--- /dev/null
+/*
+ * Hardware-accelerated CRC-32 variants for Linux on z Systems
+ *
+ * Use the z/Architecture Vector Extension Facility to accelerate the
+ * computing of bitreflected CRC-32 checksums.
+ *
+ * This CRC-32 implementation algorithm is bitreflected and processes
+ * the least-significant bit first (Little-Endian).
+ *
+ * This code was originally written by Hendrik Brueckner
+ * <brueckner@linux.vnet.ibm.com> for use in the Linux kernel and has been
+ * relicensed under the zlib license.
+ */
+
+#include "../../zutil.h"
+#include "../../crc32_p.h"
+
+#include <vecintrin.h>
+
+typedef unsigned char uv16qi __attribute__((vector_size(16)));
+typedef unsigned int uv4si __attribute__((vector_size(16)));
+typedef unsigned long long uv2di __attribute__((vector_size(16)));
+
+static uint32_t crc32_le_vgfm_16(uint32_t crc, const unsigned char *buf, size_t len) {
+ /*
+ * The CRC-32 constant block contains reduction constants to fold and
+ * process particular chunks of the input data stream in parallel.
+ *
+ * For the CRC-32 variants, the constants are precomputed according to
+ * these definitions:
+ *
+ * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
+ * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
+ * R3 = [(x128+32 mod P'(x) << 32)]' << 1
+ * R4 = [(x128-32 mod P'(x) << 32)]' << 1
+ * R5 = [(x64 mod P'(x) << 32)]' << 1
+ * R6 = [(x32 mod P'(x) << 32)]' << 1
+ *
+ * The bitreflected Barret reduction constant, u', is defined as
+ * the bit reversal of floor(x**64 / P(x)).
+ *
+ * where P(x) is the polynomial in the normal domain and the P'(x) is the
+ * polynomial in the reversed (bitreflected) domain.
+ *
+ * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
+ *
+ * P(x) = 0x04C11DB7
+ * P'(x) = 0xEDB88320
+ */
+ const uv16qi perm_le2be = {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}; /* BE->LE mask */
+ const uv2di r2r1 = {0x1C6E41596, 0x154442BD4}; /* R2, R1 */
+ const uv2di r4r3 = {0x0CCAA009E, 0x1751997D0}; /* R4, R3 */
+ const uv2di r5 = {0, 0x163CD6124}; /* R5 */
+ const uv2di ru_poly = {0, 0x1F7011641}; /* u' */
+ const uv2di crc_poly = {0, 0x1DB710641}; /* P'(x) << 1 */
+
+ /*
+ * Load the initial CRC value.
+ *
+ * The CRC value is loaded into the rightmost word of the
+ * vector register and is later XORed with the LSB portion
+ * of the loaded input data.
+ */
+ uv2di v0 = {0, 0};
+ v0 = (uv2di)vec_insert(crc, (uv4si)v0, 3);
+
+ /* Load a 64-byte data chunk and XOR with CRC */
+ uv2di v1 = vec_perm(((uv2di *)buf)[0], ((uv2di *)buf)[0], perm_le2be);
+ uv2di v2 = vec_perm(((uv2di *)buf)[1], ((uv2di *)buf)[1], perm_le2be);
+ uv2di v3 = vec_perm(((uv2di *)buf)[2], ((uv2di *)buf)[2], perm_le2be);
+ uv2di v4 = vec_perm(((uv2di *)buf)[3], ((uv2di *)buf)[3], perm_le2be);
+
+ v1 ^= v0;
+ buf += 64;
+ len -= 64;
+
+ while (len >= 64) {
+ /* Load the next 64-byte data chunk */
+ uv16qi part1 = vec_perm(((uv16qi *)buf)[0], ((uv16qi *)buf)[0], perm_le2be);
+ uv16qi part2 = vec_perm(((uv16qi *)buf)[1], ((uv16qi *)buf)[1], perm_le2be);
+ uv16qi part3 = vec_perm(((uv16qi *)buf)[2], ((uv16qi *)buf)[2], perm_le2be);
+ uv16qi part4 = vec_perm(((uv16qi *)buf)[3], ((uv16qi *)buf)[3], perm_le2be);
+
+ /*
+ * Perform a GF(2) multiplication of the doublewords in V1 with
+ * the R1 and R2 reduction constants in V0. The intermediate result
+ * is then folded (accumulated) with the next data chunk in PART1 and
+ * stored in V1. Repeat this step for the register contents
+ * in V2, V3, and V4 respectively.
+ */
+ v1 = (uv2di)vec_gfmsum_accum_128(r2r1, v1, part1);
+ v2 = (uv2di)vec_gfmsum_accum_128(r2r1, v2, part2);
+ v3 = (uv2di)vec_gfmsum_accum_128(r2r1, v3, part3);
+ v4 = (uv2di)vec_gfmsum_accum_128(r2r1, v4, part4);
+
+ buf += 64;
+ len -= 64;
+ }
+
+ /*
+ * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3
+ * and R4 and accumulating the next 128-bit chunk until a single 128-bit
+ * value remains.
+ */
+ v1 = (uv2di)vec_gfmsum_accum_128(r4r3, v1, (uv16qi)v2);
+ v1 = (uv2di)vec_gfmsum_accum_128(r4r3, v1, (uv16qi)v3);
+ v1 = (uv2di)vec_gfmsum_accum_128(r4r3, v1, (uv16qi)v4);
+
+ while (len >= 16) {
+ /* Load next data chunk */
+ v2 = vec_perm(*(uv2di *)buf, *(uv2di *)buf, perm_le2be);
+
+ /* Fold next data chunk */
+ v1 = (uv2di)vec_gfmsum_accum_128(r4r3, v1, (uv16qi)v2);
+
+ buf += 16;
+ len -= 16;
+ }
+
+ /*
+ * Set up a vector register for byte shifts. The shift value must
+ * be loaded in bits 1-4 in byte element 7 of a vector register.
+ * Shift by 8 bytes: 0x40
+ * Shift by 4 bytes: 0x20
+ */
+ uv16qi v9 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
+ v9 = vec_insert((unsigned char)0x40, v9, 7);
+
+ /*
+ * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
+ * to move R4 into the rightmost doubleword and set the leftmost
+ * doubleword to 0x1.
+ */
+ v0 = vec_srb(r4r3, (uv2di)v9);
+ v0[0] = 1;
+
+ /*
+ * Compute GF(2) product of V1 and V0. The rightmost doubleword
+ * of V1 is multiplied with R4. The leftmost doubleword of V1 is
+ * multiplied by 0x1 and is then XORed with rightmost product.
+ * Implicitly, the intermediate leftmost product becomes padded
+ */
+ v1 = (uv2di)vec_gfmsum_128(v0, v1);
+
+ /*
+ * Now do the final 32-bit fold by multiplying the rightmost word
+ * in V1 with R5 and XOR the result with the remaining bits in V1.
+ *
+ * To achieve this by a single VGFMAG, right shift V1 by a word
+ * and store the result in V2 which is then accumulated. Use the
+ * vector unpack instruction to load the rightmost half of the
+ * doubleword into the rightmost doubleword element of V1; the other
+ * half is loaded in the leftmost doubleword.
+ * The vector register with CONST_R5 contains the R5 constant in the
+ * rightmost doubleword and the leftmost doubleword is zero to ignore
+ * the leftmost product of V1.
+ */
+ v9 = vec_insert((unsigned char)0x20, v9, 7);
+ v2 = vec_srb(v1, (uv2di)v9);
+ v1 = vec_unpackl((uv4si)v1); /* Split rightmost doubleword */
+ v1 = (uv2di)vec_gfmsum_accum_128(r5, v1, (uv16qi)v2);
+
+ /*
+ * Apply a Barret reduction to compute the final 32-bit CRC value.
+ *
+ * The input values to the Barret reduction are the degree-63 polynomial
+ * in V1 (R(x)), degree-32 generator polynomial, and the reduction
+ * constant u. The Barret reduction result is the CRC value of R(x) mod
+ * P(x).
+ *
+ * The Barret reduction algorithm is defined as:
+ *
+ * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
+ * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
+ * 3. C(x) = R(x) XOR T2(x) mod x^32
+ *
+ * Note: The leftmost doubleword of vector register containing
+ * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
+ * is zero and does not contribute to the final result.
+ */
+
+ /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
+ v2 = vec_unpackl((uv4si)v1);
+ v2 = (uv2di)vec_gfmsum_128(ru_poly, v2);
+
+ /*
+ * Compute the GF(2) product of the CRC polynomial with T1(x) in
+ * V2 and XOR the intermediate result, T2(x), with the value in V1.
+ * The final result is stored in word element 2 of V2.
+ */
+ v2 = vec_unpackl((uv4si)v2);
+ v2 = (uv2di)vec_gfmsum_accum_128(crc_poly, v2, (uv16qi)v1);
+
+ return ((uv4si)v2)[2];
+}
+
+#define VX_MIN_LEN 64
+#define VX_ALIGNMENT 16L
+#define VX_ALIGN_MASK (VX_ALIGNMENT - 1)
+
+uint32_t Z_INTERNAL s390_crc32_vx(uint32_t crc, const unsigned char *buf, uint64_t len) {
+ uint64_t prealign, aligned, remaining;
+
+ if (len < VX_MIN_LEN + VX_ALIGN_MASK)
+ return crc32_big(crc, buf, len);
+
+ if ((uintptr_t)buf & VX_ALIGN_MASK) {
+ prealign = VX_ALIGNMENT - ((uintptr_t)buf & VX_ALIGN_MASK);
+ len -= prealign;
+ crc = crc32_big(crc, buf, prealign);
+ buf += prealign;
+ }
+ aligned = len & ~VX_ALIGN_MASK;
+ remaining = len & VX_ALIGN_MASK;
+
+ crc = crc32_le_vgfm_16(crc ^ 0xffffffff, buf, (size_t)aligned) ^ 0xffffffff;
+
+ if (remaining)
+ crc = crc32_big(crc, buf + aligned, remaining);
+
+ return crc;
+}
buildneon=1
builddfltccdeflate=0
builddfltccinflate=0
+buildcrc32vx=1
with_sanitizer=""
with_fuzzers=0
floatabi=
acleflag=
neonflag=
noltoflag="-fno-lto"
+vgfmaflag="-march=z13"
without_optimizations=0
without_new_strategies=0
reducedmem=0
echo ' [--without-neon] Compiles without ARM Neon SIMD instruction set' | tee -a configure.log
echo ' [--with-dfltcc-deflate] Use DEFLATE CONVERSION CALL instruction for compression on IBM Z' | tee -a configure.log
echo ' [--with-dfltcc-inflate] Use DEFLATE CONVERSION CALL instruction for decompression on IBM Z' | tee -a configure.log
+ echo ' [--without-crc32-vx] Build without vectorized CRC32 on IBM Z' | tee -a configure.log
echo ' [--with-reduced-mem] Reduced memory usage for special cases (reduces performance)' | tee -a configure.log
echo ' [--force-sse2] Assume SSE2 instructions are always available (disabled by default on x86, enabled on x86_64)' | tee -a configure.log
echo ' [--with-sanitizer] Build with sanitizer (memory, address, undefined)' | tee -a configure.log
--without-neon) buildneon=0; shift ;;
--with-dfltcc-deflate) builddfltccdeflate=1; shift ;;
--with-dfltcc-inflate) builddfltccinflate=1; shift ;;
+ --without-crc32-vx) buildcrc32vx=0; shift ;;
--with-reduced-mem) reducedmem=1; shift ;;
--force-sse2) forcesse2=1; shift ;;
-n | --native) native=1; shift ;;
fi
}
+check_vgfma_intrinsics() {
+ # Check whether "VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE" intrinsic is available
+ echo -n "Checking for -mzarch... " | tee -a configure.log
+ if try $CC -x c -c /dev/null -o /dev/null -mzarch; then
+ echo Yes. | tee -a configure.log
+ vgfmaflag="${vgfmaflag} -mzarch"
+ else
+ echo No. | tee -a configure.log
+ fi
+ echo -n "Checking for -fzvector... " | tee -a configure.log
+ if try $CC -x c -c /dev/null -o /dev/null -fzvector; then
+ echo Yes. | tee -a configure.log
+ vgfmaflag="${vgfmaflag} -fzvector"
+ else
+ echo No. | tee -a configure.log
+ fi
+ cat > $test.c << EOF
+#include <vecintrin.h>
+int main(void) {
+ unsigned long long a __attribute__((vector_size(16))) = { 0 };
+ unsigned long long b __attribute__((vector_size(16))) = { 0 };
+ unsigned char c __attribute__((vector_size(16))) = { 0 };
+ c = vec_gfmsum_accum_128(a, b, c);
+ return c[0];
+}
+EOF
+ echo -n "Checking for VGFMA support... " | tee -a configure.log
+ if try $CC -c $CFLAGS $vgfmaflag $test.c; then
+ HAVE_VGFMA_INTRIN=1
+ echo "Yes." | tee -a configure.log
+ else
+ HAVE_VGFMA_INTRIN=0
+ echo "No." | tee -a configure.log
+ fi
+}
+
case "${ARCH}" in
i386 | i486 | i586 | i686 | x86_64)
# Enable deflate_medium at level 1
ARCHDIR=arch/s390
if test $without_optimizations -eq 0; then
+ if test $buildcrc32vx -eq 1; then
+ CFLAGS="${CFLAGS} -DS390_FEATURES"
+ SFLAGS="${SFLAGS} -DS390_FEATURES"
+ ARCH_STATIC_OBJS="${ARCH_STATIC_OBJS} s390.o"
+ ARCH_SHARED_OBJS="${ARCH_SHARED_OBJS} s390.lo"
+ fi
+
if test $builddfltccdeflate -eq 1 -o $builddfltccinflate -eq 1; then
ARCH_STATIC_OBJS="${ARCH_STATIC_OBJS} dfltcc_common.o"
ARCH_SHARED_OBJS="${ARCH_SHARED_OBJS} dfltcc_common.lo"
ARCH_SHARED_OBJS="${ARCH_SHARED_OBJS} dfltcc_inflate.lo"
ARCH="${ARCH}+dfltcc-inflate"
fi
+
+ if test $buildcrc32vx -eq 1; then
+ check_vgfma_intrinsics
+ if test $HAVE_VGFMA_INTRIN -eq 1; then
+ CFLAGS="${CFLAGS} -DS390_CRC32_VX"
+ SFLAGS="${SFLAGS} -DS390_CRC32_VX"
+ ARCH_STATIC_OBJS="${ARCH_STATIC_OBJS} crc32-vx.o"
+ ARCH_SHARED_OBJS="${ARCH_SHARED_OBJS} crc32-vx.lo"
+ ARCH="${ARCH}+crc32-vx"
+ fi
+ fi
fi
;;
*)
/^ACLEFLAG *=/s#=.*#=$acleflag#
/^NEONFLAG *=/s#=.*#=$neonflag#
/^NOLTOFLAG *=/s#=.*#=$noltoflag#
+/^VGFMAFLAG *=/s#=.*#=$vgfmaflag#
" > $ARCHDIR/Makefile
# Append header files dependences.