--- /dev/null
+/*
+ * Copyright (c) 2015-2017, Intel Corporation
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Intel Corporation nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/** \file
+ * \brief Bit-twiddling primitives (ctz, compress etc)
+ */
+
+#ifndef BITUTILS_ARCH_PPC64EL_H
+#define BITUTILS_ARCH_PPC64EL_H
+
+#include "ue2common.h"
+#include "util/popcount.h"
+#include "util/arch.h"
+#include "util/intrinsics.h"
+
+#include "util/arch/common/bitutils.h"
+
+static really_inline
+u32 clz32_impl(u32 x) {
+ return clz32_impl_c(x);
+}
+
+static really_inline
+u32 clz64_impl(u64a x) {
+ return clz64_impl_c(x);
+}
+
+static really_inline
+u32 ctz32_impl(u32 x) {
+ return ctz32_impl_c(x);
+}
+
+static really_inline
+u32 ctz64_impl(u64a x) {
+ return ctz64_impl_c(x);
+}
+
+static really_inline
+u32 lg2_impl(u32 x) {
+ return lg2_impl_c(x);
+}
+
+static really_inline
+u64a lg2_64_impl(u64a x) {
+ return lg2_64_impl_c(x);
+}
+
+static really_inline
+u32 findAndClearLSB_32_impl(u32 *v) {
+ return findAndClearLSB_32_impl_c(v);
+}
+
+static really_inline
+u32 findAndClearLSB_64_impl(u64a *v) {
+ return findAndClearLSB_64_impl_c(v);
+}
+
+static really_inline
+u32 findAndClearMSB_32_impl(u32 *v) {
+ u32 val = *v;
+ u32 offset = 31 - clz32_impl(val);
+ *v = val & ~(1 << offset);
+ assert(offset < 32);
+ return offset;
+}
+
+static really_inline
+u32 findAndClearMSB_64_impl(u64a *v) {
+ return findAndClearMSB_64_impl_c(v);
+}
+
+static really_inline
+u32 compress32_impl(u32 x, u32 m) {
+ return compress32_impl_c(x, m);
+}
+
+static really_inline
+u64a compress64_impl(u64a x, u64a m) {
+ return compress64_impl_c(x, m);
+}
+
+static really_inline
+m128 compress128_impl(m128 x, m128 m) {
+ m128 one = set1_2x64(1);
+ m128 bitset = one;
+ m128 vres = zeroes128();
+ while (isnonzero128(m)) {
+ m128 mm = sub_2x64(zeroes128(), m);
+ m128 tv = and128(x, m);
+ tv = and128(tv, mm);
+
+ m128 mask = not128(eq64_m128(tv, zeroes128()));
+ mask = and128(bitset, mask);
+ vres = or128(vres, mask);
+ m = and128(m, sub_2x64(m, one));
+ bitset = lshift64_m128(bitset, 1);
+ }
+ return vres;
+}
+
+static really_inline
+u32 expand32_impl(u32 x, u32 m) {
+ return expand32_impl_c(x, m);
+}
+
+static really_inline
+u64a expand64_impl(u64a x, u64a m) {
+ return expand64_impl_c(x, m);
+}
+
+static really_inline
+m128 expand128_impl(m128 x, m128 m) {
+ m128 one = set1_2x64(1);
+ m128 bitset = one;
+ m128 vres = zeroes128();
+ while (isnonzero128(m)) {
+ m128 tv = and128(x, m);
+
+ m128 mm = sub_2x64(zeroes128(), m);
+ m128 mask = not128(eq64_m128(tv, zeroes128()));
+ mask = and128(bitset, mask);
+ mask = and128(mask, mm);
+ vres = or128(vres, mask);
+ m = and128(m, sub_2x64(m, one));
+ bitset = lshift64_m128(bitset, 1);
+ }
+ return vres;
+}
+
+/* returns the first set bit after begin (if not ~0U). If no bit is set after
+ * begin returns ~0U
+ */
+static really_inline
+u32 bf64_iterate_impl(u64a bitfield, u32 begin) {
+ if (begin != ~0U) {
+ /* switch off all bits at or below begin. Note: not legal to shift by
+ * by size of the datatype or larger. */
+ assert(begin <= 63);
+ bitfield &= ~((2ULL << begin) - 1);
+ }
+
+ if (!bitfield) {
+ return ~0U;
+ }
+
+ return ctz64_impl(bitfield);
+}
+
+static really_inline
+char bf64_set_impl(u64a *bitfield, u32 i) {
+ return bf64_set_impl_c(bitfield, i);
+}
+
+static really_inline
+void bf64_unset_impl(u64a *bitfield, u32 i) {
+ return bf64_unset_impl_c(bitfield, i);
+}
+
+static really_inline
+u32 rank_in_mask32_impl(u32 mask, u32 bit) {
+ return rank_in_mask32_impl_c(mask, bit);
+}
+
+static really_inline
+u32 rank_in_mask64_impl(u64a mask, u32 bit) {
+ return rank_in_mask64_impl_c(mask, bit);
+}
+
+static really_inline
+u32 pext32_impl(u32 x, u32 mask) {
+ return pext32_impl_c(x, mask);
+}
+
+static really_inline
+u64a pext64_impl(u64a x, u64a mask) {
+ return pext64_impl_c(x, mask);
+}
+
+static really_inline
+u64a pdep64(u64a x, u64a mask) {
+ return pdep64_impl_c(x, mask);
+}
+
+/* compilers don't reliably synthesize the 32-bit ANDN instruction here,
+ * so we force its generation.
+ */
+static really_inline
+u64a andn_impl(const u32 a, const u8 *b) {
+ return andn_impl_c(a, b);
+}
+
+#endif // BITUTILS_ARCH_ARM_H
--- /dev/null
+/*
+ * Copyright (c) 2015-2020, Intel Corporation
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Intel Corporation nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/** \file
+ * \brief SIMD types and primitive operations.
+ */
+
+#ifndef ARCH_PPC64EL_SIMD_UTILS_H
+#define ARCH_PPC64EL_SIMD_UTILS_H
+
+#include <stdio.h>
+
+#include "ue2common.h"
+#include "util/simd_types.h"
+#include "util/unaligned.h"
+#include "util/intrinsics.h"
+
+#include <string.h> // for memcpy
+
+typedef __vector uint64_t uint64x2_t;
+typedef __vector int64_t int64x2_t;
+typedef __vector uint32_t uint32x4_t;
+typedef __vector int32_t int32x4_t;
+typedef __vector uint16_t uint16x8_t;
+typedef __vector int16_t int16x8_t;
+typedef __vector uint8_t uint8x16_t;
+typedef __vector int8_t int8x16_t;
+
+static really_inline m128 ones128(void) {
+ return (m128) vec_splat_s8(0xFF);
+}
+
+static really_inline m128 zeroes128(void) {
+ return (m128) vec_splat_s32(0);
+}
+
+/** \brief Bitwise not for m128*/
+static really_inline m128 not128(m128 a) {
+ return (m128) vec_xor(a, a);
+}
+
+/** \brief Return 1 if a and b are different otherwise 0 */
+static really_inline int diff128(m128 a, m128 b) {
+ return vec_any_ne(a, b);
+}
+
+static really_inline int isnonzero128(m128 a) {
+ return diff128(a, zeroes128());
+}
+
+/**
+ * "Rich" version of diff128(). Takes two vectors a and b and returns a 4-bit
+ * mask indicating which 32-bit words contain differences.
+ */
+static really_inline u32 diffrich128(m128 a, m128 b) {
+ static const m128 movemask = { 1, 2, 4, 8 };
+ m128 mask = (m128) vec_cmpeq(a, b);
+ mask = vec_and(vec_xor(mask, mask), movemask);
+ m128 sum = vec_sums(mask, zeroes128());
+ sum = vec_sld(zeroes128(), sum, 4);
+ s32 ALIGN_ATTR(16) x;
+ vec_ste(sum, 0, &x);
+ return x;
+}
+
+/**
+ * "Rich" version of diff128(), 64-bit variant. Takes two vectors a and b and
+ * returns a 4-bit mask indicating which 64-bit words contain differences.
+ */
+static really_inline u32 diffrich64_128(m128 a, m128 b) {
+ static const uint64x2_t movemask = { 1, 4 };
+ uint64x2_t mask = (uint64x2_t) vec_cmpeq((uint64x2_t)a, (uint64x2_t)b);
+ mask = vec_and(vec_xor(mask, mask), movemask);
+ m128 sum = vec_sums((m128)mask, zeroes128());
+ sum = vec_sld(zeroes128(), sum, 4);
+ s32 ALIGN_ATTR(16) x;
+ vec_ste(sum, 0, &x);
+ return x;
+}
+
+static really_really_inline
+m128 add_2x64(m128 a, m128 b) {
+ return (m128) vec_add((uint64x2_t)a, (uint64x2_t)b);
+}
+
+static really_really_inline
+m128 sub_2x64(m128 a, m128 b) {
+ return (m128) vec_sub((uint64x2_t)a, (uint64x2_t)b);
+}
+
+static really_really_inline
+m128 lshift_m128(m128 a, unsigned b) {
+ return (m128) vshlq_n_s32((int64x2_t)a, b);
+}
+
+static really_really_inline
+m128 rshift_m128(m128 a, unsigned b) {
+ return (m128) vshrq_n_s32((int64x2_t)a, b);
+}
+
+static really_really_inline
+m128 lshift64_m128(m128 a, unsigned b) {
+ return (m128) vshlq_n_s64((int64x2_t)a, b);
+}
+
+static really_really_inline
+m128 rshift64_m128(m128 a, unsigned b) {
+ return (m128) vshrq_n_s64((int64x2_t)a, b);
+}
+
+static really_inline m128 eq128(m128 a, m128 b) {
+ return (m128) vceqq_s8((int8x16_t)a, (int8x16_t)b);
+}
+
+static really_inline m128 eq64_m128(m128 a, m128 b) {
+ return (m128) vceqq_u64((int64x2_t)a, (int64x2_t)b);
+}
+
+
+static really_inline u32 movemask128(m128 a) {
+ static const uint8x16_t powers = { 1, 2, 4, 8, 16, 32, 64, 128, 1, 2, 4, 8, 16, 32, 64, 128 };
+
+ // Compute the mask from the input
+ uint64x2_t mask = vpaddlq_u32(vpaddlq_u16(vpaddlq_u8(vandq_u8((uint8x16_t)a, powers))));
+ uint64x2_t mask1 = (m128)vextq_s8(mask, zeroes128(), 7);
+ mask = vorrq_u8(mask, mask1);
+
+ // Get the resulting bytes
+ uint16_t output;
+ vst1q_lane_u16((uint16_t*)&output, (uint16x8_t)mask, 0);
+ return output;
+}
+
+static really_inline m128 set1_16x8(u8 c) {
+ return (m128) vdupq_n_u8(c);
+}
+
+static really_inline m128 set1_4x32(u32 c) {
+ return (m128) vdupq_n_u32(c);
+}
+
+static really_inline m128 set1_2x64(u64a c) {
+ return (m128) vdupq_n_u64(c);
+}
+
+static really_inline u32 movd(const m128 in) {
+ return vgetq_lane_u32((uint32x4_t) in, 0);
+}
+
+static really_inline u64a movq(const m128 in) {
+ return vgetq_lane_u64((uint64x2_t) in, 0);
+}
+
+/* another form of movq */
+static really_inline
+m128 load_m128_from_u64a(const u64a *p) {
+ return (m128) vsetq_lane_u64(*p, zeroes128(), 0);
+}
+
+static really_inline u32 extract32from128(const m128 in, unsigned imm) {
+#if defined(HS_OPTIMIZE)
+ return vgetq_lane_u32((uint32x4_t) in, imm);
+#else
+ switch (imm) {
+ case 0:
+ return vgetq_lane_u32((uint32x4_t) in, 0);
+ break;
+ case 1:
+ return vgetq_lane_u32((uint32x4_t) in, 1);
+ break;
+ case 2:
+ return vgetq_lane_u32((uint32x4_t) in, 2);
+ break;
+ case 3:
+ return vgetq_lane_u32((uint32x4_t) in, 3);
+ break;
+ default:
+ return 0;
+ break;
+ }
+#endif
+}
+
+static really_inline u64a extract64from128(const m128 in, unsigned imm) {
+#if defined(HS_OPTIMIZE)
+ return vgetq_lane_u64((uint64x2_t) in, imm);
+#else
+ switch (imm) {
+ case 0:
+ return vgetq_lane_u64((uint32x4_t) in, 0);
+ break;
+ case 1:
+ return vgetq_lane_u64((uint32x4_t) in, 1);
+ break;
+ default:
+ return 0;
+ break;
+ }
+#endif
+}
+
+static really_inline m128 low64from128(const m128 in) {
+ return vcombine_u64(vget_low_u64(in), vdup_n_u64(0));
+}
+
+static really_inline m128 high64from128(const m128 in) {
+ return vcombine_u64(vget_high_u64(in), vdup_n_u64(0));
+}
+
+static really_inline m128 add128(m128 a, m128 b) {
+ return (m128) vaddq_u64((uint64x2_t)a, (uint64x2_t)b);
+}
+
+static really_inline m128 and128(m128 a, m128 b) {
+ return (m128) vandq_s8((int8x16_t)a, (int8x16_t)b);
+}
+
+static really_inline m128 xor128(m128 a, m128 b) {
+ return (m128) veorq_s8((int8x16_t)a, (int8x16_t)b);
+}
+
+static really_inline m128 or128(m128 a, m128 b) {
+ return (m128) vorrq_s8((int8x16_t)a, (int8x16_t)b);
+}
+
+static really_inline m128 andnot128(m128 a, m128 b) {
+ return (m128) (m128) vandq_s8( vmvnq_s8(a), b);
+}
+
+// aligned load
+static really_inline m128 load128(const void *ptr) {
+ assert(ISALIGNED_N(ptr, alignof(m128)));
+ return (m128) vld1q_s32((const int32_t *)ptr);
+}
+
+// aligned store
+static really_inline void store128(void *ptr, m128 a) {
+ assert(ISALIGNED_N(ptr, alignof(m128)));
+ vst1q_s32((int32_t *)ptr, a);
+}
+
+// unaligned load
+static really_inline m128 loadu128(const void *ptr) {
+ return (m128) vld1q_s32((const int32_t *)ptr);
+}
+
+// unaligned store
+static really_inline void storeu128(void *ptr, m128 a) {
+ vst1q_s32((int32_t *)ptr, a);
+}
+
+// packed unaligned store of first N bytes
+static really_inline
+void storebytes128(void *ptr, m128 a, unsigned int n) {
+ assert(n <= sizeof(a));
+ memcpy(ptr, &a, n);
+}
+
+// packed unaligned load of first N bytes, pad with zero
+static really_inline
+m128 loadbytes128(const void *ptr, unsigned int n) {
+ m128 a = zeroes128();
+ assert(n <= sizeof(a));
+ memcpy(&a, ptr, n);
+ return a;
+}
+
+
+#define CASE_ALIGN_VECTORS(a, b, offset) case offset: return (m128)vextq_s8((int8x16_t)(a), (int8x16_t)(b), (offset)); break;
+
+static really_really_inline
+m128 palignr_imm(m128 r, m128 l, int offset) {
+ switch (offset) {
+ case 0: return l; break;
+ CASE_ALIGN_VECTORS(l, r, 1);
+ CASE_ALIGN_VECTORS(l, r, 2);
+ CASE_ALIGN_VECTORS(l, r, 3);
+ CASE_ALIGN_VECTORS(l, r, 4);
+ CASE_ALIGN_VECTORS(l, r, 5);
+ CASE_ALIGN_VECTORS(l, r, 6);
+ CASE_ALIGN_VECTORS(l, r, 7);
+ CASE_ALIGN_VECTORS(l, r, 8);
+ CASE_ALIGN_VECTORS(l, r, 9);
+ CASE_ALIGN_VECTORS(l, r, 10);
+ CASE_ALIGN_VECTORS(l, r, 11);
+ CASE_ALIGN_VECTORS(l, r, 12);
+ CASE_ALIGN_VECTORS(l, r, 13);
+ CASE_ALIGN_VECTORS(l, r, 14);
+ CASE_ALIGN_VECTORS(l, r, 15);
+ case 16: return r; break;
+ default:
+ return zeroes128();
+ break;
+ }
+}
+
+static really_really_inline
+m128 palignr(m128 r, m128 l, int offset) {
+#if defined(HS_OPTIMIZE)
+ return (m128)vextq_s8((int8x16_t)l, (int8x16_t)r, offset);
+#else
+ return palignr_imm(r, l, offset);
+#endif
+}
+#undef CASE_ALIGN_VECTORS
+
+static really_really_inline
+m128 rshiftbyte_m128(m128 a, unsigned b) {
+ return palignr(zeroes128(), a, b);
+}
+
+static really_really_inline
+m128 lshiftbyte_m128(m128 a, unsigned b) {
+ return palignr(a, zeroes128(), 16 - b);
+}
+
+static really_inline
+m128 variable_byte_shift_m128(m128 in, s32 amount) {
+ assert(amount >= -16 && amount <= 16);
+ static const uint8x16_t vbs_mask = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f };
+ const uint8x16_t outside_mask = set1_16x8(0xf0);
+
+ m128 shift_mask = palignr_imm(vbs_mask, outside_mask, 16 - amount);
+ return vqtbl1q_s8(in, shift_mask);
+}
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+extern const u8 simd_onebit_masks[];
+#ifdef __cplusplus
+}
+#endif
+
+static really_inline
+m128 mask1bit128(unsigned int n) {
+ assert(n < sizeof(m128) * 8);
+ u32 mask_idx = ((n % 8) * 64) + 95;
+ mask_idx -= n / 8;
+ return loadu128(&simd_onebit_masks[mask_idx]);
+}
+
+// switches on bit N in the given vector.
+static really_inline
+void setbit128(m128 *ptr, unsigned int n) {
+ *ptr = or128(mask1bit128(n), *ptr);
+}
+
+// switches off bit N in the given vector.
+static really_inline
+void clearbit128(m128 *ptr, unsigned int n) {
+ *ptr = andnot128(mask1bit128(n), *ptr);
+}
+
+// tests bit N in the given vector.
+static really_inline
+char testbit128(m128 val, unsigned int n) {
+ const m128 mask = mask1bit128(n);
+
+ return isnonzero128(and128(mask, val));
+}
+
+static really_inline
+m128 pshufb_m128(m128 a, m128 b) {
+ /* On Intel, if bit 0x80 is set, then result is zero, otherwise which the lane it is &0xf.
+ In NEON, if >=16, then the result is zero, otherwise it is that lane.
+ btranslated is the version that is converted from Intel to NEON. */
+ int8x16_t btranslated = vandq_s8((int8x16_t)b,vdupq_n_s8(0x8f));
+ return (m128)vqtbl1q_s8((int8x16_t)a, (uint8x16_t)btranslated);
+}
+
+static really_inline
+m128 max_u8_m128(m128 a, m128 b) {
+ return (m128) vmaxq_u8((int8x16_t)a, (int8x16_t)b);
+}
+
+static really_inline
+m128 min_u8_m128(m128 a, m128 b) {
+ return (m128) vminq_u8((int8x16_t)a, (int8x16_t)b);
+}
+
+static really_inline
+m128 sadd_u8_m128(m128 a, m128 b) {
+ return (m128) vqaddq_u8((uint8x16_t)a, (uint8x16_t)b);
+}
+
+static really_inline
+m128 sub_u8_m128(m128 a, m128 b) {
+ return (m128) vsubq_u8((uint8x16_t)a, (uint8x16_t)b);
+}
+
+static really_inline
+m128 set4x32(u32 x3, u32 x2, u32 x1, u32 x0) {
+ uint32_t ALIGN_ATTR(16) data[4] = { x0, x1, x2, x3 };
+ return (m128) vld1q_u32((uint32_t *) data);
+}
+
+static really_inline
+m128 set2x64(u64a hi, u64a lo) {
+ uint64_t ALIGN_ATTR(16) data[2] = { lo, hi };
+ return (m128) vld1q_u64((uint64_t *) data);
+}
+
+#endif // ARCH_ARM_SIMD_UTILS_H