inline bool can_use_next_avl_p (const vsetvl_info &prev,
const vsetvl_info &next)
{
+ /* Forbid the AVL/VL propagation if VL of NEXT is used
+ by non-RVV instructions. This is because:
+
+ bb 2:
+ PREV: scalar move (no AVL)
+ bb 3:
+ NEXT: vsetvl a5(VL), a4(AVL) ...
+ branch a5,zero
+
+ Since user vsetvl instruction is no side effect instruction
+ which should be placed in the correct and optimal location
+ of the program by the previous PASS, it is unreasonable that
+ VSETVL PASS tries to move it to another places if it used by
+ non-RVV instructions.
+
+ Note: We only forbid the cases that VL is used by the following
+ non-RVV instructions which will cause issues. We don't forbid
+ other cases since it won't cause correctness issues and we still
+ more demand info are fused backward. The later LCM algorithm
+ should know the optimal location of the vsetvl. */
+ if (next.has_vl () && next.vl_used_by_non_rvv_insn_p ())
+ return false;
+
if (!next.has_nonvlmax_reg_avl () && !next.has_vl ())
return true;
--- /dev/null
+/* { dg-do compile } */
+/* { dg-options "-march=rv64gcv -mabi=lp64d -O3" } */
+
+#include "riscv_vector.h"
+
+#define RISCV_MATH_LOOPUNROLL
+#define RISCV_MATH_VECTOR
+typedef float float32_t;
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ float32_t mu; /**< step size that controls filter coefficient updates. */
+ } riscv_lms_instance_f32;
+
+
+void riscv_lms_f32(
+ const riscv_lms_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
+ float32_t mu = S->mu; /* Adaptive factor */
+ float32_t acc, e; /* Accumulator, error */
+ float32_t w; /* Weight factor */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t tapCnt, blkCnt; /* Loop counters */
+
+ /* Initializations of error, difference, Coefficient update */
+ e = 0.0f;
+ w = 0.0f;
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* initialise loop count */
+ blkCnt = blockSize;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy the new input sample into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Initialize pState pointer */
+ px = pState;
+
+ /* Initialize coefficient pointer */
+ pb = pCoeffs;
+
+ /* Set the accumulator to zero */
+ acc = 0.0f;
+ uint32_t vblkCnt = numTaps; /* Loop counter */
+ size_t l;
+ vfloat32m8_t vx, vy;
+ vfloat32m1_t temp00m1;
+ l = __riscv_vsetvl_e32m1(1);
+ temp00m1 = __riscv_vfmv_v_f_f32m1(0, l);
+ for (; (l = __riscv_vsetvl_e32m8(vblkCnt)) > 0; vblkCnt -= l) {
+ vx = __riscv_vle32_v_f32m8(px, l);
+ px += l;
+ vy = __riscv_vle32_v_f32m8(pb, l);
+ pb += l;
+ temp00m1 = __riscv_vfredusum_vs_f32m8_f32m1(__riscv_vfmul_vv_f32m8(vx, vy, l), temp00m1, l);
+ }
+ acc += __riscv_vfmv_f_s_f32m1_f32(temp00m1);
+
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ acc += (*px++) * (*pb++);
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+ /* Store the result from accumulator into the destination buffer. */
+ *pOut++ = acc;
+
+ /* Compute and store error */
+ e = (float32_t) *pRef++ - acc;
+ *pErr++ = e;
+
+ /* Calculation of Weighting factor for updating filter coefficients */
+ w = e * mu;
+
+ /* Initialize pState pointer */
+ /* Advance state pointer by 1 for the next sample */
+ px = pState++;
+
+ /* Initialize coefficient pointer */
+ pb = pCoeffs;
+
+ vblkCnt = numTaps;
+ for (; (l = __riscv_vsetvl_e32m8(vblkCnt)) > 0; vblkCnt -= l) {
+ vx = __riscv_vle32_v_f32m8(px, l);
+ px += l;
+ __riscv_vse32_v_f32m8(pb, __riscv_vfadd_vv_f32m8(__riscv_vfmul_vf_f32m8(vx, w, l), __riscv_vle32_v_f32m8(pb, l), l) , l);
+ pb += l;
+ }
+ while (tapCnt > 0U)
+ {
+ /* Perform the multiply-accumulate */
+ *pb += w * (*px++);
+ pb++;
+
+ /* Decrement loop counter */
+ tapCnt--;
+ }
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ Now copy the last numTaps - 1 samples to the start of the state buffer.
+ This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the pState buffer */
+ pStateCurnt = S->pState;
+
+ /* copy data */
+
+ uint32_t vblkCnt = (numTaps - 1U); /* Loop counter */
+ size_t l;
+ for (; (l = __riscv_vsetvl_e32m8(vblkCnt)) > 0; vblkCnt -= l) {
+ __riscv_vse32_v_f32m8(pStateCurnt, __riscv_vle32_v_f32m8(pState, l) , l);
+ pState += l;
+ pStateCurnt += l;
+ }
+
+
+ /* Loop unrolling: Compute 4 taps at a time. */
+ tapCnt = (numTaps - 1U) >> 2U;
+
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement loop counter */
+ tapCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining taps */
+ tapCnt = (numTaps - 1U) & 0x3U;
+
+
+
+ /* Initialize tapCnt with number of samples */
+ tapCnt = (numTaps - 1U);
+
+
+
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement loop counter */
+ tapCnt--;
+ }
+}