--- /dev/null
+/* adler32.c -- compute the Adler-32 checksum of a data stream
+ * Copyright (C) 1995-2011 Mark Adler
+ * For conditions of distribution and use, see copyright notice in zlib.h
+ */
+
+/* @(#) $Id$ */
+
+#include "zutil.h"
+#include <xmmintrin.h>
+#include <tmmintrin.h>
+
+#include <immintrin.h>
+
+//#include <stdio.h>
+
+#define local static
+
+static uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
+
+#define BASE 65521 /* largest prime smaller than 65536 */
+#define NMAX 5552
+/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
+
+/*
+ * As we are using _signed_ integer arithmetic for the SSE/AVX2 implementations,
+ * we consider the max as 2^31-1
+ */
+#define NMAX_VEC 5552
+
+#define NMAX_VEC2 5552
+
+#define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
+#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
+#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
+#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
+#define DO16(buf) DO8(buf,0); DO8(buf,8);
+
+/* use NO_DIVIDE if your processor does not do division in hardware --
+ try it both ways to see which is faster */
+#ifdef NO_DIVIDE
+/* note that this assumes BASE is 65521, where 65536 % 65521 == 15
+ (thank you to John Reiser for pointing this out) */
+# define CHOP(a) \
+ do { \
+ unsigned long tmp = a >> 16; \
+ a &= 0xffffUL; \
+ a += (tmp << 4) - tmp; \
+ } while (0)
+# define MOD28(a) \
+ do { \
+ CHOP(a); \
+ if (a >= BASE) a -= BASE; \
+ } while (0)
+# define MOD(a) \
+ do { \
+ CHOP(a); \
+ MOD28(a); \
+ } while (0)
+# define MOD63(a) \
+ do { /* this assumes a is not negative */ \
+ z_off64_t tmp = a >> 32; \
+ a &= 0xffffffffL; \
+ a += (tmp << 8) - (tmp << 5) + tmp; \
+ tmp = a >> 16; \
+ a &= 0xffffL; \
+ a += (tmp << 4) - tmp; \
+ tmp = a >> 16; \
+ a &= 0xffffL; \
+ a += (tmp << 4) - tmp; \
+ if (a >= BASE) a -= BASE; \
+ } while (0)
+#else
+# define MOD(a) a %= BASE
+# define MOD28(a) a %= BASE
+# define MOD63(a) a %= BASE
+#endif
+
+/* ========================================================================= */
+extern "C" {
+uLong ZEXPORT adler32_serial(uLong adler, const Bytef *buf, uInt len)
+{
+
+ unsigned long sum2;
+ unsigned n;
+
+ /* split Adler-32 into component sums */
+ sum2 = (adler >> 16) & 0xffff;
+ adler &= 0xffff;
+
+ /* in case user likes doing a byte at a time, keep it fast */
+ if (len == 1) {
+ adler += buf[0];
+ if (adler >= BASE)
+ adler -= BASE;
+ sum2 += adler;
+ if (sum2 >= BASE)
+ sum2 -= BASE;
+ return adler | (sum2 << 16);
+ }
+
+ /* initial Adler-32 value (deferred check for len == 1 speed) */
+ if (buf == Z_NULL)
+ return 1L;
+
+ /* in case short lengths are provided, keep it somewhat fast */
+ if (len < 16) {
+ while (len--) {
+ adler += *buf++;
+ sum2 += adler;
+ }
+ if (adler >= BASE)
+ adler -= BASE;
+ MOD28(sum2); /* only added so many BASE's */
+ return adler | (sum2 << 16);
+ }
+
+ /* do length NMAX blocks -- requires just one modulo operation */
+ while (len >= NMAX) {
+ len -= NMAX;
+ n = NMAX / 16; /* NMAX is divisible by 16 */
+ do {
+ DO16(buf); /* 16 sums unrolled */
+ buf += 16;
+ } while (--n);
+ MOD(adler);
+ MOD(sum2);
+ }
+
+ /* do remaining bytes (less than NMAX, still just one modulo) */
+ if (len) { /* avoid modulos if none remaining */
+ while (len >= 16) {
+ len -= 16;
+ DO16(buf);
+ buf += 16;
+ }
+ while (len--) {
+ adler += *buf++;
+ sum2 += adler;
+ }
+ MOD(adler);
+ MOD(sum2);
+ }
+
+ /* return recombined sums */
+ return adler | (sum2 << 16);
+}
+
+#define likely(x) __builtin_expect(!!(x), 1)
+#define unlikely(x) __builtin_expect(!!(x), 0)
+
+/* ========================================================================= */
+uLong ZEXPORT adler32_vec(uLong adler, const Bytef *buf, uInt len)
+{
+
+ unsigned long sum2;
+
+ /* split Adler-32 into component sums */
+ sum2 = (adler >> 16) & 0xffff;
+ adler &= 0xffff;
+
+ /* in case user likes doing a byte at a time, keep it fast */
+ if (unlikely(len == 1)) {
+ adler += buf[0];
+ if (adler >= BASE)
+ adler -= BASE;
+ sum2 += adler;
+ if (sum2 >= BASE)
+ sum2 -= BASE;
+ return adler | (sum2 << 16);
+ }
+
+ /* initial Adler-32 value (deferred check for len == 1 speed) */
+ if (unlikely(buf == Z_NULL))
+ return 1L;
+
+ /* in case short lengths are provided, keep it somewhat fast */
+ if (unlikely(len < 16)) {
+ while (len--) {
+ adler += *buf++;
+ sum2 += adler;
+ }
+ if (adler >= BASE)
+ adler -= BASE;
+ MOD28(sum2); /* only added so many BASE's */
+ return adler | (sum2 << 16);
+ }
+
+ uint32_t __attribute__ ((aligned(16))) s1[4], s2[4];
+ s1[0] = s1[1] = s1[2] = 0; s1[3] = adler;
+ s2[0] = s2[1] = s2[2] = 0; s2[3] = sum2;
+ char __attribute__ ((aligned(16))) dot1[16] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
+ __m128i dot1v = _mm_load_si128((__m128i*)dot1);
+ char __attribute__ ((aligned(16))) dot2[16] = {16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
+ __m128i dot2v = _mm_load_si128((__m128i*)dot2);
+ short __attribute__ ((aligned(16))) dot3[8] = {1, 1, 1, 1, 1, 1, 1, 1};
+ __m128i dot3v = _mm_load_si128((__m128i*)dot3);
+ // We will need to multiply by
+ //char __attribute__ ((aligned(16))) shift[4] = {0, 0, 0, 4}; //{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4};
+ char __attribute__ ((aligned(16))) shift[16] = {4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
+ __m128i shiftv = _mm_load_si128((__m128i*)shift);
+ while (len >= 16) {
+ //printf("Starting iteration with length %d\n", len);
+ __m128i vs1 = _mm_load_si128((__m128i*)s1);
+ __m128i vs2 = _mm_load_si128((__m128i*)s2);
+ __m128i vs1_0 = vs1;
+ int k = (len < NMAX_VEC ? (int)len : NMAX_VEC);
+ k -= k % 16;
+ len -= k;
+ while (k >= 16) {
+ /*
+ vs1 = adler + sum(c[i])
+ vs2 = sum2 + 16 vs1 + sum( (16-i+1) c[i] )
+
+ NOTE: 256-bit equivalents are:
+ _mm256_maddubs_epi16 <- operates on 32 bytes to 16 shorts
+ _mm256_madd_epi16 <- Sums 16 shorts to 8 int32_t.
+ We could rewrite the below to use 256-bit instructions instead of 128-bit.
+ */
+ __m128i vbuf = _mm_loadu_si128((__m128i*)buf);
+ //printf("vbuf: [%d, %d, %d, %d; %d, %d, %d, %d; %d, %d, %d, %d; %d, %d, %d, %d]\n", buf[0], (unsigned char)buf[1], (unsigned char)buf[2], (unsigned char)buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13], buf[14], buf[15]);
+ buf += 16;
+ k -= 16;
+ __m128i v_short_sum1 = _mm_maddubs_epi16(vbuf, dot1v); // multiply-add, resulting in 8 shorts.
+ //{short __attribute__((aligned(16))) test[8]; _mm_store_si128((__m128i*)test, v_short_sum1); printf("v_short_sum1: [%d, %d, %d, %d; %d, %d, %d, %d]\n", test[0], test[1], test[2], test[3], test[4], test[5], test[6], test[7]);}
+ __m128i vsum1 = _mm_madd_epi16(v_short_sum1, dot3v); // sum 8 shorts to 4 int32_t;
+ //{uint32_t __attribute__((aligned(16))) t2[4]; _mm_store_si128((__m128i*)t2, vsum1); printf("vsum1: [%d, %d, %d, %d]\n", t2[0], t2[1], t2[2], t2[3]);}
+ __m128i v_short_sum2 = _mm_maddubs_epi16(vbuf, dot2v);
+ //{short __attribute__((aligned(16))) test[8]; _mm_store_si128((__m128i*)test, v_short_sum2); printf("v_short_sum2: [%d, %d, %d, %d; %d, %d, %d, %d]\n", test[0], test[1], test[2], test[3], test[4], test[5], test[6], test[7]);}
+ vs1 = _mm_add_epi32(vsum1, vs1);
+ __m128i vsum2 = _mm_madd_epi16(v_short_sum2, dot3v);
+ //{uint32_t __attribute__((aligned(16))) t2[4]; _mm_store_si128((__m128i*)t2, vsum2); printf("vsum2: [%d, %d, %d, %d]\n", t2[0], t2[1], t2[2], t2[3]);}
+ vs1_0 = _mm_sll_epi32(vs1_0, shiftv);
+ //{uint32_t __attribute__((aligned(16))) t2[4]; _mm_store_si128((__m128i*)t2, vs1_0); printf("16*vs1_0: [%d, %d, %d, %d]\n", t2[0], t2[1], t2[2], t2[3]);}
+ vsum2 = _mm_add_epi32(vsum2, vs2);
+ vs2 = _mm_add_epi32(vsum2, vs1_0);
+ vs1_0 = vs1;
+ }
+ // At this point, we have partial sums stored in vs1 and vs2. There are AVX512 instructions that
+ // would allow us to sum these quickly (VP4DPWSSD). For now, just unpack and move on.
+ uint32_t __attribute__((aligned(16))) s1_unpack[4];
+ uint32_t __attribute__((aligned(16))) s2_unpack[4];
+ _mm_store_si128((__m128i*)s1_unpack, vs1);
+ //{uint32_t __attribute__((aligned(16))) t2[4]; _mm_store_si128((__m128i*)t2, vs1); printf("vs1: [%d, %d, %d, %d]\n", t2[0], t2[1], t2[2], t2[3]);}
+ _mm_store_si128((__m128i*)s2_unpack, vs2);
+ adler = (s1_unpack[0] % BASE) + (s1_unpack[1] % BASE) + (s1_unpack[2] % BASE) + (s1_unpack[3] % BASE);
+ MOD(adler);
+ s1[3] = adler;
+ sum2 = (s2_unpack[0] % BASE) + (s2_unpack[1] % BASE) + (s2_unpack[2] % BASE) + (s2_unpack[3] % BASE);
+ MOD(sum2);
+ s2[3] = sum2;
+ }
+
+ while (len--) {
+ //printf("Handling tail end.\n");
+ adler += *buf++;
+ sum2 += adler;
+ }
+ MOD(adler);
+ MOD(sum2);
+
+ /* return recombined sums */
+ return adler | (sum2 << 16);
+}
+
+/* ========================================================================= */
+uLong ZEXPORT adler32_avx(uLong adler, const Bytef *buf, uInt len)
+{
+
+ unsigned long sum2;
+
+ /* split Adler-32 into component sums */
+ sum2 = (adler >> 16) & 0xffff;
+ adler &= 0xffff;
+
+ /* in case user likes doing a byte at a time, keep it fast */
+ if (unlikely(len == 1)) {
+ adler += buf[0];
+ if (adler >= BASE)
+ adler -= BASE;
+ sum2 += adler;
+ if (sum2 >= BASE)
+ sum2 -= BASE;
+ return adler | (sum2 << 16);
+ }
+
+ /* initial Adler-32 value (deferred check for len == 1 speed) */
+ if (unlikely(buf == Z_NULL))
+ return 1L;
+
+ /* in case short lengths are provided, keep it somewhat fast */
+ if (unlikely(len < 32)) {
+ while (len--) {
+ adler += *buf++;
+ sum2 += adler;
+ }
+ if (adler >= BASE)
+ adler -= BASE;
+ MOD28(sum2); /* only added so many BASE's */
+ return adler | (sum2 << 16);
+ }
+
+ uint32_t __attribute__ ((aligned(32))) s1[8], s2[8];
+ memset(s1, '\0', sizeof(uint32_t)*7); s1[7] = adler; // TODO: would a masked load be faster?
+ memset(s2, '\0', sizeof(uint32_t)*7); s2[7] = sum2;
+ char __attribute__ ((aligned(32))) dot1[32] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
+ __m256i dot1v = _mm256_load_si256((__m256i*)dot1);
+ char __attribute__ ((aligned(32))) dot2[32] = {32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
+ __m256i dot2v = _mm256_load_si256((__m256i*)dot2);
+ short __attribute__ ((aligned(32))) dot3[16] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
+ __m256i dot3v = _mm256_load_si256((__m256i*)dot3);
+ // We will need to multiply by
+ char __attribute__ ((aligned(16))) shift[16] = {5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
+ __m128i shiftv = _mm_load_si128((__m128i*)shift);
+ while (len >= 32) {
+ //printf("Starting iteration with length %d\n", len);
+ __m256i vs1 = _mm256_load_si256((__m256i*)s1);
+ __m256i vs2 = _mm256_load_si256((__m256i*)s2);
+ __m256i vs1_0 = vs1;
+ int k = (len < NMAX_VEC ? (int)len : NMAX_VEC);
+ k -= k % 32;
+ len -= k;
+ while (k >= 32) {
+ /*
+ vs1 = adler + sum(c[i])
+ vs2 = sum2 + 16 vs1 + sum( (16-i+1) c[i] )
+ */
+ __m256i vbuf = _mm256_loadu_si256((__m256i*)buf);
+ //printf("vbuf: [%d, %d, %d, %d; %d, %d, %d, %d; %d, %d, %d, %d; %d, %d, %d, %d]\n", buf[0], (unsigned char)buf[1], (unsigned char)buf[2], (unsigned char)buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13], buf[14], buf[15]);
+ buf += 32;
+ k -= 32;
+ __m256i v_short_sum1 = _mm256_maddubs_epi16(vbuf, dot1v); // multiply-add, resulting in 8 shorts.
+ //{short __attribute__((aligned(16))) test[8]; _mm_store_si128((__m128i*)test, v_short_sum1); printf("v_short_sum1: [%d, %d, %d, %d; %d, %d, %d, %d]\n", test[0], test[1], test[2], test[3], test[4], test[5], test[6], test[7]);}
+ __m256i vsum1 = _mm256_madd_epi16(v_short_sum1, dot3v); // sum 8 shorts to 4 int32_t;
+ //{uint32_t __attribute__((aligned(16))) t2[4]; _mm_store_si128((__m128i*)t2, vsum1); printf("vsum1: [%d, %d, %d, %d]\n", t2[0], t2[1], t2[2], t2[3]);}
+ __m256i v_short_sum2 = _mm256_maddubs_epi16(vbuf, dot2v);
+ //{short __attribute__((aligned(16))) test[8]; _mm_store_si128((__m128i*)test, v_short_sum2); printf("v_short_sum2: [%d, %d, %d, %d; %d, %d, %d, %d]\n", test[0], test[1], test[2], test[3], test[4], test[5], test[6], test[7]);}
+ vs1 = _mm256_add_epi32(vsum1, vs1);
+ __m256i vsum2 = _mm256_madd_epi16(v_short_sum2, dot3v);
+ //{uint32_t __attribute__((aligned(16))) t2[4]; _mm_store_si128((__m128i*)t2, vsum2); printf("vsum2: [%d, %d, %d, %d]\n", t2[0], t2[1], t2[2], t2[3]);}
+ vs1_0 = _mm256_sll_epi32(vs1_0, shiftv);
+ //{uint32_t __attribute__((aligned(16))) t2[4]; _mm_store_si128((__m128i*)t2, vs1_0); printf("16*vs1_0: [%d, %d, %d, %d]\n", t2[0], t2[1], t2[2], t2[3]);}
+ vsum2 = _mm256_add_epi32(vsum2, vs2);
+ vs2 = _mm256_add_epi32(vsum2, vs1_0);
+ vs1_0 = vs1;
+ }
+ // At this point, we have partial sums stored in vs1 and vs2. There are AVX512 instructions that
+ // would allow us to sum these quickly (VP4DPWSSD). For now, just unpack and move on.
+ uint32_t __attribute__((aligned(32))) s1_unpack[8];
+ uint32_t __attribute__((aligned(32))) s2_unpack[8];
+ _mm256_store_si256((__m256i*)s1_unpack, vs1);
+ //{uint32_t __attribute__((aligned(16))) t2[4]; _mm_store_si128((__m128i*)t2, vs1); printf("vs1: [%d, %d, %d, %d]\n", t2[0], t2[1], t2[2], t2[3]);}
+ _mm256_store_si256((__m256i*)s2_unpack, vs2);
+ adler = (s1_unpack[0] % BASE) + (s1_unpack[1] % BASE) + (s1_unpack[2] % BASE) + (s1_unpack[3] % BASE) + (s1_unpack[4] % BASE) + (s1_unpack[5] % BASE) + (s1_unpack[6] % BASE) + (s1_unpack[7] % BASE);
+ MOD(adler);
+ s1[7] = adler;
+ sum2 = (s2_unpack[0] % BASE) + (s2_unpack[1] % BASE) + (s2_unpack[2] % BASE) + (s2_unpack[3] % BASE) + (s2_unpack[4] % BASE) + (s2_unpack[5] % BASE) + (s2_unpack[6] % BASE) + (s2_unpack[7] % BASE);
+ MOD(sum2);
+ s2[7] = sum2;
+ }
+
+ while (len--) {
+ //printf("Handling tail end.\n");
+ adler += *buf++;
+ sum2 += adler;
+ }
+ MOD(adler);
+ MOD(sum2);
+
+ /* return recombined sums */
+ return adler | (sum2 << 16);
+}
+}
+
+__attribute__ ((target ("default")))
+static uLong adler32_impl(uLong adler, const Bytef *buf, uInt len)
+{
+ //printf("Using default version\n");
+ return adler32_serial(adler, buf, len);
+}
+
+__attribute__ ((target ("sse4.2")))
+//__attribute__ ((target ("mmx")))
+static uLong adler32_impl(uLong adler, const Bytef *buf, uInt len)
+{
+ //printf("Using SSE4.2 version\n");
+ return adler32_vec(adler, buf, len);
+}
+
+__attribute__ ((target ("avx2")))
+static uLong adler32_impl(uLong adler, const Bytef *buf, uInt len)
+{
+ //printf("Using AVX2 version\n");
+ return adler32_avx(adler, buf, len);
+}
+
+extern "C" {
+uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len) {return adler32_impl(adler, buf, len);}
+}
+
+/* ========================================================================= */
+static uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2)
+{
+ unsigned long sum1;
+ unsigned long sum2;
+ unsigned rem;
+
+ /* for negative len, return invalid adler32 as a clue for debugging */
+ if (len2 < 0)
+ return 0xffffffffUL;
+
+ /* the derivation of this formula is left as an exercise for the reader */
+ MOD63(len2); /* assumes len2 >= 0 */
+ rem = (unsigned)len2;
+ sum1 = adler1 & 0xffff;
+ sum2 = rem * sum1;
+ MOD(sum2);
+ sum1 += (adler2 & 0xffff) + BASE - 1;
+ sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
+ if (sum1 >= BASE) sum1 -= BASE;
+ if (sum1 >= BASE) sum1 -= BASE;
+ if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);
+ if (sum2 >= BASE) sum2 -= BASE;
+ return sum1 | (sum2 << 16);
+}
+
+extern "C" {
+/* ========================================================================= */
+uLong adler32_combine(uLong adler1, uLong adler2, z_off_t len2)
+{
+ return adler32_combine_(adler1, adler2, len2);
+}
+
+uLong adler32_combine64(uLong adler1, uLong adler2, z_off64_t len2)
+{
+ return adler32_combine_(adler1, adler2, len2);
+}
+}