#else
/* Simics 1.4<7 has buggy sbbq:-( */
#define BN_MASK2 0xffffffffffffffffL
-BN_ULONG bn_sub_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
+BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
{
BN_ULONG t1, t2;
int c = 0;
#define sqr_add_c2(a, i, j, c0, c1, c2) \
mul_add_c2((a)[i], (a)[j], c0, c1, c2)
-void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
+void bn_mul_comba8(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b)
{
BN_ULONG c1, c2, c3;
r[15] = c1;
}
-void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
+void bn_mul_comba4(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b)
{
BN_ULONG c1, c2, c3;
mul_add_c2((a)[i], (a)[j], c0, c1, c2)
#endif /* !BN_LLONG */
-void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
+void bn_mul_comba8(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b)
{
BN_ULONG c1, c2, c3;
r[15] = c1;
}
-void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
+void bn_mul_comba4(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b)
{
BN_ULONG c1, c2, c3;
bn_sqr_normal(r, a, 8, t);
}
-void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
+void bn_mul_comba4(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b)
{
r[4] = bn_mul_words(&(r[0]), a, 4, b[0]);
r[5] = bn_mul_add_words(&(r[1]), a, 4, b[1]);
r[7] = bn_mul_add_words(&(r[3]), a, 4, b[3]);
}
-void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
+void bn_mul_comba8(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b)
{
r[8] = bn_mul_words(&(r[0]), a, 8, b[0]);
r[9] = bn_mul_add_words(&(r[1]), a, 8, b[1]);
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
void bn_init(BIGNUM *a);
-void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
-void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
-void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
+void bn_mul_normal(BN_ULONG *r, const BN_ULONG *a, int na, const BN_ULONG *b, int nb);
+void bn_mul_comba8(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b);
+void bn_mul_comba4(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b);
void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
-void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
+void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n2,
int dna, int dnb, BN_ULONG *t);
-void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
+void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
int n, int tna, int tnb, BN_ULONG *t);
void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
-void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
-void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
+void bn_mul_low_normal(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n);
+void bn_mul_low_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n2,
BN_ULONG *t);
BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
int cl, int dl);
#include "internal/cryptlib.h"
#include "bn_local.h"
-#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
-/*
- * Here follows specialised variants of bn_add_words() and bn_sub_words().
- * They have the property performing operations on arrays of different sizes.
- * The sizes of those arrays is expressed through cl, which is the common
- * length ( basically, min(len(a),len(b)) ), and dl, which is the delta
- * between the two lengths, calculated as len(a)-len(b). All lengths are the
- * number of BN_ULONGs... For the operations that require a result array as
- * parameter, it must have the length cl+abs(dl). These functions should
- * probably end up in bn_asm.c as soon as there are assembler counterparts
- * for the systems that use assembler files.
- */
-
-BN_ULONG bn_sub_part_words(BN_ULONG *r,
- const BN_ULONG *a, const BN_ULONG *b,
- int cl, int dl)
-{
- BN_ULONG c, t;
-
- assert(cl >= 0);
- c = bn_sub_words(r, a, b, cl);
-
- if (dl == 0)
- return c;
-
- r += cl;
- a += cl;
- b += cl;
-
- if (dl < 0) {
- for (;;) {
- t = b[0];
- r[0] = (0 - t - c) & BN_MASK2;
- if (t != 0)
- c = 1;
- if (++dl >= 0)
- break;
-
- t = b[1];
- r[1] = (0 - t - c) & BN_MASK2;
- if (t != 0)
- c = 1;
- if (++dl >= 0)
- break;
-
- t = b[2];
- r[2] = (0 - t - c) & BN_MASK2;
- if (t != 0)
- c = 1;
- if (++dl >= 0)
- break;
-
- t = b[3];
- r[3] = (0 - t - c) & BN_MASK2;
- if (t != 0)
- c = 1;
- if (++dl >= 0)
- break;
-
- b += 4;
- r += 4;
- }
- } else {
- int save_dl = dl;
- while (c) {
- t = a[0];
- r[0] = (t - c) & BN_MASK2;
- if (t != 0)
- c = 0;
- if (--dl <= 0)
- break;
-
- t = a[1];
- r[1] = (t - c) & BN_MASK2;
- if (t != 0)
- c = 0;
- if (--dl <= 0)
- break;
-
- t = a[2];
- r[2] = (t - c) & BN_MASK2;
- if (t != 0)
- c = 0;
- if (--dl <= 0)
- break;
-
- t = a[3];
- r[3] = (t - c) & BN_MASK2;
- if (t != 0)
- c = 0;
- if (--dl <= 0)
- break;
-
- save_dl = dl;
- a += 4;
- r += 4;
- }
- if (dl > 0) {
- if (save_dl > dl) {
- switch (save_dl - dl) {
- case 1:
- r[1] = a[1];
- if (--dl <= 0)
- break;
- /* fall through */
- case 2:
- r[2] = a[2];
- if (--dl <= 0)
- break;
- /* fall through */
- case 3:
- r[3] = a[3];
- if (--dl <= 0)
- break;
- }
- a += 4;
- r += 4;
- }
- }
- if (dl > 0) {
- for (;;) {
- r[0] = a[0];
- if (--dl <= 0)
- break;
- r[1] = a[1];
- if (--dl <= 0)
- break;
- r[2] = a[2];
- if (--dl <= 0)
- break;
- r[3] = a[3];
- if (--dl <= 0)
- break;
-
- a += 4;
- r += 4;
- }
- }
- }
- return c;
-}
-#endif
-
-#ifdef BN_RECURSION
-/*
- * Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of
- * Computer Programming, Vol. 2)
- */
-
-/*-
- * r is 2*n2 words in size,
- * a and b are both n2 words in size.
- * n2 must be a power of 2.
- * We multiply and return the result.
- * t must be 2*n2 words in size
- * We calculate
- * a[0]*b[0]
- * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
- * a[1]*b[1]
- */
-/* dnX may not be positive, but n2/2+dnX has to be */
-void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
- int dna, int dnb, BN_ULONG *t)
-{
- int n = n2 / 2, c1, c2;
- int tna = n + dna, tnb = n + dnb;
- unsigned int neg, zero;
- BN_ULONG ln, lo, *p;
-
-#ifdef BN_MUL_COMBA
-#if 0
- if (n2 == 4) {
- bn_mul_comba4(r, a, b);
- return;
- }
-#endif
- /*
- * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete
- * [steve]
- */
- if (n2 == 8 && dna == 0 && dnb == 0) {
- bn_mul_comba8(r, a, b);
- return;
- }
-#endif /* BN_MUL_COMBA */
- /* Else do normal multiply */
- if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
- bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
- if ((dna + dnb) < 0)
- memset(&r[2 * n2 + dna + dnb], 0,
- sizeof(BN_ULONG) * -(dna + dnb));
- return;
- }
- /* r=(a[0]-a[1])*(b[1]-b[0]) */
- c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
- c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
- zero = neg = 0;
- switch (c1 * 3 + c2) {
- case -4:
- bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
- bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
- break;
- case -3:
- zero = 1;
- break;
- case -2:
- bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
- bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
- neg = 1;
- break;
- case -1:
- case 0:
- case 1:
- zero = 1;
- break;
- case 2:
- bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
- bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
- neg = 1;
- break;
- case 3:
- zero = 1;
- break;
- case 4:
- bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
- bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
- break;
- }
-
-#ifdef BN_MUL_COMBA
- if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take
- * extra args to do this well */
- if (!zero)
- bn_mul_comba4(&(t[n2]), t, &(t[n]));
- else
- memset(&t[n2], 0, sizeof(*t) * 8);
-
- bn_mul_comba4(r, a, b);
- bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
- } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could
- * take extra args to do
- * this well */
- if (!zero)
- bn_mul_comba8(&(t[n2]), t, &(t[n]));
- else
- memset(&t[n2], 0, sizeof(*t) * 16);
-
- bn_mul_comba8(r, a, b);
- bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
- } else
-#endif /* BN_MUL_COMBA */
- {
- p = &(t[n2 * 2]);
- if (!zero)
- bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
- else
- memset(&t[n2], 0, sizeof(*t) * n2);
- bn_mul_recursive(r, a, b, n, 0, 0, p);
- bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
- }
-
- /*-
- * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
- * r[10] holds (a[0]*b[0])
- * r[32] holds (b[1]*b[1])
- */
-
- c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
-
- if (neg) { /* if t[32] is negative */
- c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
- } else {
- /* Might have a carry */
- c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
- }
-
- /*-
- * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
- * r[10] holds (a[0]*b[0])
- * r[32] holds (b[1]*b[1])
- * c1 holds the carry bits
- */
- c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
- if (c1) {
- p = &(r[n + n2]);
- lo = *p;
- ln = (lo + c1) & BN_MASK2;
- *p = ln;
-
- /*
- * The overflow will stop before we over write words we should not
- * overwrite
- */
- if (ln < (BN_ULONG)c1) {
- do {
- p++;
- lo = *p;
- ln = (lo + 1) & BN_MASK2;
- *p = ln;
- } while (ln == 0);
- }
- }
-}
-
-/*
- * n+tn is the word length t needs to be n*4 is size, as does r
- */
-/* tnX may not be negative but less than n */
-void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
- int tna, int tnb, BN_ULONG *t)
-{
- int i, j, n2 = n * 2;
- int c1, c2, neg;
- BN_ULONG ln, lo, *p;
-
- if (n < 8) {
- bn_mul_normal(r, a, n + tna, b, n + tnb);
- return;
- }
-
- /* r=(a[0]-a[1])*(b[1]-b[0]) */
- c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
- c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
- neg = 0;
- switch (c1 * 3 + c2) {
- case -4:
- bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
- bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
- break;
- case -3:
- case -2:
- bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
- bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
- neg = 1;
- break;
- case -1:
- case 0:
- case 1:
- case 2:
- bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
- bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
- neg = 1;
- break;
- case 3:
- case 4:
- bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
- bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
- break;
- }
- /*
- * The zero case isn't yet implemented here. The speedup would probably
- * be negligible.
- */
-#if 0
- if (n == 4) {
- bn_mul_comba4(&(t[n2]), t, &(t[n]));
- bn_mul_comba4(r, a, b);
- bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);
- memset(&r[n2 + tn * 2], 0, sizeof(*r) * (n2 - tn * 2));
- } else
-#endif
- if (n == 8) {
- bn_mul_comba8(&(t[n2]), t, &(t[n]));
- bn_mul_comba8(r, a, b);
- bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
- memset(&r[n2 + tna + tnb], 0, sizeof(*r) * (n2 - tna - tnb));
- } else {
- p = &(t[n2 * 2]);
- bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
- bn_mul_recursive(r, a, b, n, 0, 0, p);
- i = n / 2;
- /*
- * If there is only a bottom half to the number, just do it
- */
- if (tna > tnb)
- j = tna - i;
- else
- j = tnb - i;
- if (j == 0) {
- bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]),
- i, tna - i, tnb - i, p);
- memset(&r[n2 + i * 2], 0, sizeof(*r) * (n2 - i * 2));
- } else if (j > 0) { /* eg, n == 16, i == 8 and tn == 11 */
- bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]),
- i, tna - i, tnb - i, p);
- memset(&(r[n2 + tna + tnb]), 0,
- sizeof(BN_ULONG) * (n2 - tna - tnb));
- } else { /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
-
- memset(&r[n2], 0, sizeof(*r) * n2);
- if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
- && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
- bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
- } else {
- for (;;) {
- i /= 2;
- /*
- * these simplified conditions work exclusively because
- * difference between tna and tnb is 1 or 0
- */
- if (i < tna || i < tnb) {
- bn_mul_part_recursive(&(r[n2]),
- &(a[n]), &(b[n]),
- i, tna - i, tnb - i, p);
- break;
- } else if (i == tna || i == tnb) {
- bn_mul_recursive(&(r[n2]),
- &(a[n]), &(b[n]),
- i, tna - i, tnb - i, p);
- break;
- }
- }
- }
- }
- }
-
- /*-
- * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
- * r[10] holds (a[0]*b[0])
- * r[32] holds (b[1]*b[1])
- */
-
- c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
-
- if (neg) { /* if t[32] is negative */
- c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
- } else {
- /* Might have a carry */
- c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
- }
-
- /*-
- * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
- * r[10] holds (a[0]*b[0])
- * r[32] holds (b[1]*b[1])
- * c1 holds the carry bits
- */
- c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
- if (c1) {
- p = &(r[n + n2]);
- lo = *p;
- ln = (lo + c1) & BN_MASK2;
- *p = ln;
-
- /*
- * The overflow will stop before we over write words we should not
- * overwrite
- */
- if (ln < (BN_ULONG)c1) {
- do {
- p++;
- lo = *p;
- ln = (lo + 1) & BN_MASK2;
- *p = ln;
- } while (ln == 0);
- }
- }
-}
-
-/*-
- * a and b must be the same size, which is n2.
- * r needs to be n2 words and t needs to be n2*2
- */
-void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
- BN_ULONG *t)
-{
- int n = n2 / 2;
-
- bn_mul_recursive(r, a, b, n, 0, 0, &(t[0]));
- if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) {
- bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2]));
- bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
- bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2]));
- bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
- } else {
- bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n);
- bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n);
- bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
- bn_add_words(&(r[n]), &(r[n]), &(t[n]), n);
- }
-}
-#endif /* BN_RECURSION */
-
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
int ret = bn_mul_fixed_top(r, a, b, ctx);
BN_CTX_end(ctx);
return ret;
}
-
-void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
-{
- BN_ULONG *rr;
-
- if (na < nb) {
- int itmp;
- BN_ULONG *ltmp;
-
- itmp = na;
- na = nb;
- nb = itmp;
- ltmp = a;
- a = b;
- b = ltmp;
- }
- rr = &(r[na]);
- if (nb <= 0) {
- (void)bn_mul_words(r, a, na, 0);
- return;
- } else
- rr[0] = bn_mul_words(r, a, na, b[0]);
-
- for (;;) {
- if (--nb <= 0)
- return;
- rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
- if (--nb <= 0)
- return;
- rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
- if (--nb <= 0)
- return;
- rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
- if (--nb <= 0)
- return;
- rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
- rr += 4;
- r += 4;
- b += 4;
- }
-}
-
-void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
-{
- bn_mul_words(r, a, n, b[0]);
-
- for (;;) {
- if (--n <= 0)
- return;
- bn_mul_add_words(&(r[1]), a, n, b[1]);
- if (--n <= 0)
- return;
- bn_mul_add_words(&(r[2]), a, n, b[2]);
- if (--n <= 0)
- return;
- bn_mul_add_words(&(r[3]), a, n, b[3]);
- if (--n <= 0)
- return;
- bn_mul_add_words(&(r[4]), a, n, b[4]);
- r += 4;
- b += 4;
- }
-}
--- /dev/null
+/*
+ * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the Apache License 2.0 (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <assert.h>
+#include "bn_local.h"
+
+#ifdef BN_RECURSION
+/*
+ * Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of
+ * Computer Programming, Vol. 2)
+ */
+
+/*-
+ * r is 2*n2 words in size,
+ * a and b are both n2 words in size.
+ * n2 must be a power of 2.
+ * We multiply and return the result.
+ * t must be 2*n2 words in size
+ * We calculate
+ * a[0]*b[0]
+ * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
+ * a[1]*b[1]
+ */
+/* dnX may not be positive, but n2/2+dnX has to be */
+void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n2,
+ int dna, int dnb, BN_ULONG *t)
+{
+ int n = n2 / 2, c1, c2;
+ int tna = n + dna, tnb = n + dnb;
+ unsigned int neg, zero;
+ BN_ULONG ln, lo, *p;
+
+#ifdef BN_MUL_COMBA
+#if 0
+ if (n2 == 4) {
+ bn_mul_comba4(r, a, b);
+ return;
+ }
+#endif
+ /*
+ * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete
+ * [steve]
+ */
+ if (n2 == 8 && dna == 0 && dnb == 0) {
+ bn_mul_comba8(r, a, b);
+ return;
+ }
+#endif /* BN_MUL_COMBA */
+ /* Else do normal multiply */
+ if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
+ bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
+ if ((dna + dnb) < 0)
+ memset(&r[2 * n2 + dna + dnb], 0,
+ sizeof(BN_ULONG) * -(dna + dnb));
+ return;
+ }
+ /* r=(a[0]-a[1])*(b[1]-b[0]) */
+ c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
+ c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
+ zero = neg = 0;
+ switch (c1 * 3 + c2) {
+ case -4:
+ bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
+ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
+ break;
+ case -3:
+ zero = 1;
+ break;
+ case -2:
+ bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
+ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
+ neg = 1;
+ break;
+ case -1:
+ case 0:
+ case 1:
+ zero = 1;
+ break;
+ case 2:
+ bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
+ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
+ neg = 1;
+ break;
+ case 3:
+ zero = 1;
+ break;
+ case 4:
+ bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
+ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
+ break;
+ }
+
+#ifdef BN_MUL_COMBA
+ if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take
+ * extra args to do this well */
+ if (!zero)
+ bn_mul_comba4(&(t[n2]), t, &(t[n]));
+ else
+ memset(&t[n2], 0, sizeof(*t) * 8);
+
+ bn_mul_comba4(r, a, b);
+ bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
+ } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could
+ * take extra args to do
+ * this well */
+ if (!zero)
+ bn_mul_comba8(&(t[n2]), t, &(t[n]));
+ else
+ memset(&t[n2], 0, sizeof(*t) * 16);
+
+ bn_mul_comba8(r, a, b);
+ bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
+ } else
+#endif /* BN_MUL_COMBA */
+ {
+ p = &(t[n2 * 2]);
+ if (!zero)
+ bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
+ else
+ memset(&t[n2], 0, sizeof(*t) * n2);
+ bn_mul_recursive(r, a, b, n, 0, 0, p);
+ bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
+ }
+
+ /*-
+ * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
+ * r[10] holds (a[0]*b[0])
+ * r[32] holds (b[1]*b[1])
+ */
+
+ c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
+
+ if (neg) { /* if t[32] is negative */
+ c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
+ } else {
+ /* Might have a carry */
+ c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
+ }
+
+ /*-
+ * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
+ * r[10] holds (a[0]*b[0])
+ * r[32] holds (b[1]*b[1])
+ * c1 holds the carry bits
+ */
+ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
+ if (c1) {
+ p = &(r[n + n2]);
+ lo = *p;
+ ln = (lo + c1) & BN_MASK2;
+ *p = ln;
+
+ /*
+ * The overflow will stop before we over write words we should not
+ * overwrite
+ */
+ if (ln < (BN_ULONG)c1) {
+ do {
+ p++;
+ lo = *p;
+ ln = (lo + 1) & BN_MASK2;
+ *p = ln;
+ } while (ln == 0);
+ }
+ }
+}
+
+/*
+ * n+tn is the word length t needs to be n*4 is size, as does r
+ */
+/* tnX may not be negative but less than n */
+void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
+ int n, int tna, int tnb, BN_ULONG *t)
+{
+ int i, j, n2 = n * 2;
+ int c1, c2, neg;
+ BN_ULONG ln, lo, *p;
+
+ if (n < 8) {
+ bn_mul_normal(r, a, n + tna, b, n + tnb);
+ return;
+ }
+
+ /* r=(a[0]-a[1])*(b[1]-b[0]) */
+ c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
+ c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
+ neg = 0;
+ switch (c1 * 3 + c2) {
+ case -4:
+ bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
+ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
+ break;
+ case -3:
+ case -2:
+ bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
+ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
+ neg = 1;
+ break;
+ case -1:
+ case 0:
+ case 1:
+ case 2:
+ bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
+ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
+ neg = 1;
+ break;
+ case 3:
+ case 4:
+ bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
+ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
+ break;
+ }
+ /*
+ * The zero case isn't yet implemented here. The speedup would probably
+ * be negligible.
+ */
+#if 0
+ if (n == 4) {
+ bn_mul_comba4(&(t[n2]), t, &(t[n]));
+ bn_mul_comba4(r, a, b);
+ bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);
+ memset(&r[n2 + tn * 2], 0, sizeof(*r) * (n2 - tn * 2));
+ } else
+#endif
+ if (n == 8) {
+ bn_mul_comba8(&(t[n2]), t, &(t[n]));
+ bn_mul_comba8(r, a, b);
+ bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
+ memset(&r[n2 + tna + tnb], 0, sizeof(*r) * (n2 - tna - tnb));
+ } else {
+ p = &(t[n2 * 2]);
+ bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
+ bn_mul_recursive(r, a, b, n, 0, 0, p);
+ i = n / 2;
+ /*
+ * If there is only a bottom half to the number, just do it
+ */
+ if (tna > tnb)
+ j = tna - i;
+ else
+ j = tnb - i;
+ if (j == 0) {
+ bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]),
+ i, tna - i, tnb - i, p);
+ memset(&r[n2 + i * 2], 0, sizeof(*r) * (n2 - i * 2));
+ } else if (j > 0) { /* eg, n == 16, i == 8 and tn == 11 */
+ bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]),
+ i, tna - i, tnb - i, p);
+ memset(&(r[n2 + tna + tnb]), 0,
+ sizeof(BN_ULONG) * (n2 - tna - tnb));
+ } else { /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
+
+ memset(&r[n2], 0, sizeof(*r) * n2);
+ if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
+ && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
+ bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
+ } else {
+ for (;;) {
+ i /= 2;
+ /*
+ * these simplified conditions work exclusively because
+ * difference between tna and tnb is 1 or 0
+ */
+ if (i < tna || i < tnb) {
+ bn_mul_part_recursive(&(r[n2]),
+ &(a[n]), &(b[n]),
+ i, tna - i, tnb - i, p);
+ break;
+ } else if (i == tna || i == tnb) {
+ bn_mul_recursive(&(r[n2]),
+ &(a[n]), &(b[n]),
+ i, tna - i, tnb - i, p);
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ /*-
+ * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
+ * r[10] holds (a[0]*b[0])
+ * r[32] holds (b[1]*b[1])
+ */
+
+ c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
+
+ if (neg) { /* if t[32] is negative */
+ c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
+ } else {
+ /* Might have a carry */
+ c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
+ }
+
+ /*-
+ * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
+ * r[10] holds (a[0]*b[0])
+ * r[32] holds (b[1]*b[1])
+ * c1 holds the carry bits
+ */
+ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
+ if (c1) {
+ p = &(r[n + n2]);
+ lo = *p;
+ ln = (lo + c1) & BN_MASK2;
+ *p = ln;
+
+ /*
+ * The overflow will stop before we over write words we should not
+ * overwrite
+ */
+ if (ln < (BN_ULONG)c1) {
+ do {
+ p++;
+ lo = *p;
+ ln = (lo + 1) & BN_MASK2;
+ *p = ln;
+ } while (ln == 0);
+ }
+ }
+}
+
+/*-
+ * a and b must be the same size, which is n2.
+ * r needs to be n2 words and t needs to be n2*2
+ */
+void bn_mul_low_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
+ int n2, BN_ULONG *t)
+{
+ int n = n2 / 2;
+
+ bn_mul_recursive(r, a, b, n, 0, 0, &(t[0]));
+ if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) {
+ bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2]));
+ bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
+ bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2]));
+ bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
+ } else {
+ bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n);
+ bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n);
+ bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
+ bn_add_words(&(r[n]), &(r[n]), &(t[n]), n);
+ }
+}
+#endif /* BN_RECURSION */
+
+void bn_mul_normal(BN_ULONG *r, const BN_ULONG *a, int na, const BN_ULONG *b,
+ int nb)
+{
+ BN_ULONG *rr;
+
+ if (na < nb) {
+ int itmp;
+ const BN_ULONG *ltmp;
+
+ itmp = na;
+ na = nb;
+ nb = itmp;
+ ltmp = a;
+ a = b;
+ b = ltmp;
+ }
+ rr = &(r[na]);
+ if (nb <= 0) {
+ (void)bn_mul_words(r, a, na, 0);
+ return;
+ } else
+ rr[0] = bn_mul_words(r, a, na, b[0]);
+
+ for (;;) {
+ if (--nb <= 0)
+ return;
+ rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
+ if (--nb <= 0)
+ return;
+ rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
+ if (--nb <= 0)
+ return;
+ rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
+ if (--nb <= 0)
+ return;
+ rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
+ rr += 4;
+ r += 4;
+ b += 4;
+ }
+}
+
+void bn_mul_low_normal(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
+{
+ bn_mul_words(r, a, n, b[0]);
+
+ for (;;) {
+ if (--n <= 0)
+ return;
+ bn_mul_add_words(&(r[1]), a, n, b[1]);
+ if (--n <= 0)
+ return;
+ bn_mul_add_words(&(r[2]), a, n, b[2]);
+ if (--n <= 0)
+ return;
+ bn_mul_add_words(&(r[3]), a, n, b[3]);
+ if (--n <= 0)
+ return;
+ bn_mul_add_words(&(r[4]), a, n, b[4]);
+ r += 4;
+ b += 4;
+ }
+}
--- /dev/null
+/*
+ * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the Apache License 2.0 (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <assert.h>
+#include "bn_local.h"
+
+#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
+/*
+ * Here follows specialised variants of bn_add_words() and bn_sub_words().
+ * They have the property performing operations on arrays of different sizes.
+ * The sizes of those arrays is expressed through cl, which is the common
+ * length ( basically, min(len(a),len(b)) ), and dl, which is the delta
+ * between the two lengths, calculated as len(a)-len(b). All lengths are the
+ * number of BN_ULONGs... For the operations that require a result array as
+ * parameter, it must have the length cl+abs(dl).
+ *
+ * These functions should probably end up in bn_asm.c as soon as there are
+ * assembler counterparts for the systems that use assembler files.
+ */
+
+BN_ULONG bn_sub_part_words(BN_ULONG *r,
+ const BN_ULONG *a, const BN_ULONG *b,
+ int cl, int dl)
+{
+ BN_ULONG c, t;
+
+ assert(cl >= 0);
+ c = bn_sub_words(r, a, b, cl);
+
+ if (dl == 0)
+ return c;
+
+ r += cl;
+ a += cl;
+ b += cl;
+
+ if (dl < 0) {
+ for (;;) {
+ t = b[0];
+ r[0] = (0 - t - c) & BN_MASK2;
+ if (t != 0)
+ c = 1;
+ if (++dl >= 0)
+ break;
+
+ t = b[1];
+ r[1] = (0 - t - c) & BN_MASK2;
+ if (t != 0)
+ c = 1;
+ if (++dl >= 0)
+ break;
+
+ t = b[2];
+ r[2] = (0 - t - c) & BN_MASK2;
+ if (t != 0)
+ c = 1;
+ if (++dl >= 0)
+ break;
+
+ t = b[3];
+ r[3] = (0 - t - c) & BN_MASK2;
+ if (t != 0)
+ c = 1;
+ if (++dl >= 0)
+ break;
+
+ b += 4;
+ r += 4;
+ }
+ } else {
+ int save_dl = dl;
+ while (c) {
+ t = a[0];
+ r[0] = (t - c) & BN_MASK2;
+ if (t != 0)
+ c = 0;
+ if (--dl <= 0)
+ break;
+
+ t = a[1];
+ r[1] = (t - c) & BN_MASK2;
+ if (t != 0)
+ c = 0;
+ if (--dl <= 0)
+ break;
+
+ t = a[2];
+ r[2] = (t - c) & BN_MASK2;
+ if (t != 0)
+ c = 0;
+ if (--dl <= 0)
+ break;
+
+ t = a[3];
+ r[3] = (t - c) & BN_MASK2;
+ if (t != 0)
+ c = 0;
+ if (--dl <= 0)
+ break;
+
+ save_dl = dl;
+ a += 4;
+ r += 4;
+ }
+ if (dl > 0) {
+ if (save_dl > dl) {
+ switch (save_dl - dl) {
+ case 1:
+ r[1] = a[1];
+ if (--dl <= 0)
+ break;
+ /* fall through */
+ case 2:
+ r[2] = a[2];
+ if (--dl <= 0)
+ break;
+ /* fall through */
+ case 3:
+ r[3] = a[3];
+ if (--dl <= 0)
+ break;
+ }
+ a += 4;
+ r += 4;
+ }
+ }
+ if (dl > 0) {
+ for (;;) {
+ r[0] = a[0];
+ if (--dl <= 0)
+ break;
+ r[1] = a[1];
+ if (--dl <= 0)
+ break;
+ r[2] = a[2];
+ if (--dl <= 0)
+ break;
+ r[3] = a[3];
+ if (--dl <= 0)
+ break;
+
+ a += 4;
+ r += 4;
+ }
+ }
+ }
+ return c;
+}
+#endif
ENDIF
ENDIF
-$COMMON=bn_add.c bn_div.c bn_exp.c bn_lib.c bn_ctx.c bn_mul.c \
+$COMMON_BN=bn_add.c bn_div.c bn_exp.c bn_lib.c bn_ctx.c bn_mul.c \
bn_mod.c bn_conv.c bn_rand.c bn_shift.c bn_word.c bn_blind.c \
bn_kron.c bn_sqrt.c bn_gcd.c bn_prime.c bn_sqr.c \
bn_recp.c bn_mont.c bn_mpi.c bn_exp2.c bn_gf2m.c bn_nist.c \
bn_intern.c bn_dh.c bn_rsa_fips186_5.c bn_const.c
+# bnw_*.c is a growing collection of files with routines that operate on
+# BN_ULONG only. They were helper routines dispersed in bn_*.c, and are
+# often routines that don't have an assembler implementation, and therefore
+# didn't fit into bn_asm.c.
+$COMMON_BNW=bnw_sub.c bnw_mul.c
+$COMMON=$COMMON_BN $COMMON_BNW
+
SOURCE[../../libcrypto]=$COMMON $BNASM bn_print.c bn_err.c bn_srp.c
DEFINE[../../libcrypto]=$BNDEF
IF[{- !$disabled{'deprecated-0.9.8'} -}]