+ *
+ */
+void
+crypto_policy_set_aes_gcm_128_16_auth(crypto_policy_t *p);
+
+/**
+ * @brief crypto_policy_set_aes_gcm_256_16_auth() sets a crypto
+ * policy structure to an AEAD encryption policy
+ *
+ * @param p is a pointer to the policy structure to be set
+ *
+ * The function call crypto_policy_set_aes_gcm_256_16_auth(&p) sets
+ * the crypto_policy_t at location p to use the SRTP default cipher
+ * (AES-256 Galois Counter Mode) with 16 octet auth tag. This
+ * policy applies confidentiality and authentication to both the
+ * RTP and RTCP packets.
+ *
+ * This function is a convenience that helps to avoid dealing directly
+ * with the policy data structure. You are encouraged to initialize
+ * policy elements with this function call. Doing so may allow your
+ * code to be forward compatible with later versions of libSRTP that
+ * include more elements in the crypto_policy_t datatype.
+ *
+ * @return void.
+ *
+ */
+void
+crypto_policy_set_aes_gcm_256_16_auth(crypto_policy_t *p);
+
/**
* @brief srtp_dealloc() deallocates storage for an SRTP session
/* allocate cipher */
stat = crypto_kernel_alloc_cipher(p->rtp.cipher_type,
&str->rtp_cipher,
- p->rtp.cipher_key_len);
+ p->rtp.cipher_key_len,
+ p->rtp.auth_tag_len);
if (stat) {
crypto_free(str);
return stat;
*/
stat = crypto_kernel_alloc_cipher(p->rtcp.cipher_type,
&str->rtcp_cipher,
- p->rtcp.cipher_key_len);
+ p->rtcp.cipher_key_len,
+ p->rtcp.auth_tag_len);
if (stat) {
auth_dealloc(str->rtp_auth);
cipher_dealloc(str->rtp_cipher);
srtp_kdf_init(srtp_kdf_t *kdf, cipher_type_id_t cipher_id, const uint8_t *key, int length) {
err_status_t stat;
- stat = crypto_kernel_alloc_cipher(cipher_id, &kdf->cipher, length);
+ stat = crypto_kernel_alloc_cipher(cipher_id, &kdf->cipher, length, 0);
if (stat)
return stat;
enc_octet_len = (unsigned int) *pkt_octet_len -
((enc_start - (uint32_t *)hdr) << 2);
+ /*
+ * Sanity check the encrypted payload length against
+ * the tag size. It must always be at least as large
+ * as the tag length.
+ */
+ if (enc_octet_len < tag_len) {
+ return err_status_cipher_fail;
+ }
+
/*
* update the key usage limit, and check it to make sure that we
* didn't just hit either the soft limit or the hard limit, and call
p->auth_tag_len = 8; /* 8 octet tag length */
p->sec_serv = sec_serv_auth; /* This only applies to RTCP */
}
+
+/*
+ * AES-128 GCM mode with 16 octet auth tag.
+ */
+void
+crypto_policy_set_aes_gcm_128_16_auth(crypto_policy_t *p) {
+ p->cipher_type = AES_128_GCM;
+ p->cipher_key_len = AES_128_GCM_KEYSIZE_WSALT;
+ p->auth_type = NULL_AUTH; /* GCM handles the auth for us */
+ p->auth_key_len = 0;
+ p->auth_tag_len = 16; /* 16 octet tag length */
+ p->sec_serv = sec_serv_conf_and_auth;
+}
+
+/*
+ * AES-256 GCM mode with 16 octet auth tag.
+ */
+void
+crypto_policy_set_aes_gcm_256_16_auth(crypto_policy_t *p) {
+ p->cipher_type = AES_256_GCM;
+ p->cipher_key_len = AES_256_GCM_KEYSIZE_WSALT;
+ p->auth_type = NULL_AUTH; /* GCM handles the auth for us */
+ p->auth_key_len = 0;
+ p->auth_tag_len = 16; /* 16 octet tag length */
+ p->sec_serv = sec_serv_conf_and_auth;
+}
+
#endif
/*
unsigned char ttl = 5;
int c;
int key_size = 128;
+ int tag_size = 8;
int gcm_on = 0;
char *input_key = NULL;
char *address = NULL;
/* check args */
while (1) {
- c = getopt_s(argc, argv, "k:rsgae:ld:");
+ c = getopt_s(argc, argv, "k:rsgt:ae:ld:");
if (c == -1) {
break;
}
}
sec_servs |= sec_serv_conf;
break;
+ case 't':
+ tag_size = atoi(optarg_s);
+ if (tag_size != 8 && tag_size != 16) {
+ printf("error: GCM tag size must be 8 or 16 (%d)\n", tag_size);
+ exit(1);
+ }
+ break;
case 'a':
sec_servs |= sec_serv_auth;
break;
policy.rtp.sec_serv = sec_servs;
policy.rtcp.sec_serv = sec_serv_none; /* we don't do RTCP anyway */
+ if (gcm_on && tag_size != 8) {
+ policy.rtp.auth_tag_len = tag_size;
+ }
+
/*
* read key from hexadecimal on command line into an octet string
*/
"where -a use message authentication\n"
" -e <key size> use encryption (use 128 or 256 for key size)\n"
" -g Use AES-GCM mode (must be used with -e)\n"
+ " -t <tag size> Tag size to use in GCM mode (use 8 or 16)\n"
" -k <key> sets the srtp master key\n"
" -s act as rtp sender\n"
" -r act as rtp receiver\n"
kill $receiver_pid
kill $sender_pid
+GCMARGS128="-k 01234567890123456789012345678901234567890123456789012345 -g -t 16 -e 128"
+echo $0 ": starting GCM mode 128-bit (16 byte tag) rtpw receiver process... "
+
+exec $RTPW $* $GCMARGS128 -r 127.0.0.1 $DEST_PORT &
+
+receiver_pid=$!
+
+echo $0 ": receiver PID = $receiver_pid"
+
+sleep 1
+
+# verify that the background job is running
+ps | grep -q $receiver_pid
+retval=$?
+echo $retval
+if [ $retval != 0 ]; then
+ echo $0 ": error"
+ exit 254
+fi
+
+echo $0 ": starting GCM 128-bit (16 byte tag) rtpw sender process..."
+
+exec $RTPW $* $GCMARGS128 -s 127.0.0.1 $DEST_PORT &
+
+sender_pid=$!
+
+echo $0 ": sender PID = $sender_pid"
+
+# verify that the background job is running
+ps | grep -q $sender_pid
+retval=$?
+echo $retval
+if [ $retval != 0 ]; then
+ echo $0 ": error"
+ exit 255
+fi
+
+sleep $DURATION
+
+kill $receiver_pid
+kill $sender_pid
+
GCMARGS256="-k 0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567 -g -e 256"
kill $sender_pid
+GCMARGS256="-k a123456789012345678901234567890123456789012345678901234567890123456789012345678901234567 -g -t 16 -e 256"
+echo $0 ": starting GCM mode 256-bit (16 byte tag) rtpw receiver process... "
+
+exec $RTPW $* $GCMARGS256 -r 127.0.0.1 $DEST_PORT &
+
+receiver_pid=$!
+
+echo $0 ": receiver PID = $receiver_pid"
+
+sleep 1
+
+# verify that the background job is running
+ps | grep -q $receiver_pid
+retval=$?
+echo $retval
+if [ $retval != 0 ]; then
+ echo $0 ": error"
+ exit 254
+fi
+
+echo $0 ": starting GCM 256-bit (16 byte tag) rtpw sender process..."
+
+exec $RTPW $* $GCMARGS256 -s 127.0.0.1 $DEST_PORT &
+
+sender_pid=$!
+
+echo $0 ": sender PID = $sender_pid"
+
+# verify that the background job is running
+ps | grep -q $sender_pid
+retval=$?
+echo $retval
+if [ $retval != 0 ]; then
+ echo $0 ": error"
+ exit 255
+fi
+
+sleep $DURATION
+
+kill $receiver_pid
+kill $sender_pid
+
+
echo $0 ": done (test passed)"
else