]> git.ipfire.org Git - thirdparty/hostap.git/commitdiff
Share common SAE and EAP-pwd functionality: is_quadratic_residue
authorJouni Malinen <jouni@codeaurora.org>
Thu, 25 Apr 2019 19:35:14 +0000 (22:35 +0300)
committerJouni Malinen <j@w1.fi>
Thu, 25 Apr 2019 20:49:49 +0000 (23:49 +0300)
Use a shared helper function for the blinded mechanism of determining
the Legendre symbol.

Signed-off-by: Jouni Malinen <jouni@codeaurora.org>
src/common/dragonfly.c
src/common/dragonfly.h
src/common/sae.c
src/eap_common/eap_pwd_common.c

index d4c3561b5824c19a6a9e5d8928c914bea27aae56..f6ecf43a305af1ead3e87b3c6d30a00e1a08927c 100644 (file)
@@ -10,6 +10,7 @@
 #include "utils/includes.h"
 
 #include "utils/common.h"
+#include "utils/const_time.h"
 #include "crypto/crypto.h"
 #include "dragonfly.h"
 
@@ -60,7 +61,7 @@ int dragonfly_get_random_qr_qnr(const struct crypto_bignum *prime,
 }
 
 
-struct crypto_bignum *
+static struct crypto_bignum *
 dragonfly_get_rand_1_to_p_1(const struct crypto_bignum *prime)
 {
        struct crypto_bignum *tmp, *pm1, *one;
@@ -80,3 +81,76 @@ dragonfly_get_rand_1_to_p_1(const struct crypto_bignum *prime)
        crypto_bignum_deinit(one, 0);
        return tmp;
 }
+
+
+int dragonfly_is_quadratic_residue_blind(struct crypto_ec *ec,
+                                        const u8 *qr, const u8 *qnr,
+                                        const struct crypto_bignum *val)
+{
+       struct crypto_bignum *r, *num, *qr_or_qnr = NULL;
+       int check, res = -1;
+       u8 qr_or_qnr_bin[DRAGONFLY_MAX_ECC_PRIME_LEN];
+       const struct crypto_bignum *prime;
+       size_t prime_len;
+       unsigned int mask;
+
+       prime = crypto_ec_get_prime(ec);
+       prime_len = crypto_ec_prime_len(ec);
+
+       /*
+        * Use a blinding technique to mask val while determining whether it is
+        * a quadratic residue modulo p to avoid leaking timing information
+        * while determining the Legendre symbol.
+        *
+        * v = val
+        * r = a random number between 1 and p-1, inclusive
+        * num = (v * r * r) modulo p
+        */
+       r = dragonfly_get_rand_1_to_p_1(prime);
+       if (!r)
+               return -1;
+
+       num = crypto_bignum_init();
+       if (!num ||
+           crypto_bignum_mulmod(val, r, prime, num) < 0 ||
+           crypto_bignum_mulmod(num, r, prime, num) < 0)
+               goto fail;
+
+       /*
+        * Need to minimize differences in handling different cases, so try to
+        * avoid branches and timing differences.
+        *
+        * If r is odd:
+        * num = (num * qr) module p
+        * LGR(num, p) = 1 ==> quadratic residue
+        * else:
+        * num = (num * qnr) module p
+        * LGR(num, p) = -1 ==> quadratic residue
+        *
+        * mask is set to !odd(r)
+        */
+       mask = const_time_is_zero(crypto_bignum_is_odd(r));
+       const_time_select_bin(mask, qnr, qr, prime_len, qr_or_qnr_bin);
+       qr_or_qnr = crypto_bignum_init_set(qr_or_qnr_bin, prime_len);
+       if (!qr_or_qnr ||
+           crypto_bignum_mulmod(num, qr_or_qnr, prime, num) < 0)
+               goto fail;
+       /* branchless version of check = odd(r) ? 1 : -1, */
+       check = const_time_select_int(mask, -1, 1);
+
+       /* Determine the Legendre symbol on the masked value */
+       res = crypto_bignum_legendre(num, prime);
+       if (res == -2) {
+               res = -1;
+               goto fail;
+       }
+       /* branchless version of res = res == check
+        * (res is -1, 0, or 1; check is -1 or 1) */
+       mask = const_time_eq(res, check);
+       res = const_time_select_int(mask, 1, 0);
+fail:
+       crypto_bignum_deinit(num, 1);
+       crypto_bignum_deinit(r, 1);
+       crypto_bignum_deinit(qr_or_qnr, 1);
+       return res;
+}
index d03fb73184e842bf2a33b97041fdaafdc266a4be..1ec17a45c1de04d57a9d5a6e5eb4277110d6e227 100644 (file)
 #ifndef DRAGONFLY_H
 #define DRAGONFLY_H
 
+#define DRAGONFLY_MAX_ECC_PRIME_LEN 66
+
 struct crypto_bignum;
+struct crypto_ec;
 
 int dragonfly_suitable_group(int group, int ecc_only);
 int dragonfly_get_random_qr_qnr(const struct crypto_bignum *prime,
                                struct crypto_bignum **qr,
                                struct crypto_bignum **qnr);
-struct crypto_bignum *
-dragonfly_get_rand_1_to_p_1(const struct crypto_bignum *prime);
+int dragonfly_is_quadratic_residue_blind(struct crypto_ec *ec,
+                                        const u8 *qr, const u8 *qnr,
+                                        const struct crypto_bignum *val);
 
 #endif /* DRAGONFLY_H */
index 0d8ed1c5b154b9c1ecc19dfdf89bfccbd1e86f1c..634c6a3583f081d9ccb8c0e4ff5e207f9a91d6e8 100644 (file)
@@ -178,72 +178,6 @@ static void sae_pwd_seed_key(const u8 *addr1, const u8 *addr2, u8 *key)
 }
 
 
-static int is_quadratic_residue_blind(struct sae_data *sae,
-                                     const u8 *qr, const u8 *qnr,
-                                     const struct crypto_bignum *y_sqr)
-{
-       struct crypto_bignum *r, *num, *qr_or_qnr = NULL;
-       int check, res = -1;
-       u8 qr_or_qnr_bin[SAE_MAX_ECC_PRIME_LEN];
-       size_t prime_len = sae->tmp->prime_len;
-       unsigned int mask;
-
-       /*
-        * Use the blinding technique to mask y_sqr while determining
-        * whether it is a quadratic residue modulo p to avoid leaking
-        * timing information while determining the Legendre symbol.
-        *
-        * v = y_sqr
-        * r = a random number between 1 and p-1, inclusive
-        * num = (v * r * r) modulo p
-        */
-       r = dragonfly_get_rand_1_to_p_1(sae->tmp->prime);
-       if (!r)
-               return -1;
-
-       num = crypto_bignum_init();
-       if (!num ||
-           crypto_bignum_mulmod(y_sqr, r, sae->tmp->prime, num) < 0 ||
-           crypto_bignum_mulmod(num, r, sae->tmp->prime, num) < 0)
-               goto fail;
-
-       /*
-        * Need to minimize differences in handling different cases, so try to
-        * avoid branches and timing differences.
-        *
-        * If r_odd:
-        * num = (num * qr) module p
-        * LGR(num, p) = 1 ==> quadratic residue
-        * else:
-        * num = (num * qnr) module p
-        * LGR(num, p) = -1 ==> quadratic residue
-        */
-       mask = const_time_is_zero(crypto_bignum_is_odd(r));
-       const_time_select_bin(mask, qnr, qr, prime_len, qr_or_qnr_bin);
-       qr_or_qnr = crypto_bignum_init_set(qr_or_qnr_bin, prime_len);
-       if (!qr_or_qnr ||
-           crypto_bignum_mulmod(num, qr_or_qnr, sae->tmp->prime, num) < 0)
-               goto fail;
-       /* r_odd is 0 or 1; branchless version of check = r_odd ? 1 : -1, */
-       check = const_time_select_int(mask, -1, 1);
-
-       res = crypto_bignum_legendre(num, sae->tmp->prime);
-       if (res == -2) {
-               res = -1;
-               goto fail;
-       }
-       /* branchless version of res = res == check
-        * (res is -1, 0, or 1; check is -1 or 1) */
-       mask = const_time_eq(res, check);
-       res = const_time_select_int(mask, 1, 0);
-fail:
-       crypto_bignum_deinit(num, 1);
-       crypto_bignum_deinit(r, 1);
-       crypto_bignum_deinit(qr_or_qnr, 1);
-       return res;
-}
-
-
 static int sae_test_pwd_seed_ecc(struct sae_data *sae, const u8 *pwd_seed,
                                 const u8 *prime, const u8 *qr, const u8 *qnr,
                                 u8 *pwd_value)
@@ -275,7 +209,8 @@ static int sae_test_pwd_seed_ecc(struct sae_data *sae, const u8 *pwd_seed,
        if (!y_sqr)
                return -1;
 
-       res = is_quadratic_residue_blind(sae, qr, qnr, y_sqr);
+       res = dragonfly_is_quadratic_residue_blind(sae->tmp->ec, qr, qnr,
+                                                  y_sqr);
        crypto_bignum_deinit(y_sqr, 1);
        return res;
 }
index 4c236364fad72a8ed8dccbdc6724c2281782809e..72aef498401d90cec66858a2eaa0cd23fdcb75ca 100644 (file)
@@ -122,22 +122,21 @@ int compute_password_element(EAP_PWD_group *grp, u16 num,
                             const u8 *token)
 {
        struct crypto_bignum *qr = NULL, *qnr = NULL;
-       struct crypto_bignum *qr_or_qnr = NULL;
        u8 qr_bin[MAX_ECC_PRIME_LEN];
        u8 qnr_bin[MAX_ECC_PRIME_LEN];
        u8 qr_or_qnr_bin[MAX_ECC_PRIME_LEN];
        u8 x_bin[MAX_ECC_PRIME_LEN];
        u8 prime_bin[MAX_ECC_PRIME_LEN];
-       struct crypto_bignum *tmp1 = NULL, *tmp2 = NULL;
+       struct crypto_bignum *tmp2 = NULL;
        struct crypto_hash *hash;
        unsigned char pwe_digest[SHA256_MAC_LEN], *prfbuf = NULL, ctr;
-       int ret = 0, check, res;
+       int ret = 0, res;
        u8 found = 0; /* 0 (false) or 0xff (true) to be used as const_time_*
                       * mask */
        size_t primebytelen = 0, primebitlen;
        struct crypto_bignum *x_candidate = NULL;
        const struct crypto_bignum *prime;
-       u8 mask, found_ctr = 0, is_odd = 0;
+       u8 found_ctr = 0, is_odd = 0;
 
        if (grp->pwe)
                return -1;
@@ -232,47 +231,15 @@ int compute_password_element(EAP_PWD_group *grp, u16 num,
                if (!tmp2)
                        goto fail;
 
-               /*
-                * mask tmp2 so doing legendre won't leak timing info
-                *
-                * tmp1 is a random number between 1 and p-1
-                */
-               tmp1 = dragonfly_get_rand_1_to_p_1(prime);
-               if (!tmp1 ||
-                   crypto_bignum_mulmod(tmp2, tmp1, prime, tmp2) < 0 ||
-                   crypto_bignum_mulmod(tmp2, tmp1, prime, tmp2) < 0)
+               res = dragonfly_is_quadratic_residue_blind(grp->group, qr_bin,
+                                                          qnr_bin, tmp2);
+               if (res < 0)
                        goto fail;
-
-               /*
-                * Now tmp2 (y^2) is masked, all values between 1 and p-1
-                * are equally probable. Multiplying by r^2 does not change
-                * whether or not tmp2 is a quadratic residue, just masks it.
-                *
-                * Flip a coin, multiply by the random quadratic residue or the
-                * random quadratic nonresidue and record heads or tails.
-                */
-               mask = const_time_eq_u8(crypto_bignum_is_odd(tmp1), 1);
-               check = const_time_select_s8(mask, 1, -1);
-               const_time_select_bin(mask, qr_bin, qnr_bin, primebytelen,
-                                     qr_or_qnr_bin);
-               crypto_bignum_deinit(qr_or_qnr, 1);
-               qr_or_qnr = crypto_bignum_init_set(qr_or_qnr_bin, primebytelen);
-               if (!qr_or_qnr ||
-                   crypto_bignum_mulmod(tmp2, qr_or_qnr, prime, tmp2) < 0)
-                       goto fail;
-
-               /*
-                * Now it's safe to do legendre, if check is 1 then it's
-                * a straightforward test (multiplying by qr does not
-                * change result), if check is -1 then it's the opposite test
-                * (multiplying a qr by qnr would make a qnr).
-                */
-               res = crypto_bignum_legendre(tmp2, prime);
-               if (res == -2)
-                       goto fail;
-               mask = const_time_eq(res, check);
                found_ctr = const_time_select_u8(found, found_ctr, ctr);
-               found |= mask;
+               /* found is 0 or 0xff here and res is 0 or 1. Bitwise OR of them
+                * (with res converted to 0/0xff) handles this in constant time.
+                */
+               found |= res * 0xff;
        }
        if (found == 0) {
                wpa_printf(MSG_INFO,
@@ -313,11 +280,9 @@ int compute_password_element(EAP_PWD_group *grp, u16 num,
        }
        /* cleanliness and order.... */
        crypto_bignum_deinit(x_candidate, 1);
-       crypto_bignum_deinit(tmp1, 1);
        crypto_bignum_deinit(tmp2, 1);
        crypto_bignum_deinit(qr, 1);
        crypto_bignum_deinit(qnr, 1);
-       crypto_bignum_deinit(qr_or_qnr, 1);
        bin_clear_free(prfbuf, primebytelen);
        os_memset(qr_bin, 0, sizeof(qr_bin));
        os_memset(qnr_bin, 0, sizeof(qnr_bin));