struct task_struct *p;
struct rhashtable_iter rht_iter;
struct scx_dispatch_q *dsq;
- int i, kind;
+ int i, kind, cpu;
kind = atomic_read(&scx_exit_kind);
while (true) {
scx_task_iter_stop(&sti);
percpu_up_write(&scx_fork_rwsem);
+ /*
+ * Invalidate all the rq clocks to prevent getting outdated
+ * rq clocks from a previous scx scheduler.
+ */
+ for_each_possible_cpu(cpu) {
+ struct rq *rq = cpu_rq(cpu);
+ scx_rq_clock_invalidate(rq);
+ }
+
/* no task is on scx, turn off all the switches and flush in-progress calls */
static_branch_disable(&__scx_ops_enabled);
for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
}
#endif
+/**
+ * scx_bpf_now - Returns a high-performance monotonically non-decreasing
+ * clock for the current CPU. The clock returned is in nanoseconds.
+ *
+ * It provides the following properties:
+ *
+ * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently
+ * to account for execution time and track tasks' runtime properties.
+ * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which
+ * eventually reads a hardware timestamp counter -- is neither performant nor
+ * scalable. scx_bpf_now() aims to provide a high-performance clock by
+ * using the rq clock in the scheduler core whenever possible.
+ *
+ * 2) High enough resolution for the BPF scheduler use cases: In most BPF
+ * scheduler use cases, the required clock resolution is lower than the most
+ * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically
+ * uses the rq clock in the scheduler core whenever it is valid. It considers
+ * that the rq clock is valid from the time the rq clock is updated
+ * (update_rq_clock) until the rq is unlocked (rq_unpin_lock).
+ *
+ * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now()
+ * guarantees the clock never goes backward when comparing them in the same
+ * CPU. On the other hand, when comparing clocks in different CPUs, there
+ * is no such guarantee -- the clock can go backward. It provides a
+ * monotonically *non-decreasing* clock so that it would provide the same
+ * clock values in two different scx_bpf_now() calls in the same CPU
+ * during the same period of when the rq clock is valid.
+ */
+__bpf_kfunc u64 scx_bpf_now(void)
+{
+ struct rq *rq;
+ u64 clock;
+
+ preempt_disable();
+
+ rq = this_rq();
+ if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) {
+ /*
+ * If the rq clock is valid, use the cached rq clock.
+ *
+ * Note that scx_bpf_now() is re-entrant between a process
+ * context and an interrupt context (e.g., timer interrupt).
+ * However, we don't need to consider the race between them
+ * because such race is not observable from a caller.
+ */
+ clock = READ_ONCE(rq->scx.clock);
+ } else {
+ /*
+ * Otherwise, return a fresh rq clock.
+ *
+ * The rq clock is updated outside of the rq lock.
+ * In this case, keep the updated rq clock invalid so the next
+ * kfunc call outside the rq lock gets a fresh rq clock.
+ */
+ clock = sched_clock_cpu(cpu_of(rq));
+ }
+
+ preempt_enable();
+
+ return clock;
+}
+
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(scx_kfunc_ids_any)
#ifdef CONFIG_CGROUP_SCHED
BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
#endif
+BTF_ID_FLAGS(func, scx_bpf_now)
BTF_KFUNCS_END(scx_kfunc_ids_any)
static const struct btf_kfunc_id_set scx_kfunc_set_any = {
SCX_RQ_BAL_PENDING = 1 << 2, /* balance hasn't run yet */
SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */
SCX_RQ_BYPASSING = 1 << 4,
+ SCX_RQ_CLK_VALID = 1 << 5, /* RQ clock is fresh and valid */
SCX_RQ_IN_WAKEUP = 1 << 16,
SCX_RQ_IN_BALANCE = 1 << 17,
unsigned long ops_qseq;
u64 extra_enq_flags; /* see move_task_to_local_dsq() */
u32 nr_running;
- u32 flags;
u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */
bool cpu_released;
+ u32 flags;
+ u64 clock; /* current per-rq clock -- see scx_bpf_now() */
cpumask_var_t cpus_to_kick;
cpumask_var_t cpus_to_kick_if_idle;
cpumask_var_t cpus_to_preempt;
#define scx_enabled() static_branch_unlikely(&__scx_ops_enabled)
#define scx_switched_all() static_branch_unlikely(&__scx_switched_all)
+
+static inline void scx_rq_clock_update(struct rq *rq, u64 clock)
+{
+ if (!scx_enabled())
+ return;
+ WRITE_ONCE(rq->scx.clock, clock);
+ smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID);
+}
+
+static inline void scx_rq_clock_invalidate(struct rq *rq)
+{
+ if (!scx_enabled())
+ return;
+ WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID);
+}
+
#else /* !CONFIG_SCHED_CLASS_EXT */
#define scx_enabled() false
#define scx_switched_all() false
+
+static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {}
+static inline void scx_rq_clock_invalidate(struct rq *rq) {}
#endif /* !CONFIG_SCHED_CLASS_EXT */
/*
if (rq->clock_update_flags > RQCF_ACT_SKIP)
rf->clock_update_flags = RQCF_UPDATED;
#endif
-
+ scx_rq_clock_invalidate(rq);
lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
}