@vtable @code
@item FP_NAN
+@standards{C99, math.h}
The floating-point number @var{x} is ``Not a Number'' (@pxref{Infinity
and NaN})
@item FP_INFINITE
+@standards{C99, math.h}
The value of @var{x} is either plus or minus infinity (@pxref{Infinity
and NaN})
@item FP_ZERO
+@standards{C99, math.h}
The value of @var{x} is zero. In floating-point formats like @w{IEEE
754}, where zero can be signed, this value is also returned if
@var{x} is negative zero.
@item FP_SUBNORMAL
+@standards{C99, math.h}
Numbers whose absolute value is too small to be represented in the
normal format are represented in an alternate, @dfn{denormalized} format
(@pxref{Floating Point Concepts}). This format is less precise but can
represent values closer to zero. @code{fpclassify} returns this value
for values of @var{x} in this alternate format.
@item FP_NORMAL
+@standards{C99, math.h}
This value is returned for all other values of @var{x}. It indicates
that there is nothing special about the number.
@end vtable
@deftypevr Macro float SNANF
@deftypevrx Macro double SNAN
@deftypevrx Macro {long double} SNANL
-@standardsx{SNANF, ISO, math.h}
+@standards{TS 18661-1:2014, math.h}
These macros, defined by TS 18661-1:2014, are constant expressions for
signaling NaNs.
@end deftypevr
@deftypefun int totalorder (double @var{x}, double @var{y})
@deftypefunx int totalorderf (float @var{x}, float @var{y})
@deftypefunx int totalorderl (long double @var{x}, long double @var{y})
-@standards{ISO, math.h}
-@standardsx{totalorderf, ISO, ???}
-@standardsx{totalorderl, ISO, ???}
+@standards{TS 18661-1:2014, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions determine whether the total order relationship,
defined in IEEE 754-2008, is true for @var{x} and @var{y}, returning
@deftypefun int totalordermag (double @var{x}, double @var{y})
@deftypefunx int totalordermagf (float @var{x}, float @var{y})
@deftypefunx int totalordermagl (long double @var{x}, long double @var{y})
-@standards{ISO, math.h}
-@standardsx{totalordermagf, ISO, ???}
-@standardsx{totalordermagl, ISO, ???}
+@standards{TS 18661-1:2014, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions determine whether the total order relationship,
defined in IEEE 754-2008, is true for the absolute values of @var{x}
that can be used to create complex numbers.
@deftypevr Macro {const float complex} _Complex_I
+@standards{C99, complex.h}
This macro is a representation of the complex number ``@math{0+1i}''.
Multiplying a real floating-point value by @code{_Complex_I} gives a
complex number whose value is purely imaginary. You can use this to
a shorter name for the same constant.
@deftypevr Macro {const float complex} I
+@standards{C99, complex.h}
This macro has exactly the same value as @code{_Complex_I}. Most of the
time it is preferable. However, it causes problems if you want to use
the identifier @code{I} for something else. You can safely write