#include "zbuild.h"
#include "adler32_p.h"
-static void NEON_accum32(uint32_t *s, const uint8_t *buf, size_t len) {
- static const uint16_t ALIGNED_(16) taps[64] = {
- 64, 63, 62, 61, 60, 59, 58, 57,
- 56, 55, 54, 53, 52, 51, 50, 49,
- 48, 47, 46, 45, 44, 43, 42, 41,
- 40, 39, 38, 37, 36, 35, 34, 33,
- 32, 31, 30, 29, 28, 27, 26, 25,
- 24, 23, 22, 21, 20, 19, 18, 17,
- 16, 15, 14, 13, 12, 11, 10, 9,
- 8, 7, 6, 5, 4, 3, 2, 1 };
+static const uint16_t ALIGNED_(64) taps[64] = {
+ 64, 63, 62, 61, 60, 59, 58, 57,
+ 56, 55, 54, 53, 52, 51, 50, 49,
+ 48, 47, 46, 45, 44, 43, 42, 41,
+ 40, 39, 38, 37, 36, 35, 34, 33,
+ 32, 31, 30, 29, 28, 27, 26, 25,
+ 24, 23, 22, 21, 20, 19, 18, 17,
+ 16, 15, 14, 13, 12, 11, 10, 9,
+ 8, 7, 6, 5, 4, 3, 2, 1 };
+
+static Z_FORCEINLINE void NEON_accum32_copy(uint32_t *s, uint8_t *dst, const uint8_t *buf, size_t len) {
+ uint32x4_t adacc = vdupq_n_u32(0);
+ uint32x4_t s2acc = vdupq_n_u32(0);
+ uint32x4_t s2acc_0 = vdupq_n_u32(0);
+ uint32x4_t s2acc_1 = vdupq_n_u32(0);
+ uint32x4_t s2acc_2 = vdupq_n_u32(0);
+
+ adacc = vsetq_lane_u32(s[0], adacc, 0);
+ s2acc = vsetq_lane_u32(s[1], s2acc, 0);
+
+ uint32x4_t s3acc = vdupq_n_u32(0);
+ uint32x4_t adacc_prev = adacc;
+
+ uint16x8_t s2_0, s2_1, s2_2, s2_3;
+ s2_0 = s2_1 = s2_2 = s2_3 = vdupq_n_u16(0);
+
+ uint16x8_t s2_4, s2_5, s2_6, s2_7;
+ s2_4 = s2_5 = s2_6 = s2_7 = vdupq_n_u16(0);
+
+ size_t num_iter = len >> 2;
+ int rem = len & 3;
+
+ for (size_t i = 0; i < num_iter; ++i) {
+ uint8x16_t d0 = vld1q_u8(buf);
+ uint8x16_t d1 = vld1q_u8(buf + 16);
+ uint8x16_t d2 = vld1q_u8(buf + 32);
+ uint8x16_t d3 = vld1q_u8(buf + 48);
+
+ vst1q_u8(dst, d0);
+ vst1q_u8(dst + 16, d1);
+ vst1q_u8(dst + 32, d2);
+ vst1q_u8(dst + 48, d3);
+ dst += 64;
+
+ /* Unfortunately it doesn't look like there's a direct sum 8 bit to 32
+ * bit instruction, we'll have to make due summing to 16 bits first */
+ uint16x8x2_t hsum, hsum_fold;
+ hsum.val[0] = vpaddlq_u8(d0);
+ hsum.val[1] = vpaddlq_u8(d1);
+
+ hsum_fold.val[0] = vpadalq_u8(hsum.val[0], d2);
+ hsum_fold.val[1] = vpadalq_u8(hsum.val[1], d3);
+ adacc = vpadalq_u16(adacc, hsum_fold.val[0]);
+ s3acc = vaddq_u32(s3acc, adacc_prev);
+ adacc = vpadalq_u16(adacc, hsum_fold.val[1]);
+
+ /* If we do straight widening additions to the 16 bit values, we don't incur
+ * the usual penalties of a pairwise add. We can defer the multiplications
+ * until the very end. These will not overflow because we are incurring at
+ * most 408 loop iterations (NMAX / 64), and a given lane is only going to be
+ * summed into once. This means for the maximum input size, the largest value
+ * we will see is 255 * 102 = 26010, safely under uint16 max */
+ s2_0 = vaddw_u8(s2_0, vget_low_u8(d0));
+ s2_1 = vaddw_high_u8(s2_1, d0);
+ s2_2 = vaddw_u8(s2_2, vget_low_u8(d1));
+ s2_3 = vaddw_high_u8(s2_3, d1);
+ s2_4 = vaddw_u8(s2_4, vget_low_u8(d2));
+ s2_5 = vaddw_high_u8(s2_5, d2);
+ s2_6 = vaddw_u8(s2_6, vget_low_u8(d3));
+ s2_7 = vaddw_high_u8(s2_7, d3);
+
+ adacc_prev = adacc;
+ buf += 64;
+ }
+
+ s3acc = vshlq_n_u32(s3acc, 6);
+
+ if (rem) {
+ uint32x4_t s3acc_0 = vdupq_n_u32(0);
+ while (rem--) {
+ uint8x16_t d0 = vld1q_u8(buf);
+ vst1q_u8(dst, d0);
+ dst += 16;
+ uint16x8_t adler;
+ adler = vpaddlq_u8(d0);
+ s2_6 = vaddw_u8(s2_6, vget_low_u8(d0));
+ s2_7 = vaddw_high_u8(s2_7, d0);
+ adacc = vpadalq_u16(adacc, adler);
+ s3acc_0 = vaddq_u32(s3acc_0, adacc_prev);
+ adacc_prev = adacc;
+ buf += 16;
+ }
+
+ s3acc_0 = vshlq_n_u32(s3acc_0, 4);
+ s3acc = vaddq_u32(s3acc_0, s3acc);
+ }
+
+ uint16x8x4_t t0_t3 = vld1q_u16_x4(taps);
+ uint16x8x4_t t4_t7 = vld1q_u16_x4(taps + 32);
+
+ s2acc = vmlal_high_u16(s2acc, t0_t3.val[0], s2_0);
+ s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t0_t3.val[0]), vget_low_u16(s2_0));
+ s2acc_1 = vmlal_high_u16(s2acc_1, t0_t3.val[1], s2_1);
+ s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t0_t3.val[1]), vget_low_u16(s2_1));
+
+ s2acc = vmlal_high_u16(s2acc, t0_t3.val[2], s2_2);
+ s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t0_t3.val[2]), vget_low_u16(s2_2));
+ s2acc_1 = vmlal_high_u16(s2acc_1, t0_t3.val[3], s2_3);
+ s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t0_t3.val[3]), vget_low_u16(s2_3));
+
+ s2acc = vmlal_high_u16(s2acc, t4_t7.val[0], s2_4);
+ s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t4_t7.val[0]), vget_low_u16(s2_4));
+ s2acc_1 = vmlal_high_u16(s2acc_1, t4_t7.val[1], s2_5);
+ s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t4_t7.val[1]), vget_low_u16(s2_5));
+
+ s2acc = vmlal_high_u16(s2acc, t4_t7.val[2], s2_6);
+ s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t4_t7.val[2]), vget_low_u16(s2_6));
+ s2acc_1 = vmlal_high_u16(s2acc_1, t4_t7.val[3], s2_7);
+ s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t4_t7.val[3]), vget_low_u16(s2_7));
+
+ s2acc = vaddq_u32(s2acc_0, s2acc);
+ s2acc_2 = vaddq_u32(s2acc_1, s2acc_2);
+ s2acc = vaddq_u32(s2acc, s2acc_2);
+
+ uint32x2_t adacc2, s2acc2, as;
+ s2acc = vaddq_u32(s2acc, s3acc);
+ adacc2 = vpadd_u32(vget_low_u32(adacc), vget_high_u32(adacc));
+ s2acc2 = vpadd_u32(vget_low_u32(s2acc), vget_high_u32(s2acc));
+ as = vpadd_u32(adacc2, s2acc2);
+ s[0] = vget_lane_u32(as, 0);
+ s[1] = vget_lane_u32(as, 1);
+}
+
+static Z_FORCEINLINE void NEON_accum32(uint32_t *s, const uint8_t *buf, size_t len) {
uint32x4_t adacc = vdupq_n_u32(0);
uint32x4_t s2acc = vdupq_n_u32(0);
uint32x4_t s2acc_0 = vdupq_n_u32(0);
}
}
-Z_INTERNAL uint32_t adler32_neon(uint32_t adler, const uint8_t *buf, size_t len) {
+static Z_FORCEINLINE uint32_t adler32_fold_copy_impl(uint32_t adler, uint8_t *dst, const uint8_t *src, size_t len, const int COPY) {
/* split Adler-32 into component sums */
uint32_t sum2 = (adler >> 16) & 0xffff;
adler &= 0xffff;
/* in case user likes doing a byte at a time, keep it fast */
- if (len == 1)
- return adler32_len_1(adler, buf, sum2);
+ if (len == 1) {
+ if (COPY)
+ *dst = *src;
+ return adler32_len_1(adler, src, sum2);
+ }
/* initial Adler-32 value (deferred check for len == 1 speed) */
- if (buf == NULL)
+ if (src == NULL)
return 1L;
/* in case short lengths are provided, keep it somewhat fast */
- if (len < 16)
- return adler32_len_16(adler, buf, len, sum2);
+ if (len < 16) {
+ if (COPY)
+ return adler32_copy_len_16(adler, src, dst, len, sum2);
+ else
+ return adler32_len_16(adler, src, len, sum2);
+ }
uint32_t pair[2];
int n = NMAX;
/* If memory is not SIMD aligned, do scalar sums to an aligned
* offset, provided that doing so doesn't completely eliminate
* SIMD operation. Aligned loads are still faster on ARM, even
- * though there's no explicit aligned load instruction */
- unsigned int align_offset = ((uintptr_t)buf & 15);
- unsigned int align_adj = (align_offset) ? 16 - align_offset : 0;
+ * though there's no explicit aligned load instruction. Note:
+ * on Android and iOS, their ABIs specify stricter alignment
+ * requirements for the 2,3,4x register ld1 variants. Clang for
+ * these platforms emits an alignment hint in the instruction for exactly
+ * 256 bits. Several ARM SIPs have small penalties for cacheline
+ * crossing loads as well (so really 512 bits is the optimal alignment
+ * of the buffer). 32 bytes should strike a balance, though. Clang and
+ * GCC on Linux will not emit this hint in the encoded instruction and
+ * it's unclear how many SIPs will benefit from it. For Android/iOS, we
+ * fallback to 4x loads and 4x stores, instead. In the copying variant we
+ * do this anyway, as ld1x4 seems to block ILP when stores are in the mix */
+ unsigned int align_offset = ((uintptr_t)src & 31);
+ unsigned int align_adj = (align_offset) ? 32 - align_offset : 0;
if (align_offset && len >= (16 + align_adj)) {
- NEON_handle_tail(pair, buf, align_adj);
+ NEON_handle_tail(pair, src, align_adj);
+
+ if (COPY) {
+ const uint8_t* __restrict src_noalias = src;
+ uint8_t* __restrict dst_noalias = dst;
+ unsigned cpy_len = align_adj;
+
+ while (cpy_len--) {
+ *dst_noalias++ = *src_noalias++;
+ }
+ }
+
n -= align_adj;
done += align_adj;
if (n < 16)
break;
- NEON_accum32(pair, buf + done, n >> 4);
+ if (COPY)
+ NEON_accum32_copy(pair, dst + done, src + done, n >> 4);
+ else
+ NEON_accum32(pair, src + done, n >> 4);
+
pair[0] %= BASE;
pair[1] %= BASE;
/* Handle the tail elements. */
if (done < len) {
- NEON_handle_tail(pair, (buf + done), len - done);
+ NEON_handle_tail(pair, (src + done), len - done);
+ if (COPY) {
+ const uint8_t* __restrict src_noalias = src + done;
+ uint8_t* __restrict dst_noalias = dst + done;
+ while (done++ != len) {
+ *dst_noalias++ = *src_noalias++;
+ }
+ }
pair[0] %= BASE;
pair[1] %= BASE;
}
return (pair[1] << 16) | pair[0];
}
+Z_INTERNAL uint32_t adler32_neon(uint32_t adler, const uint8_t *src, size_t len) {
+ return adler32_fold_copy_impl(adler, NULL, src, len, 0);
+}
+
+Z_INTERNAL uint32_t adler32_fold_copy_neon(uint32_t adler, uint8_t *dst, const uint8_t *src, size_t len) {
+ return adler32_fold_copy_impl(adler, dst, src, len, dst != NULL);
+}
+
#endif