--- /dev/null
+/* Basic container usage. */
+
+#include <vector>
+#include <deque>
+#include <list>
+#include <set>
+#include <map>
+#if __cplusplus >= 201103L
+#include <array>
+#include <forward_list>
+#include <unordered_set>
+#include <unordered_map>
+#endif
+
+bool vector_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ std::vector<int> vector;
+ ok = vector.empty();
+ }
+ return ok;
+}
+
+bool deque_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ std::deque<int> deque;
+ ok = deque.empty();
+ }
+ return ok;
+}
+
+bool list_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ std::list<int> list;
+ ok = list.empty();
+ }
+ return ok;
+}
+
+bool map_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ std::map<int, int> map;
+ ok = map.empty();
+ }
+ return ok;
+}
+
+bool set_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ std::set<int> set;
+ ok = set.empty();
+ }
+ return ok;
+}
+
+bool multimap_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ std::multimap<int, int> multimap;
+ ok = multimap.empty();
+ }
+ return ok;
+}
+
+bool multiset_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ std::multiset<int, int> multiset;
+ ok = multiset.empty();
+ }
+ return ok;
+}
+
+#if __cplusplus >= 201103L
+
+bool array_test()
+{
+ static constexpr std::size_t array_size = 42;
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ std::array<int, array_size> array{};
+ ok = array[0] == 0
+ && array[array_size - 1] == 0;
+ }
+ return ok;
+}
+
+bool forward_list_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ std::forward_list<int> forward_list;
+ ok = forward_list.empty();
+ }
+ return ok;
+}
+
+bool unordered_map_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ std::unordered_map<int, int> unordered_map;
+ ok = unordered_map.empty();
+ }
+ return ok;
+}
+
+bool unordered_set_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ std::unordered_set<int> unordered_set;
+ ok = unordered_set.empty();
+ }
+ return ok;
+}
+
+bool unordered_multimap_test()
+{
+
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ std::unordered_multimap<int, int> unordered_multimap;
+ ok = unordered_multimap.empty();
+ }
+ return ok;
+}
+
+bool unordered_multiset_test()
+{
+
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ std::unordered_multiset<int> unordered_multiset;
+ ok = unordered_multiset.empty();
+ }
+ return ok;
+}
+
+#else
+bool array_test() { return true; }
+bool forward_list_test() { return true; }
+bool unordered_map_test() { return true; }
+bool unordered_set_test() { return true; }
+bool unordered_multimap_test() { return true; }
+bool unordered_multiset_test() { return true; }
+#endif
+
+int main()
+{
+ const bool vec_res = vector_test();
+ __builtin_printf("vector : %s\n", vec_res ? "PASS" : "FAIL");
+ const bool deque_res = deque_test();
+ __builtin_printf("deque : %s\n", deque_res ? "PASS" : "FAIL");
+ const bool list_res = list_test();
+ __builtin_printf("list : %s\n", list_res ? "PASS" : "FAIL");
+ const bool map_res = map_test();
+ __builtin_printf("map : %s\n", map_res ? "PASS" : "FAIL");
+ const bool set_res = set_test();
+ __builtin_printf("set : %s\n", set_res ? "PASS" : "FAIL");
+ const bool multimap_res = multimap_test();
+ __builtin_printf("multimap : %s\n", multimap_res ? "PASS" : "FAIL");
+ const bool multiset_res = multiset_test();
+ __builtin_printf("multiset : %s\n", multiset_res ? "PASS" : "FAIL");
+ const bool array_res = array_test();
+ __builtin_printf("array : %s\n", array_res ? "PASS" : "FAIL");
+ const bool forward_list_res = forward_list_test();
+ __builtin_printf("forward_list : %s\n", forward_list_res ? "PASS" : "FAIL");
+ const bool unordered_map_res = unordered_map_test();
+ __builtin_printf("unordered_map : %s\n", unordered_map_res ? "PASS" : "FAIL");
+ const bool unordered_set_res = unordered_set_test();
+ __builtin_printf("unordered_set : %s\n", unordered_set_res ? "PASS" : "FAIL");
+ const bool unordered_multimap_res = unordered_multimap_test();
+ __builtin_printf("unordered_multimap: %s\n", unordered_multimap_res ? "PASS" : "FAIL");
+ const bool unordered_multiset_res = unordered_multiset_test();
+ __builtin_printf("unordered_multiset: %s\n", unordered_multiset_res ? "PASS" : "FAIL");
+ const bool ok = vec_res
+ && deque_res
+ && list_res
+ && map_res
+ && set_res
+ && multimap_res
+ && multiset_res
+ && array_res
+ && forward_list_res
+ && unordered_map_res
+ && unordered_set_res
+ && unordered_multimap_res
+ && unordered_multiset_res;
+ return ok ? 0 : 1;
+}
--- /dev/null
+/* Container adaptors in target region.
+ Does not test comparison operators other than equality to allow these tests
+ to be generalized to arbitrary input data. */
+
+#include <algorithm>
+#include <cstdio>
+#include <deque>
+#include <queue>
+#include <stack>
+#include <vector>
+
+#include "target-flex-common.h"
+
+template<typename T, std::size_t Size>
+bool test_stack(T (&arr)[Size])
+{
+ bool ok;
+ #pragma omp target map(from: ok) map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ const std::size_t half_size = Size / 2;
+ const T first_element = arr[0];
+ const T middle_element = arr[half_size - 1];
+ const T last_element = arr[Size - 1];
+ typedef std::stack<T, std::vector<T> > stack_type;
+ stack_type stack;
+ VERIFY (stack.empty());
+ VERIFY (stack.size() == 0);
+ {
+ /* Do half with push. */
+ std::size_t idx = 0;
+ for (; idx < half_size; ++idx)
+ {
+ stack.push(arr[idx]);
+ VERIFY (stack.top() == arr[idx]);
+ }
+ VERIFY (stack.size() == half_size);
+ VERIFY (static_cast<const stack_type&>(stack).size() == half_size);
+ for (; idx < Size; ++idx)
+ {
+ #if __cplusplus >= 201103L
+ /* Do the rest with emplace if C++11 or higher. */
+ stack.emplace(arr[idx]);
+ #else
+ /* Otherwise just use push again. */
+ stack.push(arr[idx]);
+ #endif
+ VERIFY (stack.top() == arr[idx]);
+ }
+ VERIFY (stack.size() == Size);
+ VERIFY (static_cast<const stack_type&>(stack).size() == Size);
+
+ const stack_type stack_orig = stack_type(std::vector<T>(arr, arr + Size));
+ VERIFY (stack == stack_orig);
+ /* References are contained in their own scope so we don't accidently
+ add tests referencing them after they have been invalidated. */
+ {
+ const T& const_top = static_cast<const stack_type&>(stack).top();
+ VERIFY (const_top == last_element);
+ T& mutable_top = stack.top();
+ mutable_top = first_element;
+ VERIFY (const_top == first_element);
+ }
+ /* Will only compare inequal if the first and last elements are different. */
+ VERIFY (first_element != last_element || stack != stack_orig);
+ for (std::size_t count = Size - half_size; count != 0; --count)
+ stack.pop();
+ VERIFY (stack.top() == middle_element);
+ const stack_type stack_half_orig = stack_type(std::vector<T>(arr, arr + half_size));
+ VERIFY (stack == stack_half_orig);
+ }
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+template<typename T, std::size_t Size>
+bool test_queue(T (&arr)[Size])
+{
+ bool ok;
+ #pragma omp target map(from: ok) map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ const std::size_t half_size = Size / 2;
+ const T first_element = arr[0];
+ const T last_element = arr[Size - 1];
+ typedef std::queue<T, std::deque<T> > queue_type;
+ queue_type queue;
+ VERIFY (queue.empty());
+ VERIFY (queue.size() == 0);
+ {
+ /* Do half with push. */
+ std::size_t idx = 0;
+ for (; idx < half_size; ++idx)
+ {
+ queue.push(arr[idx]);
+ VERIFY (queue.back() == arr[idx]);
+ VERIFY (queue.front() == first_element);
+ }
+ VERIFY (queue.size() == half_size);
+ VERIFY (static_cast<const queue_type&>(queue).size() == half_size);
+ for (; idx < Size; ++idx)
+ {
+ #if __cplusplus >= 201103L
+ /* Do the rest with emplace if C++11 or higher. */
+ queue.emplace(arr[idx]);
+ #else
+ /* Otherwise just use push again. */
+ queue.push(arr[idx]);
+ #endif
+ VERIFY (queue.back() == arr[idx]);
+ }
+ VERIFY (queue.size() == Size);
+ VERIFY (static_cast<const queue_type&>(queue).size() == Size);
+
+ const queue_type queue_orig = queue_type(std::deque<T>(arr, arr + Size));
+ VERIFY (queue == queue_orig);
+
+ /* References are contained in their own scope so we don't accidently
+ add tests referencing them after they have been invalidated. */
+ {
+ const T& const_front = static_cast<const queue_type&>(queue).front();
+ VERIFY (const_front == first_element);
+ T& mutable_front = queue.front();
+
+ const T& const_back = static_cast<const queue_type&>(queue).back();
+ VERIFY (const_back == last_element);
+ T& mutable_back = queue.back();
+ {
+ using std::swap;
+ swap(mutable_front, mutable_back);
+ }
+ VERIFY (const_front == last_element);
+ VERIFY (const_back == first_element);
+ /* Will only compare inequal if the first and last elements are different. */
+ VERIFY (first_element != last_element || queue != queue_orig);
+ /* Return the last element to normal for the next comparison. */
+ mutable_back = last_element;
+ }
+
+ const T middle_element = arr[half_size];
+ for (std::size_t count = Size - half_size; count != 0; --count)
+ queue.pop();
+ VERIFY (queue.front() == middle_element);
+ const queue_type queue_upper_half = queue_type(std::deque<T>(arr + half_size, arr + Size));
+ VERIFY (queue == queue_upper_half);
+ }
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+template<typename T, std::size_t Size>
+bool test_priority_queue(T (&arr)[Size], const T min_value, const T max_value)
+{
+ bool ok;
+ #pragma omp target map(from: ok) map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ typedef std::priority_queue<T, std::vector<T> > priority_queue_type;
+ {
+ priority_queue_type pqueue;
+ VERIFY (pqueue.empty());
+ VERIFY (pqueue.size() == 0);
+ }
+ {
+ priority_queue_type pqueue(arr, arr + Size);
+ VERIFY (!pqueue.empty());
+ VERIFY (pqueue.size() == Size);
+ VERIFY (static_cast<const priority_queue_type&>(pqueue).size() == Size);
+
+ const T old_max = pqueue.top();
+
+ #if __cplusplus >= 201103L
+ pqueue.emplace(max_value);
+ #else
+ pqueue.push(max_value);
+ #endif
+ VERIFY (pqueue.top() == max_value);
+ pqueue.pop();
+ VERIFY (pqueue.top() == old_max);
+ pqueue.push(min_value);
+ VERIFY (pqueue.top() == old_max);
+ pqueue.push(max_value);
+ VERIFY (pqueue.top() == max_value);
+ pqueue.pop();
+ VERIFY (pqueue.top() == old_max);
+ VERIFY (pqueue.size() == Size + 1);
+
+ for (std::size_t count = Size; count != 0; --count)
+ pqueue.pop();
+ VERIFY (pqueue.size() == 1);
+ VERIFY (pqueue.top() == min_value);
+ }
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+int main()
+{
+ int arr[10] = {0,1,2,3,4,5,6,7,8,9};
+
+ return test_stack(arr)
+ && test_queue(arr)
+ && test_priority_queue(arr, 0, 1000) ? 0 : 1;
+}
--- /dev/null
+/* { dg-additional-options -std=c++23 } */
+
+/* C++23 container adaptors in target region.
+ Severely needs additional tests. */
+
+#include <cstdio>
+#include <utility>
+#include <version>
+
+#if __cpp_lib_flat_map >= 202207L
+#define ENABLE_FLAT_MAP 1
+#endif
+#if __cpp_lib_flat_set >= 202207L
+#define ENABLE_FLAT_SET 1
+#endif
+
+#ifdef ENABLE_FLAT_MAP
+#include <flat_map>
+#endif
+#ifdef ENABLE_FLAT_SET
+#include <flat_set>
+#endif
+
+#include "target-flex-common.h"
+
+#ifdef ENABLE_FLAT_MAP
+template<typename K, typename V, typename std::size_t Size>
+bool test_flat_map(std::pair<K, V> (&arr)[Size])
+{
+ bool ok;
+ #pragma omp target map(from: ok) map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ using flat_map_type = std::flat_map<K, V>;
+ flat_map_type map = {arr, arr + Size};
+
+ VERIFY (!map.empty());
+ for (const auto& element : arr)
+ VERIFY (map.contains(element.first));
+ }
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+template<typename K, typename V, typename std::size_t Size>
+bool test_flat_multimap(std::pair<K, V> (&arr)[Size])
+{
+ bool ok;
+ #pragma omp target map(from: ok) map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ using flat_map_type = std::flat_map<K, V>;
+ flat_map_type map = {arr, arr + Size};
+
+ VERIFY (!map.empty());
+ for (const auto& element : arr)
+ VERIFY (map.contains(element.first));
+ }
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+#else
+template<typename K, typename V, typename std::size_t Size>
+bool test_flat_map(std::pair<K, V> (&arr)[Size]) { return true; }
+
+template<typename K, typename V, typename std::size_t Size>
+bool test_flat_multimap(std::pair<K, V> (&arr)[Size]) { return true; }
+#endif
+
+#ifdef ENABLE_FLAT_SET
+template<typename T, typename std::size_t Size>
+bool test_flat_set(T (&arr)[Size])
+{
+ bool ok;
+ #pragma omp target map(from: ok) map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ using flat_set_type = std::flat_set<T>;
+ flat_set_type set = {arr, arr + Size};
+
+ VERIFY (!set.empty());
+ for (const auto& element : arr)
+ VERIFY (set.contains(element));
+ }
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+template<typename T, typename std::size_t Size>
+bool test_flat_multiset(T (&arr)[Size])
+{
+ bool ok;
+ #pragma omp target map(from: ok) map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ using flat_multiset_type = std::flat_multiset<T>;
+ flat_multiset_type multiset = {arr, arr + Size};
+
+ VERIFY (!multiset.empty());
+ for (const auto& element : arr)
+ VERIFY (multiset.contains(element));
+ }
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+#else
+template<typename T, typename std::size_t Size>
+bool test_flat_set(T (&arr)[Size]) { return true; }
+
+template<typename T, typename std::size_t Size>
+bool test_flat_multiset(T (&arr)[Size]) { return true; }
+#endif
+
+int main()
+{
+ int arr[10] = {0,1,2,3,4,5,6,7,8,9};
+ std::pair<int, int> pairs[10] = {{ 1, 2}, { 2, 4}, { 3, 6}, { 4, 8}, { 5, 10},
+ { 6, 12}, { 7, 14}, { 8, 16}, { 9, 18}, {10, 20}};
+
+ return test_flat_set(arr)
+ && test_flat_multiset(arr)
+ && test_flat_map(pairs)
+ && test_flat_multimap(pairs) ? 0 : 1;
+}
--- /dev/null
+/* Check constructors/destructors are called in containers. */
+
+#include <vector>
+#include <deque>
+#include <list>
+#include <set>
+#include <map>
+#include <utility>
+#if __cplusplus >= 201103L
+#include <array>
+#include <forward_list>
+#include <unordered_set>
+#include <unordered_map>
+#endif
+
+#include "target-flex-common.h"
+
+struct indirect_counter
+{
+ typedef int counter_value_type;
+ counter_value_type *_count_ptr;
+
+ indirect_counter(counter_value_type *count_ptr) BL_NOEXCEPT : _count_ptr(count_ptr) {
+ ++(*_count_ptr);
+ }
+ indirect_counter(const indirect_counter& other) BL_NOEXCEPT : _count_ptr(other._count_ptr) {
+ ++(*_count_ptr);
+ }
+ /* Don't declare a move constructor, we want to copy no matter what. */
+ ~indirect_counter() {
+ --(*_count_ptr);
+ }
+};
+
+bool operator==(indirect_counter const& lhs, indirect_counter const& rhs) BL_NOEXCEPT
+ { return lhs._count_ptr == rhs._count_ptr; }
+bool operator<(indirect_counter const& lhs, indirect_counter const& rhs) BL_NOEXCEPT
+ { return lhs._count_ptr < rhs._count_ptr; }
+
+#if __cplusplus >= 201103L
+template<>
+struct std::hash<indirect_counter>
+{
+ std::size_t operator()(const indirect_counter& ic) const noexcept
+ { return std::hash<indirect_counter::counter_value_type *>{}(ic._count_ptr); }
+};
+#endif
+
+/* Not a container, just a sanity check really. */
+bool automatic_lifetime_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ bool inner_ok = true;
+ int counter = 0;
+ {
+ indirect_counter c = indirect_counter(&counter);
+ indirect_counter(static_cast<int*>(&counter));
+ }
+ VERIFY (counter == 0);
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+bool vector_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ bool inner_ok = true;
+ int counter = 0;
+ {
+ std::vector<indirect_counter> vec(42, indirect_counter(&counter));
+ VERIFY (counter == 42);
+ vec.resize(32, indirect_counter(&counter));
+ VERIFY (counter == 32);
+ vec.push_back(indirect_counter(&counter));
+ VERIFY (counter == 33);
+ vec.pop_back();
+ VERIFY (counter == 32);
+ vec.pop_back();
+ VERIFY (counter == 31);
+ vec.resize(100, indirect_counter(&counter));
+ VERIFY (counter == 100);
+ }
+ VERIFY (counter == 0);
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+bool deque_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ bool inner_ok = true;
+ int counter = 0;
+ {
+ std::deque<indirect_counter> vec(42, indirect_counter(&counter));
+ VERIFY (counter == 42);
+ vec.resize(32, indirect_counter(&counter));
+ VERIFY (counter == 32);
+ vec.push_back(indirect_counter(&counter));
+ VERIFY (counter == 33);
+ vec.pop_back();
+ VERIFY (counter == 32);
+ vec.pop_back();
+ VERIFY (counter == 31);
+ vec.resize(100, indirect_counter(&counter));
+ VERIFY (counter == 100);
+ }
+ VERIFY (counter == 0);
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+bool list_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ bool inner_ok = true;
+ int counter = 0;
+ {
+ std::list<indirect_counter> list(42, indirect_counter(&counter));
+ VERIFY (counter == 42);
+ list.resize(32, indirect_counter(&counter));
+ VERIFY (counter == 32);
+ list.push_back(indirect_counter(&counter));
+ VERIFY (counter == 33);
+ list.pop_back();
+ VERIFY (counter == 32);
+ list.pop_back();
+ VERIFY (counter == 31);
+ list.resize(100, indirect_counter(&counter));
+ VERIFY (counter == 100);
+ }
+ VERIFY (counter == 0);
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+bool map_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ bool inner_ok = true;
+ int counter = 0;
+ {
+ std::map<int, indirect_counter> map;
+ map.insert(std::make_pair(1, indirect_counter(&counter)));
+ VERIFY (counter == 1);
+ map.insert(std::make_pair(1, indirect_counter(&counter)));
+ VERIFY (counter == 1);
+ map.insert(std::make_pair(2, indirect_counter(&counter)));
+ VERIFY (counter == 2);
+ }
+ VERIFY (counter == 0);
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+bool set_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ bool inner_ok = true;
+ int counter0 = 0;
+ int counter1 = 0;
+ {
+ std::set<indirect_counter> set;
+ set.insert(indirect_counter(&counter0));
+ VERIFY (counter0 == 1);
+ set.insert(indirect_counter(&counter0));
+ VERIFY (counter0 == 1);
+ set.insert(indirect_counter(&counter1));
+ VERIFY (counter0 == 1 && counter1 == 1);
+ }
+ VERIFY (counter0 == 0 && counter1 == 0);
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+bool multimap_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ bool inner_ok = true;
+ int counter = 0;
+ {
+ std::multimap<int, indirect_counter> multimap;
+ multimap.insert(std::make_pair(1, indirect_counter(&counter)));
+ VERIFY (counter == 1);
+ multimap.insert(std::make_pair(1, indirect_counter(&counter)));
+ VERIFY (counter == 2);
+ multimap.insert(std::make_pair(2, indirect_counter(&counter)));
+ VERIFY (counter == 3);
+ }
+ VERIFY (counter == 0);
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+bool multiset_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ bool inner_ok = true;
+ int counter0 = 0;
+ int counter1 = 0;
+ {
+ std::multiset<indirect_counter> multiset;
+ multiset.insert(indirect_counter(&counter0));
+ VERIFY (counter0 == 1);
+ multiset.insert(indirect_counter(&counter0));
+ VERIFY (counter0 == 2);
+ multiset.insert(indirect_counter(&counter1));
+ VERIFY (counter0 == 2 && counter1 == 1);
+ }
+ VERIFY (counter0 == 0 && counter1 == 0);
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+#if __cplusplus >= 201103L
+
+bool array_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ bool inner_ok = true;
+ int counter = 0;
+ {
+ indirect_counter ic(&counter);
+ std::array<indirect_counter, 10> array{ic, ic, ic, ic, ic,
+ ic, ic, ic, ic, ic};
+ VERIFY (counter == 11);
+ }
+ VERIFY (counter == 0);
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+bool forward_list_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ bool inner_ok = true;
+ int counter = 0;
+ {
+ std::forward_list<indirect_counter> forward_list(42, indirect_counter(&counter));
+ VERIFY (counter == 42);
+ forward_list.resize(32, indirect_counter(&counter));
+ VERIFY (counter == 32);
+ forward_list.push_front(indirect_counter(&counter));
+ VERIFY (counter == 33);
+ forward_list.pop_front();
+ VERIFY (counter == 32);
+ forward_list.pop_front();
+ VERIFY (counter == 31);
+ forward_list.resize(100, indirect_counter(&counter));
+ VERIFY (counter == 100);
+ }
+ VERIFY (counter == 0);
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+bool unordered_map_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ bool inner_ok = true;
+ int counter = 0;
+ {
+ std::unordered_map<int, indirect_counter> unordered_map;
+ unordered_map.insert({1, indirect_counter(&counter)});
+ VERIFY (counter == 1);
+ unordered_map.insert({1, indirect_counter(&counter)});
+ VERIFY (counter == 1);
+ unordered_map.insert({2, indirect_counter(&counter)});
+ VERIFY (counter == 2);
+ }
+ VERIFY (counter == 0);
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+bool unordered_set_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ bool inner_ok = true;
+ int counter0 = 0;
+ int counter1 = 0;
+ {
+ std::unordered_set<indirect_counter> unordered_set;
+ unordered_set.insert(indirect_counter(&counter0));
+ VERIFY (counter0 == 1);
+ unordered_set.insert(indirect_counter(&counter0));
+ VERIFY (counter0 == 1);
+ unordered_set.insert(indirect_counter(&counter1));
+ VERIFY (counter0 == 1 && counter1 == 1);
+ }
+ VERIFY (counter0 == 0 && counter1 == 0);
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+bool unordered_multimap_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ bool inner_ok = true;
+ int counter = 0;
+ {
+ std::unordered_multimap<int, indirect_counter> unordered_multimap;
+ unordered_multimap.insert({1, indirect_counter(&counter)});
+ VERIFY (counter == 1);
+ unordered_multimap.insert({1, indirect_counter(&counter)});
+ VERIFY (counter == 2);
+ unordered_multimap.insert({2, indirect_counter(&counter)});
+ VERIFY (counter == 3);
+ }
+ VERIFY (counter == 0);
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+bool unordered_multiset_test()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ bool inner_ok = true;
+ int counter0 = 0;
+ int counter1 = 0;
+ {
+ std::unordered_multiset<indirect_counter> unordered_multiset;
+ unordered_multiset.insert(indirect_counter(&counter0));
+ VERIFY (counter0 == 1);
+ unordered_multiset.insert(indirect_counter(&counter0));
+ VERIFY (counter0 == 2);
+ unordered_multiset.insert(indirect_counter(&counter1));
+ VERIFY (counter0 == 2 && counter1 == 1);
+ }
+ VERIFY (counter0 == 0 && counter1 == 0);
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+#else
+bool array_test() { return true; }
+bool forward_list_test() { return true; }
+bool unordered_map_test() { return true; }
+bool unordered_set_test() { return true; }
+bool unordered_multimap_test() { return true; }
+bool unordered_multiset_test() { return true; }
+#endif
+
+int main()
+{
+ const bool auto_res = automatic_lifetime_test();
+ const bool vec_res = vector_test();
+ const bool deque_res = deque_test();
+ const bool list_res = list_test();
+ const bool map_res = map_test();
+ const bool set_res = set_test();
+ const bool multimap_res = multimap_test();
+ const bool multiset_res = multiset_test();
+ const bool array_res = array_test();
+ const bool forward_list_res = forward_list_test();
+ const bool unordered_map_res = unordered_map_test();
+ const bool unordered_set_res = unordered_set_test();
+ const bool unordered_multimap_res = unordered_multimap_test();
+ const bool unordered_multiset_res = unordered_multiset_test();
+ std::printf("sanity check : %s\n", auto_res ? "PASS" : "FAIL");
+ std::printf("vector : %s\n", vec_res ? "PASS" : "FAIL");
+ std::printf("deque : %s\n", deque_res ? "PASS" : "FAIL");
+ std::printf("list : %s\n", list_res ? "PASS" : "FAIL");
+ std::printf("map : %s\n", map_res ? "PASS" : "FAIL");
+ std::printf("set : %s\n", set_res ? "PASS" : "FAIL");
+ std::printf("multimap : %s\n", multimap_res ? "PASS" : "FAIL");
+ std::printf("multiset : %s\n", multiset_res ? "PASS" : "FAIL");
+ std::printf("array : %s\n", array_res ? "PASS" : "FAIL");
+ std::printf("forward_list : %s\n", forward_list_res ? "PASS" : "FAIL");
+ std::printf("unordered_map : %s\n", unordered_map_res ? "PASS" : "FAIL");
+ std::printf("unordered_set : %s\n", unordered_set_res ? "PASS" : "FAIL");
+ std::printf("unordered_multimap: %s\n", unordered_multimap_res ? "PASS" : "FAIL");
+ std::printf("unordered_multiset: %s\n", unordered_multiset_res ? "PASS" : "FAIL");
+ const bool ok = auto_res
+ && vec_res
+ && deque_res
+ && list_res
+ && map_res
+ && set_res
+ && multimap_res
+ && multiset_res
+ && array_res
+ && forward_list_res
+ && unordered_map_res
+ && unordered_set_res
+ && unordered_multimap_res
+ && unordered_multiset_res;
+ return ok ? 0 : 1;
+}
--- /dev/null
+/* Populated with mapped data, validate, mutate, validate again.
+ The cases using sets do not mutate.
+ Note: Some of the code in here really sucks due to being made to be
+ compatible with c++98. */
+
+#include <vector>
+#include <deque>
+#include <list>
+#include <set>
+#include <map>
+#if __cplusplus >= 201103L
+#include <array>
+#include <forward_list>
+#include <unordered_set>
+#include <unordered_map>
+#endif
+
+#include <limits>
+#include <iterator>
+
+#include "target-flex-common.h"
+
+template<bool B, class T = void>
+struct enable_if {};
+
+template<class T>
+struct enable_if<true, T> { typedef T type; };
+
+struct identity_func
+{
+#if __cplusplus < 201103L
+ template<typename T>
+ T& operator()(T& arg) const BL_NOEXCEPT { return arg; }
+ template<typename T>
+ T const& operator()(T const& arg) const BL_NOEXCEPT { return arg; }
+#else
+ template<typename T>
+ constexpr T&& operator()(T&& arg) const BL_NOEXCEPT { return std::forward<T>(arg); }
+#endif
+};
+
+/* Applies projection to the second iterator. */
+template<typename It0, typename It1, typename Proj>
+bool validate_sequential_elements(const It0 begin0, const It0 end0,
+ const It1 begin1, const It1 end1,
+ Proj proj) BL_NOEXCEPT
+{
+ It0 it0 = begin0;
+ It1 it1 = begin1;
+ for (; it0 != end0; ++it0, ++it1)
+ {
+ /* Sizes mismatch, don't bother aborting though just fail the test. */
+ if (it1 == end1)
+ return false;
+ if (*it0 != proj(*it1))
+ return false;
+ }
+ /* Sizes mismatch, do as above. */
+ if (it1 != end1)
+ return false;
+ return true;
+}
+
+template<typename It0, typename It1>
+bool validate_sequential_elements(const It0 begin0, const It0 end0,
+ const It1 begin1, const It1 end1) BL_NOEXCEPT
+{
+ return validate_sequential_elements(begin0, end0, begin1, end1, identity_func());
+}
+
+/* Inefficient, but simple. */
+template<typename It, typename OutIt>
+void simple_copy(const It begin, const It end, OutIt out) BL_NOEXCEPT
+{
+ for (It it = begin; it != end; ++it, ++out)
+ *out = *it;
+}
+
+template<typename It, typename MutateFn>
+void simple_mutate(const It begin, const It end, MutateFn mut_fn) BL_NOEXCEPT
+{
+ for (It it = begin; it != end; ++it)
+ *it = mut_fn(*it);
+}
+
+template<typename MutationFunc, typename T, std::size_t Size>
+bool vector_test(const T (&arr)[Size])
+{
+ bool ok;
+ T out_arr[Size];
+ T out_mut_arr[Size];
+ #pragma omp target map(from: ok, out_arr[:Size], out_mut_arr[:Size]) \
+ map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ std::vector<T> vector(arr, arr + Size);
+ VERIFY (validate_sequential_elements(vector.begin(), vector.end(),
+ arr, arr + Size));
+ simple_copy(vector.begin(), vector.end(), out_arr);
+ simple_mutate(vector.begin(), vector.end(), MutationFunc());
+ VERIFY (validate_sequential_elements(vector.begin(), vector.end(),
+ arr, arr + Size, MutationFunc()));
+ simple_copy(vector.begin(), vector.end(), out_mut_arr);
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (validate_sequential_elements(out_arr, out_arr + Size,
+ arr, arr + Size));
+ VERIFY_NON_TARGET (validate_sequential_elements(out_mut_arr, out_mut_arr + Size,
+ arr, arr + Size, MutationFunc()));
+ return true;
+}
+
+template<typename MutationFunc, typename T, std::size_t Size>
+bool deque_test(const T (&arr)[Size])
+{
+ bool ok;
+ T out_arr[Size];
+ T out_mut_arr[Size];
+ #pragma omp target map(from: ok, out_arr[:Size], out_mut_arr[:Size]) \
+ map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ std::deque<T> deque(arr, arr + Size);
+ VERIFY (validate_sequential_elements(deque.begin(), deque.end(),
+ arr, arr + Size));
+ simple_copy(deque.begin(), deque.end(), out_arr);
+ simple_mutate(deque.begin(), deque.end(), MutationFunc());
+ VERIFY (validate_sequential_elements(deque.begin(), deque.end(),
+ arr, arr + Size, MutationFunc()));
+ simple_copy(deque.begin(), deque.end(), out_mut_arr);
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (validate_sequential_elements(out_arr, out_arr + Size,
+ arr, arr + Size));
+ VERIFY_NON_TARGET (validate_sequential_elements(out_mut_arr, out_mut_arr + Size,
+ arr, arr + Size, MutationFunc()));
+ return true;
+}
+
+template<typename MutationFunc, typename T, std::size_t Size>
+bool list_test(const T (&arr)[Size])
+{
+ bool ok;
+ T out_arr[Size];
+ T out_mut_arr[Size];
+ #pragma omp target map(from: ok, out_arr[:Size], out_mut_arr[:Size]) \
+ map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ std::list<T> list(arr, arr + Size);
+ VERIFY (validate_sequential_elements(list.begin(), list.end(),
+ arr, arr + Size));
+ simple_copy(list.begin(), list.end(), out_arr);
+ simple_mutate(list.begin(), list.end(), MutationFunc());
+ VERIFY (validate_sequential_elements(list.begin(), list.end(),
+ arr, arr + Size, MutationFunc()));
+ simple_copy(list.begin(), list.end(), out_mut_arr);
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (validate_sequential_elements(out_arr, out_arr + Size,
+ arr, arr + Size));
+ VERIFY_NON_TARGET (validate_sequential_elements(out_mut_arr, out_mut_arr + Size,
+ arr, arr + Size, MutationFunc()));
+ return true;
+}
+
+template<typename T>
+const T& get_key(const T& arg) BL_NOEXCEPT
+ { return arg; }
+template<typename K, typename V>
+const K& get_key(const std::pair<K, V>& pair) BL_NOEXCEPT
+ { return pair.first; }
+template<typename T>
+const T& get_value(const T& arg) BL_NOEXCEPT
+ { return arg; }
+template<typename K, typename V>
+const K& get_value(const std::pair<K, V>& pair) BL_NOEXCEPT
+ { return pair.second; }
+
+template<typename T>
+struct key_type { typedef T type; };
+template<typename K, typename V>
+struct key_type<std::pair<K, V> > { typedef K type; };
+
+template<typename Proj, typename Container, typename It>
+bool validate_associative(const Container& container,
+ const It compare_begin,
+ const It compare_end,
+ Proj proj) BL_NOEXCEPT
+{
+ const typename Container::const_iterator elem_end = container.end();
+ for (It compare_it = compare_begin; compare_it != compare_end; ++compare_it)
+ {
+ const typename Container::const_iterator elem_it = container.find(get_key(*compare_it));
+ VERIFY_NON_TARGET (elem_it != elem_end);
+ VERIFY_NON_TARGET (proj(get_value(*compare_it)) == get_value(*elem_it));
+ }
+ return true;
+}
+
+template<typename Container, typename It>
+bool validate_associative(const Container& container,
+ const It compare_begin,
+ const It compare_end) BL_NOEXCEPT
+{
+ return validate_associative(container, compare_begin, compare_end, identity_func());
+}
+
+template<typename It, typename MutateFn>
+void simple_mutate_map(const It begin, const It end, MutateFn mut_fn) BL_NOEXCEPT
+{
+ for (It it = begin; it != end; ++it)
+ it->second = mut_fn(it->second);
+}
+
+template<typename It, typename OutIter>
+void simple_copy_unique(const It begin, const It end, OutIter out) BL_NOEXCEPT
+{
+ /* In case anyone reads this, I want it to be known that I hate c++98. */
+ typedef typename key_type<typename std::iterator_traits<It>::value_type>::type key_t;
+ std::set<key_t> already_seen;
+ for (It it = begin; it != end; ++it, ++out)
+ {
+ key_t key = get_key(*it);
+ if (already_seen.find(key) != already_seen.end())
+ continue;
+ already_seen.insert(key);
+ *out = *it;
+ }
+}
+
+template<typename MutationFunc, typename K, typename V, std::size_t Size>
+bool map_test(const std::pair<K, V> (&arr)[Size])
+{
+ std::map<K, V> reference_map(arr, arr + Size);
+ bool ok;
+ /* Both sizes should be the same. */
+ std::pair<K, V> out_pairs[Size];
+ std::size_t out_size;
+ std::pair<K, V> out_pairs_mut[Size];
+ std::size_t out_size_mut;
+ #pragma omp target map(from: ok, out_pairs[:Size], out_size, \
+ out_pairs_mut[:Size], out_size_mut) \
+ map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ std::vector<std::pair<K, V> > unique_elems;
+ simple_copy_unique(arr, arr + Size,
+ std::back_insert_iterator<std::vector<std::pair<K, V> > >(unique_elems));
+
+ std::map<K, V> map(arr, arr + Size);
+ VERIFY (validate_associative(map, unique_elems.begin(), unique_elems.end()));
+ simple_copy(map.begin(), map.end(), out_pairs);
+ out_size = map.size();
+ simple_mutate_map(map.begin(), map.end(), MutationFunc());
+ VERIFY (validate_associative(map, unique_elems.begin(), unique_elems.end(),
+ MutationFunc()));
+ simple_copy(map.begin(), map.end(), out_pairs_mut);
+ out_size_mut = map.size();
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (out_size == out_size_mut);
+ VERIFY_NON_TARGET (validate_associative(reference_map,
+ out_pairs, out_pairs + out_size));
+ simple_mutate_map(reference_map.begin(), reference_map.end(), MutationFunc());
+ VERIFY_NON_TARGET (validate_associative(reference_map,
+ out_pairs_mut, out_pairs_mut + out_size_mut));
+ return true;
+}
+
+template<typename T, std::size_t Size>
+bool set_test(const T (&arr)[Size])
+{
+ std::set<T> reference_set(arr, arr + Size);
+ bool ok;
+ /* Both sizes should be the same. */
+ T out_arr[Size];
+ std::size_t out_size;
+ #pragma omp target map(from: ok, out_arr[:Size], out_size) \
+ map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ std::vector<T> unique_elems;
+ simple_copy_unique(arr, arr + Size,
+ std::back_insert_iterator<std::vector<T> >(unique_elems));
+
+ std::set<T> set(arr, arr + Size);
+ VERIFY (validate_associative(set, unique_elems.begin(), unique_elems.end()));
+ simple_copy(set.begin(), set.end(), out_arr);
+ out_size = set.size();
+ /* Sets can't be mutated, we could create another set with mutated
+ but it gets a little annoying and probably isn't an interesting test. */
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (validate_associative(reference_set,
+ out_arr, out_arr + out_size));
+ return true;
+}
+
+template<typename Proj, typename Container, typename It>
+bool validate_multi_associative(const Container& container,
+ const It compare_begin,
+ const It compare_end,
+ Proj proj) BL_NOEXCEPT
+{
+ /* Once again, for the poor soul reviewing these, I hate c++98. */
+ typedef typename key_type<typename std::iterator_traits<It>::value_type>::type key_t;
+ typedef std::map<key_t, std::size_t> counter_map;
+ counter_map key_count_map;
+ for (It it = compare_begin; it != compare_end; ++it)
+ {
+ const key_t& key = get_key(*it);
+ typename counter_map::iterator counter_it
+ = key_count_map.find(key);
+ if (counter_it != key_count_map.end())
+ ++counter_it->second;
+ else
+ key_count_map.insert(std::pair<const key_t, std::size_t>(key, std::size_t(1)));
+ }
+ const typename Container::const_iterator elem_end = container.end();
+ for (It compare_it = compare_begin; compare_it != compare_end; ++compare_it)
+ {
+ const key_t& key = get_key(*compare_it);
+ typename counter_map::iterator count_it = key_count_map.find(key);
+ std::size_t key_count = count_it != key_count_map.end() ? count_it->second
+ : std::size_t(0);
+ VERIFY_NON_TARGET (key_count > std::size_t(0) && "this will never happen");
+ /* This gets tested multiple times but that should be fine. */
+ VERIFY_NON_TARGET (key_count == container.count(key));
+ typename Container::const_iterator elem_it = container.find(key);
+ /* This will never happen if the previous case passed. */
+ VERIFY_NON_TARGET (elem_it != elem_end);
+ bool found_element = false;
+ for (; elem_it != elem_end; ++elem_it)
+ if (proj(get_value(*compare_it)) == get_value(*elem_it))
+ {
+ found_element = true;
+ break;
+ }
+ VERIFY_NON_TARGET (found_element);
+ }
+ return true;
+}
+
+template<typename Container, typename It>
+bool validate_multi_associative(const Container& container,
+ const It compare_begin,
+ const It compare_end) BL_NOEXCEPT
+{
+ return validate_multi_associative(container, compare_begin, compare_end, identity_func());
+}
+
+template<typename MutationFunc, typename K, typename V, std::size_t Size>
+bool multimap_test(const std::pair<K, V> (&arr)[Size])
+{
+ std::multimap<K, V> reference_multimap(arr, arr + Size);
+ bool ok;
+ std::pair<K, V> out_pairs[Size];
+ std::pair<K, V> out_pairs_mut[Size];
+ #pragma omp target map(from: ok, out_pairs[:Size], out_pairs_mut[:Size]) \
+ map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ std::multimap<K, V> multimap(arr, arr + Size);
+ VERIFY (validate_multi_associative(multimap, arr, arr + Size));
+ simple_copy(multimap.begin(), multimap.end(), out_pairs);
+ simple_mutate_map(multimap.begin(), multimap.end(), MutationFunc());
+ VERIFY (validate_multi_associative(multimap, arr, arr + Size, MutationFunc()));
+ simple_copy(multimap.begin(), multimap.end(), out_pairs_mut);
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (validate_multi_associative(reference_multimap,
+ out_pairs, out_pairs + Size));
+ simple_mutate_map(reference_multimap.begin(), reference_multimap.end(), MutationFunc());
+ VERIFY_NON_TARGET (validate_multi_associative(reference_multimap,
+ out_pairs_mut, out_pairs_mut + Size));
+ return true;
+}
+
+template<typename T, std::size_t Size>
+bool multiset_test(const T (&arr)[Size])
+{
+ std::multiset<T> reference_multiset(arr, arr + Size);
+ bool ok;
+ T out_arr[Size];
+ #pragma omp target map(from: ok, out_arr[:Size]) \
+ map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ std::multiset<T> set(arr, arr + Size);
+ VERIFY (validate_multi_associative(set, arr, arr + Size));
+ simple_copy(set.begin(), set.end(), out_arr);
+ /* Sets can't be mutated, we could create another set with mutated
+ but it gets a little annoying and probably isn't an interesting test. */
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (validate_multi_associative(reference_multiset,
+ out_arr, out_arr + Size));
+ return true;
+}
+
+#if __cplusplus >= 201103L
+
+template<typename MutationFunc, typename T, std::size_t Size>
+bool array_test(const T (&arr)[Size])
+{
+ bool ok;
+ T out_arr[Size];
+ T out_mut_arr[Size];
+ #pragma omp target map(from: ok, out_arr[:Size], out_mut_arr[:Size]) \
+ map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ std::array<T, Size> std_array{};
+ /* Special case for std::array since it can't be initialized
+ with iterators. */
+ {
+ T zero_val = T{};
+ for (auto it = std_array.begin(); it != std_array.end(); ++it)
+ VERIFY (*it == zero_val);
+ }
+ simple_copy(arr, arr + Size, std_array.begin());
+ VERIFY (validate_sequential_elements(std_array.begin(), std_array.end(),
+ arr, arr + Size));
+ simple_copy(std_array.begin(), std_array.end(), out_arr);
+ simple_mutate(std_array.begin(), std_array.end(), MutationFunc());
+ VERIFY (validate_sequential_elements(std_array.begin(), std_array.end(),
+ arr, arr + Size, MutationFunc()));
+ simple_copy(std_array.begin(), std_array.end(), out_mut_arr);
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (validate_sequential_elements(out_arr, out_arr + Size,
+ arr, arr + Size));
+ VERIFY_NON_TARGET (validate_sequential_elements(out_mut_arr, out_mut_arr + Size,
+ arr, arr + Size, MutationFunc()));
+ return true;
+}
+
+template<typename MutationFunc, typename T, std::size_t Size>
+bool forward_list_test(const T (&arr)[Size])
+{
+ bool ok;
+ T out_arr[Size];
+ T out_mut_arr[Size];
+ #pragma omp target map(from: ok, out_arr[:Size], out_mut_arr[:Size]) \
+ map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ std::forward_list<T> fwd_list(arr, arr + Size);
+ VERIFY (validate_sequential_elements(fwd_list.begin(), fwd_list.end(),
+ arr, arr + Size));
+ simple_copy(fwd_list.begin(), fwd_list.end(), out_arr);
+ simple_mutate(fwd_list.begin(), fwd_list.end(), MutationFunc());
+ VERIFY (validate_sequential_elements(fwd_list.begin(), fwd_list.end(),
+ arr, arr + Size, MutationFunc()));
+ simple_copy(fwd_list.begin(), fwd_list.end(), out_mut_arr);
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (validate_sequential_elements(out_arr, out_arr + Size,
+ arr, arr + Size));
+ VERIFY_NON_TARGET (validate_sequential_elements(out_mut_arr, out_mut_arr + Size,
+ arr, arr + Size, MutationFunc()));
+ return true;
+}
+
+template<typename MutationFunc, typename K, typename V, std::size_t Size>
+bool unordered_map_test(const std::pair<K, V> (&arr)[Size])
+{
+ std::unordered_map<K, V> reference_map(arr, arr + Size);
+ bool ok;
+ /* Both sizes should be the same. */
+ std::pair<K, V> out_pairs[Size];
+ std::size_t out_size;
+ std::pair<K, V> out_pairs_mut[Size];
+ std::size_t out_size_mut;
+ #pragma omp target map(from: ok, out_pairs[:Size], out_size, \
+ out_pairs_mut[:Size], out_size_mut) \
+ map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ std::vector<std::pair<K, V> > unique_elems;
+ simple_copy_unique(arr, arr + Size,
+ std::back_insert_iterator<std::vector<std::pair<K, V> > >(unique_elems));
+
+ std::unordered_map<K, V> map(arr, arr + Size);
+ VERIFY (validate_associative(map, unique_elems.begin(), unique_elems.end()));
+ simple_copy(map.begin(), map.end(), out_pairs);
+ out_size = map.size();
+ simple_mutate_map(map.begin(), map.end(), MutationFunc());
+ VERIFY (validate_associative(map, unique_elems.begin(), unique_elems.end(),
+ MutationFunc()));
+ simple_copy(map.begin(), map.end(), out_pairs_mut);
+ out_size_mut = map.size();
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (out_size == out_size_mut);
+ VERIFY_NON_TARGET (validate_associative(reference_map,
+ out_pairs, out_pairs + out_size));
+ simple_mutate_map(reference_map.begin(), reference_map.end(), MutationFunc());
+ VERIFY_NON_TARGET (validate_associative(reference_map,
+ out_pairs_mut, out_pairs_mut + out_size_mut));
+ return true;
+}
+
+template<typename T, std::size_t Size>
+bool unordered_set_test(const T (&arr)[Size])
+{
+ std::unordered_set<T> reference_set(arr, arr + Size);
+ bool ok;
+ /* Both sizes should be the same. */
+ T out_arr[Size];
+ std::size_t out_size;
+ #pragma omp target map(from: ok, out_arr[:Size], out_size) \
+ map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ std::vector<T> unique_elems;
+ simple_copy_unique(arr, arr + Size,
+ std::back_insert_iterator<std::vector<T> >(unique_elems));
+
+ std::unordered_set<T> set(arr, arr + Size);
+ VERIFY (validate_associative(set, unique_elems.begin(), unique_elems.end()));
+ simple_copy(set.begin(), set.end(), out_arr);
+ out_size = set.size();
+ /* Sets can't be mutated, we could create another set with mutated
+ but it gets a little annoying and probably isn't an interesting test. */
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (validate_associative(reference_set,
+ out_arr, out_arr + out_size));
+ return true;
+}
+
+template<typename MutationFunc, typename K, typename V, std::size_t Size>
+bool unordered_multimap_test(const std::pair<K, V> (&arr)[Size])
+{
+ std::unordered_multimap<K, V> reference_multimap(arr, arr + Size);
+ bool ok;
+ std::pair<K, V> out_pairs[Size];
+ std::pair<K, V> out_pairs_mut[Size];
+ #pragma omp target map(from: ok, out_pairs[:Size], out_pairs_mut[:Size]) \
+ map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ std::unordered_multimap<K, V> multimap(arr, arr + Size);
+ VERIFY (validate_multi_associative(multimap, arr, arr + Size));
+ simple_copy(multimap.begin(), multimap.end(), out_pairs);
+ simple_mutate_map(multimap.begin(), multimap.end(), MutationFunc());
+ VERIFY (validate_multi_associative(multimap, arr, arr + Size, MutationFunc()));
+ simple_copy(multimap.begin(), multimap.end(), out_pairs_mut);
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (validate_multi_associative(reference_multimap,
+ out_pairs, out_pairs + Size));
+ simple_mutate_map(reference_multimap.begin(), reference_multimap.end(), MutationFunc());
+ VERIFY_NON_TARGET (validate_multi_associative(reference_multimap,
+ out_pairs_mut, out_pairs_mut + Size));
+ return true;
+}
+
+template<typename T, std::size_t Size>
+bool unordered_multiset_test(const T (&arr)[Size])
+{
+ std::unordered_multiset<T> reference_multiset(arr, arr + Size);
+ bool ok;
+ T out_arr[Size];
+ #pragma omp target map(from: ok, out_arr[:Size]) \
+ map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ std::unordered_multiset<T> set(arr, arr + Size);
+ VERIFY (validate_multi_associative(set, arr, arr + Size));
+ simple_copy(set.begin(), set.end(), out_arr);
+ /* Sets can't be mutated, we could create another set with mutated
+ but it gets a little annoying and probably isn't an interesting test. */
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (validate_multi_associative(reference_multiset,
+ out_arr, out_arr + Size));
+ return true;
+}
+
+#else
+template<typename, typename T, std::size_t Size> bool array_test(const T (&arr)[Size]) { return true; }
+template<typename, typename T, std::size_t Size> bool forward_list_test(const T (&arr)[Size]) { return true; }
+template<typename, typename T, std::size_t Size> bool unordered_map_test(const T (&arr)[Size]) { return true; }
+template<typename T, std::size_t Size> bool unordered_set_test(const T (&arr)[Size]) { return true; }
+template<typename, typename T, std::size_t Size> bool unordered_multimap_test(const T (&arr)[Size]) { return true; }
+template<typename T, std::size_t Size> bool unordered_multiset_test(const T (&arr)[Size]) { return true; }
+#endif
+
+/* This clamps to the maximum value to guard against overflowing,
+ assuming std::numeric_limits is specialized for T. */
+struct multiply_by_2
+{
+ template<typename T>
+ typename enable_if<std::numeric_limits<T>::is_specialized, T>::type
+ operator()(T arg) const BL_NOEXCEPT {
+ if (arg < static_cast<T>(0))
+ {
+ if (std::numeric_limits<T>::min() / static_cast<T>(2) >= arg)
+ return std::numeric_limits<T>::min();
+ }
+ else
+ {
+ if (std::numeric_limits<T>::max() / static_cast<T>(2) <= arg)
+ return std::numeric_limits<T>::max();
+ }
+ return arg * 2;
+ }
+ template<typename T>
+ typename enable_if<!std::numeric_limits<T>::is_specialized, T>::type
+ operator()(T arg) const BL_NOEXCEPT {
+ return arg * 2;
+ }
+};
+
+int main()
+{
+ int data[8] = {0, 1, 2, 3, 4, 5, 6, 7};
+ std::pair<int, int> pairs[10] = {std::pair<int, int>( 1, 2),
+ std::pair<int, int>( 2, 4),
+ std::pair<int, int>( 3, 6),
+ std::pair<int, int>( 4, 8),
+ std::pair<int, int>( 5, 10),
+ std::pair<int, int>( 6, 12),
+ std::pair<int, int>( 7, 14),
+ std::pair<int, int>( 8, 16),
+ std::pair<int, int>( 9, 18),
+ std::pair<int, int>(10, 20)};
+ const bool vec_res = vector_test<multiply_by_2>(data);
+ const bool deque_res = deque_test<multiply_by_2>(data);
+ const bool list_res = list_test<multiply_by_2>(data);
+ const bool map_res = map_test<multiply_by_2>(pairs);
+ const bool set_res = set_test(data);
+ const bool multimap_res = multimap_test<multiply_by_2>(pairs);
+ const bool multiset_res = multiset_test(data);
+ const bool array_res = array_test<multiply_by_2>(data);
+ const bool forward_list_res = forward_list_test<multiply_by_2>(data);
+ const bool unordered_map_res = unordered_map_test<multiply_by_2>(pairs);
+ const bool unordered_set_res = unordered_set_test(data);
+ const bool unordered_multimap_res = unordered_multimap_test<multiply_by_2>(pairs);
+ const bool unordered_multiset_res = unordered_multiset_test(data);
+ std::printf("vector : %s\n", vec_res ? "PASS" : "FAIL");
+ std::printf("deque : %s\n", deque_res ? "PASS" : "FAIL");
+ std::printf("list : %s\n", list_res ? "PASS" : "FAIL");
+ std::printf("map : %s\n", map_res ? "PASS" : "FAIL");
+ std::printf("set : %s\n", set_res ? "PASS" : "FAIL");
+ std::printf("multimap : %s\n", multimap_res ? "PASS" : "FAIL");
+ std::printf("multiset : %s\n", multiset_res ? "PASS" : "FAIL");
+ std::printf("array : %s\n", array_res ? "PASS" : "FAIL");
+ std::printf("forward_list : %s\n", forward_list_res ? "PASS" : "FAIL");
+ std::printf("unordered_map : %s\n", unordered_map_res ? "PASS" : "FAIL");
+ std::printf("unordered_set : %s\n", unordered_set_res ? "PASS" : "FAIL");
+ std::printf("unordered_multimap: %s\n", unordered_multimap_res ? "PASS" : "FAIL");
+ std::printf("unordered_multiset: %s\n", unordered_multiset_res ? "PASS" : "FAIL");
+ const bool ok = vec_res
+ && deque_res
+ && list_res
+ && map_res
+ && set_res
+ && multimap_res
+ && multiset_res
+ && array_res
+ && forward_list_res
+ && unordered_map_res
+ && unordered_set_res
+ && unordered_multimap_res
+ && unordered_multiset_res;
+ return ok ? 0 : 1;
+}
--- /dev/null
+/* Tiny tuple test. */
+
+#include <tuple>
+
+#include "target-flex-common.h"
+
+bool test(int arg)
+{
+ bool ok;
+ int out;
+ std::tuple tup = {'a', arg, 3.14f};
+ #pragma omp target map(from: ok, out) map(to: tup)
+ {
+ bool inner_ok = true;
+ {
+ VERIFY (std::get<0>(tup) == 'a');
+ out = std::get<1>(tup);
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (out == arg);
+ return true;
+}
+
+int main()
+{
+ volatile int arg = 42u;
+ return test(arg) ? 0 : 1;
+}
--- /dev/null
+/* { dg-additional-options "-std=c++20" } */
+
+/* Functional */
+
+#include <functional>
+#include <utility>
+
+#include "target-flex-common.h"
+
+template<typename T,typename Fn>
+auto invoke_unary(T&& a, Fn&& fn) noexcept
+{
+ return std::invoke(std::forward<Fn>(fn),
+ std::forward<T>(a));
+}
+
+template<typename T, typename U, typename Fn>
+auto invoke_binary(T&& a, U&& b, Fn&& fn) noexcept
+{
+ return std::invoke(std::forward<Fn>(fn),
+ std::forward<T>(a),
+ std::forward<U>(b));
+}
+
+bool test(unsigned arg)
+{
+ bool ok;
+ #pragma omp target map(from: ok) map(to: arg)
+ {
+ bool inner_ok = true;
+ {
+ VERIFY (std::plus{}(arg, 2) == arg + 2);
+ auto bound_plus_arg = std::bind_front(std::plus{}, arg);
+ VERIFY (bound_plus_arg(10) == arg + 10);
+ VERIFY (bound_plus_arg(20) == arg + 20);
+
+ VERIFY (std::not_fn(std::not_equal_to{})(arg, arg));
+ VERIFY (invoke_binary(arg, arg, std::not_fn(std::not_equal_to{})));
+ auto bound_equals_arg = std::bind_front(std::not_fn(std::not_equal_to{}), arg);
+ VERIFY (bound_equals_arg(arg));
+ VERIFY (std::not_fn(bound_equals_arg)(arg + 1));
+ VERIFY (invoke_unary(arg, bound_equals_arg));
+
+ VERIFY (std::not_fn(std::ranges::not_equal_to{})(arg, arg));
+ VERIFY (invoke_binary(arg, arg, std::not_fn(std::ranges::not_equal_to{})));
+ auto bound_ranges_equals_arg = std::bind_front(std::not_fn(std::ranges::not_equal_to{}), arg);
+ VERIFY (bound_ranges_equals_arg(arg));
+ VERIFY (std::not_fn(bound_ranges_equals_arg)(arg + 1));
+ VERIFY (invoke_unary(arg, bound_ranges_equals_arg));
+ }
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+int main()
+{
+ volatile unsigned arg = 42u;
+ return test(arg) ? 0 : 1;
+}
--- /dev/null
+/* { dg-additional-options "-std=c++23" } */
+
+/* expected/optional */
+
+#include <optional>
+#include <expected>
+
+#include "target-flex-common.h"
+
+std::optional<unsigned> make_optional(bool b, unsigned arg = 0u) noexcept
+{
+ if (!b)
+ return std::nullopt;
+ return {arg};
+}
+
+bool test_optional(unsigned arg)
+{
+ bool ok;
+ #pragma omp target map(from: ok) map(to: arg)
+ {
+ bool inner_ok = true;
+ {
+ auto null_opt = make_optional(false);
+ VERIFY (!null_opt);
+ VERIFY (!null_opt.has_value());
+ VERIFY (null_opt.value_or(arg * 2u) == arg * 2u);
+ VERIFY (null_opt.or_else([&](){ return std::optional<unsigned>{arg}; })
+ .transform([](int a){ return a * 2u; })
+ .value_or(0) == arg * 2u);
+
+ auto opt = make_optional(true, arg);
+ VERIFY (opt);
+ VERIFY (opt.has_value());
+ VERIFY (opt.value() == arg);
+ VERIFY (*opt == arg);
+ VERIFY (opt.value_or(arg + 42) == arg);
+ VERIFY (opt.or_else([&](){ return std::optional<unsigned>{arg + 42}; })
+ .transform([](int a){ return a * 2u; })
+ .value_or(0) == arg * 2u);
+ }
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+struct my_error
+{
+ int _e;
+};
+
+std::expected<unsigned, my_error> make_expected(bool b, unsigned arg = 0u) noexcept
+{
+ if (!b)
+ return std::unexpected{my_error{-1}};
+ return {arg};
+}
+
+bool test_expected(unsigned arg)
+{
+ bool ok;
+ #pragma omp target map(from: ok) map(to: arg)
+ {
+ bool inner_ok = true;
+ {
+ auto unexpected = make_expected(false);
+ VERIFY (!unexpected);
+ VERIFY (!unexpected.has_value());
+ VERIFY (unexpected.error()._e == -1);
+ VERIFY (unexpected.value_or(arg * 2u) == arg * 2u);
+ VERIFY (unexpected.or_else([&](my_error e){ return std::expected<unsigned, my_error>{arg}; })
+ .transform([](int a){ return a * 2u; })
+ .value_or(0) == arg * 2u);
+
+ auto expected = make_expected(true, arg);
+ VERIFY (expected);
+ VERIFY (expected.has_value());
+ VERIFY (expected.value() == arg);
+ VERIFY (*expected == arg);
+ VERIFY (expected.value_or(arg + 42) == arg);
+ VERIFY (expected.or_else([&](my_error e){ return std::expected<unsigned, my_error>{std::unexpected{e}}; })
+ .transform([](int a){ return a * 2u; })
+ .value_or(0) == arg * 2u);
+ }
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+int main()
+{
+ volatile unsigned arg = 42;
+ return test_optional(arg)
+ && test_expected(arg) ? 0 : 1;
+}
--- /dev/null
+/* { dg-additional-options "-std=c++20" } */
+
+/* bit_cast and memcpy */
+
+#include <bit>
+#include <cstring>
+
+#include "target-flex-common.h"
+
+struct S0
+{
+ int _v0;
+ char _v1;
+ long long _v2;
+};
+
+struct S1
+{
+ int _v0;
+ char _v1;
+ long long _v2;
+};
+
+bool test_bit_cast(int arg)
+{
+ bool ok;
+ S1 s1_out;
+ #pragma omp target map(from: ok, s1_out) map(to: arg)
+ {
+ bool inner_ok = true;
+ {
+ long long v = static_cast<long long>(arg + 42ll);
+ S0 s = {arg, 'a', v};
+ VERIFY (std::bit_cast<S1>(s)._v0 == arg);
+ VERIFY (std::bit_cast<S1>(s)._v1 == 'a');
+ VERIFY (std::bit_cast<S1>(s)._v2 == v);
+ s1_out = std::bit_cast<S1>(s);
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ long long v = static_cast<long long>(arg + 42ll);
+ VERIFY_NON_TARGET (std::bit_cast<S0>(s1_out)._v0 == arg);
+ VERIFY_NON_TARGET (std::bit_cast<S0>(s1_out)._v1 == 'a');
+ VERIFY_NON_TARGET (std::bit_cast<S0>(s1_out)._v2 == v);
+ return true;
+}
+
+
+struct OutStruct
+{
+ std::size_t _id;
+ void *_next;
+};
+
+struct Extendable1
+{
+ std::size_t _id;
+ void *_next;
+ int _v;
+};
+
+struct Extendable2
+{
+ std::size_t _id;
+ void *_next;
+ char _str[256];
+};
+
+struct Extendable3
+{
+ std::size_t _id;
+ void *_next;
+ const int *_nums;
+ std::size_t _size;
+};
+
+struct ExtendableUnknown
+{
+ std::size_t _id;
+ void *_next;
+};
+
+template<typename To, std::size_t Id>
+To *get_extendable(void *p)
+{
+ while (p != nullptr)
+ {
+ OutStruct out;
+ std::memcpy(&out, p, sizeof(OutStruct));
+ if (out._id == Id)
+ return static_cast<To *>(p);
+ p = out._next;
+ }
+ return nullptr;
+}
+
+bool test_memcpy(int arg, const int *nums, std::size_t nums_size)
+{
+ bool ok;
+ Extendable2 e2_out;
+ #pragma omp target map(from: ok, e2_out) map(to: arg, nums[:nums_size], nums_size)
+ {
+ bool inner_ok = true;
+ {
+ Extendable3 e3 = {3u, nullptr, nums, nums_size};
+ ExtendableUnknown u1 = {100u, &e3};
+ Extendable2 e2 = {2u, &u1, {'H', 'e', 'l', 'l', 'o', '!', '\000'}};
+ ExtendableUnknown u2 = {101u, &e2};
+ ExtendableUnknown u3 = {102u, &u2};
+ ExtendableUnknown u4 = {142u, &u3};
+ Extendable1 e1 = {1u, &u4, arg};
+
+ void *p = &e1;
+ while (p != nullptr)
+ {
+ /* You can always cast a pointer to a struct to a pointer to
+ the type of it's first member. */
+ switch (*static_cast<std::size_t *>(p))
+ {
+ case 1:
+ {
+ Extendable1 *e1_p = static_cast<Extendable1 *>(p);
+ p = e1_p->_next;
+ VERIFY (e1_p->_v == arg);
+ break;
+ }
+ case 2:
+ {
+ Extendable2 *e2_p = static_cast<Extendable2 *>(p);
+ p = e2_p->_next;
+ VERIFY (std::strcmp(e2_p->_str, "Hello!") == 0);
+ break;
+ }
+ case 3:
+ {
+ Extendable3 *e3_p = static_cast<Extendable3 *>(p);
+ p = e3_p->_next;
+ VERIFY (nums == e3_p->_nums);
+ VERIFY (nums_size == e3_p->_size);
+ break;
+ }
+ default:
+ {
+ /* Casting to a pointer to OutStruct invokes undefined
+ behavior though, memcpy is required to extract the _next
+ member. */
+ OutStruct out;
+ std::memcpy(&out, p, sizeof(OutStruct));
+ p = out._next;
+ }
+ }
+ }
+ Extendable2 *e2_p = get_extendable<Extendable2, 2u>(&e1);
+ VERIFY (e2_p != nullptr);
+ e2_out = *e2_p;
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (e2_out._id == 2u);
+ VERIFY_NON_TARGET (std::strcmp(e2_out._str, "Hello!") == 0);
+ return true;
+}
+
+int main()
+{
+ volatile int arg = 42;
+ int arr[8] = {0, 1, 2, 3, 4, 5, 6, 7};
+ return test_bit_cast(arg)
+ && test_memcpy(arg, arr, 8) ? 0 : 1;
+}
--- /dev/null
+/* std::initializer_list in target region. */
+
+#include <initializer_list>
+#include <array>
+
+#include "target-flex-common.h"
+
+bool test_initializer_list(int arg)
+{
+ static constexpr std::size_t out_arr_size = 7;
+ int out_arr[out_arr_size];
+ bool ok;
+ #pragma omp target map(from: ok, out_arr[:out_arr_size]) map(to: arg)
+ {
+ bool inner_ok = true;
+ {
+ auto il = {0, 1, 2, 3, 4, 5, arg};
+
+ int sum = 0;
+ for (auto const& e : il)
+ sum += e;
+ VERIFY (sum == 0 + 1 + 2 + 3 + 4 + 5 + arg);
+
+ auto* out_it = out_arr;
+ const auto* const out_end = out_arr + out_arr_size;
+ for (auto const& e : il)
+ {
+ VERIFY (out_it != out_end);
+ *out_it = e;
+ ++out_it;
+ }
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+
+ std::array<int, out_arr_size> reference_array = {0, 1, 2, 3, 4, 5, arg};
+ const auto *out_arr_it = out_arr;
+ for (auto const& e : reference_array)
+ VERIFY_NON_TARGET (e == *(out_arr_it++));
+
+ return true;
+}
+
+int main()
+{
+ volatile int arg = 42;
+ return test_initializer_list(arg) ? 0 : 1;
+}
--- /dev/null
+/* { dg-additional-options -std=c++23 } */
+
+/* numerics */
+
+#include <algorithm>
+#include <numeric>
+#include <ranges>
+#include <span>
+#include <vector>
+
+//TODO PR120454 "C++ constexpr vs. OpenMP implicit mapping"
+#pragma omp declare target(std::ranges::all_of, std::ranges::iota)
+
+#include "target-flex-common.h"
+
+namespace stdr = std::ranges;
+
+bool test(std::size_t arg)
+{
+ bool ok;
+ int midpoint_out;
+ std::vector<int> vec(arg);
+ int *data = vec.data();
+ std::size_t size = vec.size();
+ #pragma omp target defaultmap(none) map(from: ok, midpoint_out) map(tofrom: data[:size]) map(to: arg, size)
+ {
+ std::span span = {data, size};
+ bool inner_ok = true;
+ {
+ VERIFY (stdr::all_of(span, [](int v){ return v == int{}; }));
+ stdr::iota(span, 0);
+ midpoint_out = *std::midpoint(span.data(), span.data() + span.size());
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (stdr::equal(vec, std::views::iota(0, static_cast<int>(vec.size()))));
+ VERIFY_NON_TARGET (*std::midpoint(vec.data(), vec.data() + vec.size())
+ == midpoint_out);
+ return true;
+}
+
+int main()
+{
+ volatile std::size_t arg = 42;
+ return test(arg) ? 0 : 1;
+}
--- /dev/null
+/* std::initializer_list in target region. */
+
+#include <initializer_list>
+
+#include "target-flex-common.h"
+
+struct S0
+{
+ int _v;
+ S0(std::initializer_list<int> il)
+ : _v(0)
+ {
+ for (auto const& e : il)
+ _v += e;
+ }
+};
+
+struct S1
+{
+ int _v;
+ template<typename T>
+ S1(std::initializer_list<T> il)
+ : _v(0)
+ {
+ for (auto const& e : il)
+ _v += e;
+ }
+};
+
+template<typename T>
+struct S2
+{
+ T _v;
+ S2(std::initializer_list<T> il)
+ : _v(0)
+ {
+ for (auto const& e : il)
+ _v += e;
+ }
+};
+
+#if __cplusplus >= 201703L
+template<typename T>
+S2(std::initializer_list<T>) -> S2<T>;
+#endif
+
+bool test_initializer_list(int arg)
+{
+ bool ok;
+ #pragma omp target map(from: ok) map(to: arg)
+ {
+ bool inner_ok = true;
+ {
+ static constexpr int partial_sum = 0 + 1 + 2 + 3 + 4 + 5;
+
+ S0 s0{0, 1, 2, 3, 4, 5, arg};
+ VERIFY (s0._v == partial_sum + arg);
+
+ S1 s1{0, 1, 2, 3, 4, 5, arg};
+ VERIFY (s1._v == partial_sum + arg);
+
+ S2<int> s2{0, 1, 2, 3, 4, 5, arg};
+ VERIFY (s2._v == partial_sum + arg);
+
+ #if __cplusplus >= 201703L
+ S2 s2_ctad{0, 1, 2, 3, 4, 5, arg};
+ VERIFY (s2_ctad._v == partial_sum + arg);
+ #endif
+ }
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+int main()
+{
+ volatile int arg = 42;
+ return test_initializer_list(arg) ? 0 : 1;
+}
--- /dev/null
+/* std::initializer_list constructor of std::vector (explicit template arg) */
+
+#include <vector>
+#include <array>
+
+#include "target-flex-common.h"
+
+bool test_initializer_list(int arg)
+{
+ static constexpr std::size_t out_arr_size = 7;
+ int out_arr[out_arr_size];
+ bool ok;
+ #pragma omp target map(from: ok, out_arr[:out_arr_size]) map(to: arg)
+ {
+ bool inner_ok = true;
+ {
+ std::vector<int> vec{0, 1, 2, 3, 4, 5, arg};
+ int sum = 0;
+ for (auto const& e : vec)
+ sum += e;
+ VERIFY (sum == 0 + 1 + 2 + 3 + 4 + 5 + arg);
+
+ auto* out_it = out_arr;
+ const auto* const out_end = out_arr + out_arr_size;
+ for (auto const& e : vec)
+ {
+ VERIFY (out_it != out_end);
+ *out_it = e;
+ ++out_it;
+ }
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+
+ std::array<int, out_arr_size> reference_array = {0, 1, 2, 3, 4, 5, arg};
+ const auto *out_arr_it = out_arr;
+ for (auto const& e : reference_array)
+ VERIFY_NON_TARGET (e == *(out_arr_it++));
+
+ return true;
+}
+
+int main()
+{
+ volatile int arg = 42;
+ return test_initializer_list(arg) ? 0 : 1;
+}
--- /dev/null
+/* { dg-additional-options "-std=c++17" } */
+
+/* deduced std::initializer_list constructor of std::vector (CTAD) */
+
+#include <vector>
+#include <array>
+
+#include "target-flex-common.h"
+
+bool test_initializer_list(int arg)
+{
+ static constexpr std::size_t out_arr_size = 7;
+ int out_arr[out_arr_size];
+ bool ok;
+ #pragma omp target map(from: ok, out_arr[:out_arr_size]) map(to: arg)
+ {
+ bool inner_ok = true;
+ {
+ std::vector vec{0, 1, 2, 3, 4, 5, arg};
+ int sum = 0;
+ for (auto const& e : vec)
+ sum += e;
+ VERIFY (sum == 0 + 1 + 2 + 3 + 4 + 5 + arg);
+
+ auto* out_it = out_arr;
+ const auto* const out_end = out_arr + out_arr_size;
+ for (auto const& e : vec)
+ {
+ VERIFY (out_it != out_end);
+ *out_it = e;
+ ++out_it;
+ }
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+
+ std::array<int, out_arr_size> reference_array = {0, 1, 2, 3, 4, 5, arg};
+ const auto *out_arr_it = out_arr;
+ for (auto const& e : reference_array)
+ VERIFY_NON_TARGET (e == *(out_arr_it++));
+
+ return true;
+}
+
+int main()
+{
+ volatile int arg = 42;
+ return test_initializer_list(arg) ? 0 : 1;
+}
--- /dev/null
+/* { dg-additional-options "-std=c++20" } */
+
+/* <iterator> c++20 */
+
+/* std::common_iterator uses std::variant. */
+
+#include <vector>
+#include <iterator>
+#include <span>
+
+//TODO PR120454 "C++ constexpr vs. OpenMP implicit mapping"
+#pragma omp declare target(std::ranges::distance, std::ranges::next)
+
+#include "target-flex-common.h"
+
+namespace stdr = std::ranges;
+
+template<typename It0, typename It1>
+bool simple_equal(const It0 begin0, const It0 end0,
+ const It1 begin1, const It1 end1) BL_NOEXCEPT
+{
+ It0 it0 = begin0;
+ It1 it1 = begin1;
+ for (; it0 != end0; ++it0, ++it1)
+ if (it1 == end1 || *it0 != *it1)
+ return false;
+ return true;
+}
+
+template<typename It, typename OutIt>
+void simple_copy(const It begin, const It end, OutIt out) BL_NOEXCEPT
+{
+ for (It it = begin; it != end; ++it, ++out)
+ *out = *it;
+}
+
+template<typename T, std::size_t Size>
+bool test(const T (&arr)[Size])
+{
+ bool ok;
+ T out_rev_arr[Size];
+ T out_fwd_arr[Size];
+ T out_first_half_arr[Size / 2];
+ #pragma omp target defaultmap(none) \
+ map(from: ok, out_rev_arr[:Size], out_fwd_arr[:Size], \
+ out_first_half_arr[:Size / 2]) \
+ map(to: arr[:Size])
+ {
+ bool inner_ok = true;
+ {
+ std::span<const T> span = {arr, Size};
+ std::vector<T> rev_vec(std::reverse_iterator{span.end()},
+ std::reverse_iterator{span.begin()});
+ VERIFY (std::distance(span.begin(), span.end())
+ == std::distance(rev_vec.begin(), rev_vec.end()));
+ VERIFY (stdr::distance(span.begin(), span.end())
+ == stdr::distance(rev_vec.begin(), rev_vec.end()));
+ VERIFY (stdr::distance(span) == stdr::distance(rev_vec));
+ VERIFY (simple_equal(span.begin(), span.end(),
+ std::reverse_iterator{rev_vec.end()},
+ std::reverse_iterator{rev_vec.begin()}));
+ simple_copy(rev_vec.begin(), rev_vec.end(), out_rev_arr);
+ simple_copy(std::reverse_iterator{rev_vec.end()},
+ std::reverse_iterator{rev_vec.begin()},
+ out_fwd_arr);
+ using counted_iter = std::counted_iterator<decltype(span.begin())>;
+ using common_iter = std::common_iterator<counted_iter,
+ std::default_sentinel_t>;
+ std::vector<T> front_half;
+ simple_copy(common_iter{counted_iter{span.begin(), Size / 2}},
+ common_iter{std::default_sentinel},
+ std::back_insert_iterator{front_half});
+ VERIFY (simple_equal(span.begin(), stdr::next(span.begin(), Size / 2),
+ front_half.begin(), front_half.end()));
+ simple_copy(front_half.begin(), front_half.end(), out_first_half_arr);
+ }
+ end:
+ ok = inner_ok;
+ }
+ VERIFY_NON_TARGET (simple_equal(std::reverse_iterator{arr + Size},
+ std::reverse_iterator{arr},
+ out_rev_arr, out_rev_arr + Size));
+ VERIFY_NON_TARGET (simple_equal(arr, arr + Size,
+ out_fwd_arr, out_fwd_arr + Size));
+ VERIFY_NON_TARGET (simple_equal(arr, arr + Size / 2,
+ out_first_half_arr, out_first_half_arr + Size / 2));
+ return ok;
+}
+
+int main()
+{
+ int arr[] = {0, 1, 2, 3, 4, 5, 6, 7};
+ return test(arr) ? 0 : 1;
+}
--- /dev/null
+/* algorithms pre c++20 */
+
+#include <algorithm>
+#include <vector>
+
+#include "target-flex-common.h"
+
+template<typename T, std::size_t Size>
+bool test(const T (&arr)[Size])
+{
+ bool ok;
+ T out_2x_arr[Size];
+ T out_shifted_arr[Size];
+ #pragma omp target map(from: ok, out_2x_arr[:Size], out_shifted_arr[:Size]) \
+ map(to: arr[:Size])
+ {
+ std::vector<T> vec(Size);
+ std::vector<T> mutated(Size);
+ bool inner_ok = true;
+ {
+ std::copy(arr, arr + Size, vec.begin());
+ VERIFY (std::equal(arr, arr + Size, vec.begin()));
+ std::transform(vec.begin(), vec.end(), mutated.begin(),
+ [](const T& v){ return v * 2; });
+ std::copy(mutated.begin(), mutated.end(), out_2x_arr);
+ std::rotate(vec.begin(), std::next(vec.begin(), Size / 2), vec.end());
+ std::copy(vec.begin(), vec.end(), out_shifted_arr);
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (std::equal(arr, arr + Size, out_2x_arr,
+ [](const T& a, const T& b){ return a * 2 == b; }));
+ std::vector<T> shifted(arr, arr + Size);
+ std::rotate(shifted.begin(), std::next(shifted.begin(), Size / 2), shifted.end());
+ VERIFY_NON_TARGET (std::equal(out_shifted_arr, out_shifted_arr + Size, shifted.begin()));
+ return true;
+}
+
+int main()
+{
+ int arr[] = {0, 1, 2, 3, 4, 5, 6, 7};
+ return test(arr) ? 0 : 1;
+}
--- /dev/null
+/* { dg-additional-options "-std=c++20" } */
+
+/* ranged algorithms c++20 */
+
+#include <algorithm>
+#include <ranges>
+#include <vector>
+
+//TODO PR120454 "C++ constexpr vs. OpenMP implicit mapping"
+#pragma omp declare target(std::ranges::copy, std::ranges::equal, std::ranges::rotate, std::ranges::transform)
+
+#include "target-flex-common.h"
+
+namespace stdr = std::ranges;
+
+template<typename T, std::size_t Size>
+bool test(const T (&arr)[Size])
+{
+ bool ok;
+ T out_2x_arr[Size];
+ T out_shifted_arr[Size];
+ #pragma omp target defaultmap(none) \
+ map(from: ok, out_2x_arr[:Size], out_shifted_arr[:Size]) \
+ map(to: arr[:Size])
+ {
+ std::vector<T> vec(Size);
+ std::vector<T> mutated(Size);
+ bool inner_ok = true;
+ {
+ stdr::copy(arr, vec.begin());
+ VERIFY (stdr::equal(arr, vec));
+ stdr::transform(vec, mutated.begin(),
+ [](const T& v){ return v * 2; });
+ stdr::copy(mutated, out_2x_arr);
+ stdr::rotate(vec, std::next(vec.begin(), Size / 2));
+ stdr::copy(vec, out_shifted_arr);
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (stdr::equal(arr, out_2x_arr, stdr::equal_to{}, [](const T& v){ return v * 2; }));
+ std::vector<T> shifted(arr, arr + Size);
+ stdr::rotate(shifted, std::next(shifted.begin(), Size / 2));
+ VERIFY_NON_TARGET (stdr::equal(out_shifted_arr, shifted));
+ return true;
+}
+
+int main()
+{
+ int arr[] = {0, 1, 2, 3, 4, 5, 6, 7};
+ return test(arr) ? 0 : 1;
+}
--- /dev/null
+/* { dg-additional-options -std=c++23 } */
+
+/* std::views stuff. Also tests std::tuple with std::views::zip. */
+
+#include <algorithm>
+#include <ranges>
+#include <span>
+
+//TODO PR120454 "C++ constexpr vs. OpenMP implicit mapping"
+#pragma omp declare target(std::ranges::all_of, std::ranges::equal, std::ranges::fold_left, std::views::reverse, std::views::zip)
+
+#include "target-flex-common.h"
+
+namespace stdr = std::ranges;
+namespace stdv = std::views;
+
+bool f()
+{
+ const int arr_fwd[8] = {0, 1, 2, 3, 4, 5, 6, 7};
+ const int arr_rev[8] = {7, 6, 5, 4, 3, 2, 1, 0};
+
+ bool ok;
+ #pragma omp target defaultmap(none) map(from: ok) map(to: arr_fwd[:8], arr_rev[:8])
+ {
+ std::span<const int> fwd = {arr_fwd, 8};
+ std::span<const int> rev = {arr_rev, 8};
+ bool inner_ok = true;
+ {
+ VERIFY(stdr::equal(fwd, rev | stdv::reverse));
+ VERIFY(stdr::equal(fwd | stdv::drop(4) | stdv::reverse,
+ rev | stdv::take(4)));
+ for (auto [first, second] : stdv::zip(fwd, rev))
+ VERIFY(first + second == 7);
+ auto plus = [](int a, int b){ return a + b; };
+ auto is_even = [](int v){ return v % 2 == 0; };
+ VERIFY(stdr::fold_left(fwd | stdv::filter(is_even), 0, plus)
+ == 12);
+ VERIFY(stdr::all_of(fwd | stdv::transform([](int v){ return v * 2; }),
+ is_even));
+ }
+ end:
+ ok = inner_ok;
+ }
+ return ok;
+}
+
+int main()
+{
+ return f() ? 0 : 1;
+}
--- /dev/null
+/* CTAD in target regions. */
+
+template<typename T>
+struct S
+{
+ T _v;
+};
+
+template<typename T>
+S(T) -> S<T>;
+
+bool f()
+{
+ bool ok;
+ #pragma omp target map(from: ok)
+ {
+ S s{42};
+ ok = s._v == 42;
+ }
+ return ok;
+}
+
+int main()
+{
+ return f() ? 0 : 1;
+}
--- /dev/null
+// { dg-additional-options "-std=c++20" }
+
+/* std::span */
+
+#include <span>
+
+#include "target-flex-common.h"
+
+template<typename It0, typename It1>
+bool simple_equal(It0 it0, const It0 end0,
+ It1 it1, const It1 end1) noexcept
+{
+ for (; it0 != end0; ++it0, ++it1)
+ if (it1 == end1 || *it0 != *it1)
+ return false;
+ return true;
+}
+
+template<typename T, std::size_t Size>
+bool test(const T (&arr)[Size])
+{
+ bool ok;
+ T out_arr[Size];
+ #pragma omp target map(from: ok) map(to: arr[:Size])
+ {
+ std::span span = {arr, Size};
+ bool inner_ok = true;
+ {
+ VERIFY (!span.empty());
+ VERIFY (span.size() == Size);
+ auto out_it = out_arr;
+ for (auto elem : span)
+ *(out_it++) = elem;
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (simple_equal(arr, arr + Size,
+ out_arr, out_arr + Size));
+ return true;
+}
+
+int main()
+{
+ int arr[8] = {0, 1, 2, 3, 4, 5, 6, 7};
+ return test(arr) ? 0 : 1;
+}
--- /dev/null
+/* { dg-additional-options "-std=c++20" } */
+
+#include <ranges>
+#include <span>
+#include <type_traits>
+#include <vector>
+
+#include "target-flex-common.h"
+
+namespace stdr = std::ranges;
+
+template<typename It0, typename It1>
+bool simple_equal(It0 it0, const It0 end0,
+ It1 it1, const It1 end1) noexcept
+{
+ for (; it0 != end0; ++it0, ++it1)
+ if (it1 == end1 || *it0 != *it1)
+ return false;
+ return true;
+}
+
+template<typename Rn0, typename Rn1>
+bool simple_equal(Rn0&& rn0, Rn1&& rn1) noexcept
+{
+ return simple_equal(stdr::begin(rn0), stdr::end(rn0),
+ stdr::begin(rn1), stdr::end(rn1));
+}
+
+template<typename Rn>
+bool test(Rn&& range)
+{
+ using value_type = stdr::range_value_t<std::remove_cvref_t<Rn>>;
+ std::vector<value_type> vec = {stdr::begin(range), stdr::end(range)};
+ value_type *data = vec.data();
+ std::size_t size = vec.size();
+ bool ok;
+ #pragma omp target map(from: ok) map(tofrom: data[:size]) map(to: size)
+ {
+ std::vector<value_type> orig = {data, data + size};
+ std::span<value_type> span = {data, size};
+ bool inner_ok = true;
+ {
+ auto mul_by_2 = [](const value_type& v){ return v * 2; };
+ VERIFY (simple_equal(orig, span));
+ for (auto& elem : span)
+ elem = mul_by_2(elem);
+ VERIFY (simple_equal(orig | std::views::transform(mul_by_2), span));
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ auto mul_by_2 = [](const value_type& v){ return v * 2; };
+ VERIFY_NON_TARGET (simple_equal(range | std::views::transform(mul_by_2), vec));
+ return true;
+}
+
+struct my_int
+{
+ int _v;
+ bool operator==(my_int const&) const = default;
+ my_int operator*(int rhs) const noexcept {
+ return {_v * rhs};
+ }
+};
+
+int main()
+{
+ std::vector<int> ints = {1, 2, 3, 4, 5};
+ const bool ints_res = test(ints);
+ std::vector<my_int> my_ints = {my_int{1}, my_int{2}, my_int{3}, my_int{4}, my_int{5}};
+ const bool my_ints_res = test(my_ints);
+ return ints_res && my_ints_res ? 0 : 1;
+}
--- /dev/null
+/* structured bindings */
+
+#include <array>
+#include <tuple>
+
+#include "target-flex-common.h"
+
+template<typename Array, typename Tuple, typename Struct>
+bool test(Array array, Tuple tuple, Struct s)
+{
+ bool ok;
+ auto array_2nd_in = std::get<2>(array);
+ auto tuple_2nd_in = std::get<2>(tuple);
+ auto s_2nd_in = s._2;
+ decltype(array_2nd_in) array_2nd_out_0;
+ decltype(tuple_2nd_in) tuple_2nd_out_0;
+ decltype(s_2nd_in) s_2nd_out_0;
+ decltype(array_2nd_in) array_2nd_out_1;
+ decltype(tuple_2nd_in) tuple_2nd_out_1;
+ decltype(s_2nd_in) s_2nd_out_1;
+ decltype(array_2nd_in) array_2nd_out_2;
+ decltype(tuple_2nd_in) tuple_2nd_out_2;
+ decltype(s_2nd_in) s_2nd_out_2;
+ #pragma omp target map(from: ok, \
+ array_2nd_out_0, tuple_2nd_out_0, s_2nd_out_0, \
+ array_2nd_out_1, tuple_2nd_out_1, s_2nd_out_1, \
+ array_2nd_out_2, tuple_2nd_out_2, s_2nd_out_2) \
+ map(to: array_2nd_in, tuple_2nd_in, s_2nd_in, array, tuple, s)
+ {
+ bool inner_ok = true;
+ {
+ {
+ auto [array_0th, array_1st, array_2nd] = array;
+ VERIFY (array_2nd_in == array_2nd);
+ VERIFY (std::get<2>(array) == array_2nd);
+ array_2nd_out_0 = array_2nd;
+ auto [tuple_0th, tuple_1st, tuple_2nd] = tuple;
+ VERIFY (tuple_2nd_in == tuple_2nd);
+ VERIFY (std::get<2>(tuple) == tuple_2nd);
+ tuple_2nd_out_0 = tuple_2nd;
+ auto [s_0th, s_1st, s_2nd] = s;
+ VERIFY (s_2nd_in == s_2nd);
+ VERIFY (s._2 == s_2nd);
+ s_2nd_out_0 = s_2nd;
+ }
+ {
+ auto& [array_0th, array_1st, array_2nd] = array;
+ VERIFY (array_2nd_in == array_2nd);
+ VERIFY (std::get<2>(array) == array_2nd);
+ array_2nd_out_1 = array_2nd;
+ auto& [tuple_0th, tuple_1st, tuple_2nd] = tuple;
+ VERIFY (tuple_2nd_in == tuple_2nd);
+ VERIFY (std::get<2>(tuple) == tuple_2nd);
+ tuple_2nd_out_1 = tuple_2nd;
+ auto& [s_0th, s_1st, s_2nd] = s;
+ VERIFY (s_2nd_in == s_2nd);
+ VERIFY (s._2 == s_2nd);
+ s_2nd_out_1 = s_2nd;
+ }
+ {
+ const auto& [array_0th, array_1st, array_2nd] = array;
+ VERIFY (array_2nd_in == array_2nd);
+ VERIFY (std::get<2>(array) == array_2nd);
+ array_2nd_out_2 = array_2nd;
+ const auto& [tuple_0th, tuple_1st, tuple_2nd] = tuple;
+ VERIFY (tuple_2nd_in == tuple_2nd);
+ VERIFY (std::get<2>(tuple) == tuple_2nd);
+ tuple_2nd_out_2 = tuple_2nd;
+ const auto& [s_0th, s_1st, s_2nd] = s;
+ VERIFY (s_2nd_in == s_2nd);
+ VERIFY (s._2 == s_2nd);
+ s_2nd_out_2 = s_2nd;
+ }
+ }
+ end:
+ ok = inner_ok;
+ }
+ if (!ok)
+ return false;
+ VERIFY_NON_TARGET (array_2nd_out_0 == array_2nd_in);
+ VERIFY_NON_TARGET (tuple_2nd_out_0 == tuple_2nd_in);
+ VERIFY_NON_TARGET (s_2nd_out_0 == s_2nd_in);
+ VERIFY_NON_TARGET (array_2nd_out_1 == array_2nd_in);
+ VERIFY_NON_TARGET (tuple_2nd_out_1 == tuple_2nd_in);
+ VERIFY_NON_TARGET (s_2nd_out_1 == s_2nd_in);
+ VERIFY_NON_TARGET (array_2nd_out_2 == array_2nd_in);
+ VERIFY_NON_TARGET (tuple_2nd_out_2 == tuple_2nd_in);
+ VERIFY_NON_TARGET (s_2nd_out_2 == s_2nd_in);
+
+ return true;
+}
+
+struct S
+{
+ char _0;
+ float _1;
+ int _2;
+};
+
+int main()
+{
+ const bool test_res
+ = test(std::array{0, 1, 2},
+ std::tuple{'a', 3.14f, 42},
+ S{'a', 3.14f, 42});
+ return test_res ? 0 : 1;
+}
--- /dev/null
+#include <cstdio>
+
+#if __cplusplus >= 201103L
+ #define BL_NOEXCEPT noexcept
+#else
+ #define BL_NOEXCEPT throw()
+#endif
+
+#if defined __has_builtin
+# if __has_builtin (__builtin_LINE)
+# define VERIFY_LINE __builtin_LINE ()
+# endif
+#endif
+#if !defined VERIFY_LINE
+# define VERIFY_LINE __LINE__
+#endif
+
+/* I'm not a huge fan of macros but in the interest of keeping the code that
+ isn't being tested as simple as possible, we use them. */
+
+#define VERIFY(EXPR) \
+ do { \
+ if (!(EXPR)) \
+ { \
+ std::printf("VERIFY ln: %d `" #EXPR "` evaluated to false\n", \
+ VERIFY_LINE); \
+ inner_ok = false; \
+ goto end; \
+ } \
+ } while (false)
+
+#define VERIFY_NON_TARGET(EXPR) \
+ do { \
+ if (!(EXPR)) \
+ { \
+ std::printf("VERIFY ln: %d `" #EXPR "` evaluated to false\n", \
+ VERIFY_LINE); \
+ return false; \
+ } \
+ } while (false)