Consider creating a polarity-reversed mask from a set-bit (i.e., if
the bit is set, produce all-ones; otherwise: all-zeros). Using Zbb,
this can be expressed as bexti, followed by an addi of minus-one. To
enable the combiner to discover this opportunity, we need to split the
canonical expression for "(a & (1 << BIT_NO)) ? 0 : -1" into a form
combinable into bexti.
Consider the function:
long f(long a)
{
return (a & (1 << BIT_NO)) ? 0 : -1;
}
This produces the following sequence prior to this change:
andi a0,a0,16
seqz a0,a0
neg a0,a0
ret
Following this change, it results in:
bexti a0,a0,4
addi a0,a0,-1
ret
gcc/ChangeLog:
* config/riscv/bitmanip.md: Add a splitter to generate
polarity-reversed masks from a set bit using bexti + addi.
gcc/testsuite/ChangeLog:
* gcc.target/riscv/zbs-bexti.c: New test.
(const_int 1)
(match_dup 2)))
(set (match_dup 0) (xor:X (match_dup 0) (const_int 1)))])
+
+;; We can create a polarity-reversed mask (i.e. bit N -> { set = 0, clear = -1 })
+;; using a bext(i) followed by an addi instruction.
+;; This splits the canonical representation of "(a & (1 << BIT_NO)) ? 0 : -1".
+(define_split
+ [(set (match_operand:GPR 0 "register_operand")
+ (neg:GPR (eq:GPR (zero_extract:GPR (match_operand:GPR 1 "register_operand")
+ (const_int 1)
+ (match_operand 2))
+ (const_int 0))))]
+ "TARGET_ZBS"
+ [(set (match_dup 0) (zero_extract:GPR (match_dup 1) (const_int 1) (match_dup 2)))
+ (set (match_dup 0) (plus:GPR (match_dup 0) (const_int -1)))])
}
/* { dg-final { scan-assembler-times "bexti\t" 4 } } */
-/* { dg-final { scan-assembler-times "xori\t|snez\t" 1 } } */
+/* { dg-final { scan-assembler-times "xori\t" 1 } } */
/* { dg-final { scan-assembler-times "addi\t" 1 } } */
/* { dg-final { scan-assembler-times "neg\t" 1 } } */