#include "utils/includes.h"
#include "utils/common.h"
+#include "utils/const_time.h"
#include "crypto/crypto.h"
#include "dragonfly.h"
}
-struct crypto_bignum *
+static struct crypto_bignum *
dragonfly_get_rand_1_to_p_1(const struct crypto_bignum *prime)
{
struct crypto_bignum *tmp, *pm1, *one;
crypto_bignum_deinit(one, 0);
return tmp;
}
+
+
+int dragonfly_is_quadratic_residue_blind(struct crypto_ec *ec,
+ const u8 *qr, const u8 *qnr,
+ const struct crypto_bignum *val)
+{
+ struct crypto_bignum *r, *num, *qr_or_qnr = NULL;
+ int check, res = -1;
+ u8 qr_or_qnr_bin[DRAGONFLY_MAX_ECC_PRIME_LEN];
+ const struct crypto_bignum *prime;
+ size_t prime_len;
+ unsigned int mask;
+
+ prime = crypto_ec_get_prime(ec);
+ prime_len = crypto_ec_prime_len(ec);
+
+ /*
+ * Use a blinding technique to mask val while determining whether it is
+ * a quadratic residue modulo p to avoid leaking timing information
+ * while determining the Legendre symbol.
+ *
+ * v = val
+ * r = a random number between 1 and p-1, inclusive
+ * num = (v * r * r) modulo p
+ */
+ r = dragonfly_get_rand_1_to_p_1(prime);
+ if (!r)
+ return -1;
+
+ num = crypto_bignum_init();
+ if (!num ||
+ crypto_bignum_mulmod(val, r, prime, num) < 0 ||
+ crypto_bignum_mulmod(num, r, prime, num) < 0)
+ goto fail;
+
+ /*
+ * Need to minimize differences in handling different cases, so try to
+ * avoid branches and timing differences.
+ *
+ * If r is odd:
+ * num = (num * qr) module p
+ * LGR(num, p) = 1 ==> quadratic residue
+ * else:
+ * num = (num * qnr) module p
+ * LGR(num, p) = -1 ==> quadratic residue
+ *
+ * mask is set to !odd(r)
+ */
+ mask = const_time_is_zero(crypto_bignum_is_odd(r));
+ const_time_select_bin(mask, qnr, qr, prime_len, qr_or_qnr_bin);
+ qr_or_qnr = crypto_bignum_init_set(qr_or_qnr_bin, prime_len);
+ if (!qr_or_qnr ||
+ crypto_bignum_mulmod(num, qr_or_qnr, prime, num) < 0)
+ goto fail;
+ /* branchless version of check = odd(r) ? 1 : -1, */
+ check = const_time_select_int(mask, -1, 1);
+
+ /* Determine the Legendre symbol on the masked value */
+ res = crypto_bignum_legendre(num, prime);
+ if (res == -2) {
+ res = -1;
+ goto fail;
+ }
+ /* branchless version of res = res == check
+ * (res is -1, 0, or 1; check is -1 or 1) */
+ mask = const_time_eq(res, check);
+ res = const_time_select_int(mask, 1, 0);
+fail:
+ crypto_bignum_deinit(num, 1);
+ crypto_bignum_deinit(r, 1);
+ crypto_bignum_deinit(qr_or_qnr, 1);
+ return res;
+}
#ifndef DRAGONFLY_H
#define DRAGONFLY_H
+#define DRAGONFLY_MAX_ECC_PRIME_LEN 66
+
struct crypto_bignum;
+struct crypto_ec;
int dragonfly_suitable_group(int group, int ecc_only);
int dragonfly_get_random_qr_qnr(const struct crypto_bignum *prime,
struct crypto_bignum **qr,
struct crypto_bignum **qnr);
-struct crypto_bignum *
-dragonfly_get_rand_1_to_p_1(const struct crypto_bignum *prime);
+int dragonfly_is_quadratic_residue_blind(struct crypto_ec *ec,
+ const u8 *qr, const u8 *qnr,
+ const struct crypto_bignum *val);
#endif /* DRAGONFLY_H */
}
-static int is_quadratic_residue_blind(struct sae_data *sae,
- const u8 *qr, const u8 *qnr,
- const struct crypto_bignum *y_sqr)
-{
- struct crypto_bignum *r, *num, *qr_or_qnr = NULL;
- int check, res = -1;
- u8 qr_or_qnr_bin[SAE_MAX_ECC_PRIME_LEN];
- size_t prime_len = sae->tmp->prime_len;
- unsigned int mask;
-
- /*
- * Use the blinding technique to mask y_sqr while determining
- * whether it is a quadratic residue modulo p to avoid leaking
- * timing information while determining the Legendre symbol.
- *
- * v = y_sqr
- * r = a random number between 1 and p-1, inclusive
- * num = (v * r * r) modulo p
- */
- r = dragonfly_get_rand_1_to_p_1(sae->tmp->prime);
- if (!r)
- return -1;
-
- num = crypto_bignum_init();
- if (!num ||
- crypto_bignum_mulmod(y_sqr, r, sae->tmp->prime, num) < 0 ||
- crypto_bignum_mulmod(num, r, sae->tmp->prime, num) < 0)
- goto fail;
-
- /*
- * Need to minimize differences in handling different cases, so try to
- * avoid branches and timing differences.
- *
- * If r_odd:
- * num = (num * qr) module p
- * LGR(num, p) = 1 ==> quadratic residue
- * else:
- * num = (num * qnr) module p
- * LGR(num, p) = -1 ==> quadratic residue
- */
- mask = const_time_is_zero(crypto_bignum_is_odd(r));
- const_time_select_bin(mask, qnr, qr, prime_len, qr_or_qnr_bin);
- qr_or_qnr = crypto_bignum_init_set(qr_or_qnr_bin, prime_len);
- if (!qr_or_qnr ||
- crypto_bignum_mulmod(num, qr_or_qnr, sae->tmp->prime, num) < 0)
- goto fail;
- /* r_odd is 0 or 1; branchless version of check = r_odd ? 1 : -1, */
- check = const_time_select_int(mask, -1, 1);
-
- res = crypto_bignum_legendre(num, sae->tmp->prime);
- if (res == -2) {
- res = -1;
- goto fail;
- }
- /* branchless version of res = res == check
- * (res is -1, 0, or 1; check is -1 or 1) */
- mask = const_time_eq(res, check);
- res = const_time_select_int(mask, 1, 0);
-fail:
- crypto_bignum_deinit(num, 1);
- crypto_bignum_deinit(r, 1);
- crypto_bignum_deinit(qr_or_qnr, 1);
- return res;
-}
-
-
static int sae_test_pwd_seed_ecc(struct sae_data *sae, const u8 *pwd_seed,
const u8 *prime, const u8 *qr, const u8 *qnr,
u8 *pwd_value)
if (!y_sqr)
return -1;
- res = is_quadratic_residue_blind(sae, qr, qnr, y_sqr);
+ res = dragonfly_is_quadratic_residue_blind(sae->tmp->ec, qr, qnr,
+ y_sqr);
crypto_bignum_deinit(y_sqr, 1);
return res;
}
const u8 *token)
{
struct crypto_bignum *qr = NULL, *qnr = NULL;
- struct crypto_bignum *qr_or_qnr = NULL;
u8 qr_bin[MAX_ECC_PRIME_LEN];
u8 qnr_bin[MAX_ECC_PRIME_LEN];
u8 qr_or_qnr_bin[MAX_ECC_PRIME_LEN];
u8 x_bin[MAX_ECC_PRIME_LEN];
u8 prime_bin[MAX_ECC_PRIME_LEN];
- struct crypto_bignum *tmp1 = NULL, *tmp2 = NULL;
+ struct crypto_bignum *tmp2 = NULL;
struct crypto_hash *hash;
unsigned char pwe_digest[SHA256_MAC_LEN], *prfbuf = NULL, ctr;
- int ret = 0, check, res;
+ int ret = 0, res;
u8 found = 0; /* 0 (false) or 0xff (true) to be used as const_time_*
* mask */
size_t primebytelen = 0, primebitlen;
struct crypto_bignum *x_candidate = NULL;
const struct crypto_bignum *prime;
- u8 mask, found_ctr = 0, is_odd = 0;
+ u8 found_ctr = 0, is_odd = 0;
if (grp->pwe)
return -1;
if (!tmp2)
goto fail;
- /*
- * mask tmp2 so doing legendre won't leak timing info
- *
- * tmp1 is a random number between 1 and p-1
- */
- tmp1 = dragonfly_get_rand_1_to_p_1(prime);
- if (!tmp1 ||
- crypto_bignum_mulmod(tmp2, tmp1, prime, tmp2) < 0 ||
- crypto_bignum_mulmod(tmp2, tmp1, prime, tmp2) < 0)
+ res = dragonfly_is_quadratic_residue_blind(grp->group, qr_bin,
+ qnr_bin, tmp2);
+ if (res < 0)
goto fail;
-
- /*
- * Now tmp2 (y^2) is masked, all values between 1 and p-1
- * are equally probable. Multiplying by r^2 does not change
- * whether or not tmp2 is a quadratic residue, just masks it.
- *
- * Flip a coin, multiply by the random quadratic residue or the
- * random quadratic nonresidue and record heads or tails.
- */
- mask = const_time_eq_u8(crypto_bignum_is_odd(tmp1), 1);
- check = const_time_select_s8(mask, 1, -1);
- const_time_select_bin(mask, qr_bin, qnr_bin, primebytelen,
- qr_or_qnr_bin);
- crypto_bignum_deinit(qr_or_qnr, 1);
- qr_or_qnr = crypto_bignum_init_set(qr_or_qnr_bin, primebytelen);
- if (!qr_or_qnr ||
- crypto_bignum_mulmod(tmp2, qr_or_qnr, prime, tmp2) < 0)
- goto fail;
-
- /*
- * Now it's safe to do legendre, if check is 1 then it's
- * a straightforward test (multiplying by qr does not
- * change result), if check is -1 then it's the opposite test
- * (multiplying a qr by qnr would make a qnr).
- */
- res = crypto_bignum_legendre(tmp2, prime);
- if (res == -2)
- goto fail;
- mask = const_time_eq(res, check);
found_ctr = const_time_select_u8(found, found_ctr, ctr);
- found |= mask;
+ /* found is 0 or 0xff here and res is 0 or 1. Bitwise OR of them
+ * (with res converted to 0/0xff) handles this in constant time.
+ */
+ found |= res * 0xff;
}
if (found == 0) {
wpa_printf(MSG_INFO,
}
/* cleanliness and order.... */
crypto_bignum_deinit(x_candidate, 1);
- crypto_bignum_deinit(tmp1, 1);
crypto_bignum_deinit(tmp2, 1);
crypto_bignum_deinit(qr, 1);
crypto_bignum_deinit(qnr, 1);
- crypto_bignum_deinit(qr_or_qnr, 1);
bin_clear_free(prfbuf, primebytelen);
os_memset(qr_bin, 0, sizeof(qr_bin));
os_memset(qnr_bin, 0, sizeof(qnr_bin));