else
Q := 0;
+ pragma Assert (Double_Uns'(Yhi * Zhi) >= Double_Uns (Yhi));
+ pragma Assert (Double_Uns'(Yhi * Zhi) >= Double_Uns (Zhi));
pragma Assert (Big (Double_Uns'(Yhi * Zhi)) >= 1);
if Yhi > 1 or else Zhi > 1 then
pragma Assert (Big (Double_Uns'(Yhi * Zhi)) > 1);
return;
else
T2 := Yhi * Zlo;
+ pragma Assert (Big (T2) = Big (Double_Uns'(Yhi * Zlo)));
end if;
else
T2 := Ylo * Zhi;
+ pragma Assert (Big (T2) = Big (Double_Uns'(Ylo * Zhi)));
end if;
T1 := Ylo * Zlo;
Raise_Error;
else
T2 := Xhi * Ylo;
+ pragma Assert (Big (T2) = Big (Double_Uns'(Xhi * Ylo))
+ + Big (Double_Uns'(Xlo * Yhi)));
end if;
elsif Yhi /= 0 then
T2 := Xlo * Yhi;
+ pragma Assert (Big (T2) = Big (Double_Uns'(Xhi * Ylo))
+ + Big (Double_Uns'(Xlo * Yhi)));
else -- Yhi = Xhi = 0
T2 := 0;
pragma Assert (Big (T2) = Big (Double_Uns'(Xhi * Ylo))
+ Big (Double_Uns'(Xlo * Yhi)));
Lemma_Mult_Distribution (Big_2xxSingle, Big (Double_Uns'(Xhi * Ylo)),
- Big (Double_Uns'(Xlo * Yhi)));
+ Big (Double_Uns'(Xlo * Yhi)));
pragma Assert (Mult = Big_2xxSingle * Big (T2) + Big (T1));
Lemma_Add_Commutation (T2, Hi (T1));
pragma Assert
Big (Double_Uns (Qd (J))) - 1,
Big (Double_Uns (Qd (J) - 1)), 0);
- Qd (J) := Qd (J) - 1;
+ declare
+ Prev : constant Single_Uns := Qd (J) - 1 with Ghost;
+ begin
+ Qd (J) := Qd (J) - 1;
+
+ pragma Assert (Qd (J) = Prev);
+ end;
pragma Assert
(Big3 (S1, S2, S3) = Big (Double_Uns (Qd (J))) * Big (Zu));