/* @(#) $Id$ */
-# include "zbuild.h"
-# include "zendian.h"
-# include <inttypes.h>
-
-/*
- Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
- protection on the static variables used to control the first-use generation
- of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
- first call get_crc_table() to initialize the tables before allowing more than
- one thread to use crc32().
-
- DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. A main()
- routine is also produced, so that this one source file can be compiled to an
- executable.
- */
-
-#ifdef MAKECRCH
-# include <stdio.h>
-# ifndef DYNAMIC_CRC_TABLE
-# define DYNAMIC_CRC_TABLE
-# endif /* !DYNAMIC_CRC_TABLE */
-#endif /* MAKECRCH */
-
+#include "zbuild.h"
+#include "zendian.h"
+#include <inttypes.h>
#include "deflate.h"
#include "functable.h"
+#include "crc32.h"
/* Local functions for crc concatenation */
return sum;
}
-#ifdef DYNAMIC_CRC_TABLE
-volatile int crc_table_empty = 1;
-static uint32_t crc_table[8][256];
-static uint32_t crc_comb[GF2_DIM][GF2_DIM];
-void make_crc_table(void);
-static void gf2_matrix_square(uint32_t *square, const uint32_t *mat);
-#ifdef MAKECRCH
-static void write_table(FILE *, const uint32_t *, int);
-#endif /* MAKECRCH */
-
-/* ========================================================================= */
-static void gf2_matrix_square(uint32_t *square, const uint32_t *mat) {
- int n;
-
- for (n = 0; n < GF2_DIM; n++)
- square[n] = gf2_matrix_times(mat, mat[n]);
-}
-
-/*
- Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
- x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
-
- Polynomials over GF(2) are represented in binary, one bit per coefficient,
- with the lowest powers in the most significant bit. Then adding polynomials
- is just exclusive-or, and multiplying a polynomial by x is a right shift by
- one. If we call the above polynomial p, and represent a byte as the
- polynomial q, also with the lowest power in the most significant bit (so the
- byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
- where a mod b means the remainder after dividing a by b.
-
- This calculation is done using the shift-register method of multiplying and
- taking the remainder. The register is initialized to zero, and for each
- incoming bit, x^32 is added mod p to the register if the bit is a one (where
- x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
- x (which is shifting right by one and adding x^32 mod p if the bit shifted
- out is a one). We start with the highest power (least significant bit) of
- q and repeat for all eight bits of q.
-
- The first table is simply the CRC of all possible eight bit values. This is
- all the information needed to generate CRCs on data a byte at a time for all
- combinations of CRC register values and incoming bytes. The remaining tables
- allow for word-at-a-time CRC calculation for both big-endian and little-
- endian machines, where a word is four bytes.
-*/
-void make_crc_table() {
- uint32_t c;
- int n, k;
- uint32_t poly; /* polynomial exclusive-or pattern */
- /* terms of polynomial defining this crc (except x^32): */
- static volatile int first = 1; /* flag to limit concurrent making */
- static const unsigned char p[] = {0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26};
-
- /* See if another task is already doing this (not thread-safe, but better
- than nothing -- significantly reduces duration of vulnerability in
- case the advice about DYNAMIC_CRC_TABLE is ignored) */
- if (first) {
- first = 0;
-
- /* make exclusive-or pattern from polynomial (0xedb88320) */
- poly = 0;
- for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
- poly |= (uint32_t)1 << (31 - p[n]);
-
- /* generate a crc for every 8-bit value */
- for (n = 0; n < 256; n++) {
- c = (uint32_t)n;
- for (k = 0; k < 8; k++)
- c = c & 1 ? poly ^ (c >> 1) : c >> 1;
- crc_table[0][n] = c;
- }
-
- /* generate crc for each value followed by one, two, and three zeros,
- and then the byte reversal of those as well as the first table */
- for (n = 0; n < 256; n++) {
- c = crc_table[0][n];
- crc_table[4][n] = ZSWAP32(c);
- for (k = 1; k < 4; k++) {
- c = crc_table[0][c & 0xff] ^ (c >> 8);
- crc_table[k][n] = c;
- crc_table[k + 4][n] = ZSWAP32(c);
- }
- }
-
- /* generate zero operators table for crc32_combine() */
-
- /* generate the operator to apply a single zero bit to a CRC -- the
- first row adds the polynomial if the low bit is a 1, and the
- remaining rows shift the CRC right one bit */
- k = GF2_DIM - 3;
- crc_comb[k][0] = 0xedb88320UL; /* CRC-32 polynomial */
- uint32_t row = 1;
- for (n = 1; n < GF2_DIM; n++) {
- crc_comb[k][n] = row;
- row <<= 1;
- }
-
- /* generate operators that apply 2, 4, and 8 zeros to a CRC, putting
- the last one, the operator for one zero byte, at the 0 position */
- gf2_matrix_square(crc_comb[k + 1], crc_comb[k]);
- gf2_matrix_square(crc_comb[k + 2], crc_comb[k + 1]);
- gf2_matrix_square(crc_comb[0], crc_comb[k + 2]);
-
- /* generate operators for applying 2^n zero bytes to a CRC, filling out
- the remainder of the table -- the operators repeat after GF2_DIM
- values of n, so the table only needs GF2_DIM entries, regardless of
- the size of the length being processed */
- for (n = 1; n < k; n++)
- gf2_matrix_square(crc_comb[n], crc_comb[n - 1]);
-
- /* mark tables as complete, in case someone else is waiting */
- crc_table_empty = 0;
- } else { /* not first */
- /* wait for the other guy to finish (not efficient, but rare) */
- while (crc_table_empty)
- {}
- }
-#ifdef MAKECRCH
- {
- FILE *out;
-
- out = fopen("crc32.h", "w");
- if (out == NULL) return;
-
- /* write out CRC table to crc32.h */
- fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
- fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
- fprintf(out, "static const uint32_t ");
- fprintf(out, "crc_table[8][256] =\n{\n {\n");
- write_table(out, crc_table[0], 256);
- for (k = 1; k < 8; k++) {
- fprintf(out, " },\n {\n");
- write_table(out, crc_table[k], 256);
- }
- fprintf(out, " }\n};\n");
-
- /* write out zero operator table to crc32.h */
- fprintf(out, "\nstatic const uint32_t ");
- fprintf(out, "crc_comb[%d][%d] =\n{\n {\n", GF2_DIM, GF2_DIM);
- write_table(out, crc_comb[0], GF2_DIM);
- for (k = 1; k < GF2_DIM; k++) {
- fprintf(out, " },\n {\n");
- write_table(out, crc_comb[k], GF2_DIM);
- }
- fprintf(out, " }\n};\n");
- fclose(out);
- }
-#endif /* MAKECRCH */
-}
-
-#ifdef MAKECRCH
-static void write_table(FILE *out, const uint32_t *table, int k) {
- int n;
-
- for (n = 0; n < k; n++)
- fprintf(out, "%s0x%08" PRIx32 "%s", n % 5 ? "" : " ",
- (uint32_t)(table[n]),
- n == k - 1 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
-}
-
-int main()
-{
- make_crc_table();
- return 0;
-}
-#endif /* MAKECRCH */
-
-#else /* !DYNAMIC_CRC_TABLE */
-/* ========================================================================
- * Tables of CRC-32s of all single-byte values, made by make_crc_table(),
- * and tables of zero operator matrices for crc32_combine().
- */
-#include "crc32.h"
-#endif /* DYNAMIC_CRC_TABLE */
-
/* =========================================================================
* This function can be used by asm versions of crc32()
*/
const uint32_t * ZEXPORT PREFIX(get_crc_table)(void) {
-#ifdef DYNAMIC_CRC_TABLE
- if (crc_table_empty)
- make_crc_table();
-#endif /* DYNAMIC_CRC_TABLE */
return (const uint32_t *)crc_table;
}
static uint32_t crc32_combine_(uint32_t crc1, uint32_t crc2, z_off64_t len2) {
int n;
-#ifdef DYNAMIC_CRC_TABLE
- if (crc_table_empty)
- make_crc_table();
-#endif /* DYNAMIC_CRC_TABLE */
-
if (len2 > 0)
/* operator for 2^n zeros repeats every GF2_DIM n values */
for (n = 0; len2; n = (n + 1) % GF2_DIM, len2 >>= 1)
int j;
unsigned i;
-#ifdef DYNAMIC_CRC_TABLE
- if (crc_table_empty)
- make_crc_table();
-#endif /* DYNAMIC_CRC_TABLE */
-
/* if len2 is zero or negative, return the identity matrix */
if (len2 <= 0) {
row = 1;
--- /dev/null
+/* crc32.c -- output crc32.h header file
+ * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016, 2018 Mark Adler
+ * For conditions of distribution and use, see copyright notice in zlib.h
+*/
+
+#include <stdio.h>
+#include <inttypes.h>
+#include "zbuild.h"
+#include "zendian.h"
+#include "deflate.h"
+
+#define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
+uint32_t gf2_matrix_times(const uint32_t *mat, uint32_t vec);
+
+/* ========================================================================= */
+uint32_t gf2_matrix_times(const uint32_t *mat, uint32_t vec) {
+ uint32_t sum = 0;
+ while (vec) {
+ if (vec & 1)
+ sum ^= *mat;
+ vec >>= 1;
+ mat++;
+ }
+ return sum;
+}
+
+
+volatile int crc_table_empty = 1;
+static uint32_t crc_table[8][256];
+static uint32_t crc_comb[GF2_DIM][GF2_DIM];
+void make_crc_table(void);
+static void gf2_matrix_square(uint32_t *square, const uint32_t *mat);
+static void write_table(FILE *, const uint32_t *, int);
+
+/* ========================================================================= */
+static void gf2_matrix_square(uint32_t *square, const uint32_t *mat) {
+ int n;
+
+ for (n = 0; n < GF2_DIM; n++)
+ square[n] = gf2_matrix_times(mat, mat[n]);
+}
+
+/*
+ Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
+ x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
+
+ Polynomials over GF(2) are represented in binary, one bit per coefficient,
+ with the lowest powers in the most significant bit. Then adding polynomials
+ is just exclusive-or, and multiplying a polynomial by x is a right shift by
+ one. If we call the above polynomial p, and represent a byte as the
+ polynomial q, also with the lowest power in the most significant bit (so the
+ byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
+ where a mod b means the remainder after dividing a by b.
+
+ This calculation is done using the shift-register method of multiplying and
+ taking the remainder. The register is initialized to zero, and for each
+ incoming bit, x^32 is added mod p to the register if the bit is a one (where
+ x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
+ x (which is shifting right by one and adding x^32 mod p if the bit shifted
+ out is a one). We start with the highest power (least significant bit) of
+ q and repeat for all eight bits of q.
+
+ The first table is simply the CRC of all possible eight bit values. This is
+ all the information needed to generate CRCs on data a byte at a time for all
+ combinations of CRC register values and incoming bytes. The remaining tables
+ allow for word-at-a-time CRC calculation for both big-endian and little-
+ endian machines, where a word is four bytes.
+*/
+void make_crc_table() {
+ uint32_t c;
+ int n, k;
+ uint32_t poly; /* polynomial exclusive-or pattern */
+ /* terms of polynomial defining this crc (except x^32): */
+ static volatile int first = 1; /* flag to limit concurrent making */
+ static const unsigned char p[] = {0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26};
+
+ /* See if another task is already doing this (not thread-safe, but better
+ than nothing -- significantly reduces duration of vulnerability in
+ case the advice about DYNAMIC_CRC_TABLE is ignored) */
+ if (first) {
+ first = 0;
+
+ /* make exclusive-or pattern from polynomial (0xedb88320) */
+ poly = 0;
+ for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
+ poly |= (uint32_t)1 << (31 - p[n]);
+
+ /* generate a crc for every 8-bit value */
+ for (n = 0; n < 256; n++) {
+ c = (uint32_t)n;
+ for (k = 0; k < 8; k++)
+ c = c & 1 ? poly ^ (c >> 1) : c >> 1;
+ crc_table[0][n] = c;
+ }
+
+ /* generate crc for each value followed by one, two, and three zeros,
+ and then the byte reversal of those as well as the first table */
+ for (n = 0; n < 256; n++) {
+ c = crc_table[0][n];
+ crc_table[4][n] = ZSWAP32(c);
+ for (k = 1; k < 4; k++) {
+ c = crc_table[0][c & 0xff] ^ (c >> 8);
+ crc_table[k][n] = c;
+ crc_table[k + 4][n] = ZSWAP32(c);
+ }
+ }
+
+ /* generate zero operators table for crc32_combine() */
+
+ /* generate the operator to apply a single zero bit to a CRC -- the
+ first row adds the polynomial if the low bit is a 1, and the
+ remaining rows shift the CRC right one bit */
+ k = GF2_DIM - 3;
+ crc_comb[k][0] = 0xedb88320UL; /* CRC-32 polynomial */
+ uint32_t row = 1;
+ for (n = 1; n < GF2_DIM; n++) {
+ crc_comb[k][n] = row;
+ row <<= 1;
+ }
+ /* generate operators that apply 2, 4, and 8 zeros to a CRC, putting
+ the last one, the operator for one zero byte, at the 0 position */
+ gf2_matrix_square(crc_comb[k + 1], crc_comb[k]);
+ gf2_matrix_square(crc_comb[k + 2], crc_comb[k + 1]);
+ gf2_matrix_square(crc_comb[0], crc_comb[k + 2]);
+
+ /* generate operators for applying 2^n zero bytes to a CRC, filling out
+ the remainder of the table -- the operators repeat after GF2_DIM
+ values of n, so the table only needs GF2_DIM entries, regardless of
+ the size of the length being processed */
+ for (n = 1; n < k; n++)
+ gf2_matrix_square(crc_comb[n], crc_comb[n - 1]);
+
+ /* mark tables as complete, in case someone else is waiting */
+ crc_table_empty = 0;
+ } else { /* not first */
+ /* wait for the other guy to finish (not efficient, but rare) */
+ while (crc_table_empty)
+ {}
+ }
+ {
+ FILE *out;
+
+ out = fopen("crc32.h", "w");
+ if (out == NULL) return;
+
+ /* write out CRC table to crc32.h */
+ fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
+ fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
+ fprintf(out, "static const uint32_t ");
+ fprintf(out, "crc_table[8][256] =\n{\n {\n");
+ write_table(out, crc_table[0], 256);
+ for (k = 1; k < 8; k++) {
+ fprintf(out, " },\n {\n");
+ write_table(out, crc_table[k], 256);
+ }
+ fprintf(out, " }\n};\n");
+
+ /* write out zero operator table to crc32.h */
+ fprintf(out, "\nstatic const uint32_t ");
+ fprintf(out, "crc_comb[%d][%d] =\n{\n {\n", GF2_DIM, GF2_DIM);
+ write_table(out, crc_comb[0], GF2_DIM);
+ for (k = 1; k < GF2_DIM; k++) {
+ fprintf(out, " },\n {\n");
+ write_table(out, crc_comb[k], GF2_DIM);
+ }
+ fprintf(out, " }\n};\n");
+ fclose(out);
+ }
+}
+
+static void write_table(FILE *out, const uint32_t *table, int k) {
+ int n;
+
+ for (n = 0; n < k; n++)
+ fprintf(out, "%s0x%08" PRIx32 "%s", n % 5 ? "" : " ",
+ (uint32_t)(table[n]),
+ n == k - 1 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
+}
+
+int main()
+{
+ make_crc_table();
+ return 0;
+}
+
+