static struct blk_crypto_fallback_keyslot {
enum blk_crypto_mode_num crypto_mode;
- struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
+ struct crypto_sync_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
} *blk_crypto_keyslots;
static struct blk_crypto_profile *blk_crypto_fallback_profile;
WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
/* Clear the key in the skcipher */
- err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
+ err = crypto_sync_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
blk_crypto_modes[crypto_mode].keysize);
WARN_ON(err);
slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
blk_crypto_fallback_evict_keyslot(slot);
slotp->crypto_mode = crypto_mode;
- err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->bytes,
+ err = crypto_sync_skcipher_setkey(slotp->tfms[crypto_mode], key->bytes,
key->size);
if (err) {
blk_crypto_fallback_evict_keyslot(slot);
return bio;
}
-static bool
-blk_crypto_fallback_alloc_cipher_req(struct blk_crypto_keyslot *slot,
- struct skcipher_request **ciph_req_ret,
- struct crypto_wait *wait)
+static struct crypto_sync_skcipher *
+blk_crypto_fallback_tfm(struct blk_crypto_keyslot *slot)
{
- struct skcipher_request *ciph_req;
- const struct blk_crypto_fallback_keyslot *slotp;
- int keyslot_idx = blk_crypto_keyslot_index(slot);
-
- slotp = &blk_crypto_keyslots[keyslot_idx];
- ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
- GFP_NOIO);
- if (!ciph_req)
- return false;
-
- skcipher_request_set_callback(ciph_req,
- CRYPTO_TFM_REQ_MAY_BACKLOG |
- CRYPTO_TFM_REQ_MAY_SLEEP,
- crypto_req_done, wait);
- *ciph_req_ret = ciph_req;
+ const struct blk_crypto_fallback_keyslot *slotp =
+ &blk_crypto_keyslots[blk_crypto_keyslot_index(slot)];
- return true;
+ return slotp->tfms[slotp->crypto_mode];
}
union blk_crypto_iv {
iv->dun[i] = cpu_to_le64(dun[i]);
}
-/*
- * The crypto API fallback's encryption routine.
- *
- * Allocate one or more bios for encryption, encrypt the input bio using the
- * crypto API, and submit the encrypted bios. Sets bio->bi_status and
- * completes the source bio on error
- */
-static void blk_crypto_fallback_encrypt_bio(struct bio *src_bio)
+static void __blk_crypto_fallback_encrypt_bio(struct bio *src_bio,
+ struct crypto_sync_skcipher *tfm)
{
struct bio_crypt_ctx *bc = src_bio->bi_crypt_context;
int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
- struct skcipher_request *ciph_req = NULL;
- struct blk_crypto_keyslot *slot;
- DECLARE_CRYPTO_WAIT(wait);
+ SYNC_SKCIPHER_REQUEST_ON_STACK(ciph_req, tfm);
u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
struct scatterlist src, dst;
union blk_crypto_iv iv;
unsigned int nr_enc_pages, enc_idx;
struct bio *enc_bio;
- blk_status_t status;
unsigned int i;
- /*
- * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
- * this bio's algorithm and key.
- */
- status = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
- bc->bc_key, &slot);
- if (status != BLK_STS_OK) {
- src_bio->bi_status = status;
- bio_endio(src_bio);
- return;
- }
-
- /* and then allocate an skcipher_request for it */
- if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
- src_bio->bi_status = BLK_STS_RESOURCE;
- bio_endio(src_bio);
- goto out_release_keyslot;
- }
+ skcipher_request_set_callback(ciph_req,
+ CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
+ NULL, NULL);
memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
sg_init_table(&src, 1);
*/
for (i = 0; i < src_bv.bv_len; i += data_unit_size) {
blk_crypto_dun_to_iv(curr_dun, &iv);
- if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
- &wait)) {
+ if (crypto_skcipher_encrypt(ciph_req)) {
bio_io_error(enc_bio);
- goto out_free_request;
+ return;
}
bio_crypt_dun_increment(curr_dun, 1);
src.offset += data_unit_size;
}
submit_bio(enc_bio);
-out_free_request:
- skcipher_request_free(ciph_req);
-out_release_keyslot:
- blk_crypto_put_keyslot(slot);
}
/*
- * The crypto API fallback's main decryption routine.
- * Decrypts input bio in place, and calls bio_endio on the bio.
+ * The crypto API fallback's encryption routine.
+ *
+ * Allocate one or more bios for encryption, encrypt the input bio using the
+ * crypto API, and submit the encrypted bios. Sets bio->bi_status and
+ * completes the source bio on error
*/
-static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
+static void blk_crypto_fallback_encrypt_bio(struct bio *src_bio)
{
- struct bio_fallback_crypt_ctx *f_ctx =
- container_of(work, struct bio_fallback_crypt_ctx, work);
- struct bio *bio = f_ctx->bio;
- struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
+ struct bio_crypt_ctx *bc = src_bio->bi_crypt_context;
struct blk_crypto_keyslot *slot;
- struct skcipher_request *ciph_req = NULL;
- DECLARE_CRYPTO_WAIT(wait);
+ blk_status_t status;
+
+ status = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
+ bc->bc_key, &slot);
+ if (status != BLK_STS_OK) {
+ src_bio->bi_status = status;
+ bio_endio(src_bio);
+ return;
+ }
+ __blk_crypto_fallback_encrypt_bio(src_bio,
+ blk_crypto_fallback_tfm(slot));
+ blk_crypto_put_keyslot(slot);
+}
+
+static blk_status_t __blk_crypto_fallback_decrypt_bio(struct bio *bio,
+ struct bio_crypt_ctx *bc, struct bvec_iter iter,
+ struct crypto_sync_skcipher *tfm)
+{
+ SYNC_SKCIPHER_REQUEST_ON_STACK(ciph_req, tfm);
u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
union blk_crypto_iv iv;
struct scatterlist sg;
struct bio_vec bv;
- struct bvec_iter iter;
const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
unsigned int i;
- blk_status_t blk_st;
-
- /*
- * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
- * this bio's algorithm and key.
- */
- blk_st = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
- bc->bc_key, &slot);
- if (blk_st != BLK_STS_OK) {
- bio->bi_status = blk_st;
- goto out_no_keyslot;
- }
- /* and then allocate an skcipher_request for it */
- if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
- bio->bi_status = BLK_STS_RESOURCE;
- goto out;
- }
+ skcipher_request_set_callback(ciph_req,
+ CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
+ NULL, NULL);
memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
sg_init_table(&sg, 1);
iv.bytes);
/* Decrypt each segment in the bio */
- __bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
+ __bio_for_each_segment(bv, bio, iter, iter) {
struct page *page = bv.bv_page;
sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
/* Decrypt each data unit in the segment */
for (i = 0; i < bv.bv_len; i += data_unit_size) {
blk_crypto_dun_to_iv(curr_dun, &iv);
- if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
- &wait)) {
- bio->bi_status = BLK_STS_IOERR;
- goto out;
- }
+ if (crypto_skcipher_decrypt(ciph_req))
+ return BLK_STS_IOERR;
bio_crypt_dun_increment(curr_dun, 1);
sg.offset += data_unit_size;
}
}
-out:
- skcipher_request_free(ciph_req);
- blk_crypto_put_keyslot(slot);
-out_no_keyslot:
+ return BLK_STS_OK;
+}
+
+/*
+ * The crypto API fallback's main decryption routine.
+ *
+ * Decrypts input bio in place, and calls bio_endio on the bio.
+ */
+static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
+{
+ struct bio_fallback_crypt_ctx *f_ctx =
+ container_of(work, struct bio_fallback_crypt_ctx, work);
+ struct bio *bio = f_ctx->bio;
+ struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
+ struct blk_crypto_keyslot *slot;
+ blk_status_t status;
+
+ status = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
+ bc->bc_key, &slot);
+ if (status == BLK_STS_OK) {
+ status = __blk_crypto_fallback_decrypt_bio(bio, bc,
+ f_ctx->crypt_iter,
+ blk_crypto_fallback_tfm(slot));
+ blk_crypto_put_keyslot(slot);
+ }
mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
+
+ bio->bi_status = status;
bio_endio(bio);
}
for (i = 0; i < blk_crypto_num_keyslots; i++) {
slotp = &blk_crypto_keyslots[i];
- slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0);
+ slotp->tfms[mode_num] = crypto_alloc_sync_skcipher(cipher_str,
+ 0, 0);
if (IS_ERR(slotp->tfms[mode_num])) {
err = PTR_ERR(slotp->tfms[mode_num]);
if (err == -ENOENT) {
goto out_free_tfms;
}
- crypto_skcipher_set_flags(slotp->tfms[mode_num],
+ crypto_sync_skcipher_set_flags(slotp->tfms[mode_num],
CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
}
out_free_tfms:
for (i = 0; i < blk_crypto_num_keyslots; i++) {
slotp = &blk_crypto_keyslots[i];
- crypto_free_skcipher(slotp->tfms[mode_num]);
+ crypto_free_sync_skcipher(slotp->tfms[mode_num]);
slotp->tfms[mode_num] = NULL;
}
out: