static struct ea_storage *
ea_walk_chain_for_storage(struct ea_storage *eap_first_next, ea_list *o, u32 squash_upto, uint h)
{
+ //log("ea_walk_chain_for_storage");
for (struct ea_storage *eap = eap_first_next; eap;
eap = atomic_load_explicit(&eap->next_hash, memory_order_acquire))
{
+ //log("eap %x", eap);
if (
(h == eap->hash_key) && ea_same(o, eap->l) &&
BIT32_TEST(&squash_upto, eap->l->stored))
uint cur_order = atomic_load_explicit(&cur->order, memory_order_relaxed);
uint in = h >> (32 - cur_order);
- struct ea_storage *eap_first;
- struct ea_storage *eap_first_next;
+ struct ea_storage *eap_first = NULL;
+ struct ea_storage *eap_first_next = NULL;
/* Actualy search for the ea_storage - maybe we already have it */
* 4) and, obviously, if we increase an usecount, we have to make sure we will decrease it.
* 5) no reorder, only add or remove
*/
+ ASSERT_DIE(atomic_load_explicit(&r->uc, memory_order_acquire) == 0);
uint in = r->hash_key >> (32 - order);
struct ea_storage *eap = atomic_load_explicit(&esa->eas[in], memory_order_relaxed);
struct ea_storage *ea_old = NULL;
for (; eap; eap = atomic_load_explicit(&eap->next_hash, memory_order_acquire))
{
+ //log("free %x, old %x, old uc %i", r, ea_old, ea_old ? ea_old->uc : 0);
if (eap == r)
{
/* We found the ea_storage, lets remove it */
struct ea_storage *ea_next = atomic_load_explicit(&r->next_hash, memory_order_acquire);
+ /* The ea_next can not be removed, because in order ot remove itself it would need to increment us. But we are already zero. */
+ //log("r %x, next %x (%i)", r, ea_next, ea_next ? ea_next->uc : 0);
if (ea_old == NULL)
{
/* It is the first storage in chain */
- if (!atomic_compare_exchange_strong_explicit(&esa->eas[in], &r, ea_next,
+ struct ea_storage *compare_r = r; /* we don't want to update r */
+ if (!atomic_compare_exchange_strong_explicit(&esa->eas[in], &compare_r, ea_next,
memory_order_acq_rel, memory_order_acquire))
{
success[0] = false;
+ // log("r %x, next %x (head changed)", r, atomic_load_explicit(&r->next_hash, memory_order_acquire));
+ ASSERT_DIE(ea_next == atomic_load_explicit(&r->next_hash, memory_order_acquire));
return r; /* Not success, somebody else added a storage. Lets try again.*/
}
success[0] = true;
+ ASSERT_DIE(ea_next == atomic_load_explicit(&r->next_hash, memory_order_acquire));
return NULL;
} else
{
if (uc_prev == 0)
{
success[0] = false;
+ ASSERT_DIE(ea_next == atomic_load_explicit(&r->next_hash, memory_order_acquire));
+ // log("previous has zero uc (r %x)", r);
return r;
}
} while (!atomic_compare_exchange_strong_explicit(&ea_old->uc, &uc_prev, uc_prev +1, memory_order_acq_rel, memory_order_acquire));
atomic_store_explicit(&ea_old->next_hash, ea_next, memory_order_release);
/* decrease increased use count of the previous storage */
uc_prev = atomic_fetch_sub_explicit(&ea_old->uc, 1, memory_order_release);
- if (uc_prev == 0)
+ if (uc_prev == 1)
{
/* This was the last reference, we ned to remove the previous storage as well. */
+ //log("return previous to free");
success[0] = true;
+ ASSERT_DIE(ea_next == atomic_load_explicit(&r->next_hash, memory_order_acquire));
return ea_old;
}
success[0] = true;
+ ASSERT_DIE(ea_next == atomic_load_explicit(&r->next_hash, memory_order_acquire));
return NULL;
}
}
ea_storage_free(struct ea_storage *r)
{
u64 uc = atomic_fetch_sub_explicit(&r->uc, 1, memory_order_acq_rel);
+ //log("ea_storage_free r %x, uc %i", r, uc);
if (uc != 1)
{
do
{
+ ASSERT_DIE(atomic_load_explicit(&r->uc, memory_order_acquire) == 0);
rcu_read_lock();
/* Find the storage in one of the stor arrays and remove it, so nobody will found it again */
struct ea_stor_array *cur = atomic_load_explicit(&rta_hash_table.cur, memory_order_acquire);
struct ea_stor_array *next = (cur == &rta_hash_table.esa1)? &rta_hash_table.esa2 : &rta_hash_table.esa1;
-
- bool success[1]; // two return values needed and creating new structure makes no sence
- struct ea_storage *next_to_free;
-
uint cur_order = atomic_load_explicit(&cur->order, memory_order_relaxed);
-
- if (cur_order)
- /* search in old array */
- next_to_free = ea_free_prepare(cur, r, cur_order, success);
-
uint next_order = atomic_load_explicit(&next->order, memory_order_relaxed);
+
ASSERT_DIE(cur_order || next_order);
- if (next_order && (!success[0] && !next_to_free))
+ bool success[1]; // two return values needed and creating new structure makes no sence
+ struct ea_storage *next_to_free = NULL;
+
+ if (next_order)
/* search in new array */
next_to_free = ea_free_prepare(next, r, next_order, success);
+ if (cur_order && (!success[0] && !next_to_free))
+ /* search in old array */
+ next_to_free = ea_free_prepare(cur, r, cur_order, success);
+
rcu_read_unlock();
if (success[0])
ev_send(rta_hash_table.ev_list, &rta_hash_table.rehash_event);
/* Schedule actual free of the storage */
+ ASSERT_DIE(atomic_load_explicit(&r->uc, memory_order_relaxed) == 0);
struct ea_finally_free_deferred_call eafdc = {
.dc.hook = ea_finally_free,
.phase = rcu_begin_sync(), /* Asynchronous wait for RCU */
} else
ASSERT_DIE(next_to_free);
r = next_to_free;
+ if (r)
+ ASSERT_DIE(atomic_load_explicit(&r->uc, memory_order_acquire) == 0);
} while (r);
}
ea_storage_free(r);
}
+static uint
+ea_linked_list_to_array(struct ea_storage **local, struct ea_stor_array *esa, u64 esa_i)
+{
+ struct ea_storage *ea_index = atomic_load_explicit(&esa->eas[esa_i], memory_order_acquire);
+ struct ea_storage *prev_stor = NULL;
+ u64 uc;
+ int loc_i = 0;
+
+ while (ea_index)
+ {
+ uc = atomic_load_explicit(&ea_index->uc, memory_order_acquire);
+
+ /* We must be sure not to increment zero use count */
+ while (uc && !atomic_compare_exchange_strong_explicit(
+ &ea_index->uc, &uc, uc + 1,
+ memory_order_acq_rel, memory_order_acquire));
+
+ if (uc)
+ {
+ local[loc_i] = ea_index;
+ loc_i++;
+ prev_stor = ea_index;
+ ea_index = atomic_load_explicit(&ea_index->next_hash, memory_order_acquire);
+ } else
+ {
+ /* oops, sombody is deleting this storage right now. Do not touch it, it bites! */
+ if (prev_stor)
+ ea_index = atomic_load_explicit(&prev_stor->next_hash, memory_order_acquire);
+ else
+ ea_index = atomic_load_explicit(&esa->eas[esa_i], memory_order_acquire);
+ }
+ }
+ return loc_i;
+}
+
void
ea_rehash(void * u UNUSED)
{
+ log("rehash start");
struct ea_stor_array *cur = atomic_load_explicit(&rta_hash_table.cur, memory_order_relaxed);
struct ea_stor_array *next = (cur == &rta_hash_table.esa1)? &rta_hash_table.esa2 : &rta_hash_table.esa1;
u32 cur_order = atomic_load_explicit(&cur->order, memory_order_relaxed);
while (count < 1 << (next_order - 1) && next_order > 28)
next_order--;
- if (next_order == cur_order)
- return;
+ if (next_order == cur_order){
+ log("rehash: order ok");
+ return;}
/* Prepare new array */
if (atomic_load_explicit(&next->order, memory_order_relaxed))
synchronize_rcu(); /* We need all threads working with ea_storages to know there is new array */
+
/* Move ea_storages from old array to new. */
/* Lookup is addind new ea_storages to new array, but we might collide with deleting */
/* We need to follow rules of working with ea_storage arrays:
for (int i = 0; i < (1 << cur_order); i++)
{
rcu_read_lock();
- uint num_stor = 0;
struct ea_storage *eas_first = atomic_load_explicit(&cur->eas[i], memory_order_acquire);
- struct ea_storage *ea_index = eas_first;
+ uint num_stor = 0;
- if (!ea_index)
- {
- rcu_read_unlock();
- continue;
- }
+ /* find out maximum length of chain */
+ for (struct ea_storage *ea_index = eas_first; ea_index;
+ ea_index = atomic_load_explicit(&ea_index->next_hash, memory_order_acquire))
+ num_stor++;
- u64 uc;
- do
- {
- /* according to rule 2), we can remove all */
- uc = atomic_load_explicit(&ea_index->uc, memory_order_acquire);
- bool succ = false;
- do
- {
- if (uc && atomic_compare_exchange_strong_explicit(
- &ea_index->uc, &uc, uc + 1,
- memory_order_acq_rel, memory_order_acquire))
- {
- num_stor++;
- succ = true;
- } /* no need to care about those with use count on zero. Their next_hash pointers are ok and we can skip them again. */
- } while (!succ && uc > 0);
-
- } while (ea_index = atomic_load_explicit(&ea_index->next_hash, memory_order_acquire));
+ struct ea_storage *local[num_stor];
+ uint count_arr = ea_linked_list_to_array(local, cur, i);
rcu_read_unlock();
+ if (count_arr == 0)
+ continue; /* Empty linked list already */
+
/* now nobody can do add or delete from our chain */
/* because each storage has to be possible to find at any time,
* we have to rehash them backwards. We put them to local array first.
*/
- struct ea_storage *local[num_stor];
- rcu_read_lock();
- ea_index = eas_first = atomic_load_explicit(&cur->eas[i], memory_order_acquire);;
- uint l_i = 0;
- do
- {
- uc = atomic_load_explicit(&ea_index->uc, memory_order_acquire);
- if (uc)
- {
- local[l_i] = ea_index;
- l_i++;
- }
- } while (ea_index = atomic_load_explicit(&ea_index->next_hash, memory_order_acquire));
- rcu_read_unlock();
- ASSERT_DIE(l_i == num_stor);
+ ASSERT_DIE(count_arr <= num_stor); //ERROR //TODO //ERRORR //TODO //ERROR //TODO
/* and now we can finaly move the storages to new destination */
- for (int i = l_i - 1; i>=0; i--)
+ for (int arr_i = count_arr - 1; arr_i >= 0; arr_i--)
{
- struct ea_storage *ea = local[i];
+ struct ea_storage *ea = local[arr_i];
uint h_next = ea->hash_key >> (32 - next_order);
struct ea_storage *next_first;
do
&next->eas[h_next], &next_first, ea,
memory_order_acq_rel, memory_order_acquire));
/* we increased use count to all storages in local array. For this storage, it is no more needed. */
+ // log("rehash free %x", ea);
ea_storage_free(ea);
}
}
struct ea_stor_array *next_end = (cur_end == &rta_hash_table.esa1)? &rta_hash_table.esa2 : &rta_hash_table.esa1;
ASSERT_DIE(atomic_load_explicit(&next_end->order, memory_order_relaxed) == 0);
ASSERT_DIE(atomic_load_explicit(&cur_end->order, memory_order_relaxed) != 0);
+ //log("rehash goes to last sync");
synchronize_rcu(); /* To make sure the next rehash can not start before this one is fully accepted. */
+ log("rehashed");
#if 0
// this is for debug - shows full state of current ea_stor_array