]> git.ipfire.org Git - thirdparty/gcc.git/commitdiff
i386: Additional peephole2 to use lea in round-up integer division.
authorRoger Sayle <roger@nextmovesoftware.com>
Mon, 1 Jul 2024 11:18:26 +0000 (12:18 +0100)
committerRoger Sayle <roger@nextmovesoftware.com>
Mon, 1 Jul 2024 11:19:54 +0000 (12:19 +0100)
A common idiom for implementing an integer division that rounds upwards is
to write (x + y - 1) / y.  Conveniently on x86, the two additions to form
the numerator can be performed by a single lea instruction, and indeed gcc
currently generates a lea when both x and y are both registers.

int foo(int x, int y) {
  return (x+y-1)/y;
}

generates with -O2:

foo:    leal    -1(%rsi,%rdi), %eax // 4 bytes
        cltd
        idivl   %esi
        ret

Oddly, however, if x is a memory, gcc currently uses two instructions:

int m;
int bar(int y) {
  return (m+y-1)/y;
}

generates:

foo: movl    m(%rip), %eax
        addl    %edi, %eax // 2 bytes
        subl    $1, %eax // 3 bytes
        cltd
        idivl   %edi
        ret

This discrepancy is caused by the late decision (in peephole2) to split
an addition with a memory operand, into a load followed by a reg-reg
addition.  This patch improves this situation by adding a peephole2
to recognize consecutive additions and transform them into lea if
profitable.

My first attempt at fixing this was to use a define_insn_and_split:

(define_insn_and_split "*lea<mode>3_reg_mem_imm"
  [(set (match_operand:SWI48 0 "register_operand")
       (plus:SWI48 (plus:SWI48 (match_operand:SWI48 1 "register_operand")
                               (match_operand:SWI48 2 "memory_operand"))
                   (match_operand:SWI48 3 "x86_64_immediate_operand")))]
  "ix86_pre_reload_split ()"
  "#"
  "&& 1"
  [(set (match_dup 4) (match_dup 2))
   (set (match_dup 0) (plus:SWI48 (plus:SWI48 (match_dup 1) (match_dup 4))
                                 (match_dup 3)))]
  "operands[4] = gen_reg_rtx (<MODE>mode);")

using combine to combine instructions.  Unfortunately, this approach
interferes with (reload's) subtle balance of deciding when to use/avoid lea,
which can be observed as a code size regression in CSiBE.  The peephole2
approach (proposed here) uniformly improves CSiBE results.

2024-07-01  Roger Sayle  <roger@nextmovesoftware.com>

gcc/ChangeLog
* config/i386/i386.md (peephole2): Transform two consecutive
additions into a 3-component lea if !TARGET_AVOID_LEA_FOR_ADDR.

gcc/testsuite/ChangeLog
* gcc.target/i386/lea-3.c: New test case.

gcc/config/i386/i386.md
gcc/testsuite/gcc.target/i386/lea-3.c [new file with mode: 0644]

index 59a889da3048a917933b0a676c693b307dca3000..0b6f6e750722855d8f9324ae5a6db8298e79c1b3 100644 (file)
   "TARGET_APX_NF && reload_completed"
   [(set (match_dup 0) (ashift:SWI48 (match_dup 0) (match_dup 1)))]
   "operands[1] = GEN_INT (exact_log2 (INTVAL (operands[1])));")
+
+;; The peephole2 pass may expose consecutive additions suitable for lea.
+(define_peephole2
+  [(parallel [(set (match_operand:SWI48 0 "register_operand")
+                  (plus:SWI48 (match_dup 0)
+                              (match_operand 1 "register_operand")))
+             (clobber (reg:CC FLAGS_REG))])
+   (parallel [(set (match_dup 0)
+                  (plus:SWI48 (match_dup 0)
+                              (match_operand 2 "x86_64_immediate_operand")))
+             (clobber (reg:CC FLAGS_REG))])]
+  "!TARGET_AVOID_LEA_FOR_ADDR || optimize_function_for_size_p (cfun)"
+  [(set (match_dup 0) (plus:SWI48 (plus:SWI48 (match_dup 0)
+                                             (match_dup 1))
+                                 (match_dup 2)))])
 \f
 ;; Add instructions
 
diff --git a/gcc/testsuite/gcc.target/i386/lea-3.c b/gcc/testsuite/gcc.target/i386/lea-3.c
new file mode 100644 (file)
index 0000000..84e66b0
--- /dev/null
@@ -0,0 +1,13 @@
+/* { dg-do compile } */
+/* { dg-options "-O2" } */
+
+int m;
+
+int foo(int y)
+{
+  return (m+y-1)/y;
+}
+
+/* { dg-final { scan-assembler "leal" } } */
+/* { dg-final { scan-assembler-not "addl" } } */
+/* { dg-final { scan-assembler-not "subl" } } */