if (result == NTRU_OK)
{
- uint32_t i;
+ int i;
- memset(ringel_buf1, 0, params->N * sizeof(uint16_t));
- F_indices = F_poly->get_indices(F_poly);
-
- /* form F as a ring element */
- if (params->is_product_form)
- {
- uint32_t dF3_offset = (dF1 + dF2) << 1;
-
- /* form F1 as a ring element */
- for (i = 0; i < dF1; i++)
- {
- ringel_buf1[F_indices[i]] = 1;
- }
- for (; i < (dF1 << 1); i++)
- {
- ringel_buf1[F_indices[i]] = mod_q_mask;
- }
-
- /* form F1 * F2 */
- ntru_ring_mult_indices(ringel_buf1, (uint16_t)dF2, (uint16_t)dF2,
- F_indices + (dF1 << 1), params->N, params->q,
- scratch_buf, ringel_buf1);
-
- /* form (F1 * F2) + F3 */
- for (i = 0; i < dF3; i++)
- {
- uint16_t index = F_indices[dF3_offset + i];
-
- ringel_buf1[index] = (ringel_buf1[index] + 1) & mod_q_mask;
- }
- for (; i < (dF3 << 1); i++)
- {
- uint16_t index = F_indices[dF3_offset + i];
-
- ringel_buf1[index] = (ringel_buf1[index] - 1) & mod_q_mask;
- }
- }
- else
- {
- /* form F as a ring element */
- for (i = 0; i < dF; i++)
- {
- ringel_buf1[F_indices[i]] = 1;
- }
- for (; i < (dF << 1); i++)
- {
- ringel_buf1[F_indices[i]] = mod_q_mask;
- }
- }
+ F_poly->get_array(F_poly, ringel_buf1);
/* form f = 1 + pF */
for (i = 0; i < params->N; i++)
*pubkey_blob_len = public_key_blob_len;
/* create private key blob */
+ F_indices = F_poly->get_indices(F_poly);
ntru_crypto_ntru_encrypt_key_create_privkey_blob(params, ringel_buf2,
F_indices,
privkey_pack_type,
return TRUE;
}
-
-/* ntru_ring_mult_indices
- *
- * Multiplies ring element (polynomial) "a" by ring element (polynomial) "b"
- * to produce ring element (polynomial) "c" in (Z/qZ)[X]/(X^N - 1).
- * This is a convolution operation.
- *
- * Ring element "b" is a sparse trinary polynomial with coefficients -1, 0,
- * and 1. It is specified by a list, bi, of its nonzero indices containing
- * indices for the bi_P1_len +1 coefficients followed by the indices for the
- * bi_M1_len -1 coefficients.
- * The indices are in the range [0,N).
- *
- * The result array "c" may share the same memory space as input array "a",
- * input array "b", or temp array "t".
- *
- * This assumes q is 2^r where 8 < r < 16, so that overflow of the sum
- * beyond 16 bits does not matter.
- */
-
-void
-ntru_ring_mult_indices(
- uint16_t const *a, /* in - pointer to ring element a */
- uint16_t bi_P1_len, /* in - no. of +1 coefficients in b */
- uint16_t bi_M1_len, /* in - no. of -1 coefficients in b */
- uint16_t const *bi, /* in - pointer to the list of nonzero
- indices of ring element b,
- containing indices for the +1
- coefficients followed by the
- indices for -1 coefficients */
- uint16_t N, /* in - no. of coefficients in a, b, c */
- uint16_t q, /* in - large modulus */
- uint16_t *t, /* in - temp buffer of N elements */
- uint16_t *c) /* out - address for polynomial c */
-{
- uint16_t mod_q_mask = q - 1;
- uint16_t i, j, k;
-
- /* t[(i+k)%N] = sum i=0 through N-1 of a[i], for b[k] = -1 */
-
- for (k = 0; k < N; k++)
- t[k] = 0;
- for (j = bi_P1_len; j < bi_P1_len + bi_M1_len; j++) {
- k = bi[j];
- for (i = 0; k < N; ++i, ++k)
- t[k] = t[k] + a[i];
- for (k = 0; i < N; ++i, ++k)
- t[k] = t[k] + a[i];
- }
-
- /* t[(i+k)%N] = -(sum i=0 through N-1 of a[i] for b[k] = -1) */
-
- for (k = 0; k < N; k++)
- t[k] = -t[k];
-
- /* t[(i+k)%N] += sum i=0 through N-1 of a[i] for b[k] = +1 */
-
- for (j = 0; j < bi_P1_len; j++) {
- k = bi[j];
- for (i = 0; k < N; ++i, ++k)
- t[k] = t[k] + a[i];
- for (k = 0; i < N; ++i, ++k)
- t[k] = t[k] + a[i];
- }
-
- /* c = (a * b) mod q */
-
- for (k = 0; k < N; k++)
- c[k] = t[k] & mod_q_mask;
-}
-
/* ntru_ring_mult_coefficients
*
* Multiplies ring element (polynomial) "a" by ring element (polynomial) "b"
uint8_t *ringels, /* in - pointer to trinary ring elements */
uint16_t min_wt); /* in - minimum weight */
-
-/* ntru_ring_mult_indices
- *
- * Multiplies ring element (polynomial) "a" by ring element (polynomial) "b"
- * to produce ring element (polynomial) "c" in (Z/qZ)[X]/(X^N - 1).
- * This is a convolution operation.
- *
- * Ring element "b" is a sparse trinary polynomial with coefficients -1, 0,
- * and 1. It is specified by a list, bi, of its nonzero indices containing
- * indices for the bi_P1_len +1 coefficients followed by the indices for the
- * bi_M1_len -1 coefficients.
- * The indices are in the range [0,N).
- *
- * The result array "c" may share the same memory space as input array "a",
- * or input array "b".
- *
- * This assumes q is 2^r where 8 < r < 16, so that overflow of the sum
- * beyond 16 bits does not matter.
- */
-
-extern void
-ntru_ring_mult_indices(
- uint16_t const *a, /* in - pointer to ring element a */
- uint16_t bi_P1_len, /* in - no. of +1 coefficients in b */
- uint16_t bi_M1_len, /* in - no. of -1 coefficients in b */
- uint16_t const *bi, /* in - pointer to the list of nonzero
- indices of ring element b,
- containing indices for the +1
- coefficients followed by the
- indices for -1 coefficients */
- uint16_t N, /* in - no. of coefficients in a, b, c */
- uint16_t q, /* in - large modulus */
- uint16_t *t, /* in - temp buffer of N elements */
- uint16_t *c); /* out - address for polynomial c */
-
/* ntru_ring_mult_coefficients
*
* Multiplies ring element (polynomial) "a" by ring element (polynomial) "b"
{
return this->indices;
}
+
/**
* Multiplication of polynomial a with a sparse polynomial b given by
* the indices of its +1 and -1 coefficients results in polynomial c.
}
}
+METHOD(ntru_poly_t, get_array, void,
+ private_ntru_poly_t *this, uint16_t *array)
+{
+ uint16_t *t, *bi;
+ uint16_t mod_q_mask = this->q - 1;
+ indices_len_t len;
+ int i;
+
+ /* form polynomial F or F1 */
+ memset(array, 0x00, this->N * sizeof(uint16_t));
+ bi = this->indices;
+ len = this->indices_len[0];
+ for (i = 0; i < len.p + len.m; i++)
+ {
+ array[bi[i]] = (i < len.p) ? 1 : mod_q_mask;
+ }
+
+ if (this->num_polynomials == 3)
+ {
+ /* allocate temporary array t */
+ t = malloc(this->N * sizeof(uint16_t));
+
+ /* form F1 * F2 */
+ bi += len.p + len.m;
+ len = this->indices_len[1];
+ ring_mult_i(array, len, bi, this->N, mod_q_mask, t, array);
+
+ /* form (F1 * F2) + F3 */
+ bi += len.p + len.m;
+ len = this->indices_len[2];
+ for (i = 0; i < len.p + len.m; i++)
+ {
+ if (i < len.p)
+ {
+ array[bi[i]] += 1;
+ }
+ else
+ {
+ array[bi[i]] -= 1;
+ }
+ array[bi[i]] &= mod_q_mask;
+ }
+ free(t);
+ }
+}
+
METHOD(ntru_poly_t, ring_mult, void,
private_ntru_poly_t *this, uint16_t *a, uint16_t *c)
{
.public = {
.get_size = _get_size,
.get_indices = _get_indices,
+ .get_array = _get_array,
.ring_mult = _ring_mult,
.destroy = _destroy,
},
.public = {
.get_size = _get_size,
.get_indices = _get_indices,
+ .get_array = _get_array,
.ring_mult = _ring_mult,
.destroy = _destroy,
},
*/
uint16_t* (*get_indices)(ntru_poly_t *this);
+ /**
+ * @param array array containing all N coefficients of the polynomial
+ */
+ void (*get_array)(ntru_poly_t *this, uint16_t *array);
+
/**
* Multiply polynomial a with ntru_poly_t object b having sparse coeffients
* to form result polynomial c = a * b
t->indices_len_m, t->is_product_form);
ck_assert(poly != NULL);
- c = malloc(sizeof(uint16_t) * t->N);
+ c = malloc(t->N * sizeof(uint16_t));
poly->ring_mult(poly, t->a, c);
for (i = 0; i < t->N; i++)
}
END_TEST
+int array_tests[] = { 0, 11, 12, 16 };
+
+START_TEST(test_ntru_array)
+{
+ ntru_poly_t *poly;
+ ring_mult_test_t *t;
+ uint16_t *c;
+ int i;
+
+ t = &ring_mult_tests[array_tests[_i]];
+
+ poly = ntru_poly_create_from_data(t->indices, t->N, t->q, t->indices_len_p,
+ t->indices_len_m, t->is_product_form);
+ ck_assert(poly != NULL);
+
+ c = malloc(t->N * sizeof(uint16_t));
+ poly->get_array(poly, c);
+
+ for (i = 0; i < t->N; i++)
+ {
+ ck_assert(c[i] == t->c[i]);
+ }
+
+ free(c);
+ poly->destroy(poly);
+}
+END_TEST
+
START_TEST(test_ntru_ke)
{
chunk_t pub_key, cipher_text, i_shared_secret, r_shared_secret;
tcase_add_loop_test(tc, test_ntru_ring_mult, 0, countof(ring_mult_tests));
suite_add_tcase(s, tc);
+ tc = tcase_create("array");
+ tcase_add_loop_test(tc, test_ntru_array, 0, countof(array_tests));
+ suite_add_tcase(s, tc);
+
tc = tcase_create("ke");
tcase_add_loop_test(tc, test_ntru_ke, 0, countof(params));
suite_add_tcase(s, tc);