return adler32_len_16(adler, buf, len, sum2);
uint32_t ALIGNED_(32) s1[8], s2[8];
+
memset(s1, 0, sizeof(s1)); s1[7] = adler; // TODO: would a masked load be faster?
memset(s2, 0, sizeof(s2)); s2[7] = sum2;
- char ALIGNED_(32) dot1[32] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
+
+ char ALIGNED_(32) dot1[32] = \
+ {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
__m256i dot1v = _mm256_load_si256((__m256i*)dot1);
- char ALIGNED_(32) dot2[32] = {32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
+ char ALIGNED_(32) dot2[32] = \
+ {32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17,
+ 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
__m256i dot2v = _mm256_load_si256((__m256i*)dot2);
- short ALIGNED_(32) dot3[16] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
+ short ALIGNED_(32) dot3[16] = \
+ {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
__m256i dot3v = _mm256_load_si256((__m256i*)dot3);
+
// We will need to multiply by
char ALIGNED_(32) shift[16] = {5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
__m128i shiftv = _mm_load_si128((__m128i*)shift);
+
while (len >= 32) {
__m256i vs1 = _mm256_load_si256((__m256i*)s1);
__m256i vs2 = _mm256_load_si256((__m256i*)s2);
__m256i vs1_0 = vs1;
+
int k = (len < NMAX ? (int)len : NMAX);
k -= k % 32;
len -= k;
+
while (k >= 32) {
/*
vs1 = adler + sum(c[i])
__m256i vbuf = _mm256_loadu_si256((__m256i*)buf);
buf += 32;
k -= 32;
+
__m256i v_short_sum1 = _mm256_maddubs_epi16(vbuf, dot1v); // multiply-add, resulting in 8 shorts.
- __m256i vsum1 = _mm256_madd_epi16(v_short_sum1, dot3v); // sum 8 shorts to 4 int32_t;
+ __m256i vsum1 = _mm256_madd_epi16(v_short_sum1, dot3v); // sum 8 shorts to 4 int32_t;
__m256i v_short_sum2 = _mm256_maddubs_epi16(vbuf, dot2v);
vs1 = _mm256_add_epi32(vsum1, vs1);
__m256i vsum2 = _mm256_madd_epi16(v_short_sum2, dot3v);
vs2 = _mm256_add_epi32(vsum2, vs1_0);
vs1_0 = vs1;
}
+
// At this point, we have partial sums stored in vs1 and vs2. There are AVX512 instructions that
// would allow us to sum these quickly (VP4DPWSSD). For now, just unpack and move on.
uint32_t ALIGNED_(32) s1_unpack[8];
uint32_t ALIGNED_(32) s2_unpack[8];
+
_mm256_store_si256((__m256i*)s1_unpack, vs1);
_mm256_store_si256((__m256i*)s2_unpack, vs2);
- adler = (s1_unpack[0] % BASE) + (s1_unpack[1] % BASE) + (s1_unpack[2] % BASE) + (s1_unpack[3] % BASE) + (s1_unpack[4] % BASE) + (s1_unpack[5] % BASE) + (s1_unpack[6] % BASE) + (s1_unpack[7] % BASE);
+
+ adler = (s1_unpack[0] % BASE) + (s1_unpack[1] % BASE) + (s1_unpack[2] % BASE) + (s1_unpack[3] % BASE) +
+ (s1_unpack[4] % BASE) + (s1_unpack[5] % BASE) + (s1_unpack[6] % BASE) + (s1_unpack[7] % BASE);
MOD(adler);
s1[7] = adler;
- sum2 = (s2_unpack[0] % BASE) + (s2_unpack[1] % BASE) + (s2_unpack[2] % BASE) + (s2_unpack[3] % BASE) + (s2_unpack[4] % BASE) + (s2_unpack[5] % BASE) + (s2_unpack[6] % BASE) + (s2_unpack[7] % BASE);
+
+ sum2 = (s2_unpack[0] % BASE) + (s2_unpack[1] % BASE) + (s2_unpack[2] % BASE) + (s2_unpack[3] % BASE) +
+ (s2_unpack[4] % BASE) + (s2_unpack[5] % BASE) + (s2_unpack[6] % BASE) + (s2_unpack[7] % BASE);
MOD(sum2);
s2[7] = sum2;
}
return adler32_len_16(adler, buf, len, sum2);
uint32_t ALIGNED_(16) s1[4], s2[4];
+
s1[0] = s1[1] = s1[2] = 0; s1[3] = adler;
s2[0] = s2[1] = s2[2] = 0; s2[3] = sum2;
+
char ALIGNED_(16) dot1[16] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
__m128i dot1v = _mm_load_si128((__m128i*)dot1);
char ALIGNED_(16) dot2[16] = {16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
__m128i dot2v = _mm_load_si128((__m128i*)dot2);
short ALIGNED_(16) dot3[8] = {1, 1, 1, 1, 1, 1, 1, 1};
__m128i dot3v = _mm_load_si128((__m128i*)dot3);
+
// We will need to multiply by
//char ALIGNED_(16) shift[4] = {0, 0, 0, 4}; //{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4};
+
char ALIGNED_(16) shift[16] = {4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
__m128i shiftv = _mm_load_si128((__m128i*)shift);
+
while (len >= 16) {
__m128i vs1 = _mm_load_si128((__m128i*)s1);
__m128i vs2 = _mm_load_si128((__m128i*)s2);
__m128i vs1_0 = vs1;
+
int k = (len < NMAX ? (int)len : NMAX);
k -= k % 16;
len -= k;
+
while (k >= 16) {
/*
vs1 = adler + sum(c[i])
__m128i vbuf = _mm_loadu_si128((__m128i*)buf);
buf += 16;
k -= 16;
+
__m128i v_short_sum1 = _mm_maddubs_epi16(vbuf, dot1v); // multiply-add, resulting in 8 shorts.
__m128i vsum1 = _mm_madd_epi16(v_short_sum1, dot3v); // sum 8 shorts to 4 int32_t;
__m128i v_short_sum2 = _mm_maddubs_epi16(vbuf, dot2v);
vs2 = _mm_add_epi32(vsum2, vs1_0);
vs1_0 = vs1;
}
+
// At this point, we have partial sums stored in vs1 and vs2. There are AVX512 instructions that
// would allow us to sum these quickly (VP4DPWSSD). For now, just unpack and move on.
+
uint32_t ALIGNED_(16) s1_unpack[4];
uint32_t ALIGNED_(16) s2_unpack[4];
+
_mm_store_si128((__m128i*)s1_unpack, vs1);
_mm_store_si128((__m128i*)s2_unpack, vs2);
+
adler = (s1_unpack[0] % BASE) + (s1_unpack[1] % BASE) + (s1_unpack[2] % BASE) + (s1_unpack[3] % BASE);
MOD(adler);
s1[3] = adler;
+
sum2 = (s2_unpack[0] % BASE) + (s2_unpack[1] % BASE) + (s2_unpack[2] % BASE) + (s2_unpack[3] % BASE);
MOD(sum2);
s2[3] = sum2;