]> git.ipfire.org Git - thirdparty/ipxe.git/commitdiff
[crypto] Add X25519 key exchange algorithm
authorMichael Brown <mcb30@ipxe.org>
Fri, 19 Jan 2024 12:36:11 +0000 (12:36 +0000)
committerMichael Brown <mcb30@ipxe.org>
Fri, 19 Jan 2024 16:44:30 +0000 (16:44 +0000)
Add an implementation of the X25519 key exchange algorithm as defined
in RFC7748.

This implementation is inspired by and partially based upon the paper
"Implementing Curve25519/X25519: A Tutorial on Elliptic Curve
Cryptography" by Martin Kleppmann, available for download from
https://www.cl.cam.ac.uk/teaching/2122/Crypto/curve25519.pdf

The underlying modular addition, subtraction, and multiplication
operations are completely redesigned for substantially improved
efficiency compared to the TweetNaCl implementation studied in that
paper (approximately 5x-10x faster and with 70% less memory usage).

Signed-off-by: Michael Brown <mcb30@ipxe.org>
src/crypto/x25519.c [new file with mode: 0644]
src/include/ipxe/x25519.h [new file with mode: 0644]
src/tests/tests.c
src/tests/x25519_test.c [new file with mode: 0644]

diff --git a/src/crypto/x25519.c b/src/crypto/x25519.c
new file mode 100644 (file)
index 0000000..750a2a7
--- /dev/null
@@ -0,0 +1,808 @@
+/*
+ * Copyright (C) 2024 Michael Brown <mbrown@fensystems.co.uk>.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of the
+ * License, or any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+ * 02110-1301, USA.
+ *
+ * You can also choose to distribute this program under the terms of
+ * the Unmodified Binary Distribution Licence (as given in the file
+ * COPYING.UBDL), provided that you have satisfied its requirements.
+ */
+
+FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
+
+/** @file
+ *
+ * X25519 key exchange
+ *
+ * This implementation is inspired by and partially based upon the
+ * paper "Implementing Curve25519/X25519: A Tutorial on Elliptic Curve
+ * Cryptography" by Martin Kleppmann, available for download from
+ * https://www.cl.cam.ac.uk/teaching/2122/Crypto/curve25519.pdf
+ *
+ * The underlying modular addition, subtraction, and multiplication
+ * operations are completely redesigned for substantially improved
+ * efficiency compared to the TweetNaCl implementation studied in that
+ * paper.
+ *
+ *                                    TweetNaCl            iPXE
+ *                                    ---------            ----
+ *
+ * Storage size of each big integer         128              40
+ * (in bytes)
+ *
+ * Stack usage for key exchange                    1144             360
+ * (in bytes, large objects only)
+ *
+ * Cost of big integer addition                      16               5
+ * (in number of 64-bit additions)
+ *
+ * Cost of big integer multiplication       273              31
+ * (in number of 64-bit multiplications)
+ *
+ * The implementation is constant-time (provided that the underlying
+ * big integer operations are also constant-time).
+ */
+
+#include <stdint.h>
+#include <string.h>
+#include <assert.h>
+#include <ipxe/init.h>
+#include <ipxe/x25519.h>
+
+/** X25519 reduction constant
+ *
+ * The X25519 field prime is p=2^255-19.  This gives us:
+ *
+ *               p = 2^255 - 19
+ *           2^255 = p + 19
+ *           2^255 = 19          (mod p)
+ *       k * 2^255 = k * 19      (mod p)
+ *
+ * We can therefore reduce a value modulo p by taking the high-order
+ * bits of the value from bit 255 and above, multiplying by 19, and
+ * adding this to the low-order 255 bits of the value.
+ *
+ * This would be cumbersome to do in practice since it would require
+ * partitioning the value at a 255-bit boundary (and hence would
+ * require some shifting and masking operations).  However, we can
+ * note that:
+ *
+ *       k * 2^255 = k * 19      (mod p)
+ *   k * 2 * 2^255 = k * 2 * 19  (mod p)
+ *       k * 2^256 = k * 38      (mod p)
+ *
+ * We can therefore simplify the reduction to taking the high order
+ * bits of the value from bit 256 and above, multiplying by 38, and
+ * adding this to the low-order 256 bits of the value.
+ *
+ * Since 256 will inevitably be a multiple of the big integer element
+ * size (typically 32 or 64 bits), this avoids the need to perform any
+ * shifting or masking operations.
+ */
+#define X25519_REDUCE_256 38
+
+/** X25519 multiplication step 1 result
+ *
+ * Step 1 of X25519 multiplication is to compute the product of two
+ * X25519 unsigned 258-bit integers.
+ *
+ * Both multiplication inputs are limited to 258 bits, and so the
+ * product will have at most 516 bits.
+ */
+union x25519_multiply_step1 {
+       /** Raw product
+        *
+        * Big integer multiplication produces a result with a number
+        * of elements equal to the sum of the number of elements in
+        * each input.
+        */
+       bigint_t ( X25519_SIZE + X25519_SIZE ) product;
+       /** Partition into low-order and high-order bits
+        *
+        * Reduction modulo p requires separating the low-order 256
+        * bits from the remaining high-order bits.
+        *
+        * Since the value will never exceed 516 bits (see above),
+        * there will be at most 260 high-order bits.
+        */
+       struct {
+               /** Low-order 256 bits */
+               bigint_t ( bigint_required_size ( ( 256 /* bits */ + 7 ) / 8 ) )
+                       low_256bit;
+               /** High-order 260 bits */
+               bigint_t ( bigint_required_size ( ( 260 /* bits */ + 7 ) / 8 ) )
+                       high_260bit;
+       } __attribute__ (( packed )) parts;
+};
+
+/** X25519 multiplication step 2 result
+ *
+ * Step 2 of X25519 multiplication is to multiply the high-order 260
+ * bits from step 1 with the 6-bit reduction constant 38, and to add
+ * this to the low-order 256 bits from step 1.
+ *
+ * The multiplication inputs are limited to 260 and 6 bits
+ * respectively, and so the product will have at most 266 bits.  After
+ * adding the low-order 256 bits from step 1, the result will have at
+ * most 267 bits.
+ */
+union x25519_multiply_step2 {
+       /** Raw product
+        *
+        * Big integer multiplication produces a result with a number
+        * of elements equal to the sum of the number of elements in
+        * each input.
+        */
+       bigint_t ( bigint_required_size ( ( 260 /* bits */ + 7 ) / 8 ) +
+                  bigint_required_size ( ( 6 /* bits */ + 7 ) / 8 ) ) product;
+       /** Big integer value
+        *
+        * The value will never exceed 267 bits (see above), and so
+        * may be consumed as a normal X25519 big integer.
+        */
+       x25519_t value;
+       /** Partition into low-order and high-order bits
+        *
+        * Reduction modulo p requires separating the low-order 256
+        * bits from the remaining high-order bits.
+        *
+        * Since the value will never exceed 267 bits (see above),
+        * there will be at most 11 high-order bits.
+        */
+       struct {
+               /** Low-order 256 bits */
+               bigint_t ( bigint_required_size ( ( 256 /* bits */ + 7 ) / 8 ) )
+                       low_256bit;
+               /** High-order 11 bits */
+               bigint_t ( bigint_required_size ( ( 11 /* bits */ + 7 ) / 8 ) )
+                       high_11bit;
+       } __attribute__ (( packed )) parts;
+};
+
+/** X25519 multiplication step 3 result
+ *
+ * Step 3 of X25519 multiplication is to multiply the high-order 11
+ * bits from step 2 with the 6-bit reduction constant 38, and to add
+ * this to the low-order 256 bits from step 2.
+ *
+ * The multiplication inputs are limited to 11 and 6 bits
+ * respectively, and so the product will have at most 17 bits.  After
+ * adding the low-order 256 bits from step 2, the result will have at
+ * most 257 bits.
+ */
+union x25519_multiply_step3 {
+       /** Raw product
+        *
+        * Big integer multiplication produces a result with a number
+        * of elements equal to the sum of the number of elements in
+        * each input.
+        */
+       bigint_t ( bigint_required_size ( ( 11 /* bits */ + 7 ) / 8 ) +
+                  bigint_required_size ( ( 6 /* bits */ + 7 ) / 8 ) ) product;
+       /** Big integer value
+        *
+        * The value will never exceed 267 bits (see above), and so
+        * may be consumed as a normal X25519 big integer.
+        */
+       x25519_t value;
+};
+
+/** X25519 multiplication temporary working space
+ *
+ * We overlap the buffers used by each step of the multiplication
+ * calculation to reduce the total stack space required:
+ *
+ * |--------------------------------------------------------|
+ * | <- pad -> | <------------ step 1 result -------------> |
+ * |           | <- low 256 bits -> | <-- high 260 bits --> |
+ * | <------- step 2 result ------> | <-- step 3 result --> |
+ * |--------------------------------------------------------|
+ */
+union x25519_multiply_workspace {
+       /** Step 1 result */
+       struct {
+               /** Padding to avoid collision between steps 1 and 2
+                *
+                * The step 2 multiplication consumes the high 260
+                * bits of step 1, and so the step 2 multiplication
+                * result must not overlap this portion of the step 1
+                * result.
+                */
+               uint8_t pad[ sizeof ( union x25519_multiply_step2 ) -
+                            offsetof ( union x25519_multiply_step1,
+                                       parts.high_260bit ) ];
+               /** Step 1 result */
+               union x25519_multiply_step1 step1;
+       } __attribute__ (( packed ));
+       /** Steps 2 and 3 results */
+       struct {
+               /** Step 2 result */
+               union x25519_multiply_step2 step2;
+               /** Step 3 result */
+               union x25519_multiply_step3 step3;
+       } __attribute__ (( packed ));
+};
+
+/** An X25519 elliptic curve point in projective coordinates
+ *
+ * A point (x,y) on the Montgomery curve used in X25519 is represented
+ * using projective coordinates (X/Z,Y/Z) so that intermediate
+ * calculations may be performed on both numerator and denominator
+ * separately, with the division step performed only once at the end
+ * of the calculation.
+ *
+ * The group operation calculation is performed using a Montgomery
+ * ladder as:
+ *
+ *   X[2i]   = ( X[i]^2 - Z[i]^2 )^2
+ *   X[2i+1] = ( X[i] * X[i+1] - Z[i] * Z[i+1] )^2
+ *   Z[2i]   = 4 * X[i] * Z[i] * ( X[i]^2 + A * X[i] * Z[i] + Z[i]^2 )
+ *   Z[2i+1] = X[0] * ( X[i] * Z[i+1] - X[i+1] * Z[i] ) ^ 2
+ *
+ * It is therefore not necessary to store (or use) the value of Y.
+ */
+struct x25519_projective {
+       /** X coordinate */
+       union x25519_quad257 X;
+       /** Z coordinate */
+       union x25519_quad257 Z;
+};
+
+/** An X25519 Montgomery ladder step */
+struct x25519_step {
+       /** X[n]/Z[n] */
+       struct x25519_projective x_n;
+       /** X[n+1]/Z[n+1] */
+       struct x25519_projective x_n1;
+};
+
+/** Constant p=2^255-19 (the finite field prime) */
+static const uint8_t x25519_p_raw[] = {
+       0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xed
+};
+
+/** Constant p=2^255-19 (the finite field prime) */
+static x25519_t x25519_p;
+
+/** Constant 2p=2^256-38 */
+static x25519_t x25519_2p;
+
+/** Constant 4p=2^257-76 */
+static x25519_t x25519_4p;
+
+/** Reduction constant (used during multiplication) */
+static const uint8_t x25519_reduce_256_raw[] = { X25519_REDUCE_256 };
+
+/** Reduction constant (used during multiplication) */
+static bigint_t ( bigint_required_size ( sizeof ( x25519_reduce_256_raw ) ) )
+       x25519_reduce_256;
+
+/** Constant 121665 (used in the Montgomery ladder) */
+static const uint8_t x25519_121665_raw[] = { 0x01, 0xdb, 0x41 };
+
+/** Constant 121665 (used in the Montgomery ladder) */
+static union x25519_oct258 x25519_121665;
+
+/**
+ * Initialise constants
+ *
+ */
+static void x25519_init_constants ( void ) {
+
+       /* Construct constant p */
+       bigint_init ( &x25519_p, x25519_p_raw, sizeof ( x25519_p_raw ) );
+
+       /* Construct constant 2p */
+       bigint_copy ( &x25519_p, &x25519_2p );
+       bigint_add ( &x25519_p, &x25519_2p );
+
+       /* Construct constant 4p */
+       bigint_copy ( &x25519_2p, &x25519_4p );
+       bigint_add ( &x25519_2p, &x25519_4p );
+
+       /* Construct reduction constant */
+       bigint_init ( &x25519_reduce_256, x25519_reduce_256_raw,
+                     sizeof ( x25519_reduce_256_raw ) );
+
+       /* Construct constant 121665 */
+       bigint_init ( &x25519_121665.value, x25519_121665_raw,
+                     sizeof ( x25519_121665_raw ) );
+}
+
+/** Initialisation function */
+struct init_fn x25519_init_fn __init_fn ( INIT_NORMAL ) = {
+       .initialise = x25519_init_constants,
+};
+
+/**
+ * Add big integers modulo field prime
+ *
+ * @v augend           Big integer to add
+ * @v addend           Big integer to add
+ * @v result           Big integer to hold result (may overlap augend)
+ */
+static inline __attribute__ (( always_inline )) void
+x25519_add ( const union x25519_quad257 *augend,
+            const union x25519_quad257 *addend,
+            union x25519_oct258 *result ) {
+       int copy;
+
+       /* Copy augend if necessary */
+       copy = ( result != &augend->oct258 );
+       build_assert ( __builtin_constant_p ( copy ) );
+       if ( copy ) {
+               build_assert ( result != &addend->oct258 );
+               bigint_copy ( &augend->oct258.value, &result->value );
+       }
+
+       /* Perform addition
+        *
+        * Both inputs are in the range [0,4p-1] and the resulting
+        * sum is therefore in the range [0,8p-2].
+        *
+        * This range lies within the range [0,8p-1] and the result is
+        * therefore a valid X25519 unsigned 258-bit integer, as
+        * required.
+        */
+       bigint_add ( &addend->value, &result->value );
+}
+
+/**
+ * Subtract big integers modulo field prime
+ *
+ * @v minuend          Big integer from which to subtract
+ * @v subtrahend       Big integer to subtract
+ * @v result           Big integer to hold result (may overlap minuend)
+ */
+static inline __attribute__ (( always_inline )) void
+x25519_subtract ( const union x25519_quad257 *minuend,
+                 const union x25519_quad257 *subtrahend,
+                 union x25519_oct258 *result ) {
+       int copy;
+
+       /* Copy minuend if necessary */
+       copy = ( result != &minuend->oct258 );
+       build_assert ( __builtin_constant_p ( copy ) );
+       if ( copy ) {
+               build_assert ( result != &subtrahend->oct258 );
+               bigint_copy ( &minuend->oct258.value, &result->value );
+       }
+
+       /* Perform subtraction
+        *
+        * Both inputs are in the range [0,4p-1] and the resulting
+        * difference is therefore in the range [1-4p,4p-1].
+        *
+        * This range lies partially outside the range [0,8p-1] and
+        * the result is therefore not yet a valid X25519 unsigned
+        * 258-bit integer.
+        */
+       bigint_subtract ( &subtrahend->value, &result->value );
+
+       /* Add constant multiple of field prime p
+        *
+        * Add the constant 4p to the result.  This brings the result
+        * within the range [1,8p-1] (without changing the value
+        * modulo p).
+        *
+        * This range lies within the range [0,8p-1] and the result is
+        * therefore now a valid X25519 unsigned 258-bit integer, as
+        * required.
+        */
+       bigint_add ( &x25519_4p, &result->value );
+}
+
+/**
+ * Multiply big integers modulo field prime
+ *
+ * @v multiplicand     Big integer to be multiplied
+ * @v multiplier       Big integer to be multiplied
+ * @v result           Big integer to hold result (may overlap either input)
+ */
+void x25519_multiply ( const union x25519_oct258 *multiplicand,
+                      const union x25519_oct258 *multiplier,
+                      union x25519_quad257 *result ) {
+       union x25519_multiply_workspace tmp;
+       union x25519_multiply_step1 *step1 = &tmp.step1;
+       union x25519_multiply_step2 *step2 = &tmp.step2;
+       union x25519_multiply_step3 *step3 = &tmp.step3;
+
+       /* Step 1: perform raw multiplication
+        *
+        *   step1 = multiplicand * multiplier
+        *
+        * Both inputs are 258-bit numbers and the step 1 result is
+        * therefore 258+258=516 bits.
+        */
+       static_assert ( sizeof ( step1->product ) >= sizeof ( step1->parts ) );
+       bigint_multiply ( &multiplicand->value, &multiplier->value,
+                         &step1->product );
+
+       /* Step 2: reduce high-order 516-256=260 bits of step 1 result
+        *
+        * Use the identity 2^256=38 (mod p) to reduce the high-order
+        * bits of the step 1 result.  We split the 516-bit result
+        * from step 1 into its low-order 256 bits and high-order 260
+        * bits:
+        *
+        *   step1 = step1(low 256 bits) + step1(high 260 bits) * 2^256
+        *
+        * and then perform the calculation:
+        *
+        *   step2 = step1                                              (mod p)
+        *         = step1(low 256 bits) + step1(high 260 bits) * 2^256 (mod p)
+        *         = step1(low 256 bits) + step1(high 260 bits) * 38    (mod p)
+        *
+        * There are 6 bits in the constant value 38.  The step 2
+        * multiplication product will therefore have 260+6=266 bits,
+        * and the step 2 result (after the addition) will therefore
+        * have 267 bits.
+        */
+       static_assert ( sizeof ( step2->product ) >= sizeof ( step2->value ) );
+       static_assert ( sizeof ( step2->product ) >= sizeof ( step2->parts ) );
+       bigint_grow ( &step1->parts.low_256bit, &result->value );
+       bigint_multiply ( &step1->parts.high_260bit, &x25519_reduce_256,
+                         &step2->product );
+       bigint_add ( &result->value, &step2->value );
+
+       /* Step 3: reduce high-order 267-256=11 bits of step 2 result
+        *
+        * Use the identity 2^256=38 (mod p) again to reduce the
+        * high-order bits of the step 2 result.  As before, we split
+        * the 267-bit result from step 2 into its low-order 256 bits
+        * and high-order 11 bits:
+        *
+        *   step2 = step2(low 256 bits) + step2(high 11 bits) * 2^256
+        *
+        * and then perform the calculation:
+        *
+        *   step3 = step2                                             (mod p)
+        *         = step2(low 256 bits) + step2(high 11 bits) * 2^256 (mod p)
+        *         = step2(low 256 bits) + step2(high 11 bits) * 38    (mod p)
+        *
+        * There are 6 bits in the constant value 38.  The step 3
+        * multiplication product will therefore have 11+6=19 bits,
+        * and the step 3 result (after the addition) will therefore
+        * have 257 bits.
+        *
+        * A loose upper bound for the step 3 result (after the
+        * addition) is given by:
+        *
+        *   step3 < ( 2^256 - 1 ) + ( 2^19 - 1 )
+        *         < ( 2^257 - 2^256 - 1 ) + ( 2^19 - 1 )
+        *         < ( 2^257 - 76 ) - 2^256 + 2^19 + 74
+        *         < 4 * ( 2^255 - 19 ) - 2^256 + 2^19 + 74
+        *         < 4p - 2^256 + 2^19 + 74
+        *
+        * and so the step 3 result is strictly less than 4p, and
+        * therefore lies within the range [0,4p-1].
+        */
+       memset ( &step3->value, 0, sizeof ( step3->value ) );
+       bigint_grow ( &step2->parts.low_256bit, &result->value );
+       bigint_multiply ( &step2->parts.high_11bit, &x25519_reduce_256,
+                         &step3->product );
+       bigint_add ( &step3->value, &result->value );
+
+       /* Step 1 calculates the product of the input operands, and
+        * each subsequent step reduces the number of bits in the
+        * result while preserving this value (modulo p).  The final
+        * result is therefore equal to the product of the input
+        * operands (modulo p), as required.
+        *
+        * The step 3 result lies within the range [0,4p-1] and the
+        * final result is therefore a valid X25519 unsigned 257-bit
+        * integer, as required.
+        */
+}
+
+/**
+ * Compute multiplicative inverse
+ *
+ * @v invertend                Big integer to be inverted
+ * @v result           Big integer to hold result (may not overlap input)
+ */
+void x25519_invert ( const union x25519_oct258 *invertend,
+                    union x25519_quad257 *result ) {
+       int i;
+
+       /* Sanity check */
+       assert ( invertend != &result->oct258 );
+
+       /* Calculate inverse as x^(-1)=x^(p-2) where p is the field prime
+        *
+        * The field prime is p=2^255-19 and so:
+        *
+        *   p - 2 = 2^255 - 21
+        *         = (2^255 - 1) - 2^4 - 2^2
+        *
+        * i.e. p-2 is a 254-bit number in which all bits are set
+        * apart from bit 2 and bit 4.
+        *
+        * We use the square-and-multiply method to compute x^(p-2).
+        */
+       bigint_copy ( &invertend->value, &result->value );
+       for ( i = 253 ; i >= 0 ; i-- ) {
+
+               /* Square running total */
+               x25519_multiply ( &result->oct258, &result->oct258, result );
+
+               /* For each set bit in the exponent, multiply by invertend */
+               if ( ( i != 2 ) && ( i != 4 ) ) {
+                       x25519_multiply ( invertend, &result->oct258, result );
+               }
+       }
+}
+
+/**
+ * Reduce big integer via conditional subtraction
+ *
+ * @v subtrahend       Big integer to subtract
+ * @v value            Big integer to be subtracted from, if possible
+ */
+static void x25519_reduce_by ( const x25519_t *subtrahend, x25519_t *value ) {
+       unsigned int max_bit = ( ( 8 * sizeof ( *value ) ) - 1 );
+       x25519_t tmp;
+
+       /* Conditionally subtract subtrahend
+        *
+        * Subtract the subtrahend, discarding the result (in constant
+        * time) if the subtraction underflows.
+        */
+       bigint_copy ( value, &tmp );
+       bigint_subtract ( subtrahend, value );
+       bigint_swap ( value, &tmp, bigint_bit_is_set ( value, max_bit ) );
+}
+
+/**
+ * Reduce big integer to canonical range
+ *
+ * @v value            Big integer to be reduced
+ */
+void x25519_reduce ( union x25519_quad257 *value ) {
+
+       /* Conditionally subtract 2p
+        *
+        * Subtract twice the field prime, discarding the result (in
+        * constant time) if the subtraction underflows.
+        *
+        * The input value is in the range [0,4p-1].  After this
+        * conditional subtraction, the value is in the range
+        * [0,2p-1].
+        */
+       x25519_reduce_by ( &x25519_2p, &value->value );
+
+       /* Conditionally subtract p
+        *
+        * Subtract the field prime, discarding the result (in
+        * constant time) if the subtraction underflows.
+        *
+        * The value is already in the range [0,2p-1].  After this
+        * conditional subtraction, the value is in the range [0,p-1]
+        * and is therefore the canonical representation.
+        */
+       x25519_reduce_by ( &x25519_p, &value->value );
+}
+
+/**
+ * Compute next step of the Montgomery ladder
+ *
+ * @v base             Base point
+ * @v bit              Bit value
+ * @v step             Ladder step
+ */
+static void x25519_step ( const union x25519_quad257 *base, int bit,
+                         struct x25519_step *step ) {
+       union x25519_quad257 *a = &step->x_n.X;
+       union x25519_quad257 *b = &step->x_n1.X;
+       union x25519_quad257 *c = &step->x_n.Z;
+       union x25519_quad257 *d = &step->x_n1.Z;
+       union x25519_oct258 e;
+       union x25519_quad257 f;
+       union x25519_oct258 *v1_e;
+       union x25519_oct258 *v2_a;
+       union x25519_oct258 *v3_c;
+       union x25519_oct258 *v4_b;
+       union x25519_quad257 *v5_d;
+       union x25519_quad257 *v6_f;
+       union x25519_quad257 *v7_a;
+       union x25519_quad257 *v8_c;
+       union x25519_oct258 *v9_e;
+       union x25519_oct258 *v10_a;
+       union x25519_quad257 *v11_b;
+       union x25519_oct258 *v12_c;
+       union x25519_quad257 *v13_a;
+       union x25519_oct258 *v14_a;
+       union x25519_quad257 *v15_c;
+       union x25519_quad257 *v16_a;
+       union x25519_quad257 *v17_d;
+       union x25519_quad257 *v18_b;
+
+       /* See the referenced paper "Implementing Curve25519/X25519: A
+        * Tutorial on Elliptic Curve Cryptography" for the reasoning
+        * behind this calculation.
+        */
+
+       /* Reuse storage locations for intermediate results where possible */
+       v1_e = &e;
+       v2_a = container_of ( &a->value, union x25519_oct258, value );
+       v3_c = container_of ( &c->value, union x25519_oct258, value );
+       v4_b = container_of ( &b->value, union x25519_oct258, value );
+       v5_d = d;
+       v6_f = &f;
+       v7_a = a;
+       v8_c = c;
+       v9_e = &e;
+       v10_a = container_of ( &a->value, union x25519_oct258, value );
+       v11_b = b;
+       v12_c = container_of ( &c->value, union x25519_oct258, value );
+       v13_a = a;
+       v14_a = container_of ( &a->value, union x25519_oct258, value );
+       v15_c = c;
+       v16_a = a;
+       v17_d = d;
+       v18_b = b;
+
+       /* Select inputs */
+       bigint_swap ( &a->value, &b->value, bit );
+       bigint_swap ( &c->value, &d->value, bit );
+
+       /* v1 = a + c */
+       x25519_add ( a, c, v1_e );
+
+       /* v2 = a - c */
+       x25519_subtract ( a, c, v2_a );
+
+       /* v3 = b + d */
+       x25519_add ( b, d, v3_c );
+
+       /* v4 = b - d */
+       x25519_subtract ( b, d, v4_b );
+
+       /* v5 = v1^2 = (a + c)^2 = a^2 + 2ac + c^2 */
+       x25519_multiply ( v1_e, v1_e, v5_d );
+
+       /* v6 = v2^2 = (a - c)^2 = a^2 - 2ac + c^2 */
+       x25519_multiply ( v2_a, v2_a, v6_f );
+
+       /* v7 = v3 * v2 = (b + d) * (a - c) = ab - bc + ad - cd */
+       x25519_multiply ( v3_c, v2_a, v7_a );
+
+       /* v8 = v4 * v1 = (b - d) * (a + c) = ab + bc - ad - cd */
+       x25519_multiply ( v4_b, v1_e, v8_c );
+
+       /* v9 = v7 + v8 = 2 * (ab - cd) */
+       x25519_add ( v7_a, v8_c, v9_e );
+
+       /* v10 = v7 - v8 = 2 * (ad - bc) */
+       x25519_subtract ( v7_a, v8_c, v10_a );
+
+       /* v11 = v10^2 = 4 * (ad - bc)^2 */
+       x25519_multiply ( v10_a, v10_a, v11_b );
+
+       /* v12 = v5 - v6 = (a + c)^2 - (a - c)^2 = 4ac */
+       x25519_subtract ( v5_d, v6_f, v12_c );
+
+       /* v13 = v12 * 121665 = 486660ac = (A-2) * ac */
+       x25519_multiply ( v12_c, &x25519_121665, v13_a );
+
+       /* v14 = v13 + v5 = (A-2) * ac + a^2 + 2ac + c^2 = a^2 + A * ac + c^2 */
+       x25519_add ( v13_a, v5_d, v14_a );
+
+       /* v15 = v12 * v14 = 4ac * (a^2 + A * ac + c^2) */
+       x25519_multiply ( v12_c, v14_a, v15_c );
+
+       /* v16 = v5 * v6 = (a + c)^2 * (a - c)^2 = (a^2 - c^2)^2 */
+       x25519_multiply ( &v5_d->oct258, &v6_f->oct258, v16_a );
+
+       /* v17 = v11 * base = 4 * base * (ad - bc)^2 */
+       x25519_multiply ( &v11_b->oct258, &base->oct258, v17_d );
+
+       /* v18 = v9^2 = 4 * (ab - cd)^2 */
+       x25519_multiply ( v9_e, v9_e, v18_b );
+
+       /* Select outputs */
+       bigint_swap ( &a->value, &b->value, bit );
+       bigint_swap ( &c->value, &d->value, bit );
+}
+
+/**
+ * Multiply X25519 elliptic curve point
+ *
+ * @v base             Base point
+ * @v scalar           Scalar multiple
+ * @v result           Point to hold result (may overlap base point)
+ */
+static void x25519_ladder ( const union x25519_quad257 *base,
+                           struct x25519_value *scalar,
+                           union x25519_quad257 *result ) {
+       static const uint8_t zero[] = { 0 };
+       static const uint8_t one[] = { 1 };
+       struct x25519_step step;
+       union x25519_quad257 *tmp;
+       int bit;
+       int i;
+
+       /* Initialise ladder */
+       bigint_init ( &step.x_n.X.value, one, sizeof ( one ) );
+       bigint_init ( &step.x_n.Z.value, zero, sizeof ( zero ) );
+       bigint_copy ( &base->value, &step.x_n1.X.value );
+       bigint_init ( &step.x_n1.Z.value, one, sizeof ( one ) );
+
+       /* Use ladder */
+       for ( i = 254 ; i >= 0 ; i-- ) {
+               bit = ( ( scalar->raw[ i / 8 ] >> ( i % 8 ) ) & 1 );
+               x25519_step ( base, bit, &step );
+       }
+
+       /* Convert back to affine coordinate */
+       tmp = &step.x_n1.X;
+       x25519_invert ( &step.x_n.Z.oct258, tmp );
+       x25519_multiply ( &step.x_n.X.oct258, &tmp->oct258, result );
+       x25519_reduce ( result );
+}
+
+/**
+ * Reverse X25519 value endianness
+ *
+ * @v value            Value to reverse
+ */
+static void x25519_reverse ( struct x25519_value *value ) {
+       uint8_t *low = value->raw;
+       uint8_t *high = &value->raw[ sizeof ( value->raw ) - 1 ];
+       uint8_t tmp;
+
+       /* Reverse bytes */
+       do {
+               tmp = *low;
+               *low = *high;
+               *high = tmp;
+       } while ( ++low < --high );
+}
+
+/**
+ * Calculate X25519 key
+ *
+ * @v base             Base point
+ * @v scalar           Scalar multiple
+ * @v result           Point to hold result (may overlap base point)
+ */
+void x25519_key ( const struct x25519_value *base,
+                 const struct x25519_value *scalar,
+                 struct x25519_value *result ) {
+       struct x25519_value *tmp = result;
+       union x25519_quad257 point;
+
+       /* Reverse base point and clear high bit as required by RFC7748 */
+       memcpy ( tmp, base, sizeof ( *tmp ) );
+       x25519_reverse ( tmp );
+       tmp->raw[0] &= 0x7f;
+       bigint_init ( &point.value, tmp->raw, sizeof ( tmp->raw ) );
+
+       /* Clamp scalar as required by RFC7748 */
+       memcpy ( tmp, scalar, sizeof ( *tmp ) );
+       tmp->raw[0] &= 0xf8;
+       tmp->raw[31] |= 0x40;
+
+       /* Multiply elliptic curve point */
+       x25519_ladder ( &point, tmp, &point );
+
+       /* Reverse result */
+       bigint_done ( &point.value, result->raw, sizeof ( result->raw ) );
+       x25519_reverse ( result );
+}
diff --git a/src/include/ipxe/x25519.h b/src/include/ipxe/x25519.h
new file mode 100644 (file)
index 0000000..7a86c11
--- /dev/null
@@ -0,0 +1,91 @@
+#ifndef _IPXE_X25519_H
+#define _IPXE_X25519_H
+
+/** @file
+ *
+ * X25519 key exchange
+ *
+ */
+
+FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
+
+#include <stdint.h>
+#include <ipxe/bigint.h>
+
+/** X25519 unsigned big integer size
+ *
+ * X25519 uses the finite field of integers modulo the prime
+ * p=2^255-19.  The canonical representations of integers in this
+ * field therefore require only 255 bits.
+ *
+ * For internal calculations we use big integers containing up to 267
+ * bits, since this ends up allowing us to avoid some unnecessary (and
+ * expensive) intermediate reductions modulo p.
+ */
+#define X25519_SIZE bigint_required_size ( ( 267 /* bits */ + 7 ) / 8 )
+
+/** An X25519 unsigned big integer used in internal calculations */
+typedef bigint_t ( X25519_SIZE ) x25519_t;
+
+/** An X25519 unsigned 258-bit integer
+ *
+ * This is an unsigned integer N in the finite field of integers
+ * modulo the prime p=2^255-19.
+ *
+ * In this representation, N is encoded as any big integer that is in
+ * the same congruence class as N (i.e that has the same value as N
+ * modulo p) and that lies within the 258-bit range [0,8p-1].
+ *
+ * This type can be used as an input for multiplication (but not for
+ * addition or subtraction).
+ *
+ * Addition or subtraction will produce an output of this type.
+ */
+union x25519_oct258 {
+       /** Big integer value */
+       x25519_t value;
+};
+
+/** An X25519 unsigned 257-bit integer
+ *
+ * This is an unsigned integer N in the finite field of integers
+ * modulo the prime p=2^255-19.
+ *
+ * In this representation, N is encoded as any big integer that is in
+ * the same congruence class as N (i.e that has the same value as N
+ * modulo p) and that lies within the 257-bit range [0,4p-1].
+ *
+ * This type can be used as an input for addition, subtraction, or
+ * multiplication.
+ *
+ * Multiplication will produce an output of this type.
+ */
+union x25519_quad257 {
+       /** Big integer value */
+       x25519_t value;
+       /** X25519 unsigned 258-bit integer
+        *
+        * Any value in the range [0,4p-1] is automatically also
+        * within the range [0,8p-1] and so may be consumed as an
+        * unsigned 258-bit integer.
+        */
+       const union x25519_oct258 oct258;
+};
+
+/** An X25519 32-byte value */
+struct x25519_value {
+       /** Raw value */
+       uint8_t raw[32];
+};
+
+extern void x25519_multiply ( const union x25519_oct258 *multiplicand,
+                             const union x25519_oct258 *multiplier,
+                             union x25519_quad257 *result );
+extern void x25519_invert ( const union x25519_oct258 *invertend,
+                           union x25519_quad257 *result );
+extern void x25519_reduce ( union x25519_quad257 *value );
+extern void x25519_key ( const struct x25519_value *base,
+                        const struct x25519_value *scalar,
+                        struct x25519_value *result );
+
+#endif /* _IPXE_X25519_H */
index fbdf562c6d6d23ebc7a054c8dd8ba6f1bb4345db..41c199c0bbef9b8ba90094f999b71d898d97a2ad 100644 (file)
@@ -81,3 +81,4 @@ REQUIRE_OBJECT ( hmac_test );
 REQUIRE_OBJECT ( dhe_test );
 REQUIRE_OBJECT ( gcm_test );
 REQUIRE_OBJECT ( nap_test );
+REQUIRE_OBJECT ( x25519_test );
diff --git a/src/tests/x25519_test.c b/src/tests/x25519_test.c
new file mode 100644 (file)
index 0000000..3d781f9
--- /dev/null
@@ -0,0 +1,571 @@
+/*
+ * Copyright (C) 2024 Michael Brown <mbrown@fensystems.co.uk>.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of the
+ * License, or any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+ * 02110-1301, USA.
+ *
+ * You can also choose to distribute this program under the terms of
+ * the Unmodified Binary Distribution Licence (as given in the file
+ * COPYING.UBDL), provided that you have satisfied its requirements.
+ */
+
+FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
+
+/** @file
+ *
+ * X25519 key exchange test
+ *
+ * Full key exchange test vectors are taken from RFC7748.
+ *
+ */
+
+/* Forcibly enable assertions */
+#undef NDEBUG
+
+#include <stdint.h>
+#include <string.h>
+#include <ipxe/x25519.h>
+#include <ipxe/test.h>
+
+/** Define inline multiplicand */
+#define MULTIPLICAND(...) { __VA_ARGS__ }
+
+/** Define inline multiplier */
+#define MULTIPLIER(...) { __VA_ARGS__ }
+
+/** Define inline invertend */
+#define INVERTEND(...) { __VA_ARGS__ }
+
+/** Define inline base point */
+#define BASE(...) { __VA_ARGS__ }
+
+/** Define inline scalar multiple */
+#define SCALAR(...) { __VA_ARGS__ }
+
+/** Define inline expected result */
+#define EXPECTED(...) { __VA_ARGS__ }
+
+/** An X25519 multiplication self-test */
+struct x25519_multiply_test {
+       /** Multiplicand */
+       const void *multiplicand;
+       /** Length of multiplicand */
+       size_t multiplicand_len;
+       /** Multiplier */
+       const void *multiplier;
+       /** Length of multiplier */
+       size_t multiplier_len;
+       /** Expected result */
+       const void *expected;
+       /** Length of expected result */
+       size_t expected_len;
+};
+
+/**
+ * Define an X25519 multiplication test
+ *
+ * @v name             Test name
+ * @v MULTIPLICAND     258-bit multiplicand
+ * @v MULTIPLIER       258-bit multiplier
+ * @v EXPECTED         255-bit expected result
+ * @ret test           X25519 multiplication test
+ */
+#define X25519_MULTIPLY_TEST( name, MULTIPLICAND, MULTIPLIER,          \
+                             EXPECTED )                                \
+       static const uint8_t name ## _multiplicand[] = MULTIPLICAND;    \
+       static const uint8_t name ## _multiplier[] = MULTIPLIER;        \
+       static const uint8_t name ## _expected[] = EXPECTED;            \
+       static struct x25519_multiply_test name = {                     \
+               .multiplicand = name ## _multiplicand,                  \
+               .multiplicand_len = sizeof ( name ## _multiplicand ),   \
+               .multiplier = name ## _multiplier,                      \
+               .multiplier_len = sizeof ( name ## _multiplier ),       \
+               .expected = name ## _expected,                          \
+               .expected_len = sizeof ( name ## _expected ),           \
+       }
+
+/** An X25519 multiplicative inversion self-test */
+struct x25519_invert_test {
+       /** Invertend */
+       const void *invertend;
+       /** Length of invertend */
+       size_t invertend_len;
+       /** Expected result */
+       const void *expected;
+       /** Length of expected result */
+       size_t expected_len;
+};
+
+/**
+ * Define an X25519 multiplicative inversion test
+ *
+ * @v name             Test name
+ * @v INVERTEND                258-bit invertend
+ * @v EXPECTED         255-bit expected result
+ * @ret test           X25519 multiplicative inversion test
+ */
+#define X25519_INVERT_TEST( name, INVERTEND, EXPECTED )                        \
+       static const uint8_t name ## _invertend[] = INVERTEND;          \
+       static const uint8_t name ## _expected[] = EXPECTED;            \
+       static struct x25519_invert_test name = {                       \
+               .invertend = name ## _invertend,                        \
+               .invertend_len = sizeof ( name ## _invertend ),         \
+               .expected = name ## _expected,                          \
+               .expected_len = sizeof ( name ## _expected ),           \
+       }
+
+/** An X25519 key exchange self-test */
+struct x25519_key_test {
+       /** Base */
+       struct x25519_value base;
+       /** Scalar */
+       struct x25519_value scalar;
+       /** Expected result */
+       struct x25519_value expected;
+       /** Number of iterations */
+       unsigned int count;
+};
+
+/**
+ * Define an X25519 key exchange test
+ *
+ * @v name             Test name
+ * @v COUNT            Number of iterations
+ * @v BASE             Base point
+ * @v SCALAR           Scalar multiple
+ * @v EXPECTED         Expected result
+ * @ret test           X25519 key exchange test
+ */
+#define X25519_KEY_TEST( name, COUNT, BASE, SCALAR, EXPECTED )         \
+       static struct x25519_key_test name = {                          \
+               .count = COUNT,                                         \
+               .base = { .raw = BASE },                                \
+               .scalar = { .raw = SCALAR },                            \
+               .expected = { .raw = EXPECTED },                        \
+       }
+
+/**
+ * Report an X25519 multiplication test result
+ *
+ * @v test             X25519 multiplication test
+ * @v file             Test code file
+ * @v line             Test code line
+ */
+static void x25519_multiply_okx ( struct x25519_multiply_test *test,
+                                 const char *file, unsigned int line ) {
+       union x25519_oct258 multiplicand;
+       union x25519_oct258 multiplier;
+       union x25519_quad257 expected;
+       union x25519_quad257 actual;
+
+       /* Construct big integers */
+       bigint_init ( &multiplicand.value, test->multiplicand,
+                     test->multiplicand_len );
+       DBGC ( test, "X25519 multiplicand:\n" );
+       DBGC_HDA ( test, 0, &multiplicand, sizeof ( multiplicand ) );
+       bigint_init ( &multiplier.value, test->multiplier,
+                     test->multiplier_len );
+       DBGC ( test, "X25519 multiplier:\n" );
+       DBGC_HDA ( test, 0, &multiplier, sizeof ( multiplier ) );
+       bigint_init ( &expected.value, test->expected, test->expected_len );
+       DBGC ( test, "X25519 expected product:\n" );
+       DBGC_HDA ( test, 0, &expected, sizeof ( expected ) );
+
+       /* Perform multiplication */
+       x25519_multiply ( &multiplicand, &multiplier, &actual );
+
+       /* Reduce result to allow for comparison */
+       x25519_reduce ( &actual );
+       DBGC ( test, "X25519 actual product:\n" );
+       DBGC_HDA ( test, 0, &actual, sizeof ( actual ) );
+
+       /* Compare against expected result */
+       okx ( memcmp ( &actual, &expected, sizeof ( expected ) ) == 0,
+             file, line );
+}
+#define x25519_multiply_ok( test ) \
+       x25519_multiply_okx ( test, __FILE__, __LINE__ )
+
+/**
+ * Report an X25519 multiplicative inversion test result
+ *
+ * @v test             X25519 multiplicative inversion test
+ * @v file             Test code file
+ * @v line             Test code line
+ */
+static void x25519_invert_okx ( struct x25519_invert_test *test,
+                               const char *file, unsigned int line ) {
+       static const uint8_t one[] = { 1 };
+       union x25519_oct258 invertend;
+       union x25519_quad257 expected;
+       union x25519_quad257 actual;
+       union x25519_quad257 product;
+       union x25519_quad257 identity;
+
+       /* Construct big integers */
+       bigint_init ( &invertend.value, test->invertend, test->invertend_len );
+       DBGC ( test, "X25519 invertend:\n" );
+       DBGC_HDA ( test, 0, &invertend, sizeof ( invertend ) );
+       bigint_init ( &expected.value, test->expected, test->expected_len );
+       DBGC ( test, "X25519 expected inverse:\n" );
+       DBGC_HDA ( test, 0, &expected, sizeof ( expected ) );
+       bigint_init ( &identity.value, one, sizeof ( one ) );
+
+       /* Perform inversion */
+       x25519_invert ( &invertend, &actual );
+
+       /* Multiply invertend by inverse */
+       x25519_multiply ( &invertend, &actual.oct258, &product );
+
+       /* Reduce results to allow for comparison */
+       x25519_reduce ( &actual );
+       DBGC ( test, "X25519 actual inverse:\n" );
+       DBGC_HDA ( test, 0, &actual, sizeof ( actual ) );
+       x25519_reduce ( &product );
+       DBGC ( test, "X25519 actual product:\n" );
+       DBGC_HDA ( test, 0, &product, sizeof ( product ) );
+
+       /* Compare against expected results */
+       okx ( memcmp ( &actual, &expected, sizeof ( expected ) ) == 0,
+             file, line );
+       okx ( memcmp ( &product, &identity, sizeof ( identity ) ) == 0,
+             file, line );
+}
+#define x25519_invert_ok( test ) \
+       x25519_invert_okx ( test, __FILE__, __LINE__ )
+
+/**
+ * Report an X25519 key exchange test result
+ *
+ * @v test             X25519 key exchange test
+ * @v file             Test code file
+ * @v line             Test code line
+ */
+static void x25519_key_okx ( struct x25519_key_test *test,
+                            const char *file, unsigned int line ) {
+       struct x25519_value base;
+       struct x25519_value scalar;
+       struct x25519_value actual;
+       unsigned int i;
+
+       /* Construct input values */
+       memcpy ( &base, &test->base, sizeof ( test->base ) );
+       memcpy ( &scalar, &test->scalar, sizeof ( test->scalar ) );
+       DBGC ( test, "X25519 base:\n" );
+       DBGC_HDA ( test, 0, &base, sizeof ( base ) );
+       DBGC ( test, "X25519 scalar:\n" );
+       DBGC_HDA ( test, 0, &scalar, sizeof ( scalar ) );
+       DBGC ( test, "X25519 expected result (x%d):\n", test->count );
+       DBGC_HDA ( test, 0, &test->expected, sizeof ( test->expected ) );
+
+       /* Calculate key */
+       for ( i = 0 ; i < test->count ; i++ ) {
+               x25519_key ( &base, &scalar, &actual );
+               memcpy ( &base, &scalar, sizeof ( base ) );
+               memcpy ( &scalar, &actual, sizeof ( scalar ) );
+       }
+       DBGC ( test, "X25519 actual result (x%d):\n", test->count );
+       DBGC_HDA ( test, 0, &actual, sizeof ( actual ) );
+
+       /* Compare against expected result */
+       okx ( memcmp ( &actual, &test->expected,
+                      sizeof ( test->expected ) ) == 0, file, line );
+}
+#define x25519_key_ok( test ) \
+       x25519_key_okx ( test, __FILE__, __LINE__ )
+
+/* Test multiplying small numbers */
+X25519_MULTIPLY_TEST ( multiply_small, MULTIPLICAND ( 6 ),
+                      MULTIPLIER ( 9 ), EXPECTED ( 6 * 9 ) );
+
+/* Test exact multiple of field prime */
+X25519_MULTIPLY_TEST ( multiply_k_p,
+       MULTIPLICAND ( 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+                      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+                      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+                      0xff, 0xff, 0xff, 0xff, 0xed ),
+       MULTIPLIER ( 0x00, 0xe8, 0x0d, 0x83, 0xd4, 0xe9, 0x1e, 0xdd, 0x7a,
+                    0x45, 0x14, 0x87, 0xb7, 0xfc, 0x62, 0x54, 0x1f, 0xb2,
+                    0x97, 0x24, 0xde, 0xfa, 0xd3, 0xe7, 0x3e, 0x83, 0x93,
+                    0x60, 0xbc, 0x20, 0x97, 0x9b, 0x22 ),
+       EXPECTED ( 0x00 ) );
+
+/* 0x0223b8c1e9392456de3eb13b9046685257bdd640fb06671ad11c80317fa3b1799d *
+ * 0x006c031199972a846916419f828b9d2434e465e150bd9c66b3ad3c2d6d1a3d1fa7 =
+ * 0x1ba87e982f7c477616b4d5136ba54733e40081c1c2e27d864aa178ce893d1297 (mod p)
+ */
+X25519_MULTIPLY_TEST ( multiply_1,
+       MULTIPLICAND ( 0x02, 0x23, 0xb8, 0xc1, 0xe9, 0x39, 0x24, 0x56, 0xde,
+                      0x3e, 0xb1, 0x3b, 0x90, 0x46, 0x68, 0x52, 0x57, 0xbd,
+                      0xd6, 0x40, 0xfb, 0x06, 0x67, 0x1a, 0xd1, 0x1c, 0x80,
+                      0x31, 0x7f, 0xa3, 0xb1, 0x79, 0x9d ),
+       MULTIPLIER ( 0x00, 0x6c, 0x03, 0x11, 0x99, 0x97, 0x2a, 0x84, 0x69,
+                    0x16, 0x41, 0x9f, 0x82, 0x8b, 0x9d, 0x24, 0x34, 0xe4,
+                    0x65, 0xe1, 0x50, 0xbd, 0x9c, 0x66, 0xb3, 0xad, 0x3c,
+                    0x2d, 0x6d, 0x1a, 0x3d, 0x1f, 0xa7 ),
+       EXPECTED ( 0x1b, 0xa8, 0x7e, 0x98, 0x2f, 0x7c, 0x47, 0x76, 0x16, 0xb4,
+                  0xd5, 0x13, 0x6b, 0xa5, 0x47, 0x33, 0xe4, 0x00, 0x81, 0xc1,
+                  0xc2, 0xe2, 0x7d, 0x86, 0x4a, 0xa1, 0x78, 0xce, 0x89, 0x3d,
+                  0x12, 0x97 ) );
+
+/* 0x008fadc1a606cb0fb39a1de644815ef6d13b8faa1837f8a88b17fc695a07a0ca6e *
+ * 0x0196da1dac72ff5d2a386ecbe06b65a6a48b8148f6b38a088ca65ed389b74d0fb1 =
+ * 0x351f7bf75ef580249ed6f9ff3996463b0730a1d49b5d36b863e192591157e950 (mod p)
+ */
+X25519_MULTIPLY_TEST ( multiply_2,
+       MULTIPLICAND ( 0x00, 0x8f, 0xad, 0xc1, 0xa6, 0x06, 0xcb, 0x0f, 0xb3,
+                      0x9a, 0x1d, 0xe6, 0x44, 0x81, 0x5e, 0xf6, 0xd1, 0x3b,
+                      0x8f, 0xaa, 0x18, 0x37, 0xf8, 0xa8, 0x8b, 0x17, 0xfc,
+                      0x69, 0x5a, 0x07, 0xa0, 0xca, 0x6e ),
+       MULTIPLIER ( 0x01, 0x96, 0xda, 0x1d, 0xac, 0x72, 0xff, 0x5d, 0x2a,
+                    0x38, 0x6e, 0xcb, 0xe0, 0x6b, 0x65, 0xa6, 0xa4, 0x8b,
+                    0x81, 0x48, 0xf6, 0xb3, 0x8a, 0x08, 0x8c, 0xa6, 0x5e,
+                    0xd3, 0x89, 0xb7, 0x4d, 0x0f, 0xb1 ),
+       EXPECTED ( 0x35, 0x1f, 0x7b, 0xf7, 0x5e, 0xf5, 0x80, 0x24, 0x9e, 0xd6,
+                  0xf9, 0xff, 0x39, 0x96, 0x46, 0x3b, 0x07, 0x30, 0xa1, 0xd4,
+                  0x9b, 0x5d, 0x36, 0xb8, 0x63, 0xe1, 0x92, 0x59, 0x11, 0x57,
+                  0xe9, 0x50 ) );
+
+/* 0x016c307511b2b9437a28df6ec4ce4a2bbdc241330b01a9e71fde8a774bcf36d58b *
+ * 0x0117be31111a2a73ed562b0f79c37459eef50bea63371ecd7b27cd813047229389 =
+ * 0x6b43b5185965f8f0920f31ae1b2cefadd7b078fecf68dbeaa17b9c385b558329 (mod p)
+ */
+X25519_MULTIPLY_TEST ( multiply_3,
+       MULTIPLICAND ( 0x01, 0x6c, 0x30, 0x75, 0x11, 0xb2, 0xb9, 0x43, 0x7a,
+                      0x28, 0xdf, 0x6e, 0xc4, 0xce, 0x4a, 0x2b, 0xbd, 0xc2,
+                      0x41, 0x33, 0x0b, 0x01, 0xa9, 0xe7, 0x1f, 0xde, 0x8a,
+                      0x77, 0x4b, 0xcf, 0x36, 0xd5, 0x8b ),
+       MULTIPLIER ( 0x01, 0x17, 0xbe, 0x31, 0x11, 0x1a, 0x2a, 0x73, 0xed,
+                    0x56, 0x2b, 0x0f, 0x79, 0xc3, 0x74, 0x59, 0xee, 0xf5,
+                    0x0b, 0xea, 0x63, 0x37, 0x1e, 0xcd, 0x7b, 0x27, 0xcd,
+                    0x81, 0x30, 0x47, 0x22, 0x93, 0x89 ),
+       EXPECTED ( 0x6b, 0x43, 0xb5, 0x18, 0x59, 0x65, 0xf8, 0xf0, 0x92, 0x0f,
+                  0x31, 0xae, 0x1b, 0x2c, 0xef, 0xad, 0xd7, 0xb0, 0x78, 0xfe,
+                  0xcf, 0x68, 0xdb, 0xea, 0xa1, 0x7b, 0x9c, 0x38, 0x5b, 0x55,
+                  0x83, 0x29 ) );
+
+/* 0x020b1f9163ce9ff57f43b7a3a69a8dca03580d7b71d8f564135be6128e18c26797 *
+ * 0x018d5288f1142c3fe860e7a113ec1b8ca1f91e1d4c1ff49b7889463e85759cde66 =
+ * 0x28a77d3c8a14323d63b288dbd40315b3f192b8485d86a02cb87d3dfb7a0b5447 (mod p)
+ */
+X25519_MULTIPLY_TEST ( multiply_4,
+       MULTIPLICAND ( 0x02, 0x0b, 0x1f, 0x91, 0x63, 0xce, 0x9f, 0xf5, 0x7f,
+                      0x43, 0xb7, 0xa3, 0xa6, 0x9a, 0x8d, 0xca, 0x03, 0x58,
+                      0x0d, 0x7b, 0x71, 0xd8, 0xf5, 0x64, 0x13, 0x5b, 0xe6,
+                      0x12, 0x8e, 0x18, 0xc2, 0x67, 0x97 ),
+       MULTIPLIER ( 0x01, 0x8d, 0x52, 0x88, 0xf1, 0x14, 0x2c, 0x3f, 0xe8,
+                    0x60, 0xe7, 0xa1, 0x13, 0xec, 0x1b, 0x8c, 0xa1, 0xf9,
+                    0x1e, 0x1d, 0x4c, 0x1f, 0xf4, 0x9b, 0x78, 0x89, 0x46,
+                    0x3e, 0x85, 0x75, 0x9c, 0xde, 0x66 ),
+       EXPECTED ( 0x28, 0xa7, 0x7d, 0x3c, 0x8a, 0x14, 0x32, 0x3d, 0x63, 0xb2,
+                  0x88, 0xdb, 0xd4, 0x03, 0x15, 0xb3, 0xf1, 0x92, 0xb8, 0x48,
+                  0x5d, 0x86, 0xa0, 0x2c, 0xb8, 0x7d, 0x3d, 0xfb, 0x7a, 0x0b,
+                  0x54, 0x47 ) );
+
+/* 0x023139d32c93cd59bf5c941cf0dc98d2c1e2acf72f9e574f7aa0ee89aed453dd32 *
+ * 0x03146d3f31fc377a4c4a15544dc5e7ce8a3a578a8ea9488d990bbb259911ce5dd2 =
+ * 0x4bdb7a35c0a5182000aa67554741e88cfdf460a78c6fae07adf83d2f005d2767 (mod p)
+ */
+X25519_MULTIPLY_TEST ( multiply_5,
+       MULTIPLICAND ( 0x02, 0x31, 0x39, 0xd3, 0x2c, 0x93, 0xcd, 0x59, 0xbf,
+                      0x5c, 0x94, 0x1c, 0xf0, 0xdc, 0x98, 0xd2, 0xc1, 0xe2,
+                      0xac, 0xf7, 0x2f, 0x9e, 0x57, 0x4f, 0x7a, 0xa0, 0xee,
+                      0x89, 0xae, 0xd4, 0x53, 0xdd, 0x32 ),
+       MULTIPLIER ( 0x03, 0x14, 0x6d, 0x3f, 0x31, 0xfc, 0x37, 0x7a, 0x4c,
+                    0x4a, 0x15, 0x54, 0x4d, 0xc5, 0xe7, 0xce, 0x8a, 0x3a,
+                    0x57, 0x8a, 0x8e, 0xa9, 0x48, 0x8d, 0x99, 0x0b, 0xbb,
+                    0x25, 0x99, 0x11, 0xce, 0x5d, 0xd2 ),
+       EXPECTED ( 0x4b, 0xdb, 0x7a, 0x35, 0xc0, 0xa5, 0x18, 0x20, 0x00, 0xaa,
+                  0x67, 0x55, 0x47, 0x41, 0xe8, 0x8c, 0xfd, 0xf4, 0x60, 0xa7,
+                  0x8c, 0x6f, 0xae, 0x07, 0xad, 0xf8, 0x3d, 0x2f, 0x00, 0x5d,
+                  0x27, 0x67 ) );
+
+/* 0x01d58842dea2bc372f7412b29347294739614ff3d719db3ad0ddd1dfb23b982ef8 ^ -1 =
+ * 0x093ff51750809d181a9a5481c564e37cff618def8ec45f464b1a6e24f8b826bd (mod p)
+ */
+X25519_INVERT_TEST ( invert_1,
+       INVERTEND ( 0x01, 0xd5, 0x88, 0x42, 0xde, 0xa2, 0xbc, 0x37, 0x2f,
+                   0x74, 0x12, 0xb2, 0x93, 0x47, 0x29, 0x47, 0x39, 0x61,
+                   0x4f, 0xf3, 0xd7, 0x19, 0xdb, 0x3a, 0xd0, 0xdd, 0xd1,
+                   0xdf, 0xb2, 0x3b, 0x98, 0x2e, 0xf8 ),
+       EXPECTED ( 0x09, 0x3f, 0xf5, 0x17, 0x50, 0x80, 0x9d, 0x18, 0x1a, 0x9a,
+                  0x54, 0x81, 0xc5, 0x64, 0xe3, 0x7c, 0xff, 0x61, 0x8d, 0xef,
+                  0x8e, 0xc4, 0x5f, 0x46, 0x4b, 0x1a, 0x6e, 0x24, 0xf8, 0xb8,
+                  0x26, 0xbd ) );
+
+/* 0x02efc89849b3aa7efe4458a885ab9099a435a240ae5af305535ec42e0829a3b2e9 ^ -1 =
+ * 0x591607b163e89d0ac33a62c881e984a25d3826e3db5ce229af240dc58e5b579a (mod p)
+ */
+X25519_INVERT_TEST ( invert_2,
+       INVERTEND ( 0x02, 0xef, 0xc8, 0x98, 0x49, 0xb3, 0xaa, 0x7e, 0xfe,
+                   0x44, 0x58, 0xa8, 0x85, 0xab, 0x90, 0x99, 0xa4, 0x35,
+                   0xa2, 0x40, 0xae, 0x5a, 0xf3, 0x05, 0x53, 0x5e, 0xc4,
+                   0x2e, 0x08, 0x29, 0xa3, 0xb2, 0xe9 ),
+       EXPECTED ( 0x59, 0x16, 0x07, 0xb1, 0x63, 0xe8, 0x9d, 0x0a, 0xc3, 0x3a,
+                  0x62, 0xc8, 0x81, 0xe9, 0x84, 0xa2, 0x5d, 0x38, 0x26, 0xe3,
+                  0xdb, 0x5c, 0xe2, 0x29, 0xaf, 0x24, 0x0d, 0xc5, 0x8e, 0x5b,
+                  0x57, 0x9a ) );
+
+/* 0x003eabedcbbaa80dd488bd64072bcfbe01a28defe39bf0027312476f57a5e5a5ab ^ -1 =
+ * 0x7d87c2e565b27c5038181a0a7cae9ebe826c8afc1f77128a4d62cce96d2759a2 (mod p)
+ */
+X25519_INVERT_TEST ( invert_3,
+       INVERTEND ( 0x00, 0x3e, 0xab, 0xed, 0xcb, 0xba, 0xa8, 0x0d, 0xd4,
+                   0x88, 0xbd, 0x64, 0x07, 0x2b, 0xcf, 0xbe, 0x01, 0xa2,
+                   0x8d, 0xef, 0xe3, 0x9b, 0xf0, 0x02, 0x73, 0x12, 0x47,
+                   0x6f, 0x57, 0xa5, 0xe5, 0xa5, 0xab ),
+       EXPECTED ( 0x7d, 0x87, 0xc2, 0xe5, 0x65, 0xb2, 0x7c, 0x50, 0x38, 0x18,
+                  0x1a, 0x0a, 0x7c, 0xae, 0x9e, 0xbe, 0x82, 0x6c, 0x8a, 0xfc,
+                  0x1f, 0x77, 0x12, 0x8a, 0x4d, 0x62, 0xcc, 0xe9, 0x6d, 0x27,
+                  0x59, 0xa2 ) );
+
+/* 0x008e944239b02b61c4a3d70628ece66fa2fd5166e6451b4cf36123fdf77656af72 ^ -1 =
+ * 0x08e96161a0eee1b29af396f154950d5c715dc61aff66ee97377ab22adf3321d7 (mod p)
+ */
+X25519_INVERT_TEST ( invert_4,
+       INVERTEND ( 0x00, 0x8e, 0x94, 0x42, 0x39, 0xb0, 0x2b, 0x61, 0xc4,
+                   0xa3, 0xd7, 0x06, 0x28, 0xec, 0xe6, 0x6f, 0xa2, 0xfd,
+                   0x51, 0x66, 0xe6, 0x45, 0x1b, 0x4c, 0xf3, 0x61, 0x23,
+                   0xfd, 0xf7, 0x76, 0x56, 0xaf, 0x72 ),
+       EXPECTED ( 0x08, 0xe9, 0x61, 0x61, 0xa0, 0xee, 0xe1, 0xb2, 0x9a, 0xf3,
+                  0x96, 0xf1, 0x54, 0x95, 0x0d, 0x5c, 0x71, 0x5d, 0xc6, 0x1a,
+                  0xff, 0x66, 0xee, 0x97, 0x37, 0x7a, 0xb2, 0x2a, 0xdf, 0x33,
+                  0x21, 0xd7 ) );
+
+/* 0x00d261a7ab3aa2e4f90e51f30dc6a7ee39c4b032ccd7c524a55304317faf42e12f ^ -1 =
+ * 0x0738781c0aeabfbe6e840c85bd30996ef71bc54988ce16cedd5ab4f30c281597 (mod p)
+ */
+X25519_INVERT_TEST ( invert_5,
+       INVERTEND ( 0x00, 0xd2, 0x61, 0xa7, 0xab, 0x3a, 0xa2, 0xe4, 0xf9,
+                   0x0e, 0x51, 0xf3, 0x0d, 0xc6, 0xa7, 0xee, 0x39, 0xc4,
+                   0xb0, 0x32, 0xcc, 0xd7, 0xc5, 0x24, 0xa5, 0x53, 0x04,
+                   0x31, 0x7f, 0xaf, 0x42, 0xe1, 0x2f ),
+       EXPECTED ( 0x07, 0x38, 0x78, 0x1c, 0x0a, 0xea, 0xbf, 0xbe, 0x6e, 0x84,
+                  0x0c, 0x85, 0xbd, 0x30, 0x99, 0x6e, 0xf7, 0x1b, 0xc5, 0x49,
+                  0x88, 0xce, 0x16, 0xce, 0xdd, 0x5a, 0xb4, 0xf3, 0x0c, 0x28,
+                  0x15, 0x97 ) );
+
+/* Base:   0xe6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c
+ * Scalar: 0xa546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4
+ * Result: 0xc3da55379de9c6908e94ea4df28d084f32eccf03491c71f754b4075577a28552
+ */
+X25519_KEY_TEST ( rfc7748_1, 1,
+       BASE ( 0xe6, 0xdb, 0x68, 0x67, 0x58, 0x30, 0x30, 0xdb, 0x35, 0x94,
+              0xc1, 0xa4, 0x24, 0xb1, 0x5f, 0x7c, 0x72, 0x66, 0x24, 0xec,
+              0x26, 0xb3, 0x35, 0x3b, 0x10, 0xa9, 0x03, 0xa6, 0xd0, 0xab,
+              0x1c, 0x4c ),
+       SCALAR ( 0xa5, 0x46, 0xe3, 0x6b, 0xf0, 0x52, 0x7c, 0x9d, 0x3b, 0x16,
+                0x15, 0x4b, 0x82, 0x46, 0x5e, 0xdd, 0x62, 0x14, 0x4c, 0x0a,
+                0xc1, 0xfc, 0x5a, 0x18, 0x50, 0x6a, 0x22, 0x44, 0xba, 0x44,
+                0x9a, 0xc4 ),
+       EXPECTED ( 0xc3, 0xda, 0x55, 0x37, 0x9d, 0xe9, 0xc6, 0x90, 0x8e, 0x94,
+                  0xea, 0x4d, 0xf2, 0x8d, 0x08, 0x4f, 0x32, 0xec, 0xcf, 0x03,
+                  0x49, 0x1c, 0x71, 0xf7, 0x54, 0xb4, 0x07, 0x55, 0x77, 0xa2,
+                  0x85, 0x52 ) );
+
+/* Base:   0xe5210f12786811d3f4b7959d0538ae2c31dbe7106fc03c3efc4cd549c715a493
+ * Scalar: 0x4b66e9d4d1b4673c5ad22691957d6af5c11b6421e0ea01d42ca4169e7918ba0d
+ * Result: 0x95cbde9476e8907d7aade45cb4b873f88b595a68799fa152e6f8f7647aac7957
+ */
+X25519_KEY_TEST ( rfc7748_2, 1,
+       BASE ( 0xe5, 0x21, 0x0f, 0x12, 0x78, 0x68, 0x11, 0xd3, 0xf4, 0xb7,
+              0x95, 0x9d, 0x05, 0x38, 0xae, 0x2c, 0x31, 0xdb, 0xe7, 0x10,
+              0x6f, 0xc0, 0x3c, 0x3e, 0xfc, 0x4c, 0xd5, 0x49, 0xc7, 0x15,
+              0xa4, 0x93 ),
+       SCALAR ( 0x4b, 0x66, 0xe9, 0xd4, 0xd1, 0xb4, 0x67, 0x3c, 0x5a, 0xd2,
+                0x26, 0x91, 0x95, 0x7d, 0x6a, 0xf5, 0xc1, 0x1b, 0x64, 0x21,
+                0xe0, 0xea, 0x01, 0xd4, 0x2c, 0xa4, 0x16, 0x9e, 0x79, 0x18,
+                0xba, 0x0d ),
+       EXPECTED ( 0x95, 0xcb, 0xde, 0x94, 0x76, 0xe8, 0x90, 0x7d, 0x7a, 0xad,
+                  0xe4, 0x5c, 0xb4, 0xb8, 0x73, 0xf8, 0x8b, 0x59, 0x5a, 0x68,
+                  0x79, 0x9f, 0xa1, 0x52, 0xe6, 0xf8, 0xf7, 0x64, 0x7a, 0xac,
+                  0x79, 0x57 ) );
+
+/* Base:   0x0900000000000000000000000000000000000000000000000000000000000000
+ * Scalar: 0x0900000000000000000000000000000000000000000000000000000000000000
+ * Result: 0x422c8e7a6227d7bca1350b3e2bb7279f7897b87bb6854b783c60e80311ae3079
+ */
+X25519_KEY_TEST ( rfc7748_3, 1,
+       BASE ( 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+              0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+              0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+              0x00, 0x00 ),
+       SCALAR ( 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+                0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+                0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+                0x00, 0x00 ),
+       EXPECTED ( 0x42, 0x2c, 0x8e, 0x7a, 0x62, 0x27, 0xd7, 0xbc, 0xa1, 0x35,
+                  0x0b, 0x3e, 0x2b, 0xb7, 0x27, 0x9f, 0x78, 0x97, 0xb8, 0x7b,
+                  0xb6, 0x85, 0x4b, 0x78, 0x3c, 0x60, 0xe8, 0x03, 0x11, 0xae,
+                  0x30, 0x79 ) );
+
+/* Base:   0x0900000000000000000000000000000000000000000000000000000000000000
+ * Scalar: 0x0900000000000000000000000000000000000000000000000000000000000000
+ * Result: 0xb1a5a73158904c020866c13939dd7e1aa26852ee1d2609c92e5a8f1debe2150a
+ * (after 100 iterations)
+ *
+ * RFC7748 gives test vectors for 1000 and 1000000 iterations with
+ * these starting values.  This test case stops after 100 iterations
+ * to avoid a pointlessly slow test cycle in the common case of
+ * running tests under Valgrind.
+ */
+X25519_KEY_TEST ( rfc7748_4_100, 100,
+       BASE ( 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+              0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+              0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+              0x00, 0x00 ),
+       SCALAR ( 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+                0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+                0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+                0x00, 0x00 ),
+       EXPECTED ( 0xb1, 0xa5, 0xa7, 0x31, 0x58, 0x90, 0x4c, 0x02, 0x08, 0x66,
+                  0xc1, 0x39, 0x39, 0xdd, 0x7e, 0x1a, 0xa2, 0x68, 0x52, 0xee,
+                  0x1d, 0x26, 0x09, 0xc9, 0x2e, 0x5a, 0x8f, 0x1d, 0xeb, 0xe2,
+                  0x15, 0x0a ) );
+
+/**
+ * Perform X25519 self-tests
+ *
+ */
+static void x25519_test_exec ( void ) {
+
+       /* Perform multiplication tests */
+       x25519_multiply_ok ( &multiply_small );
+       x25519_multiply_ok ( &multiply_k_p );
+       x25519_multiply_ok ( &multiply_1 );
+       x25519_multiply_ok ( &multiply_2 );
+       x25519_multiply_ok ( &multiply_3 );
+       x25519_multiply_ok ( &multiply_4 );
+       x25519_multiply_ok ( &multiply_5 );
+
+       /* Perform multiplicative inversion tests */
+       x25519_invert_ok ( &invert_1 );
+       x25519_invert_ok ( &invert_2 );
+       x25519_invert_ok ( &invert_3 );
+       x25519_invert_ok ( &invert_4 );
+       x25519_invert_ok ( &invert_5 );
+
+       /* Perform key exchange tests */
+       x25519_key_ok ( &rfc7748_1 );
+       x25519_key_ok ( &rfc7748_2 );
+       x25519_key_ok ( &rfc7748_3 );
+       x25519_key_ok ( &rfc7748_4_100 );
+}
+
+/** X25519 self-test */
+struct self_test x25519_test __self_test = {
+       .name = "x25519",
+       .exec = x25519_test_exec,
+};