switch(flSize)
{
case 1: /* 2 - 1 - 5 */
- ostart[0] = (BYTE)((lbt_raw<<6) + (0<<5) + srcSize);
+ ostart[0] = (BYTE)((U32)lbt_raw + (srcSize<<3));
break;
case 2: /* 2 - 2 - 12 */
- ostart[0] = (BYTE)((lbt_raw<<6) + (2<<4) + (srcSize >> 8));
- ostart[1] = (BYTE)srcSize;
+ MEM_writeLE16(ostart, (U32)lbt_raw + (1<<2) + (srcSize<<4));
break;
default: /*note : should not be necessary : flSize is within {1,2,3} */
case 3: /* 2 - 2 - 20 */
- ostart[0] = (BYTE)((lbt_raw<<6) + (3<<4) + (srcSize >> 16));
- ostart[1] = (BYTE)(srcSize>>8);
- ostart[2] = (BYTE)srcSize;
+ MEM_writeLE32(ostart, (U32)lbt_raw + (3<<2) + (srcSize<<4));
break;
}
BYTE* const ostart = (BYTE* const)dst;
U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
- (void)dstCapacity; /* dstCapacity guaranteed to be >=4, hence large enough */
+ (void)dstCapacity; /* dstCapacity already guaranteed to be >=4, hence large enough */
switch(flSize)
{
case 1: /* 2 - 1 - 5 */
- ostart[0] = (BYTE)((lbt_rle<<6) + (0<<5) + srcSize);
+ ostart[0] = (BYTE)((U32)lbt_rle + (srcSize<<3));
break;
case 2: /* 2 - 2 - 12 */
- ostart[0] = (BYTE)((lbt_rle<<6) + (2<<4) + (srcSize >> 8));
- ostart[1] = (BYTE)srcSize;
+ MEM_writeLE16(ostart, (U32)lbt_rle + (1<<2) + (srcSize<<4));
break;
default: /*note : should not be necessary : flSize is necessarily within {1,2,3} */
case 3: /* 2 - 2 - 20 */
- ostart[0] = (BYTE)((lbt_rle<<6) + (3<<4) + (srcSize >> 16));
- ostart[1] = (BYTE)(srcSize>>8);
- ostart[2] = (BYTE)srcSize;
+ MEM_writeLE32(ostart, (U32)lbt_rle + (3<<2) + (srcSize<<4));
break;
}
switch(lhSize)
{
case 3: /* 2 - 2 - 10 - 10 */
- ostart[0] = (BYTE)((srcSize>>6) + (singleStream << 4) + (hType<<6));
- ostart[1] = (BYTE)((srcSize<<2) + (cLitSize>>8));
- ostart[2] = (BYTE)(cLitSize);
- break;
+ { U32 const lhc = hType + (singleStream << 2) + (srcSize<<4) + (cLitSize<<14);
+ MEM_writeLE24(ostart, lhc);
+ break;
+ }
case 4: /* 2 - 2 - 14 - 14 */
- ostart[0] = (BYTE)((srcSize>>10) + (2<<4) + (hType<<6));
- ostart[1] = (BYTE)(srcSize>> 2);
- ostart[2] = (BYTE)((srcSize<<6) + (cLitSize>>8));
- ostart[3] = (BYTE)(cLitSize);
- break;
+ { U32 const lhc = hType + (2 << 2) + (srcSize<<4) + (cLitSize<<18);
+ MEM_writeLE32(ostart, lhc);
+ break;
+ }
default: /* should not be necessary, lhSize is only {3,4,5} */
case 5: /* 2 - 2 - 18 - 18 */
- ostart[0] = (BYTE)((srcSize>>14) + (3<<4) + (hType<<6));
- ostart[1] = (BYTE)(srcSize>>6);
- ostart[2] = (BYTE)((srcSize<<2) + (cLitSize>>16));
- ostart[3] = (BYTE)(cLitSize>>8);
- ostart[4] = (BYTE)(cLitSize);
- break;
+ { U32 const lhc = hType + (3 << 2) + (srcSize<<4) + (cLitSize<<22);
+ MEM_writeLE32(ostart, lhc);
+ ostart[4] = (BYTE)(cLitSize >> 10);
+ break;
+ }
}
return lhSize+cLitSize;
}
BYTE* op = (BYTE*)dst;
size_t fhSize = 0;
- /* not even init ! */
- if (cctx->stage==0) return ERROR(stage_wrong);
+ if (cctx->stage==0) return ERROR(stage_wrong); /*< not even init ! */
/* special case : empty frame */
if (cctx->stage==1) {
}
/* frame epilogue */
- if (dstCapacity < 3) return ERROR(dstSize_tooSmall);
+ if (dstCapacity < ZSTD_blockHeaderSize) return ERROR(dstSize_tooSmall);
{ U32 const checksum = cctx->params.fParams.checksumFlag ?
(U32)(XXH64_digest(&cctx->xxhState) >> 11) :
0;
}
cctx->stage = 0; /* return to "created but not init" status */
- return 3+fhSize;
+ return ZSTD_blockHeaderSize+fhSize;
}
* compatible with legacy mode
* @return : decompressed size if known, 0 otherwise
note : 0 can mean any of the following :
- - decompressed size is not provided within frame header
+ - decompressed size is not present within frame header
- frame header unknown / not supported
- - frame header not completely provided (`srcSize` too small) */
+ - frame header not complete (`srcSize` too small) */
unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize)
{
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT==1)
if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
- switch((litBlockType_t)(istart[0]>> 6))
+ switch((litBlockType_t)(istart[0] & 3))
{
case lbt_huffman:
- { size_t litSize, litCSize, singleStream=0;
- U32 lhSize = (istart[0] >> 4) & 3;
+ { size_t lhSize, litSize, litCSize, singleStream=0;
+ U32 const lhlCode = (istart[0] >> 2) & 3;
if (srcSize < 5) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for lhSize, + cSize (+nbSeq) */
- switch(lhSize)
+ switch(lhlCode)
{
- case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
+ case 1:
+ singleStream = 1;
+ /* fall through */
+ case 0: default: /* note : default is impossible, since lhlCode into [0..3] */
/* 2 - 2 - 10 - 10 */
- lhSize=3;
- singleStream = istart[0] & 16;
- litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2);
- litCSize = ((istart[1] & 3) << 8) + istart[2];
- break;
+ { U32 const lhc = MEM_readLE24(istart) >> 4;
+ lhSize = 3;
+ litSize = lhc & 0x3FF;
+ litCSize = lhc >> 10;
+ break;
+ }
+
case 2:
/* 2 - 2 - 14 - 14 */
- lhSize=4;
- litSize = ((istart[0] & 15) << 10) + (istart[1] << 2) + (istart[2] >> 6);
- litCSize = ((istart[2] & 63) << 8) + istart[3];
- break;
+ { U32 const lhc = MEM_readLE32(istart) >> 4;
+ lhSize = 4;
+ litSize = lhc & 0x3FFF;
+ litCSize = lhc >> 14;
+ break;
+ }
case 3:
/* 2 - 2 - 18 - 18 */
- lhSize=5;
- litSize = ((istart[0] & 15) << 14) + (istart[1] << 6) + (istart[2] >> 2);
- litCSize = ((istart[2] & 3) << 16) + (istart[3] << 8) + istart[4];
- break;
+ { U64 const lhc = (MEM_readLE32(istart) + (((U64)istart[4]) << 32)) >> 4;
+ lhSize = 5;
+ litSize = lhc & 0x3FFFF;
+ litCSize = lhc >> 18;
+ break;
+ }
}
if (litSize > ZSTD_BLOCKSIZE_ABSOLUTEMAX) return ERROR(corruption_detected);
if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
return ERROR(corruption_detected);
dctx->litPtr = dctx->litBuffer;
- dctx->litBufSize = ZSTD_BLOCKSIZE_ABSOLUTEMAX+8;
+ dctx->litBufSize = ZSTD_BLOCKSIZE_ABSOLUTEMAX+WILDCOPY_OVERLENGTH;
dctx->litSize = litSize;
dctx->litEntropy = 1;
return litCSize + lhSize;
}
case lbt_repeat:
- { size_t litSize, litCSize;
- U32 lhSize = ((istart[0]) >> 4) & 3;
- if (lhSize != 1) /* only case supported for now : small litSize, single stream */
+ { size_t litSize, litCSize, lhSize;
+ U32 const lhc = MEM_readLE24(istart) >> 4;
+ if ((((istart[0]) >> 2) & 3) != 1) /* only case supported for now : small litSize, single stream */
return ERROR(corruption_detected);
if (dctx->litEntropy==0)
return ERROR(dictionary_corrupted);
/* 2 - 2 - 10 - 10 */
- lhSize=3;
- litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2);
- litCSize = ((istart[1] & 3) << 8) + istart[2];
+ lhSize = 3;
+ litSize = lhc & 0x3FF;
+ litCSize = lhc >> 10;
if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
{ size_t const errorCode = HUF_decompress1X4_usingDTable(dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->hufTable);
return litCSize + lhSize;
}
case lbt_raw:
- { size_t litSize;
- U32 lhSize = ((istart[0]) >> 4) & 3;
- switch(lhSize)
+ { size_t litSize, lhSize;
+ U32 const lhlCode = ((istart[0]) >> 2) & 3;
+ switch(lhlCode)
{
- case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
- lhSize=1;
- litSize = istart[0] & 31;
+ case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
+ lhSize = 1;
+ litSize = istart[0] >> 3;
break;
- case 2:
- litSize = ((istart[0] & 15) << 8) + istart[1];
+ case 1:
+ lhSize = 2;
+ litSize = MEM_readLE16(istart) >> 4;
break;
case 3:
- litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2];
+ lhSize = 3;
+ litSize = MEM_readLE24(istart) >> 4;
break;
}
return lhSize+litSize;
}
case lbt_rle:
- { size_t litSize;
- U32 lhSize = ((istart[0]) >> 4) & 3;
- switch(lhSize)
+ { U32 const lhlCode = ((istart[0]) >> 2) & 3;
+ size_t litSize, lhSize;
+ switch(lhlCode)
{
- case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */
+ case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
lhSize = 1;
- litSize = istart[0] & 31;
+ litSize = istart[0] >> 3;
break;
- case 2:
- litSize = ((istart[0] & 15) << 8) + istart[1];
+ case 1:
+ lhSize = 2;
+ litSize = MEM_readLE16(istart) >> 4;
break;
case 3:
- litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2];
+ lhSize = 3;
+ litSize = MEM_readLE24(istart) >> 4;
if (srcSize<4) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4 */
break;
}
Header is in charge of describing how literals are packed.
It's a byte-aligned variable-size bitfield, ranging from 1 to 5 bytes,
-using big-endian convention.
+using little-endian convention.
-| BlockType | sizes format | [compressed size] | regenerated size |
-| --------- | ------------ | ----------------- | ---------------- |
-| 2 bits | 1 - 2 bits | 0 - 18 bits | 5 - 20 bits |
+| BlockType | sizes format | regenerated size | [compressed size] |
+| --------- | ------------ | ---------------- | ----------------- |
+| 2 bits | 1 - 2 bits | 5 - 20 bits | 0 - 18 bits |
+
+In this representation, bits on the left are smallest bits.
__Block Type__ :
-This is a 2-bits field, describing 4 different block types :
+This field uses 2 lowest bits of first byte, describing 4 different block types :
| Value | 0 | 1 | 2 | 3 |
| ---------- | ---------- | ------ | --- | ------- |
and the decompressed size. It will also decode the number of streams.
- For Raw or RLE blocks, it's enough to decode the size to regenerate.
-For values spanning several bytes, convention is Big-endian.
+For values spanning several bytes, convention is Little-endian.
-__Sizes format for Raw or RLE literals block__ :
+__Sizes format for Raw and RLE literals block__ :
-- Value : 0x : Regenerated size uses 5 bits (0-31).
+- Value : x0 : Regenerated size uses 5 bits (0-31).
Total literal header size is 1 byte.
- `size = h[0] & 31;`
-- Value : 10 : Regenerated size uses 12 bits (0-4095).
+ `size = h[0]>>3;`
+- Value : 01 : Regenerated size uses 12 bits (0-4095).
Total literal header size is 2 bytes.
- `size = ((h[0] & 15) << 8) + h[1];`
+ `size = (h[0]>>4) + (h[1]<<4);`
- Value : 11 : Regenerated size uses 20 bits (0-1048575).
Total literal header size is 3 bytes.
- `size = ((h[0] & 15) << 16) + (h[1]<<8) + h[2];`
+ `size = (h[0]>>4) + (h[1]<<4) + (h[2]<<12);`
Note : it's allowed to represent a short value (ex : `13`)
using a long format, accepting the reduced compacity.
Compressed and regenerated sizes use 18 bits (0-262143).
Total literal header size is 5 bytes.
-Compressed and regenerated size fields follow big endian convention.
+Compressed and regenerated size fields follow little endian convention.
#### Huffman Tree description