/* repeat a zero length 11-138 times (7 bits of repeat count) */
local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
- = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
+ = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
local const int extra_dbits[D_CODES] /* extra bits for each distance code */
- = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
+ = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
-local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
- = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
+local const int extra_blbits[BL_CODES] /* extra bits for each bit length code */
+ = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
local const unsigned char bl_order[BL_CODES]
- = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
+ = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
/* The lengths of the bit length codes are sent in order of decreasing
* probability, to avoid transmitting the lengths for unused bit length codes.
*/
local void copy_block (deflate_state *s, char *buf, uint16_t len, int header);
#ifdef GEN_TREES_H
-local void gen_trees_header (void);
+local void gen_trees_header(void);
#endif
/* ===========================================================================
* Initialize the various 'constant' tables.
*/
-local void tr_static_init(void)
-{
+local void tr_static_init(void) {
#if defined(GEN_TREES_H)
static int static_init_done = 0;
int n; /* iterates over tree elements */
uint16_t bl_count[MAX_BITS+1];
/* number of codes at each bit length for an optimal tree */
- if (static_init_done) return;
+ if (static_init_done)
+ return;
/* For some embedded targets, global variables are not initialized: */
#ifdef NO_INIT_GLOBAL_POINTERS
length = 0;
for (code = 0; code < LENGTH_CODES-1; code++) {
base_length[code] = length;
- for (n = 0; n < (1<<extra_lbits[code]); n++) {
+ for (n = 0; n < (1 << extra_lbits[code]); n++) {
_length_code[length++] = (unsigned char)code;
}
}
- Assert (length == 256, "tr_static_init: length != 256");
+ Assert(length == 256, "tr_static_init: length != 256");
/* Note that the length 255 (match length 258) can be represented
* in two different ways: code 284 + 5 bits or code 285, so we
* overwrite length_code[255] to use the best encoding:
dist = 0;
for (code = 0 ; code < 16; code++) {
base_dist[code] = dist;
- for (n = 0; n < (1<<extra_dbits[code]); n++) {
+ for (n = 0; n < (1 << extra_dbits[code]); n++) {
_dist_code[dist++] = (unsigned char)code;
}
}
- Assert (dist == 256, "tr_static_init: dist != 256");
+ Assert(dist == 256, "tr_static_init: dist != 256");
dist >>= 7; /* from now on, all distances are divided by 128 */
for ( ; code < D_CODES; code++) {
base_dist[code] = dist << 7;
- for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
+ for (n = 0; n < (1 << (extra_dbits[code]-7)); n++) {
_dist_code[256 + dist++] = (unsigned char)code;
}
}
- Assert (dist == 256, "tr_static_init: 256+dist != 512");
+ Assert(dist == 256, "tr_static_init: 256+dist != 512");
/* Construct the codes of the static literal tree */
- for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
+ for (bits = 0; bits <= MAX_BITS; bits++)
+ bl_count[bits] = 0;
n = 0;
while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
((i) == (last)? "\n};\n\n" : \
((i) % (width) == (width)-1 ? ",\n" : ", "))
-void gen_trees_header()
-{
+void gen_trees_header() {
FILE *header = fopen("trees.h", "w");
int i;
- Assert (header != NULL, "Can't open trees.h");
- fprintf(header,
- "/* header created automatically with -DGEN_TREES_H */\n\n");
+ Assert(header != NULL, "Can't open trees.h");
+ fprintf(header, "/* header created automatically with -DGEN_TREES_H */\n\n");
fprintf(header, "ZLIB_INTERNAL const ct_data static_ltree[L_CODES+2] = {\n");
for (i = 0; i < L_CODES+2; i++) {
- fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
- static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
+ fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
}
fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
for (i = 0; i < D_CODES; i++) {
- fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
- static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
+ fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
}
fprintf(header, "const unsigned char ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
for (i = 0; i < DIST_CODE_LEN; i++) {
- fprintf(header, "%2u%s", _dist_code[i],
- SEPARATOR(i, DIST_CODE_LEN-1, 20));
+ fprintf(header, "%2u%s", _dist_code[i], SEPARATOR(i, DIST_CODE_LEN-1, 20));
}
- fprintf(header,
- "const unsigned char ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
+ fprintf(header, "const unsigned char ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
- fprintf(header, "%2u%s", _length_code[i],
- SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
+ fprintf(header, "%2u%s", _length_code[i], SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
}
fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
for (i = 0; i < LENGTH_CODES; i++) {
- fprintf(header, "%1u%s", base_length[i],
- SEPARATOR(i, LENGTH_CODES-1, 20));
+ fprintf(header, "%1u%s", base_length[i], SEPARATOR(i, LENGTH_CODES-1, 20));
}
fprintf(header, "local const int base_dist[D_CODES] = {\n");
for (i = 0; i < D_CODES; i++) {
- fprintf(header, "%5u%s", base_dist[i],
- SEPARATOR(i, D_CODES-1, 10));
+ fprintf(header, "%5u%s", base_dist[i], SEPARATOR(i, D_CODES-1, 10));
}
fclose(header);
/* ===========================================================================
* Initialize the tree data structures for a new zlib stream.
*/
-void ZLIB_INTERNAL _tr_init(deflate_state *s)
-{
+void ZLIB_INTERNAL _tr_init(deflate_state *s) {
tr_static_init();
s->l_desc.dyn_tree = s->dyn_ltree;
/* ===========================================================================
* Initialize a new block.
*/
-local void init_block(deflate_state *s)
-{
+local void init_block(deflate_state *s) {
int n; /* iterates over tree elements */
/* Initialize the trees. */
- for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
- for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
- for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
+ for (n = 0; n < L_CODES; n++)
+ s->dyn_ltree[n].Freq = 0;
+ for (n = 0; n < D_CODES; n++)
+ s->dyn_dtree[n].Freq = 0;
+ for (n = 0; n < BL_CODES; n++)
+ s->bl_tree[n].Freq = 0;
s->dyn_ltree[END_BLOCK].Freq = 1;
s->opt_len = s->static_len = 0L;
* the subtrees have equal frequency. This minimizes the worst case length.
*/
#define smaller(tree, n, m, depth) \
- (tree[n].Freq < tree[m].Freq || \
- (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
+ (tree[n].Freq < tree[m].Freq ||
+ (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
/* ===========================================================================
* Restore the heap property by moving down the tree starting at node k,
* when the heap property is re-established (each father smaller than its
* two sons).
*/
-local void pqdownheap(deflate_state *s, ct_data *tree, int k)
-{
+local void pqdownheap(deflate_state *s, ct_data *tree, int k) {
/* tree: the tree to restore */
/* k: node to move down */
int v = s->heap[k];
int j = k << 1; /* left son of k */
while (j <= s->heap_len) {
/* Set j to the smallest of the two sons: */
- if (j < s->heap_len &&
- smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
+ if (j < s->heap_len && smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
j++;
}
/* Exit if v is smaller than both sons */
- if (smaller(tree, v, s->heap[j], s->depth)) break;
+ if (smaller(tree, v, s->heap[j], s->depth))
+ break;
/* Exchange v with the smallest son */
- s->heap[k] = s->heap[j]; k = j;
+ s->heap[k] = s->heap[j];
+ k = j;
/* And continue down the tree, setting j to the left son of k */
j <<= 1;
* The length opt_len is updated; static_len is also updated if stree is
* not null.
*/
-local void gen_bitlen(deflate_state *s, tree_desc *desc)
-{
+local void gen_bitlen(deflate_state *s, tree_desc *desc) {
/* desc: the tree descriptor */
ct_data *tree = desc->dyn_tree;
int max_code = desc->max_code;
uint16_t f; /* frequency */
int overflow = 0; /* number of elements with bit length too large */
- for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
+ for (bits = 0; bits <= MAX_BITS; bits++)
+ s->bl_count[bits] = 0;
/* In a first pass, compute the optimal bit lengths (which may
* overflow in the case of the bit length tree).
for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
n = s->heap[h];
bits = tree[tree[n].Dad].Len + 1;
- if (bits > max_length) bits = max_length, overflow++;
+ if (bits > max_length)
+ bits = max_length, overflow++;
tree[n].Len = (uint16_t)bits;
/* We overwrite tree[n].Dad which is no longer needed */
- if (n > max_code) continue; /* not a leaf node */
+ if (n > max_code) /* not a leaf node */
+ continue;
s->bl_count[bits]++;
xbits = 0;
- if (n >= base) xbits = extra[n-base];
+ if (n >= base)
+ xbits = extra[n-base];
f = tree[n].Freq;
s->opt_len += (size_t)f * (bits + xbits);
- if (stree) s->static_len += (size_t)f * (stree[n].Len + xbits);
+ if (stree)
+ s->static_len += (size_t)f * (stree[n].Len + xbits);
}
- if (overflow == 0) return;
+ if (overflow == 0)
+ return;
- Trace((stderr,"\nbit length overflow\n"));
+ Trace((stderr, "\nbit length overflow\n"));
/* This happens for example on obj2 and pic of the Calgary corpus */
/* Find the first bit length which could increase: */
do {
bits = max_length-1;
- while (s->bl_count[bits] == 0) bits--;
+ while (s->bl_count[bits] == 0)
+ bits--;
s->bl_count[bits]--; /* move one leaf down the tree */
s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
s->bl_count[max_length]--;
n = s->bl_count[bits];
while (n != 0) {
m = s->heap[--h];
- if (m > max_code) continue;
+ if (m > max_code)
+ continue;
if ((unsigned) tree[m].Len != (unsigned) bits) {
- Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
- s->opt_len += ((long)bits - (long)tree[m].Len)
- *(long)tree[m].Freq;
+ Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
+ s->opt_len += ((long)bits - (long)tree[m].Len) *(long)tree[m].Freq;
tree[m].Len = (uint16_t)bits;
}
n--;
* OUT assertion: the field code is set for all tree elements of non
* zero code length.
*/
-local void gen_codes (ct_data *tree, int max_code, uint16_t *bl_count)
-{
+local void gen_codes(ct_data *tree, int max_code, uint16_t *bl_count) {
/* tree: the tree to decorate */
/* max_code: largest code with non zero frequency */
/* bl_count: number of codes at each bit length */
/* Check that the bit counts in bl_count are consistent. The last code
* must be all ones.
*/
- Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
- "inconsistent bit counts");
- Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
+ Assert(code + bl_count[MAX_BITS]-1 == (1 << MAX_BITS)-1, "inconsistent bit counts");
+ Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
for (n = 0; n <= max_code; n++) {
int len = tree[n].Len;
- if (len == 0) continue;
+ if (len == 0)
+ continue;
/* Now reverse the bits */
tree[n].Code = bi_reverse(next_code[len]++, len);
- Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
+ Tracecv(tree != static_ltree, (stderr, "\nn %3d %c l %2d c %4x (%x) ",
n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
}
}
* and corresponding code. The length opt_len is updated; static_len is
* also updated if stree is not null. The field max_code is set.
*/
-local void build_tree(deflate_state *s, tree_desc *desc)
-{
+local void build_tree(deflate_state *s, tree_desc *desc) {
/* desc: the tree descriptor */
ct_data *tree = desc->dyn_tree;
const ct_data *stree = desc->stat_desc->static_tree;
node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
tree[node].Freq = 1;
s->depth[node] = 0;
- s->opt_len--; if (stree) s->static_len -= stree[node].Len;
+ s->opt_len--;
+ if (stree)
+ s->static_len -= stree[node].Len;
/* node is 0 or 1 so it does not have extra bits */
}
desc->max_code = max_code;
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
* establish sub-heaps of increasing lengths:
*/
- for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
+ for (n = s->heap_len/2; n >= 1; n--)
+ pqdownheap(s, tree, n);
/* Construct the Huffman tree by repeatedly combining the least two
* frequent nodes.
tree[n].Dad = tree[m].Dad = (uint16_t)node;
#ifdef DUMP_BL_TREE
if (tree == s->bl_tree) {
- fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
+ fprintf(stderr, "\nnode %d(%d), sons %d(%d) %d(%d)",
node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
}
#endif
/* and insert the new node in the heap */
s->heap[SMALLEST] = node++;
pqdownheap(s, tree, SMALLEST);
-
} while (s->heap_len >= 2);
s->heap[--(s->heap_max)] = s->heap[SMALLEST];
gen_bitlen(s, (tree_desc *)desc);
/* The field len is now set, we can generate the bit codes */
- gen_codes ((ct_data *)tree, max_code, s->bl_count);
+ gen_codes((ct_data *)tree, max_code, s->bl_count);
}
/* ===========================================================================
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree.
*/
-local void scan_tree (deflate_state *s, ct_data *tree, int max_code)
-{
+local void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
/* tree: the tree to be scanned */
/* max_code: and its largest code of non zero frequency */
int n; /* iterates over all tree elements */
int max_count = 7; /* max repeat count */
int min_count = 4; /* min repeat count */
- if (nextlen == 0) max_count = 138, min_count = 3;
+ if (nextlen == 0)
+ max_count = 138, min_count = 3;
+
tree[max_code+1].Len = (uint16_t)0xffff; /* guard */
for (n = 0; n <= max_code; n++) {
- curlen = nextlen; nextlen = tree[n+1].Len;
+ curlen = nextlen;
+ nextlen = tree[n+1].Len;
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
s->bl_tree[curlen].Freq += count;
} else if (curlen != 0) {
- if (curlen != prevlen) s->bl_tree[curlen].Freq++;
+ if (curlen != prevlen)
+ s->bl_tree[curlen].Freq++;
s->bl_tree[REP_3_6].Freq++;
} else if (count <= 10) {
s->bl_tree[REPZ_3_10].Freq++;
} else {
s->bl_tree[REPZ_11_138].Freq++;
}
- count = 0; prevlen = curlen;
+ count = 0;
+ prevlen = curlen;
if (nextlen == 0) {
max_count = 138, min_count = 3;
} else if (curlen == nextlen) {
* Send a literal or distance tree in compressed form, using the codes in
* bl_tree.
*/
-local void send_tree (deflate_state *s, ct_data *tree, int max_code)
-{
+local void send_tree(deflate_state *s, ct_data *tree, int max_code) {
/* tree: the tree to be scanned */
/* max_code and its largest code of non zero frequency */
int n; /* iterates over all tree elements */
int min_count = 4; /* min repeat count */
/* tree[max_code+1].Len = -1; */ /* guard already set */
- if (nextlen == 0) max_count = 138, min_count = 3;
+ if (nextlen == 0) {
+ max_count = 138, min_count = 3;
for (n = 0; n <= max_code; n++) {
- curlen = nextlen; nextlen = tree[n+1].Len;
+ curlen = nextlen;
+ nextlen = tree[n+1].Len;
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
- do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
+ do {
+ send_code(s, curlen, s->bl_tree);
+ } while (--count != 0);
} else if (curlen != 0) {
if (curlen != prevlen) {
- send_code(s, curlen, s->bl_tree); count--;
+ send_code(s, curlen, s->bl_tree);
+ count--;
}
Assert(count >= 3 && count <= 6, " 3_6?");
- send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
+ send_code(s, REP_3_6, s->bl_tree);
+ send_bits(s, count-3, 2);
} else if (count <= 10) {
- send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
+ send_code(s, REPZ_3_10, s->bl_tree);
+ send_bits(s, count-3, 3);
} else {
- send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
+ send_code(s, REPZ_11_138, s->bl_tree);
+ send_bits(s, count-11, 7);
}
- count = 0; prevlen = curlen;
+ count = 0;
+ prevlen = curlen;
if (nextlen == 0) {
max_count = 138, min_count = 3;
} else if (curlen == nextlen) {
* Construct the Huffman tree for the bit lengths and return the index in
* bl_order of the last bit length code to send.
*/
-local int build_bl_tree(deflate_state *s)
-{
+local int build_bl_tree(deflate_state *s) {
int max_blindex; /* index of last bit length code of non zero freq */
/* Determine the bit length frequencies for literal and distance trees */
* 3 but the actual value used is 4.)
*/
for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
- if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
+ if (s->bl_tree[bl_order[max_blindex]].Len != 0)
+ break;
}
/* Update opt_len to include the bit length tree and counts */
s->opt_len += 3*(max_blindex+1) + 5+5+4;
- Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
- s->opt_len, s->static_len));
+ Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", s->opt_len, s->static_len));
return max_blindex;
}
* lengths of the bit length codes, the literal tree and the distance tree.
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
*/
-local void send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
-{
+local void send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes) {
int rank; /* index in bl_order */
- Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
- Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
- "too many codes");
+ Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
+ Assert(lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes");
Tracev((stderr, "\nbl counts: "));
send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
send_bits(s, dcodes-1, 5);
/* ===========================================================================
* Send a stored block
*/
-void ZLIB_INTERNAL _tr_stored_block(deflate_state *s,
- char *buf, /* input block */
- uint16_t stored_len, /* length of input block */
- int last) /* one if this is the last block for a file */
-{
- send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */
+void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, char *buf, uint16_t stored_len, int last) {
+ /* buf: input block */
+ /* stored_len: length of input block */
+ /* last: one if this is the last block for a file */
+ send_bits(s, (STORED_BLOCK << 1)+last, 3); /* send block type */
#ifdef DEBUG
s->compressed_len = (s->compressed_len + 3 + 7) & (uint32_t)~7L;
s->compressed_len += (stored_len + 4) << 3;
/* ===========================================================================
* Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
*/
-void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s)
-{
+void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) {
bi_flush(s);
}
* Send one empty static block to give enough lookahead for inflate.
* This takes 10 bits, of which 7 may remain in the bit buffer.
*/
-void ZLIB_INTERNAL _tr_align(deflate_state *s)
-{
- send_bits(s, STATIC_TREES<<1, 3);
+void ZLIB_INTERNAL _tr_align(deflate_state *s) {
+ send_bits(s, STATIC_TREES << 1, 3);
send_code(s, END_BLOCK, static_ltree);
#ifdef DEBUG
s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
* Determine the best encoding for the current block: dynamic trees, static
* trees or store, and output the encoded block to the zip file.
*/
-void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, char *buf, uint16_t stored_len, int last)
-{
+void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, char *buf, uint16_t stored_len, int last) {
/* buf: input block, or NULL if too old */
/* stored_len: length of input block */
/* last: one if this is the last block for a file */
/* Build the Huffman trees unless a stored block is forced */
if (s->level > 0) {
-
/* Check if the file is binary or text */
if (s->strm->data_type == Z_UNKNOWN)
s->strm->data_type = detect_data_type(s);
/* Construct the literal and distance trees */
build_tree(s, (tree_desc *)(&(s->l_desc)));
- Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
- s->static_len));
+ Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, s->static_len));
build_tree(s, (tree_desc *)(&(s->d_desc)));
- Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
- s->static_len));
+ Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, s->static_len));
/* At this point, opt_len and static_len are the total bit lengths of
* the compressed block data, excluding the tree representations.
*/
max_blindex = build_bl_tree(s);
/* Determine the best encoding. Compute the block lengths in bytes. */
- opt_lenb = (s->opt_len+3+7)>>3;
- static_lenb = (s->static_len+3+7)>>3;
+ opt_lenb = (s->opt_len+3+7) >> 3;
+ static_lenb = (s->static_len+3+7) >> 3;
Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
- opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
- s->last_lit));
+ opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, s->last_lit));
- if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
+ if (static_lenb <= opt_lenb)
+ opt_lenb = static_lenb;
} else {
Assert(buf != NULL, "lost buf");
#else
} else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
#endif
- send_bits(s, (STATIC_TREES<<1)+last, 3);
- compress_block(s, (const ct_data *)static_ltree,
- (const ct_data *)static_dtree);
+ send_bits(s, (STATIC_TREES << 1)+last, 3);
+ compress_block(s, (const ct_data *)static_ltree, (const ct_data *)static_dtree);
#ifdef DEBUG
s->compressed_len += 3 + s->static_len;
#endif
} else {
- send_bits(s, (DYN_TREES<<1)+last, 3);
- send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
- max_blindex+1);
- compress_block(s, (const ct_data *)s->dyn_ltree,
- (const ct_data *)s->dyn_dtree);
+ send_bits(s, (DYN_TREES << 1)+last, 3);
+ send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, max_blindex+1);
+ compress_block(s, (const ct_data *)s->dyn_ltree, (const ct_data *)s->dyn_dtree);
#ifdef DEBUG
s->compressed_len += 3 + s->opt_len;
#endif
}
- Assert (s->compressed_len == s->bits_sent, "bad compressed size");
+ Assert(s->compressed_len == s->bits_sent, "bad compressed size");
/* The above check is made mod 2^32, for files larger than 512 MB
* and uLong implemented on 32 bits.
*/
s->compressed_len += 7; /* align on byte boundary */
#endif
}
- Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
- s->compressed_len-7*last));
+ Tracev((stderr, "\ncomprlen %lu(%lu) ", s->compressed_len>>3, s->compressed_len-7*last));
}
/* ===========================================================================
* Save the match info and tally the frequency counts. Return true if
* the current block must be flushed.
*/
-int ZLIB_INTERNAL _tr_tally (deflate_state *s, unsigned dist, unsigned lc)
-{
+int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
/* dist: distance of matched string */
/* lc: match length-MIN_MATCH or unmatched char (if dist==0) */
s->d_buf[s->last_lit] = (uint16_t)dist;
size_t in_length = (size_t)((long)s->strstart - s->block_start);
int dcode;
for (dcode = 0; dcode < D_CODES; dcode++) {
- out_length += (size_t)s->dyn_dtree[dcode].Freq *
- (5L+extra_dbits[dcode]);
+ out_length += (size_t)s->dyn_dtree[dcode].Freq * (5L+extra_dbits[dcode]);
}
out_length >>= 3;
- Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
- s->last_lit, in_length, out_length,
- 100L - out_length*100L/in_length));
- if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
+ Tracev((stderr, "\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
+ s->last_lit, in_length, out_length, 100L - out_length*100L/in_length));
+ if (s->matches < s->last_lit/2 && out_length < in_length/2)
+ return 1;
}
#endif
return (s->last_lit == s->lit_bufsize-1);
/* ===========================================================================
* Send the block data compressed using the given Huffman trees
*/
-local void compress_block(deflate_state *s, const ct_data *ltree, const ct_data *dtree)
-{
+local void compress_block(deflate_state *s, const ct_data *ltree, const ct_data *dtree) {
/* ltree: literal tree */
/* dtree: distance tree */
unsigned dist; /* distance of matched string */
unsigned code; /* the code to send */
int extra; /* number of extra bits to send */
- if (s->last_lit != 0) do {
- dist = s->d_buf[lx];
- lc = s->l_buf[lx++];
- if (dist == 0) {
- send_code(s, lc, ltree); /* send a literal byte */
- Tracecv(isgraph(lc), (stderr," '%c' ", lc));
- } else {
- /* Here, lc is the match length - MIN_MATCH */
- code = _length_code[lc];
- send_code(s, code+LITERALS+1, ltree); /* send the length code */
- extra = extra_lbits[code];
- if (extra != 0) {
- lc -= base_length[code];
- send_bits(s, lc, extra); /* send the extra length bits */
- }
- dist--; /* dist is now the match distance - 1 */
- code = d_code(dist);
- Assert (code < D_CODES, "bad d_code");
-
- send_code(s, code, dtree); /* send the distance code */
- extra = extra_dbits[code];
- if (extra != 0) {
- dist -= base_dist[code];
- send_bits(s, dist, extra); /* send the extra distance bits */
- }
- } /* literal or match pair ? */
-
- /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
- Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
- "pendingBuf overflow");
-
- } while (lx < s->last_lit);
+ if (s->last_lit != 0) {
+ do {
+ dist = s->d_buf[lx];
+ lc = s->l_buf[lx++];
+ if (dist == 0) {
+ send_code(s, lc, ltree); /* send a literal byte */
+ Tracecv(isgraph(lc), (stderr, " '%c' ", lc));
+ } else {
+ /* Here, lc is the match length - MIN_MATCH */
+ code = _length_code[lc];
+ send_code(s, code+LITERALS+1, ltree); /* send the length code */
+ extra = extra_lbits[code];
+ if (extra != 0) {
+ lc -= base_length[code];
+ send_bits(s, lc, extra); /* send the extra length bits */
+ }
+ dist--; /* dist is now the match distance - 1 */
+ code = d_code(dist);
+ Assert(code < D_CODES, "bad d_code");
+
+ send_code(s, code, dtree); /* send the distance code */
+ extra = extra_dbits[code];
+ if (extra != 0) {
+ dist -= base_dist[code];
+ send_bits(s, dist, extra); /* send the extra distance bits */
+ }
+ } /* literal or match pair ? */
+
+ /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
+ Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, "pendingBuf overflow");
+ } while (lx < s->last_lit);
+ }
send_code(s, END_BLOCK, ltree);
}
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
* IN assertion: the fields Freq of dyn_ltree are set.
*/
-local int detect_data_type(deflate_state *s)
-{
+local int detect_data_type(deflate_state *s) {
/* black_mask is the bit mask of black-listed bytes
* set bits 0..6, 14..25, and 28..31
* 0xf3ffc07f = binary 11110011111111111100000001111111
return Z_BINARY;
/* Check for textual ("white-listed") bytes. */
- if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
- || s->dyn_ltree[13].Freq != 0)
+ if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 || s->dyn_ltree[13].Freq != 0)
return Z_TEXT;
for (n = 32; n < LITERALS; n++)
if (s->dyn_ltree[n].Freq != 0)
* method would use a table)
* IN assertion: 1 <= len <= 15
*/
-local unsigned bi_reverse(unsigned code, int len)
-{
+local unsigned bi_reverse(unsigned code, int len) {
/* code: the value to invert */
/* len: its bit length */
register unsigned res = 0;
/* ===========================================================================
* Flush the bit buffer, keeping at most 7 bits in it.
*/
-local void bi_flush(deflate_state *s)
-{
+local void bi_flush(deflate_state *s) {
if (s->bi_valid == 16) {
put_short(s, s->bi_buf);
s->bi_buf = 0;
/* ===========================================================================
* Flush the bit buffer and align the output on a byte boundary
*/
-ZLIB_INTERNAL void bi_windup(deflate_state *s)
-{
+ZLIB_INTERNAL void bi_windup(deflate_state *s) {
if (s->bi_valid > 8) {
put_short(s, s->bi_buf);
} else if (s->bi_valid > 0) {
* Copy a stored block, storing first the length and its
* one's complement if requested.
*/
-local void copy_block(deflate_state *s, char *buf, uint16_t len, int header)
-{
+local void copy_block(deflate_state *s, char *buf, uint16_t len, int header) {
/* buf: the input data */
/* len: its length */
/* header: true if block header must be written */
#endif
}
#ifdef DEBUG
- s->bits_sent += (uint32_t)len<<3;
+ s->bits_sent += (uint32_t)len << 3;
#endif
while (len--) {
put_byte(s, *buf++);