add_library(hs STATIC ${hs_SRCS} $<TARGET_OBJECTS:hs_exec>)
add_dependencies(hs ragel_Parser)
-add_dependencies(hs autogen_compiler autogen_teddy_compiler)
+add_dependencies(hs autogen_teddy_compiler)
if (NOT BUILD_SHARED_LIBS)
install(TARGETS hs DESTINATION lib)
arch.py
autogen.py
autogen_utils.py
- base_autogen.py
- fdr_autogen.py
teddy_autogen.py
)
#now build the functions
fdr_autogen(runtime fdr_autogen.c)
-fdr_autogen(compiler fdr_autogen_compiler.cpp)
fdr_autogen(teddy_runtime teddy_autogen.c)
fdr_autogen(teddy_compiler teddy_autogen_compiler.cpp)
set(fdr_GENERATED_SRC
${PROJECT_BINARY_DIR}/src/fdr/fdr_autogen.c
- ${PROJECT_BINARY_DIR}/src/fdr/fdr_autogen_compiler.cpp
${PROJECT_BINARY_DIR}/src/fdr/teddy_autogen.c
${PROJECT_BINARY_DIR}/src/fdr/teddy_autogen_compiler.cpp
PARENT_SCOPE)
set_source_files_properties(${fdr_GENERATED_SRC} PROPERTIES GENERATED TRUE)
include_directories(${CMAKE_CURRENT_BINARY_DIR})
-
-
#!/usr/bin/python
-# Copyright (c) 2015, Intel Corporation
+# Copyright (c) 2015-2016, Intel Corporation
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
import sys
from autogen_utils import *
-from fdr_autogen import *
from teddy_autogen import *
from arch import *
-# FDR setup
-
-# these are either produced - if the guard succeeds, or #defined to zeroes.
-# either the function or the zero is fine in our array of function pointers
-
-def produce_fdr_runtimes(l):
- for m in l:
- m.produce_code()
-
-def produce_fdr_compiles(l):
- print "void getFdrDescriptions(vector<FDREngineDescription> *out) {"
- print " static const FDREngineDef defns[] = {"
- for m in l:
- m.produce_compile_call()
- print " };"
- print " out->clear();"
- print " for (size_t i = 0; i < ARRAY_LENGTH(defns); i++) {"
- print " out->push_back(FDREngineDescription(defns[i]));"
- print " }"
- print "}"
-
-def build_fdr_matchers():
- all_matchers = [ ]
- strides = [ 1, 2, 4 ]
-
- common = { "state_width" : 128, "num_buckets" : 8, "extract_frequency" : 8, "arch" : arch_x86_64 }
- for s in strides:
- all_matchers += [ M3(stride = s, **common) ]
-
- return all_matchers
-
# teddy setup
def build_teddy_matchers():
typedef hwlm_error_t (*FDRFUNCTYPE)(const struct FDR *fdr, const struct FDR_Runtime_Args *a);
static FDRFUNCTYPE funcs[] = {
"""
- all_funcs = ",\n".join([ " %s" % m.get_name() for m in matcher_list ])
+ all_funcs = " fdr_engine_exec,\n"
+ all_funcs += ",\n".join([ " %s" % m.get_name() for m in matcher_list ])
print all_funcs
print """
};
# Main entry point
-m = build_fdr_matchers()
-next_id = assign_ids(m, 0)
tm = build_teddy_matchers()
-next_id = assign_ids(tm, next_id)
-if sys.argv[1] == "compiler":
- produce_fdr_compiles(m)
-elif sys.argv[1] == "runtime":
- produce_fdr_runtimes(m)
+next_id = assign_ids(tm, 1)
+if sys.argv[1] == "runtime":
produce_teddy_headers(tm)
- make_fdr_function_pointers(m+tm)
+ make_fdr_function_pointers(tm)
elif sys.argv[1] == "teddy_runtime":
produce_teddy_runtimes(tm)
elif sys.argv[1] == "teddy_compiler":
#!/usr/bin/python
-# Copyright (c) 2015, Intel Corporation
+# Copyright (c) 2015-2016, Intel Corporation
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
def size_in_bytes(self):
return self.size / 8
- def isSIMDOnIntel(self):
- return False
-
def zero_expression(self):
return "0"
def lowbit_mask(self, n):
return self.constant_to_string(self.lowbits(n))
- def highbit_mask(self, n):
- return self.constant_to_string(self.highbits(n))
-
def lowbit_extract_expr(self, expr_string, n):
return "(%s & %s)" % ( expr_string, self.lowbit_mask(n))
- def highbit_extract_expr(self, expr_string, n):
- return "(%s >> %d)" % (expr_string, self.size - n)
-
def flip_lowbits_expr(self, expr_string, n):
return "(%s ^ %s)" % ( expr_string, self.lowbit_mask(n))
else:
return "(%s)" % (expr_string)
- # code is:
- # "normal" (always between buf and len) - the default
- # "aligned" (means normal + aligned to a natural boundary)
- # "cautious_forward" (means may go off the end of buf+len)
- # "cautious_backwards" (means may go off the start of buf)
- # "cautious_everywhere" (means may go off both)
-
- def load_expr_data(self, offset = 0, code = "normal",
- base_string = "ptr", bounds_lo = "buf", bounds_hi = "buf + len"):
- if code is "normal":
- return "lv_%s(%s + %d, %s, %s)" % (self.get_name(), base_string, offset, bounds_lo, bounds_hi)
- elif code is "aligned":
- if self.size is 8:
- fail_out("no aligned byte loads")
- return "lv_%s_a(%s + %d, %s, %s)" % (self.get_name(), base_string, offset, bounds_lo, bounds_hi)
- elif code is "cautious_forward":
- return "lv_%s_cf(%s + %d, %s, %s)" % (self.get_name(), base_string, offset, bounds_lo, bounds_hi)
- elif code is "cautious_backward":
- return "lv_%s_cb(%s + %d, %s, %s)" % (self.get_name(), base_string, offset, bounds_lo, bounds_hi)
- elif code is "cautious_everywhere":
- return "lv_%s_ce(%s + %d, %s, %s)" % (self.get_name(), base_string, offset, bounds_lo, bounds_hi)
-
-
class SIMDIntegerType(IntegerType):
def __init__(self, size):
IntegerType.__init__(self, size)
- def isSIMDOnIntel(self):
- return True
-
def zero_expression(self):
return "zeroes128()"
tmpExpr = "movq(%s)" % expr_string
return tmpType.lowbit_extract_expr(tmpExpr, n)
- def highbit_extract_expr(self, expr_string, n):
- fail_out("Unimplemented high bit extract on m128")
-
def bit_extract_expr(self, expr_string, low, high, flip):
fail_out("Unimplemented bit extract on m128")
if n <= -self.size or n >= self.size:
return self.zero_expression()
elif (n > 0):
- return "_mm_slli_si128(%s, %s)" % (expr_string, n / 8)
+ return "byteShiftLeft128(%s, %s)" % (expr_string, n / 8)
elif (n < 0):
- return "_mm_srli_si128(%s, %s)" % (expr_string, -n / 8)
+ return "byteShiftRight128(%s, %s)" % (expr_string, -n / 8)
else:
return "(%s)" % (expr_string)
if n % 8 != 0:
fail_out("Trying to make a lowbit mask in a m128 by a bit granular value")
return self.shift_expr("ones128()", -(128 - n))
-
-def getRequiredType(bits):
- if bits == 128:
- return SIMDIntegerType(bits)
- for b in [ 8, 16, 32, 64]:
- if (bits <= b):
- return IntegerType(b)
- return None
-
-class IntegerVariable:
- def __init__(self, name, type):
- self.name = name
- self.type = type
-
- def gen_initializer_stmt(self, initialization_string = None):
- if initialization_string:
- return "%s %s = %s;" % (self.type.get_name(), self.name, initialization_string)
- else:
- return "%s %s;" % (self.type.get_name(), self.name)
-
-
-class Step:
- def __init__(self, context, offset = 0):
- self.context = context
- self.matcher = context.matcher
- self.offset = offset
- self.latency = 1
- self.dependency_list = []
- self.latest = None
- self.context.add_step(self)
-
- # return a string, complete with indentation
- def emit(self):
- indent = " " * (self.offset*2 + self.matcher.default_body_indent)
- s = "\n".join( [ indent + line for line in self.val.split("\n")] )
- if self.latest:
- s += " // " + str(self.debug_step) + " L" + str(self.latency) + " LTST:%d" % self.latest
- if self.dependency_list:
- s += " Derps: "
- for (d,l) in self.dependency_list:
- s += "%d/%d " % (d.debug_step,l)
- return s
-
- def add_dependency(self, step, anti_dependency = False, output_dependency = False):
- if anti_dependency or output_dependency:
- self.dependency_list += [ (step, 1) ]
- else:
- self.dependency_list += [ (step, step.latency) ]
-
- def nv(self, type, var_name):
- return self.context.new_var(self, type, var_name)
-
- def gv(self, var_name, reader = True, writer = False):
- return self.context.get_var(self, var_name, reader = reader, writer = writer)
-
-# utility steps, generic
-
-class LabelStep(Step):
- def __init__(self, context, offset = 0, label_prefix = "off"):
- Step.__init__(self, context, offset)
- self.val = "%s%d: UNUSED;" % (label_prefix, offset)
-
-class OpenScopeStep(Step):
- def __init__(self, context, offset = 0):
- Step.__init__(self, context, offset)
- self.val = "{"
-
-class CloseScopeStep(Step):
- def __init__(self, context, offset = 0):
- Step.__init__(self, context, offset)
- self.val = "}"
-
-
-class CodeGenContext:
- def __init__(self, matcher):
- self.vars = {}
- self.steps = []
- self.ctr = 0
- self.matcher = matcher
- self.var_writer = {} # var to a single writer
- self.var_readers = {} # var to a list of all the readers that read the last value
-
- def new_var(self, step, type, var_name):
- var = IntegerVariable(var_name, type)
- self.vars[var_name] = var
- self.var_writer[var_name] = step
- return var
-
- def get_var(self, step, var_name, reader = True, writer = False):
- if reader:
- writer_step = self.var_writer[var_name]
- if writer_step:
- step.add_dependency(writer_step)
- self.var_readers.setdefault(var_name, []).append(step)
- if writer and not reader:
- if self.var_writer[var_name]:
- step.add_dependency(self.var_writer[var_name], output_dependency = True)
- if writer:
- if self.var_readers.has_key(var_name):
- for reader in [ r for r in self.var_readers[var_name] if r is not step ]:
- step.add_dependency(reader, anti_dependency = True)
- self.var_readers[var_name] = []
- self.var_writer[var_name] = step
- return self.vars[var_name]
-
- def add_step(self, step):
- self.steps += [ step ]
- step.debug_step = self.ctr
- self.ctr += 1
-
- def dontschedule(self, finals):
- return "\n".join( [ s.emit() for s in self.steps ] )
-
- def schedule(self, finals):
- for f in finals:
- f.latest = f.latency
- worklist = finals
- while worklist:
- current = worklist[0]
- worklist = worklist[1:]
- for (dep, lat) in current.dependency_list:
- if dep.latest is None or dep.latest < (current.latest + dep.latency):
- dep.latest = current.latest + lat
- if dep not in worklist:
- worklist += [ dep ]
- self.steps.sort(reverse = True, key = lambda s : s.latest)
- return "\n".join( [ s.emit() for s in self.steps ] )
+++ /dev/null
-#!/usr/bin/python
-
-# Copyright (c) 2015, Intel Corporation
-#
-# Redistribution and use in source and binary forms, with or without
-# modification, are permitted provided that the following conditions are met:
-#
-# * Redistributions of source code must retain the above copyright notice,
-# this list of conditions and the following disclaimer.
-# * Redistributions in binary form must reproduce the above copyright
-# notice, this list of conditions and the following disclaimer in the
-# documentation and/or other materials provided with the distribution.
-# * Neither the name of Intel Corporation nor the names of its contributors
-# may be used to endorse or promote products derived from this software
-# without specific prior written permission.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-import sys
-from autogen_utils import *
-from base_autogen import *
-from string import Template
-
-class MatcherBase:
-
- def __init__(self):
- pass
-
- def get_name(self):
- return "fdr_exec_%03d" % self.id
-
- def produce_header(self, visible, header_only = False):
- s = ""
- if not visible:
- s += "static never_inline"
- s += """
-hwlm_error_t %s(UNUSED const struct FDR *fdr,
- UNUSED const struct FDR_Runtime_Args * a)""" % self.get_name()
- if header_only:
- s += ";"
- else:
- s += "{"
- s += "\n"
- return s
-
- def produce_guard(self):
- print self.arch.get_guard()
-
- def produce_zero_alternative(self):
- print """
-#else
-#define %s 0
-#endif
-""" % self.get_name()
-
- # trivial function for documentation/modularity
- def close_guard(self):
- print "#endif"
-
- def produce_common_declarations(self):
- return """
- const u8 * buf = a->buf;
- const size_t len = a->len;
- const u8 * ptr = buf + a->start_offset;
- hwlmcb_rv_t controlVal = *a->groups;
- hwlmcb_rv_t * control = &controlVal;
- u32 floodBackoff = FLOOD_BACKOFF_START;
- const u8 * tryFloodDetect = a->firstFloodDetect;
- UNUSED u32 bit, bitRem, confSplit, idx;
- u32 byte, cf;
- const struct FDRConfirm *fdrc;
- u32 last_match = (u32)-1;
-"""
-
- def produce_continue_check(self):
- return """if (P0(controlVal == HWLM_TERMINATE_MATCHING)) {
- *a->groups = controlVal;
- return HWLM_TERMINATED;
-}
-"""
- def produce_flood_check(self):
- return """
- if (P0(ptr > tryFloodDetect)) {
- tryFloodDetect = floodDetect(fdr, a, &ptr, tryFloodDetect, &floodBackoff, &controlVal, iterBytes);
- if (P0(controlVal == HWLM_TERMINATE_MATCHING)) {
- *a->groups = controlVal;
- return HWLM_TERMINATED;
- }
- }
-"""
-
- def produce_footer(self):
- return """
- *a->groups = controlVal;
- return HWLM_SUCCESS;
-}
-"""
-
- def produce_confirm_base(self, conf_var_name, conf_var_size, offset, cautious, enable_confirmless, do_bailout = False):
- if cautious:
- caution_string = "VECTORING"
- else:
- caution_string = "NOT_CAUTIOUS"
- conf_split_mask = IntegerType(32).constant_to_string(
- self.conf_top_level_split - 1)
- if enable_confirmless:
- quick_check_string = """
- if (!fdrc->mult) {
- u32 id = fdrc->nBitsOrSoleID;
- if ((last_match == id) && (fdrc->flags & NoRepeat))
- continue;
- last_match = id;
- controlVal = a->cb(ptr+byte-buf, ptr+byte-buf, id, a->ctxt);
- continue;
- } """
- else:
- quick_check_string = ""
- if do_bailout:
- bailout_string = """
- if ((ptr + byte < buf + a->start_offset) || (ptr + byte >= buf + len)) continue;"""
- else:
- bailout_string = ""
-
- return Template("""
-if (P0(!!$CONFVAR)) {
- do {
- bit = findAndClearLSB_$CONFVAR_SIZE(&$CONFVAR);
- byte = bit / $NUM_BUCKETS + $OFFSET;
- bitRem = bit % $NUM_BUCKETS;
- $BAILOUT_STRING
- confSplit = *(ptr+byte) & $SPLIT_MASK;
- idx = confSplit * $NUM_BUCKETS + bitRem;
- cf = confBase[idx];
- if (!cf)
- continue;
- fdrc = (const struct FDRConfirm *)((const u8 *)confBase + cf);
- if (!(fdrc->groups & *control))
- continue;
- $QUICK_CHECK_STRING
- confWithBit(fdrc, a, ptr - buf + byte, $CAUTION_STRING, $CONF_PULL_BACK, control, &last_match);
- } while(P0(!!$CONFVAR));
- if (P0(controlVal == HWLM_TERMINATE_MATCHING)) {
- *a->groups = controlVal;
- return HWLM_TERMINATED;
- }
-}""").substitute(CONFVAR = conf_var_name,
- CONFVAR_SIZE = conf_var_size,
- NUM_BUCKETS = self.num_buckets,
- OFFSET = offset,
- SPLIT_MASK = conf_split_mask,
- QUICK_CHECK_STRING = quick_check_string,
- BAILOUT_STRING = bailout_string,
- CAUTION_STRING = caution_string,
- CONF_PULL_BACK = self.conf_pull_back)
-
-
-def indent(block, depth):
- return "\n".join([ (" " * (4*depth)) + line for line in block.splitlines() ] )
/*
- * Copyright (c) 2015, Intel Corporation
+ * Copyright (c) 2015-2016, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* POSSIBILITY OF SUCH DAMAGE.
*/
-#include "util/simd_utils.h"
-
-#define P0(cnd) unlikely(cnd)
-
#include "fdr.h"
+#include "fdr_confirm.h"
+#include "fdr_confirm_runtime.h"
#include "fdr_internal.h"
+#include "fdr_loadval.h"
+#include "fdr_streaming_runtime.h"
+#include "flood_runtime.h"
#include "teddy_internal.h"
+#include "util/simd_utils.h"
+#include "util/simd_utils_ssse3.h"
-#include "flood_runtime.h"
+/** \brief number of bytes processed in each iteration */
+#define ITER_BYTES 16
+
+/** \brief total zone buffer size */
+#define ZONE_TOTAL_SIZE 64
+
+/** \brief maximum number of allowed zones */
+#define ZONE_MAX 3
+
+/** \brief zone information.
+ *
+ * Zone represents a region of data to scan in FDR.
+ *
+ * The incoming buffer is to split in multiple zones to ensure two properties:
+ * 1: that we can read 8? bytes behind to generate a hash safely
+ * 2: that we can read the byte after the current byte (domain > 8)
+ */
+struct zone {
+ /** \brief copied buffer, used only when it is a boundary zone. */
+ u8 ALIGN_CL_DIRECTIVE buf[ZONE_TOTAL_SIZE];
+
+ /** \brief shift amount for fdr state to avoid unwanted match. */
+ u8 shift;
+
+ /** \brief if boundary zone, start points into the zone buffer after the
+ * pre-padding. Otherwise, points to the main buffer, appropriately. */
+ const u8 *start;
+
+ /** \brief if boundary zone, end points to the end of zone. Otherwise,
+ * pointer to the main buffer, appropriately. */
+ const u8 *end;
+
+ /** \brief the amount to adjust to go from a pointer in the zones region
+ * (between start and end) to a pointer in the original data buffer. */
+ ptrdiff_t zone_pointer_adjust;
+
+ /** \brief firstFloodDetect from FDR_Runtime_Args for non-boundary zones,
+ * otherwise end of the zone buf. floodPtr always points inside the same
+ * buffer as the start pointe. */
+ const u8 *floodPtr;
+};
+
+static
+const ALIGN_CL_DIRECTIVE u8 zone_or_mask[ITER_BYTES+1][ITER_BYTES] = {
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00 },
+ { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00 },
+ { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00 },
+ { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 },
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
+};
+
+/* generates an initial state mask based on the last byte-ish of history rather
+ * than being all accepting. If there is no history to consider, the state is
+ * generated based on the minimum length of each bucket in order to prevent
+ * confirms.
+ */
+static really_inline
+m128 getInitState(const struct FDR *fdr, u8 len_history, const u8 *ft,
+ const struct zone *z) {
+ m128 s;
+ if (len_history) {
+ /* +1: the zones ensure that we can read the byte at z->end */
+ u32 tmp = lv_u16(z->start + z->shift - 1, z->buf, z->end + 1);
+ tmp &= fdr->domainMask;
+ s = *((const m128 *)ft + tmp);
+ s = shiftRight8Bits(s);
+ } else {
+ s = fdr->start;
+ }
+ return s;
+}
+
+static really_inline
+void get_conf_stride_1(const u8 *itPtr, const u8 *start_ptr, const u8 *end_ptr,
+ u64a domain_mask_adjusted, const u8 *ft, u64a *conf0,
+ u64a *conf8, m128 *s) {
+ /* +1: the zones ensure that we can read the byte at z->end */
+
+ u64a current_data_0;
+ u64a current_data_8;
+
+ current_data_0 = lv_u64a(itPtr + 0, start_ptr, end_ptr);
+ u64a v7 = (lv_u16(itPtr + 7, start_ptr, end_ptr + 1) << 1) &
+ domain_mask_adjusted;
+ u64a v0 = (current_data_0 << 1) & domain_mask_adjusted;
+ u64a v1 = (current_data_0 >> 7) & domain_mask_adjusted;
+ u64a v2 = (current_data_0 >> 15) & domain_mask_adjusted;
+ u64a v3 = (current_data_0 >> 23) & domain_mask_adjusted;
+ u64a v4 = (current_data_0 >> 31) & domain_mask_adjusted;
+ u64a v5 = (current_data_0 >> 39) & domain_mask_adjusted;
+ u64a v6 = (current_data_0 >> 47) & domain_mask_adjusted;
+ current_data_8 = lv_u64a(itPtr + 8, start_ptr, end_ptr);
+ u64a v15 = (lv_u16(itPtr + 15, start_ptr, end_ptr + 1) << 1) &
+ domain_mask_adjusted;
+ u64a v8 = (current_data_8 << 1) & domain_mask_adjusted;
+ u64a v9 = (current_data_8 >> 7) & domain_mask_adjusted;
+ u64a v10 = (current_data_8 >> 15) & domain_mask_adjusted;
+ u64a v11 = (current_data_8 >> 23) & domain_mask_adjusted;
+ u64a v12 = (current_data_8 >> 31) & domain_mask_adjusted;
+ u64a v13 = (current_data_8 >> 39) & domain_mask_adjusted;
+ u64a v14 = (current_data_8 >> 47) & domain_mask_adjusted;
+
+ m128 st0 = *(const m128 *)(ft + v0*8);
+ m128 st1 = *(const m128 *)(ft + v1*8);
+ m128 st2 = *(const m128 *)(ft + v2*8);
+ m128 st3 = *(const m128 *)(ft + v3*8);
+ m128 st4 = *(const m128 *)(ft + v4*8);
+ m128 st5 = *(const m128 *)(ft + v5*8);
+ m128 st6 = *(const m128 *)(ft + v6*8);
+ m128 st7 = *(const m128 *)(ft + v7*8);
+ m128 st8 = *(const m128 *)(ft + v8*8);
+ m128 st9 = *(const m128 *)(ft + v9*8);
+ m128 st10 = *(const m128 *)(ft + v10*8);
+ m128 st11 = *(const m128 *)(ft + v11*8);
+ m128 st12 = *(const m128 *)(ft + v12*8);
+ m128 st13 = *(const m128 *)(ft + v13*8);
+ m128 st14 = *(const m128 *)(ft + v14*8);
+ m128 st15 = *(const m128 *)(ft + v15*8);
+
+ st1 = byteShiftLeft128(st1, 1);
+ st2 = byteShiftLeft128(st2, 2);
+ st3 = byteShiftLeft128(st3, 3);
+ st4 = byteShiftLeft128(st4, 4);
+ st5 = byteShiftLeft128(st5, 5);
+ st6 = byteShiftLeft128(st6, 6);
+ st7 = byteShiftLeft128(st7, 7);
+ st9 = byteShiftLeft128(st9, 1);
+ st10 = byteShiftLeft128(st10, 2);
+ st11 = byteShiftLeft128(st11, 3);
+ st12 = byteShiftLeft128(st12, 4);
+ st13 = byteShiftLeft128(st13, 5);
+ st14 = byteShiftLeft128(st14, 6);
+ st15 = byteShiftLeft128(st15, 7);
+
+ *s = or128(*s, st0);
+ *s = or128(*s, st1);
+ *s = or128(*s, st2);
+ *s = or128(*s, st3);
+ *s = or128(*s, st4);
+ *s = or128(*s, st5);
+ *s = or128(*s, st6);
+ *s = or128(*s, st7);
+ *conf0 = movq(*s);
+ *s = byteShiftRight128(*s, 8);
+ *conf0 ^= ~0ULL;
+
+ *s = or128(*s, st8);
+ *s = or128(*s, st9);
+ *s = or128(*s, st10);
+ *s = or128(*s, st11);
+ *s = or128(*s, st12);
+ *s = or128(*s, st13);
+ *s = or128(*s, st14);
+ *s = or128(*s, st15);
+ *conf8 = movq(*s);
+ *s = byteShiftRight128(*s, 8);
+ *conf8 ^= ~0ULL;
+}
+
+static really_inline
+void get_conf_stride_2(const u8 *itPtr, const u8 *start_ptr, const u8 *end_ptr,
+ u64a domain_mask_adjusted, const u8 *ft, u64a *conf0,
+ u64a *conf8, m128 *s) {
+ u64a current_data_0;
+ u64a current_data_8;
+
+ current_data_0 = lv_u64a(itPtr + 0, start_ptr, end_ptr);
+ u64a v0 = (current_data_0 << 1) & domain_mask_adjusted;
+ u64a v2 = (current_data_0 >> 15) & domain_mask_adjusted;
+ u64a v4 = (current_data_0 >> 31) & domain_mask_adjusted;
+ u64a v6 = (current_data_0 >> 47) & domain_mask_adjusted;
+ current_data_8 = lv_u64a(itPtr + 8, start_ptr, end_ptr);
+ u64a v8 = (current_data_8 << 1) & domain_mask_adjusted;
+ u64a v10 = (current_data_8 >> 15) & domain_mask_adjusted;
+ u64a v12 = (current_data_8 >> 31) & domain_mask_adjusted;
+ u64a v14 = (current_data_8 >> 47) & domain_mask_adjusted;
+
+ m128 st0 = *(const m128 *)(ft + v0*8);
+ m128 st2 = *(const m128 *)(ft + v2*8);
+ m128 st4 = *(const m128 *)(ft + v4*8);
+ m128 st6 = *(const m128 *)(ft + v6*8);
+ m128 st8 = *(const m128 *)(ft + v8*8);
+ m128 st10 = *(const m128 *)(ft + v10*8);
+ m128 st12 = *(const m128 *)(ft + v12*8);
+ m128 st14 = *(const m128 *)(ft + v14*8);
+
+ st2 = byteShiftLeft128(st2, 2);
+ st4 = byteShiftLeft128(st4, 4);
+ st6 = byteShiftLeft128(st6, 6);
+ st10 = byteShiftLeft128(st10, 2);
+ st12 = byteShiftLeft128(st12, 4);
+ st14 = byteShiftLeft128(st14, 6);
+
+ *s = or128(*s, st0);
+ *s = or128(*s, st2);
+ *s = or128(*s, st4);
+ *s = or128(*s, st6);
+ *conf0 = movq(*s);
+ *s = byteShiftRight128(*s, 8);
+ *conf0 ^= ~0ULL;
+
+ *s = or128(*s, st8);
+ *s = or128(*s, st10);
+ *s = or128(*s, st12);
+ *s = or128(*s, st14);
+ *conf8 = movq(*s);
+ *s = byteShiftRight128(*s, 8);
+ *conf8 ^= ~0ULL;
+}
+
+static really_inline
+void get_conf_stride_4(const u8 *itPtr, const u8 *start_ptr, const u8 *end_ptr,
+ u64a domain_mask_adjusted, const u8 *ft, u64a *conf0,
+ u64a *conf8, m128 *s) {
+ u64a current_data_0;
+ u64a current_data_8;
+
+ current_data_0 = lv_u64a(itPtr + 0, start_ptr, end_ptr);
+ u64a v0 = (current_data_0 << 1) & domain_mask_adjusted;
+ u64a v4 = (current_data_0 >> 31) & domain_mask_adjusted;
+ current_data_8 = lv_u64a(itPtr + 8, start_ptr, end_ptr);
+ u64a v8 = (current_data_8 << 1) & domain_mask_adjusted;
+ u64a v12 = (current_data_8 >> 31) & domain_mask_adjusted;
+
+ m128 st0 = *(const m128 *)(ft + v0*8);
+ m128 st4 = *(const m128 *)(ft + v4*8);
+ m128 st8 = *(const m128 *)(ft + v8*8);
+ m128 st12 = *(const m128 *)(ft + v12*8);
+
+ st4 = byteShiftLeft128(st4, 4);
+ st12 = byteShiftLeft128(st12, 4);
+
+ *s = or128(*s, st0);
+ *s = or128(*s, st4);
+ *conf0 = movq(*s);
+ *s = byteShiftRight128(*s, 8);
+ *conf0 ^= ~0ULL;
+
+ *s = or128(*s, st8);
+ *s = or128(*s, st12);
+ *conf8 = movq(*s);
+ *s = byteShiftRight128(*s, 8);
+ *conf8 ^= ~0ULL;
+}
+
+static really_inline
+void do_confirm_fdr(u64a *conf, u8 offset, hwlmcb_rv_t *controlVal,
+ const u32 *confBase, const struct FDR_Runtime_Args *a,
+ const u8 *ptr, hwlmcb_rv_t *control, u32 *last_match_id,
+ struct zone *z) {
+ const u8 bucket = 8;
+ const u8 pullback = 1;
+
+ if (likely(!*conf)) {
+ return;
+ }
+
+ /* ptr is currently referring to a location in the zone's buffer, we also
+ * need a pointer in the original, main buffer for the final string compare.
+ */
+ const u8 *ptr_main = (const u8 *)((uintptr_t)ptr + z->zone_pointer_adjust);
+
+ const u8 *confLoc = ptr;
+
+ do {
+ u32 bit = findAndClearLSB_64(conf);
+ u32 byte = bit / bucket + offset;
+ u32 bitRem = bit % bucket;
+ u32 confSplit = *(ptr + byte);
+ u32 idx = confSplit * bucket + bitRem;
+ u32 cf = confBase[idx];
+ if (!cf) {
+ continue;
+ }
+ const struct FDRConfirm *fdrc = (const struct FDRConfirm *)
+ ((const u8 *)confBase + cf);
+ if (!(fdrc->groups & *control)) {
+ continue;
+ }
+ if (!fdrc->mult) {
+ u32 id = fdrc->nBitsOrSoleID;
+ if ((*last_match_id == id) && (fdrc->flags & NoRepeat)) {
+ continue;
+ }
+ *last_match_id = id;
+ *controlVal = a->cb(ptr_main + byte - a->buf,
+ ptr_main + byte - a->buf, id, a->ctxt);
+ continue;
+ }
+ u64a confVal = *(const u64a *)(confLoc + byte - sizeof(u64a));
+ confWithBit(fdrc, a, ptr_main - a->buf + byte, pullback,
+ control, last_match_id, confVal);
+ } while (unlikely(!!*conf));
+}
+
+static really_inline
+void dumpZoneInfo(UNUSED struct zone *z, UNUSED size_t zone_id) {
+#ifdef DEBUG
+ DEBUG_PRINTF("zone: zone=%zu, bufPtr=%p\n", zone_id, z->buf);
+ DEBUG_PRINTF("zone: startPtr=%p, endPtr=%p, shift=%u\n",
+ z->start, z->end, z->shift);
+ DEBUG_PRINTF("zone: zone_pointer_adjust=%zd, floodPtr=%p\n",
+ z->zone_pointer_adjust, z->floodPtr);
+ DEBUG_PRINTF("zone buf:");
+ for (size_t i = 0; i < ZONE_TOTAL_SIZE; i++) {
+ if (i % 8 == 0) {
+ printf("_");
+ }
+ if (z->buf[i]) {
+ printf("%02x", z->buf[i]);
+ } else {
+ printf("..");
+ }
+ }
+ printf("\n");
+#endif
+};
+
+/**
+ * \brief Updates attributes for non-boundary region zone.
+ */
+static really_inline
+void createMainZone(const u8 *flood, const u8 *begin, const u8 *end,
+ struct zone *z) {
+ z->zone_pointer_adjust = 0; /* zone buffer is the main buffer */
+ z->start = begin;
+ z->end = end;
+ z->floodPtr = flood;
+ z->shift = 0;
+}
+
+/**
+ * \brief Create zone for short cases (<= ITER_BYTES).
+ *
+ * For this case we need to copy everything into the zone's internal buffer.
+ *
+ * We need to ensure that we run over real data if it exists (in history or
+ * before zone begin). We also need to ensure 8 bytes before any data being
+ * matched can be read (to perform a conf hash).
+ *
+ * We also need to ensure that the data at z->end can be read.
+ *
+ * Hence, the zone consists of:
+ * 16 bytes of history,
+ * 1 - 24 bytes of data form the buffer (ending at end),
+ * 1 byte of final padding
+ */
+static really_inline
+void createShortZone(const u8 *buf, const u8 *hend, const u8 *begin,
+ const u8 *end, struct zone *z) {
+ /* the floodPtr for BOUNDARY zones are maximum of end of zone buf to avoid
+ * the checks in boundary zone. */
+ z->floodPtr = z->buf + ZONE_TOTAL_SIZE;
+
+ ptrdiff_t z_len = end - begin;
+ assert(z_len > 0);
+ assert(z_len <= ITER_BYTES);
+
+ z->shift = ITER_BYTES - z_len; /* ignore bytes outside region specified */
+
+ static const size_t ZONE_SHORT_DATA_OFFSET = 16; /* after history */
+
+ /* we are guaranteed to always have 16 initialised bytes at the end of
+ * the history buffer (they may be garbage coming from the stream state
+ * preceding hbuf, but bytes that don't correspond to actual history
+ * shouldn't affect computations). */
+ *(m128 *)z->buf = loadu128(hend - sizeof(m128));
+
+ /* The amount of data we have to copy from main buffer. */
+ size_t copy_len = MIN((size_t)(end - buf),
+ ITER_BYTES + sizeof(CONF_TYPE));
+
+ u8 *zone_data = z->buf + ZONE_SHORT_DATA_OFFSET;
+ switch (copy_len) {
+ case 1:
+ *zone_data = *(end - 1);
+ break;
+ case 2:
+ *(u16 *)zone_data = unaligned_load_u16(end - 2);
+ break;
+ case 3:
+ *(u16 *)zone_data = unaligned_load_u16(end - 3);
+ *(zone_data + 2) = *(end - 1);
+ break;
+ case 4:
+ *(u32 *)zone_data = unaligned_load_u32(end - 4);
+ break;
+ case 5:
+ case 6:
+ case 7:
+ /* perform copy with 2 overlapping 4-byte chunks from buf. */
+ *(u32 *)zone_data = unaligned_load_u32(end - copy_len);
+ unaligned_store_u32(zone_data + copy_len - sizeof(u32),
+ unaligned_load_u32(end - sizeof(u32)));
+ break;
+ case 8:
+ *(u64a *)zone_data = unaligned_load_u64a(end - 8);
+ break;
+ case 9:
+ case 10:
+ case 11:
+ case 12:
+ case 13:
+ case 14:
+ case 15:
+ /* perform copy with 2 overlapping 8-byte chunks from buf. */
+ *(u64a *)zone_data = unaligned_load_u64a(end - copy_len);
+ unaligned_store_u64a(zone_data + copy_len - sizeof(u64a),
+ unaligned_load_u64a(end - sizeof(u64a)));
+ break;
+ case 16:
+ /* copy 16-bytes from buf. */
+ *(m128 *)zone_data = loadu128(end - 16);
+ break;
+ default:
+ assert(copy_len <= sizeof(m128) + sizeof(u64a));
+
+ /* perform copy with (potentially overlapping) 8-byte and 16-byte chunks.
+ */
+ *(u64a *)zone_data = unaligned_load_u64a(end - copy_len);
+ storeu128(zone_data + copy_len - sizeof(m128),
+ loadu128(end - sizeof(m128)));
+ break;
+ }
+
+ /* set the start and end location of the zone buf
+ * to be scanned */
+ u8 *z_end = z->buf + ZONE_SHORT_DATA_OFFSET + copy_len;
+ assert(ZONE_SHORT_DATA_OFFSET + copy_len >= ITER_BYTES);
+
+ /* copy the post-padding byte; this is required for domain > 8 due to
+ * overhang */
+ *z_end = 0;
+
+ z->end = z_end;
+ z->start = z_end - ITER_BYTES;
+ z->zone_pointer_adjust = (ptrdiff_t)((uintptr_t)end - (uintptr_t)z_end);
+ assert(z->start + z->shift == z_end - z_len);
+}
+
+/**
+ * \brief Create a zone for the start region.
+ *
+ * This function requires that there is > ITER_BYTES of data in the buffer to
+ * scan. The start zone itself is always responsible for scanning exactly
+ * ITER_BYTES of data - there are no warmup/junk bytes scanned.
+ *
+ * This zone ensures that the byte at z->end can be read and corresponds to
+ * the next byte of data.
+ *
+ * 8 bytes of history data are provided before z->start to allow proper hash
+ * generation in streaming mode. If buf != begin, upto 8 bytes of data
+ * prior to begin is also provided.
+ *
+ * Although we are not interested in bare literals which start before begin
+ * if buf != begin, lookarounds associated with the literal may require
+ * the data prior to begin for hash purposes.
+ */
+static really_inline
+void createStartZone(const u8 *buf, const u8 *hend, const u8 *begin,
+ struct zone *z) {
+ assert(ITER_BYTES == sizeof(m128));
+ assert(sizeof(CONF_TYPE) == 8);
+ static const size_t ZONE_START_BEGIN = sizeof(CONF_TYPE);
+
+ const u8 *end = begin + ITER_BYTES;
+
+ /* set floodPtr to the end of zone buf to avoid checks in start zone */
+ z->floodPtr = z->buf + ZONE_TOTAL_SIZE;
+
+ z->shift = 0; /* we are processing ITER_BYTES of real data */
+
+ /* we are guaranteed to always have 16 initialised bytes at the end of the
+ * history buffer (they may be garbage coming from the stream state
+ * preceding hbuf, but bytes that don't correspond to actual history
+ * shouldn't affect computations). However, for start zones, history is only
+ * required for conf hash purposes so we only need 8 bytes */
+ unaligned_store_u64a(z->buf, unaligned_load_u64a(hend - sizeof(u64a)));
+
+ /* The amount of data we have to copy from main buffer. */
+ size_t copy_len = MIN((size_t)(end - buf),
+ ITER_BYTES + sizeof(CONF_TYPE));
+ assert(copy_len >= 16);
+
+ /* copy the post-padding byte; this is required for domain > 8 due to
+ * overhang. The start requires that there is data after the zone so it
+ * it safe to dereference end */
+ z->buf[ZONE_START_BEGIN + copy_len] = *end;
+
+ /* set the start and end location of the zone buf to be scanned */
+ u8 *z_end = z->buf + ZONE_START_BEGIN + copy_len;
+ z->end = z_end;
+ z->start = z_end - ITER_BYTES;
+
+ /* copy the first 8 bytes of the valid region */
+ unaligned_store_u64a(z->buf + ZONE_START_BEGIN,
+ unaligned_load_u64a(end - copy_len));
+
+ /* copy the last 16 bytes, may overlap with the previous 8 byte write */
+ storeu128(z_end - sizeof(m128), loadu128(end - sizeof(m128)));
+
+ z->zone_pointer_adjust = (ptrdiff_t)((uintptr_t)end - (uintptr_t)z_end);
+}
+
+/**
+ * \brief Create a zone for the end region.
+ *
+ * This function requires that there is > ITER_BYTES of data in the buffer to
+ * scan. The end zone, however, is only responsible for a scanning the <=
+ * ITER_BYTES rump of data. The end zone is required to handle a full ITER_BYTES
+ * iteration as the main loop cannot handle the last byte of the buffer.
+ *
+ * This zone ensures that the byte at z->end can be read by filling it with a
+ * padding character.
+ *
+ * Upto 8 bytes of data prior to begin is also provided for the purposes of
+ * generating hashes. History is not copied, as all locations which require
+ * history for generating a hash are the responsiblity of the start zone.
+ */
+static really_inline
+void createEndZone(const u8 *buf, const u8 *begin, const u8 *end,
+ struct zone *z) {
+ /* the floodPtr for BOUNDARY zones are maximum of end of zone buf to avoid
+ * the checks in boundary zone. */
+ z->floodPtr = z->buf + ZONE_TOTAL_SIZE;
+
+ ptrdiff_t z_len = end - begin;
+ assert(z_len > 0);
+ assert(z_len <= ITER_BYTES);
+
+ z->shift = ITER_BYTES - z_len;
+
+ /* The amount of data we have to copy from main buffer. */
+ size_t copy_len = MIN((size_t)(end - buf),
+ ITER_BYTES + sizeof(CONF_TYPE));
+ assert(copy_len >= 16);
+
+ /* copy the post-padding byte; this is required for domain > 8 due to
+ * overhang */
+ z->buf[copy_len] = 0;
+
+ /* set the start and end location of the zone buf
+ * to be scanned */
+ u8 *z_end = z->buf + copy_len;
+ z->end = z_end;
+ z->start = z_end - ITER_BYTES;
+ assert(z->start + z->shift == z_end - z_len);
+
+ /* copy the first 8 bytes of the valid region */
+ unaligned_store_u64a(z->buf, unaligned_load_u64a(end - copy_len));
+
+ /* copy the last 16 bytes, may overlap with the previous 8 byte write */
+ storeu128(z_end - sizeof(m128), loadu128(end - sizeof(m128)));
+
+ z->zone_pointer_adjust = (ptrdiff_t)((uintptr_t)end - (uintptr_t)z_end);
+}
+
+/**
+ * \brief Prepare zones.
+ *
+ * This function prepares zones with actual buffer and some padded bytes.
+ * The actual ITER_BYTES bytes in zone is preceded by main buf and/or
+ * history buf and succeeded by padded bytes possibly from main buf,
+ * if available.
+ */
+static really_inline
+size_t prepareZones(const u8 *buf, size_t len, const u8 *hend,
+ size_t start, const u8 *flood, struct zone *zoneArr) {
+ const u8 *ptr = buf + start;
+ size_t remaining = len - start;
+
+ if (remaining <= ITER_BYTES) {
+ /* enough bytes to make only one zone */
+ createShortZone(buf, hend, ptr, buf + len, &zoneArr[0]);
+ return 1;
+ }
+
+ /* enough bytes to make more than one zone */
+
+ size_t numZone = 0;
+ createStartZone(buf, hend, ptr, &zoneArr[numZone++]);
+ ptr += ITER_BYTES;
+
+ assert(ptr < buf + len);
+
+ /* find maximum buffer location that the main zone can scan
+ * - must be a multiple of ITER_BYTES, and
+ * - cannot contain the last byte (due to overhang)
+ */
+ const u8 *main_end = buf + start + ROUNDDOWN_N(len - start - 1, ITER_BYTES);
+ assert(main_end >= ptr);
+
+ /* create a zone if multiple of ITER_BYTES are found */
+ if (main_end != ptr) {
+ createMainZone(flood, ptr, main_end, &zoneArr[numZone++]);
+ ptr = main_end;
+ }
+ /* create a zone with rest of the data from the main buffer */
+ createEndZone(buf, ptr, buf + len, &zoneArr[numZone++]);
+ return numZone;
+}
+
+#define INVALID_MATCH_ID (~0U)
+
+#define FDR_MAIN_LOOP(zz, s, get_conf_fn) \
+ do { \
+ const u8 *tryFloodDetect = zz->floodPtr; \
+ const u8 *start_ptr = zz->start; \
+ const u8 *end_ptr = zz->end; \
+ \
+ for (const u8 *itPtr = start_ptr; itPtr + ITER_BYTES <= end_ptr; \
+ itPtr += ITER_BYTES) { \
+ if (unlikely(itPtr > tryFloodDetect)) { \
+ tryFloodDetect = floodDetect(fdr, a, &itPtr, tryFloodDetect,\
+ &floodBackoff, &controlVal, \
+ ITER_BYTES); \
+ if (unlikely(controlVal == HWLM_TERMINATE_MATCHING)) { \
+ return HWLM_TERMINATED; \
+ } \
+ } \
+ __builtin_prefetch(itPtr + (ITER_BYTES*4)); \
+ u64a conf0; \
+ u64a conf8; \
+ get_conf_fn(itPtr, start_ptr, end_ptr, domain_mask_adjusted, \
+ ft, &conf0, &conf8, &s); \
+ do_confirm_fdr(&conf0, 0, &controlVal, confBase, a, itPtr, \
+ control, &last_match_id, zz); \
+ do_confirm_fdr(&conf8, 8, &controlVal, confBase, a, itPtr, \
+ control, &last_match_id, zz); \
+ if (unlikely(controlVal == HWLM_TERMINATE_MATCHING)) { \
+ return HWLM_TERMINATED; \
+ } \
+ } /* end for loop */ \
+ } while (0) \
+
+static never_inline
+hwlm_error_t fdr_engine_exec(const struct FDR *fdr,
+ const struct FDR_Runtime_Args *a) {
+ hwlmcb_rv_t controlVal = *a->groups;
+ hwlmcb_rv_t *control = &controlVal;
+ u32 floodBackoff = FLOOD_BACKOFF_START;
+ u32 last_match_id = INVALID_MATCH_ID;
+ u64a domain_mask_adjusted = fdr->domainMask << 1;
+ u8 stride = fdr->stride;
+ const u8 *ft = (const u8 *)fdr + ROUNDUP_16(sizeof(struct FDR));
+ const u32 *confBase = (const u32 *)(ft + fdr->tabSize);
+ struct zone zones[ZONE_MAX];
+ assert(fdr->domain > 8 && fdr->domain < 16);
+
+ size_t numZone = prepareZones(a->buf, a->len,
+ a->buf_history + a->len_history,
+ a->start_offset, a->firstFloodDetect, zones);
+ assert(numZone <= ZONE_MAX);
+ m128 state = getInitState(fdr, a->len_history, ft, &zones[0]);
+
+ for (size_t curZone = 0; curZone < numZone; curZone++) {
+ struct zone *z = &zones[curZone];
+ dumpZoneInfo(z, curZone);
+
+ /* When a zone contains less data than is processed in an iteration
+ * of FDR_MAIN_LOOP(), we need to scan over some extra data.
+ *
+ * We have chosen to scan this extra data at the start of the
+ * iteration. The extra data is either data we have already scanned or
+ * garbage (if it is earlier than offset 0),
+ *
+ * As a result we need to shift the incoming state back so that it will
+ * properly line up with the data being scanned.
+ *
+ * We also need to forbid reporting any matches in the data being
+ * rescanned as they have already been reported (or are over garbage but
+ * later stages should also provide that safety guarantee).
+ */
+
+ u8 shift = z->shift;
+
+ state = variable_byte_shift_m128(state, shift);
+
+ state = or128(state, load128(zone_or_mask[shift]));
+
+ switch (stride) {
+ case 1:
+ FDR_MAIN_LOOP(z, state, get_conf_stride_1);
+ break;
+ case 2:
+ FDR_MAIN_LOOP(z, state, get_conf_stride_2);
+ break;
+ case 4:
+ FDR_MAIN_LOOP(z, state, get_conf_stride_4);
+ break;
+ default:
+ break;
+ }
+ }
+
+ return HWLM_SUCCESS;
+}
-#include "fdr_confirm.h"
-#include "fdr_confirm_runtime.h"
-#include "fdr_streaming_runtime.h"
-#include "fdr_loadval.h"
#include "fdr_autogen.c"
#define FAKE_HISTORY_SIZE 16
static const u8 fake_history[FAKE_HISTORY_SIZE];
-hwlm_error_t fdrExec(const struct FDR *fdr, const u8 *buf, size_t len, size_t start,
- HWLMCallback cb, void *ctxt, hwlm_group_t groups) {
-
+hwlm_error_t fdrExec(const struct FDR *fdr, const u8 *buf, size_t len,
+ size_t start, HWLMCallback cb, void *ctxt,
+ hwlm_group_t groups) {
const struct FDR_Runtime_Args a = {
buf,
len,
hwlm_error_t fdrExecStreaming(const struct FDR *fdr, const u8 *hbuf,
size_t hlen, const u8 *buf, size_t len,
size_t start, HWLMCallback cb, void *ctxt,
- hwlm_group_t groups, u8 * stream_state) {
+ hwlm_group_t groups, u8 *stream_state) {
struct FDR_Runtime_Args a = {
buf,
len,
ctxt,
&groups,
nextFloodDetect(buf, len, FLOOD_BACKOFF_START),
- hbuf ? CONF_LOADVAL_CALL_CAUTIOUS(hbuf + hlen - 8, hbuf, hbuf + hlen)
- : (u64a)0
-
+ /* we are guaranteed to always have 16 initialised bytes at the end of
+ * the history buffer (they may be garbage). */
+ hbuf ? unaligned_load_u64a(hbuf + hlen - sizeof(u64a)) : (u64a)0
};
fdrUnpackState(fdr, &a, stream_state);
+++ /dev/null
-#!/usr/bin/python
-
-# Copyright (c) 2015, Intel Corporation
-#
-# Redistribution and use in source and binary forms, with or without
-# modification, are permitted provided that the following conditions are met:
-#
-# * Redistributions of source code must retain the above copyright notice,
-# this list of conditions and the following disclaimer.
-# * Redistributions in binary form must reproduce the above copyright
-# notice, this list of conditions and the following disclaimer in the
-# documentation and/or other materials provided with the distribution.
-# * Neither the name of Intel Corporation nor the names of its contributors
-# may be used to endorse or promote products derived from this software
-# without specific prior written permission.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-import sys
-from autogen_utils import *
-from base_autogen import *
-from string import Template
-
-class OrStep(Step):
- def __init__(self, context, offset, width):
- Step.__init__(self, context, offset)
- s_var = self.gv("st%d" % offset)
- if width < 128:
- self.val = "s |= %s;" % s_var.name
- else:
- self.val = "s = or%d(s, %s);" % (width, s_var.name)
-
-class ShiftStateStep(Step):
- def __init__(self, context, offset = 0, stride_used = 1):
- Step.__init__(self, context, offset)
- m = self.matcher
- state = m.state_variable
- shift_distance = -1 * stride_used * m.num_buckets
- self.val = "%s = %s;" % (state.name, state.type.shift_expr(state.name, shift_distance))
-
-class BulkLoadStep(Step):
- def __init__(self, context, offset, size, define_var = True, aligned = True):
- Step.__init__(self, context, offset)
- m = self.matcher
- self.latency = 4
- blt = m.bulk_load_type
- if aligned:
- init_string = blt.load_expr_data(self.offset, code = "aligned")
- else:
- init_string = blt.load_expr_data(self.offset)
-
- var_name = "current_data_%d" % offset
- if define_var:
- lb_var = self.nv(blt, var_name)
- self.val = lb_var.gen_initializer_stmt(init_string)
- else:
- lb_var = self.gv(var_name, reader = False, writer = True)
- self.val = "%s = %s;" % (var_name, init_string)
-
-class ValueExtractStep(Step):
- def __init__(self, context, offset, sub_load_cautious = False):
- Step.__init__(self, context, offset)
- m = self.matcher
- self.latency = 2
- dsb = m.datasize_bytes
- modval = offset % dsb
-
- if modval == dsb - 1:
- # Case 1: reading more than one byte over the end of the bulk load
-
- self.latency = 4
- if sub_load_cautious:
- code_string = "cautious_forward"
- else:
- code_string = "normal"
- load_string = m.single_load_type.load_expr_data(self.offset, code_string)
- temp_string = "(%s << %d)" % (load_string, m.reach_shift_adjust)
- else:
- # Case 2: reading a value that can be found entirely in the current register
- if m.fdr2_force_naive_load:
- load_string = m.single_load_type.load_expr_data(self.offset, "normal")
- temp_string = "(%s << %d)" % (load_string, m.reach_shift_adjust)
- else:
- lb_var = self.gv("current_data_%d" % (offset - modval))
- if modval == 0:
- # Case 2a: value is at LSB end of the register and must be left-
- # shifted into place if there is a "reach_shift_adjust" required
- temp_string = "(%s << %d)" % (lb_var.name, m.reach_shift_adjust)
- else:
- # Case 2b: value is in the middle of the register and will be
- # right-shifted into place (adjusted by "reach_shift_adjust")
- temp_string = "(%s >> %d)" % (lb_var.name, modval*8 - m.reach_shift_adjust)
-
-
- init_string = "(%s) & (domain_mask << %d)" % (temp_string, m.reach_shift_adjust)
- v_var = self.nv(m.value_extract_type, "v%d" % offset)
- self.val = v_var.gen_initializer_stmt(init_string)
-
-class TableLookupStep(Step):
- def __init__(self, context, reach_multiplier, offset = 0):
- Step.__init__(self, context, offset)
- m = self.matcher
- self.latency = 4
- v_var = self.gv("v%d" % offset)
- s_var = self.nv(m.state_type, "st%d" % offset)
- init_string = "*(const %s *)(ft + %s*%dU)" % ( m.state_type.get_name(),
- v_var.name, reach_multiplier)
- self.val = s_var.gen_initializer_stmt(init_string)
-
-class ShiftReachMaskStep(Step):
- def __init__(self, context, offset):
- Step.__init__(self, context, offset)
- m = self.matcher
- extr = m.extract_frequency
- modval = offset % extr
- s_var = self.gv("st%d" % offset, writer = True)
- self.val = "%s = %s;" % (s_var.name, s_var.type.shift_expr(s_var.name, modval * m.num_buckets))
-
-class ConfExtractStep(Step):
- def __init__(self, context, offset):
- Step.__init__(self, context, offset)
- m = self.matcher
- if m.state_type.isSIMDOnIntel():
- self.latency = 2
- init_string = m.state_type.lowbit_extract_expr("s", m.extract_size)
- extr_var = self.nv(m.extr_type, "extr%d" % offset)
- self.val = extr_var.gen_initializer_stmt(init_string)
-
-class ConfAccumulateStep(Step):
- def __init__(self, context, extract_offset, conf_offset, define_var = True):
- Step.__init__(self, context, extract_offset)
- m = self.matcher
- extr_var = self.gv("extr%d" % extract_offset)
- extr_var_cast = "((%s)%s)" % (m.conf_type.get_name(), extr_var.name)
- if extract_offset == conf_offset:
- # create conf_var as a straight copy of extr
- if define_var:
- conf_var = self.nv(m.conf_type, "conf%d" % conf_offset)
- self.val = conf_var.gen_initializer_stmt(extr_var_cast)
- else:
- conf_var = self.gv("conf%d" % conf_offset, writer = True, reader = True)
- self.val = "%s = %s;" % (conf_var.name, extr_var_cast)
- else:
- # shift extr_var and insert/OR it in conf_var
- conf_var = self.gv("conf%d" % conf_offset, writer = True, reader = True)
- shift_dist = (extract_offset - conf_offset) * m.num_buckets
- self.val = "%s |= %s;" % (conf_var.name, m.conf_type.shift_expr(extr_var_cast, shift_dist))
- self.latency = 2
-
-class ConfirmFlipStep(Step):
- def __init__(self, context, offset):
- Step.__init__(self, context, offset)
- m = self.matcher
- conf_var = self.gv("conf%d" % self.offset, writer = True)
- self.val = "%s = %s;" % (conf_var.name,
- conf_var.type.flip_lowbits_expr(conf_var.name, self.matcher.confirm_frequency * m.num_buckets))
-
-class ConfirmStep(Step):
- def __init__(self, context, offset, cautious = False):
- Step.__init__(self, context, offset)
- m = self.matcher
- conf_var = self.gv("conf%d" % offset, writer = True)
- self.val = m.produce_confirm_base(conf_var.name, conf_var.type.size, offset, cautious,
- enable_confirmless = m.stride == 1, do_bailout = False)
-
-class M3(MatcherBase):
- def produce_compile_call(self):
- print " { %d, %d, %d, %d, %s, %d, %d }," % (
- self.id, self.state_width, self.num_buckets,
- self.stride,
- self.arch.target, self.conf_pull_back, self.conf_top_level_split)
-
- def produce_main_loop(self, switch_variant = False):
- stride_offsets = xrange(0, self.loop_bytes, self.stride)
- stride_offsetSet = set(stride_offsets)
- so_steps_last_block = []
- sh = None
- last_confirm = None
- ctxt = CodeGenContext(self)
-
- if switch_variant:
- print " ptr -= (iterBytes - dist);"
- print " { " # need an extra scope around switch variant to stop its globals escaping
- else:
- print " if (doMainLoop) {"
- print " for (; ptr + LOOP_READ_AHEAD < buf + len; ptr += iterBytes) {"
- print self.produce_flood_check()
- print " __builtin_prefetch(ptr + (iterBytes*4));"
- print " assert(((size_t)ptr % START_MOD) == 0);"
-
-
- # just do globally for now
- if switch_variant:
- subsidiary_load_cautious = True
- confirm_cautious = True
- else:
- subsidiary_load_cautious = False
- confirm_cautious = False
-
- if not self.fdr2_force_naive_load:
- bulk_load_steps = [ off for off in range(self.loop_bytes)
- if off % self.datasize_bytes == 0 and
- (set(range(off, off + self.datasize_bytes - 1)) & stride_offsetSet)]
- else:
- bulk_load_steps = []
-
- confirm_steps = [ off for off in range(self.loop_bytes) if off % self.confirm_frequency == 0 ]
-
- for off in bulk_load_steps:
- lb_var = ctxt.new_var(None, self.bulk_load_type, "current_data_%d" % off)
- print " " + lb_var.gen_initializer_stmt()
-
-
- for off in confirm_steps:
- var_name = "conf%d" % off
- conf_def_var = ctxt.new_var(None, self.conf_type, var_name)
- if switch_variant:
- init_string = "(%s)-1" % self.conf_type.get_name()
- else:
- init_string = ""
- print " " + conf_def_var.gen_initializer_stmt(init_string)
-
- if switch_variant:
- print " switch(iterBytes - dist) {"
- for i in range(0, self.loop_bytes):
- print " case %d:" % i
-
- # init and poison conf; over-precise but harmless
- conf_id = (i / self.confirm_frequency) * self.confirm_frequency
- if i % self.confirm_frequency:
- conf_fixup_bits = self.conf_type.size - (self.num_buckets * (i % self.confirm_frequency))
- print " conf%d >>= %d;" % (conf_id, conf_fixup_bits)
- else:
- print " conf%d = 0;" % conf_id
-
- # init state
- state_fixup = i % self.extract_frequency
- state = self.state_variable
- shift_distance = self.num_buckets * state_fixup
- if state_fixup:
- print " %s = %s;" % (state.name, state.type.shift_expr(state.name, shift_distance))
- if self.state_width < 128:
- print " %s |= %s;" % (state.name, state.type.lowbit_mask(shift_distance))
- else:
- print " %s = or%d(%s, %s);" % (state.name, self.state_width, state.name, state.type.lowbit_mask(shift_distance))
-
- if not self.fdr2_force_naive_load:
- # init current_data (could poison it in some cases)
- load_mod = i % self.datasize_bytes
- load_offset = i - load_mod
- if load_mod:
- # not coming in on an even boundary means having to do a load var
- # actually, there are a bunch of things we can do on this bulk load
- # to avoid having to be 'cautious_backwards' but I'm not completely
- # sure they are good ideas
- init_string = self.bulk_load_type.load_expr_data(load_offset,
- code = "cautious_backward")
- var_name = "current_data_%d" % load_offset
- lb_var = ctxt.get_var(None, var_name, reader = False, writer = True)
- print " %s = %s;" % (lb_var.name, init_string)
-
- print " goto off%d;" % i
- print " case %d: goto skipSwitch;" % self.loop_bytes
- print " }"
- print " {"
-
-
- for off in range(self.loop_bytes):
- # X_mod is the offset we're up to relative to the last X operation
- # X_offset is which of the last X operations matches this iteration
-
- if (switch_variant):
- LabelStep(ctxt, off)
-
- if off in bulk_load_steps:
- if not self.fdr2_force_naive_load:
- BulkLoadStep(ctxt, off, self.datasize, define_var = False, aligned = not switch_variant)
-
- if off in stride_offsets:
- if switch_variant:
- OpenScopeStep(ctxt, off)
- ValueExtractStep(ctxt, off, sub_load_cautious = subsidiary_load_cautious)
- TableLookupStep(ctxt, self.reach_mult, off)
- if off % self.extract_frequency:
- ShiftReachMaskStep(ctxt, off)
- so = OrStep(ctxt, off, self.state_width)
- if switch_variant:
- CloseScopeStep(ctxt, off)
- if sh != None:
- so.add_dependency(sh)
- so_steps_last_block += [ so ]
-
- extract_mod = off % self.extract_frequency
- extract_offset = off - extract_mod
- extract_ready = extract_mod == self.extract_frequency - 1
- if extract_ready:
- if switch_variant:
- OpenScopeStep(ctxt, off)
- ex = ConfExtractStep(ctxt, extract_offset)
- ConfAccumulateStep(ctxt, extract_offset, confirm_offset, define_var = False)
- for so_step in so_steps_last_block:
- ex.add_dependency(so_step)
- if switch_variant:
- CloseScopeStep(ctxt, off)
- so_steps_last_block = []
- sh = ShiftStateStep(ctxt, extract_offset, stride_used = self.extract_frequency)
- sh.add_dependency(ex)
-
- confirm_mod = off % self.confirm_frequency
- confirm_offset = off - confirm_mod
- confirm_ready = confirm_mod == self.confirm_frequency - 1
- if confirm_ready:
- cflip = ConfirmFlipStep(ctxt, confirm_offset)
- cf = ConfirmStep(ctxt, confirm_offset, cautious = confirm_cautious )
- if last_confirm:
- cf.add_dependency(last_confirm)
- last_confirm = cf
-
-
- if not switch_variant:
- print ctxt.schedule([ last_confirm, sh ])
- else:
- print ctxt.dontschedule([ last_confirm, sh ])
-
- if switch_variant:
- print "skipSwitch:;"
- print " ptr += iterBytes;"
- print " }" # close extra scope around switch variant
- print " }"
-
-
- def produce_init_state(self):
- state = self.state_variable
- s_type = self.state_type
- shift_distance = -1 * self.num_buckets
- shift_expr = "%s = %s" % (state.name, state.type.shift_expr(state.name, shift_distance))
-
- s = Template("""
- $TYPENAME s;
- if (a->len_history) {
- u32 tmp = 0;
- if (a->start_offset == 0) {
- tmp = a->buf_history[a->len_history - 1];
- tmp |= (a->buf[0] << 8);
- } else {
- tmp = lv_u16(a->buf + a->start_offset - 1, a->buf, a->buf + a->len);
- }
- tmp &= fdr->domainMask;
- s = *((const $TYPENAME *)ft + tmp);
- $SHIFT_EXPR;
- } else {
- s = *(const $TYPENAME *)&fdr->start;
- }
-""").substitute(TYPENAME = s_type.get_name(),
- ZERO_EXPR = s_type.zero_expression(),
- SHIFT_EXPR = shift_expr)
- return s
-
- def produce_code(self):
-
- loop_read_behind = 0
- loop_read_ahead = self.loop_bytes + 1
-
- # we set up mask and shift stuff for extracting our masks from registers
- #
- # we have a choice as to whether to mask out the value early or
- # extract the value (shift first) then mask it
- #
- # Intel has a free scaling factor from 1/2/4/8 so we want to combine
- # the extra needed shift for SSE registers with the mask operation
-
- ssb = self.state_type.size / 8 # state size in bytes
-
- # Intel path
- if ssb == 16:
- # obscure corner - we don't have the room in the register to
- # do this for all values so we don't. domain==16 is pretty
- # bad anyhow, of course
- self.reach_mult = 8
- else:
- self.reach_mult = ssb
-
- shift_amts = { 1 : 0, 2 : 1, 4 : 2, 8 : 3, 16: 4 }
- self.reach_shift_adjust = shift_amts[ ssb/self.reach_mult ]
-
- print self.produce_header(visible = False)
-
- print "// ",
- print " Arch: " + self.arch.name,
- print " State type: " + self.state_type.get_name(),
- print " Num buckets: %d" % self.num_buckets,
- print " Stride: %d" % self.stride
-
- print self.produce_common_declarations()
-
- print " assert(fdr->domain > 8 && fdr->domain < 16);"
- print
- print " u64a domain_mask = fdr->domainMask;"
- print " const u8 * ft = (const u8 *)fdr + ROUNDUP_16(sizeof(struct FDR));"
- print " const u32 * confBase = (const u32 *)(ft + fdr->tabSize);"
- print self.produce_init_state()
- print " const size_t iterBytes = %d;" % self.loop_bytes
- print " const size_t START_MOD = %d;" % self.datasize_bytes
- print " const size_t LOOP_READ_AHEAD = %d;" % loop_read_ahead
-
- print """
- while (ptr < buf + len) {
-
- u8 doMainLoop = 1;
- size_t remaining = len - (ptr - buf);
- size_t dist;
- if (remaining <= iterBytes) {
- dist = remaining; // once through the switch and we're done
- } else if (remaining < 2 * iterBytes) {
- // nibble some stuff off the front, skip the main loop,
- // then come back here
- dist = iterBytes; // maybe could be cleverer
- } else {
- // now, we need to see if we can make it to a main loop iteration
- // if so, we need to ensure that the main loop iteration is aligned
- // to a START_MOD boundary and i >= 8 so we can read ptr + i - 8
-
- // see if we can do it - if not, just switch the main loop off,
- // eat iterBytes in cautious mode, and come back to this loop
-
- const u8 * target = MAX(buf + 8, ptr);
- target = ROUNDUP_PTR(target, START_MOD);
- dist = target - ptr;
- if (dist > iterBytes) {
- doMainLoop = 0;
- dist = iterBytes;
- }
- }
-"""
- self.produce_main_loop(switch_variant = True)
- self.produce_main_loop(switch_variant = False)
- print """
- }
-"""
- print self.produce_footer()
-
- def get_name(self):
- return "fdr_exec_%s_s%d_w%d" % (self.arch.name, self.stride, self.state_width)
-
- def __init__(self, state_width, stride,
- arch,
- table_state_width = None,
- num_buckets = 8,
- extract_frequency = None,
- confirm_frequency = None):
-
- # First - set up the values that are fundamental to how this matcher will operate
- self.arch = arch
-
- # get the width of the state width on which we operate internally
- if state_width not in [ 128 ]:
- fail_out("Unknown state width: %d" % state_width)
- self.state_width = state_width
- self.state_type = getRequiredType(self.state_width)
- self.state_variable = IntegerVariable("s", self.state_type)
-
- table_state_width = state_width
- self.table_state_width = state_width
- self.table_state_type = getRequiredType(self.table_state_width)
-
- # this is the load type required for domain [9:15] if we want to
- # load it one at a time
- self.single_load_type = IntegerType(16)
-
- # stride is the frequency with which we make data-driven
- # accesses to our reach table
- if stride not in [ 1, 2, 4, 8]:
- fail_out("Unsupported stride: %d" % stride)
- if stride * num_buckets > state_width:
- fail_out("Stride %d is too big for the number of buckets %d given state width %d\n" % (stride, num_buckets, state_width))
- self.stride = stride
-
- if num_buckets != 8:
- fail_out("Unsupported number of buckets: %d" % num_buckets)
- if state_width % num_buckets and state_width == 128:
- fail_out("Bucket scheme requires bit-shifts on m128 (failing)")
- self.num_buckets = num_buckets
-
- # Second - set up derived or optimization values - these can be
- # overridden by arguments that are passed in
-
- self.datasize = 64
- self.bulk_load_type = IntegerType(self.datasize)
- self.datasize_bytes = self.datasize/8
-
- self.value_extract_type = IntegerType(self.datasize)
-
- self.fdr2_force_naive_load = False # disable everywhere for trunk
-
- # extract frequency is how frequently (in bytes) we destructively shift
- # our state value after having pulled out that many bytes into a
- # confirm register (of one sort or another).
- # none means a default value - datasize, our biggest easily available GPR
- if extract_frequency is None:
- extract_frequency = self.datasize_bytes
- self.extract_frequency = extract_frequency
- self.extract_size = self.extract_frequency*self.num_buckets
- if extract_frequency < stride:
- fail_out("Can't extract at extract frequency %d with stride %d" % (extract_frequency, stride))
- if extract_frequency not in [ None, 1, 2, 4, 8, 16]:
- fail_out("Weird extract frequency: %d" % extract_frequency)
-
- if self.extract_size <= 32:
- self.extr_type = IntegerType(32)
- elif self.extract_size <= 64:
- self.extr_type = IntegerType(64)
- else:
- fail_out("Implausible size %d required for confirm extract step" % size)
-
- # extract_frequency is how often we pull out our state and place
- # it somewhere in a lossless fashion
- # confirm_frequency, on the other hand, is how frequently we
- # take the state extracted by extract_frequency and cobble it
- # together into a matching loop
- # confirm_frequency must be a multiple of extract_frequency
- # and must fit into a fast register; for now; we're going to
- # stay in the GPR domain
- if confirm_frequency is None:
- confirm_frequency = self.extract_frequency
- self.confirm_frequency = confirm_frequency
- if confirm_frequency % self.extract_frequency:
- fail_out("Confirm frequency %d must be evenly divisible by extract_frequency %d" % (confirm_frequency, self.extract_frequency))
-
- self.conf_size = self.confirm_frequency * self.num_buckets
- if self.conf_size <= 32:
- self.conf_type = IntegerType(32)
- elif self.conf_size <= 64:
- self.conf_type = IntegerType(64)
- else:
- fail_out("Implausible size %d required for confirm accumulate step" % self.conf_size)
-
- # how many bytes in flight at once
- self.loop_bytes = 16
-
- # confirm configuration
-
- # how many entries in the top-level confirm table - 256 means
- # complete split on the last character
- self.conf_top_level_split = 256
-
- # how much we 'pull back' in confirm - this is obviously related
- # to the first level conf but we will keep two separate paramters
- # for this to avoid the risk of conflating these
- self.conf_pull_back = 1
-
- if self.conf_pull_back > 0 and self.conf_top_level_split < 256:
- fail_out("Pull back distance %d not supported by top level split %d" % (self.conf_pull_back, self.conf_top_level_split))
-
- # minor stuff
- self.default_body_indent = 8
/* we are allowing domains 9 to 15 only */
assert(eng.bits > 8 && eng.bits < 16);
fdr->domain = eng.bits;
- fdr->schemeWidthByte = eng.schemeWidth / 8;
fdr->domainMask = (1 << eng.bits) - 1;
- fdr->tabSize = (1 << eng.bits) * fdr->schemeWidthByte;
+ fdr->tabSize = (1 << eng.bits) * (eng.schemeWidth / 8);
+ fdr->stride = eng.stride;
if (link.first) {
fdr->link = verify_u32(ptr - fdr_base);
// temporary hack for unit testing
if (hint != HINT_INVALID) {
des->bits = 9;
+ des->stride = 1;
}
FDRCompiler fc(lits, *des, make_small);
/*
- * Copyright (c) 2015, Intel Corporation
+ * Copyright (c) 2015-2016, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
#include "util/bitutils.h"
#include "util/compare.h"
-#define CONF_LOADVAL_CALL lv_u64a
-#define CONF_LOADVAL_CALL_CAUTIOUS lv_u64a_ce
-
// this is ordinary confirmation function which runs through
// the whole confirmation procedure
static really_inline
-void confWithBit(const struct FDRConfirm * fdrc,
- const struct FDR_Runtime_Args * a,
- size_t i,
- CautionReason r,
- u32 pullBackAmount,
- hwlmcb_rv_t *control,
- u32 * last_match) {
+void confWithBit(const struct FDRConfirm *fdrc, const struct FDR_Runtime_Args *a,
+ size_t i, u32 pullBackAmount, hwlmcb_rv_t *control,
+ u32 *last_match, u64a conf_key) {
assert(i < a->len);
assert(ISALIGNED(fdrc));
const u8 * buf = a->buf;
- const size_t len = a->len;
-
- CONF_TYPE v;
- const u8 * confirm_loc = buf + i - pullBackAmount - 7;
- if (likely(r == NOT_CAUTIOUS || confirm_loc >= buf)) {
- v = CONF_LOADVAL_CALL(confirm_loc, buf, buf + len);
- } else { // r == VECTORING, confirm_loc < buf
- u64a histBytes = a->histBytes;
- v = CONF_LOADVAL_CALL_CAUTIOUS(confirm_loc, buf, buf + len);
- // stitch together v (which doesn't move) and history (which does)
- u32 overhang = buf - confirm_loc;
- histBytes >>= 64 - (overhang * 8);
- v |= histBytes;
+ u32 c = CONF_HASH_CALL(conf_key, fdrc->andmsk, fdrc->mult,
+ fdrc->nBitsOrSoleID);
+ u32 start = getConfirmLitIndex(fdrc)[c];
+ if (likely(!start)) {
+ return;
}
- u32 c = CONF_HASH_CALL(v, fdrc->andmsk, fdrc->mult, fdrc->nBitsOrSoleID);
- u32 start = getConfirmLitIndex(fdrc)[c];
- if (P0(start)) {
- const struct LitInfo *l =
- (const struct LitInfo *)((const u8 *)fdrc + start);
+ const struct LitInfo *li
+ = (const struct LitInfo *)((const u8 *)fdrc + start);
- u8 oldNext; // initialized in loop
- do {
- assert(ISALIGNED(l));
+ u8 oldNext; // initialized in loop
+ do {
+ assert(ISALIGNED(li));
- if (P0( (v & l->msk) != l->v)) {
- goto out;
- }
+ if (unlikely((conf_key & li->msk) != li->v)) {
+ goto out;
+ }
- if ((*last_match == l->id) && (l->flags & NoRepeat)) {
- goto out;
- }
+ if ((*last_match == li->id) && (li->flags & NoRepeat)) {
+ goto out;
+ }
- const u8 * loc = buf + i - l->size + 1 - pullBackAmount;
+ const u8 *loc = buf + i - li->size + 1 - pullBackAmount;
- u8 caseless = l->flags & Caseless;
- if (loc < buf) {
- u32 full_overhang = buf - loc;
+ u8 caseless = li->flags & Caseless;
+ if (loc < buf) {
+ u32 full_overhang = buf - loc;
- const u8 * history = (caseless) ?
- a->buf_history_nocase : a->buf_history;
- size_t len_history = (caseless) ?
- a->len_history_nocase : a->len_history;
+ const u8 *history = caseless ? a->buf_history_nocase
+ : a->buf_history;
+ size_t len_history = caseless ? a->len_history_nocase
+ : a->len_history;
- // can't do a vectored confirm either if we don't have
- // the bytes
- if (full_overhang > len_history) {
+ // can't do a vectored confirm either if we don't have
+ // the bytes
+ if (full_overhang > len_history) {
+ goto out;
+ }
+
+ // as for the regular case, no need to do a full confirm if
+ // we're a short literal
+ if (unlikely(li->size > sizeof(CONF_TYPE))) {
+ const u8 *s1 = li->s;
+ const u8 *s2 = s1 + full_overhang;
+ const u8 *loc1 = history + len_history - full_overhang;
+ const u8 *loc2 = buf;
+ size_t size1 = MIN(full_overhang, li->size - sizeof(CONF_TYPE));
+ size_t wind_size2_back = sizeof(CONF_TYPE) + full_overhang;
+ size_t size2 = wind_size2_back > li->size ?
+ 0 : li->size - wind_size2_back;
+
+ if (cmpForward(loc1, s1, size1, caseless)) {
goto out;
}
-
- // as for the regular case, no need to do a full confirm if
- // we're a short literal
- if (unlikely(l->size > sizeof(CONF_TYPE))) {
- const u8 * s1 = l->s;
- const u8 * s2 = s1 + full_overhang;
- const u8 * loc1 = history + len_history - full_overhang;
- const u8 * loc2 = buf;
- size_t size1 = MIN(full_overhang,
- l->size - sizeof(CONF_TYPE));
- size_t wind_size2_back = sizeof(CONF_TYPE) +
- full_overhang;
- size_t size2 = wind_size2_back > l->size ?
- 0 : l->size - wind_size2_back;
-
- if (cmpForward(loc1, s1, size1, caseless)) {
- goto out;
- }
- if (cmpForward(loc2, s2, size2, caseless)) {
- goto out;
- }
+ if (cmpForward(loc2, s2, size2, caseless)) {
+ goto out;
}
- } else { // NON-VECTORING PATH
+ }
+ } else { // NON-VECTORING PATH
- // if string < conf_type we don't need regular string cmp
- if (unlikely(l->size > sizeof(CONF_TYPE))) {
- if (cmpForward(loc, l->s, l->size - sizeof(CONF_TYPE), caseless)) {
- goto out;
- }
+ // if string < conf_type we don't need regular string cmp
+ if (unlikely(li->size > sizeof(CONF_TYPE))) {
+ if (cmpForward(loc, li->s, li->size - sizeof(CONF_TYPE),
+ caseless)) {
+ goto out;
}
}
+ }
- if (P0(!(l->groups & *control))) {
- goto out;
- }
+ if (unlikely(!(li->groups & *control))) {
+ goto out;
+ }
- if (unlikely(l->flags & ComplexConfirm)) {
- const u8 * loc2 = buf + i - l->extended_size + 1 - pullBackAmount;
- if (loc2 < buf) {
- u32 full_overhang = buf - loc2;
- size_t len_history = (caseless) ?
- a->len_history_nocase : a->len_history;
- if (full_overhang > len_history) {
- goto out;
- }
+ if (unlikely(li->flags & ComplexConfirm)) {
+ const u8 *loc2 = buf + i - li->extended_size + 1 - pullBackAmount;
+ if (loc2 < buf) {
+ u32 full_overhang = buf - loc2;
+ size_t len_history = caseless ? a->len_history_nocase
+ : a->len_history;
+ if (full_overhang > len_history) {
+ goto out;
}
}
+ }
- *last_match = l->id;
- *control = a->cb(loc - buf, i, l->id, a->ctxt);
-out:
- oldNext = l->next; // oldNext is either 0 or an 'adjust' value
- l = (const struct LitInfo*)((const u8 *)l + oldNext + l->size);
- } while (oldNext);
- }
+ *last_match = li->id;
+ *control = a->cb(loc - buf, i, li->id, a->ctxt);
+ out:
+ oldNext = li->next; // oldNext is either 0 or an 'adjust' value
+ li = (const struct LitInfo *)((const u8 *)li + oldNext + li->size);
+ } while (oldNext);
}
// 'light-weight' confirmation function which is used by 1-mask Teddy;
// in the 'confirmless' case it simply calls callback function,
// otherwise it calls 'confWithBit' function for the full confirmation procedure
static really_inline
-void confWithBit1(const struct FDRConfirm * fdrc,
- const struct FDR_Runtime_Args * a,
- size_t i,
- CautionReason r,
- hwlmcb_rv_t *control,
- u32 * last_match) {
+void confWithBit1(const struct FDRConfirm *fdrc,
+ const struct FDR_Runtime_Args *a, size_t i,
+ hwlmcb_rv_t *control, u32 *last_match, u64a conf_key) {
assert(i < a->len);
assert(ISALIGNED(fdrc));
if (unlikely(fdrc->mult)) {
- confWithBit(fdrc, a, i, r, 0, control, last_match);
+ confWithBit(fdrc, a, i, 0, control, last_match, conf_key);
return;
} else {
u32 id = fdrc->nBitsOrSoleID;
// In the 'confirmless' case it makes fast 32-bit comparison,
// otherwise it calls 'confWithBit' function for the full confirmation procedure
static really_inline
-void confWithBitMany(const struct FDRConfirm * fdrc,
- const struct FDR_Runtime_Args * a,
- size_t i,
- CautionReason r,
- hwlmcb_rv_t *control,
- u32 * last_match) {
+void confWithBitMany(const struct FDRConfirm *fdrc,
+ const struct FDR_Runtime_Args *a, size_t i, CautionReason r,
+ hwlmcb_rv_t *control, u32 *last_match, u64a conf_key) {
assert(i < a->len);
assert(ISALIGNED(fdrc));
}
if (unlikely(fdrc->mult)) {
- confWithBit(fdrc, a, i, r, 0, control, last_match);
+ confWithBit(fdrc, a, i, 0, control, last_match, conf_key);
return;
} else {
const u32 id = fdrc->nBitsOrSoleID;
}
if (r == VECTORING && len > i - a->start_offset) {
- if (len > (i + a->len_history)) {
+ if (len > i + a->len_history) {
return;
}
}
if (isTeddy) {
- unique_ptr<TeddyEngineDescription> des =
- getTeddyDescription(fdr->engineID);
+ auto des = getTeddyDescription(fdr->engineID);
if (des) {
fprintf(f, " masks %u\n", des->numMasks);
fprintf(f, " buckets %u\n", des->getNumBuckets());
fprintf(f, " <unknown engine>\n");
}
} else {
- unique_ptr<FDREngineDescription> des =
- getFdrDescription(fdr->engineID);
- if (des) {
- fprintf(f, " domain %u\n", des->bits);
- fprintf(f, " stride %u\n", des->stride);
- fprintf(f, " buckets %u\n", des->getNumBuckets());
- fprintf(f, " width %u\n", des->schemeWidth);
- } else {
- fprintf(f, " <unknown engine>\n");
- }
+ fprintf(f, " domain %u\n", fdr->domain);
+ fprintf(f, " stride %u\n", fdr->stride);
}
fprintf(f, " strings ???\n");
/*
- * Copyright (c) 2015, Intel Corporation
+ * Copyright (c) 2015-2016, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
namespace ue2 {
-#include "fdr_autogen_compiler.cpp"
-
FDREngineDescription::FDREngineDescription(const FDREngineDef &def)
: EngineDescription(def.id, targetByArchFeatures(def.cpu_features),
def.numBuckets, def.confirmPullBackDistance,
def.confirmTopLevelSplit),
- schemeWidth(def.schemeWidth), stride(def.stride), bits(0) {}
+ schemeWidth(def.schemeWidth), stride(0), bits(0) {}
u32 FDREngineDescription::getDefaultFloodSuffixLength() const {
// rounding up, so that scheme width 32 and 6 buckets is 6 not 5!
return ((getSchemeWidth() + getNumBuckets() - 1) / getNumBuckets()) + 1;
}
+void getFdrDescriptions(vector<FDREngineDescription> *out) {
+ static const FDREngineDef def = {0, 128, 8, 0, 1, 256};
+ out->clear();
+ out->push_back(FDREngineDescription(def));
+}
+
static
u32 findDesiredStride(size_t num_lits, size_t min_len, size_t min_len_count) {
u32 desiredStride = 1; // always our safe fallback
FDREngineDescription *best = nullptr;
u32 best_score = 0;
+ FDREngineDescription &eng = allDescs[0];
+
for (u32 domain = 9; domain <= 15; domain++) {
- for (size_t engineID = 0; engineID < allDescs.size(); engineID++) {
+ for (size_t stride = 1; stride <= 4; stride *= 2) {
// to make sure that domains >=14 have stride 1 according to origin
- if (domain > 13 && engineID > 0) {
+ if (domain > 13 && stride > 1) {
continue;
}
- FDREngineDescription &eng = allDescs[engineID];
if (!eng.isValidOnTarget(target)) {
continue;
}
- if (msl < eng.stride) {
+ if (msl < stride) {
continue;
}
u32 score = 100;
- score -= absdiff(desiredStride, eng.stride);
+ score -= absdiff(desiredStride, stride);
- if (eng.stride <= desiredStride) {
- score += eng.stride;
+ if (stride <= desiredStride) {
+ score += stride;
}
u32 effLits = vl.size(); /* * desiredStride;*/
u32 ideal;
if (effLits < eng.getNumBuckets()) {
- if (eng.stride == 1) {
+ if (stride == 1) {
ideal = 8;
} else {
ideal = 10;
ideal -= 2;
}
- if (eng.stride > 1) {
+ if (stride > 1) {
ideal++;
}
DEBUG_PRINTF("effLits %u\n", effLits);
if (target.is_atom_class() && !make_small && effLits < 4000) {
- /* Unless it is a very heavy case, we want to build smaller tables
- * on lightweight machines due to their small caches. */
+ /* Unless it is a very heavy case, we want to build smaller
+ * tables on lightweight machines due to their small caches. */
ideal -= 2;
}
score -= absdiff(ideal, domain);
- DEBUG_PRINTF("fdr %u: width=%u, bits=%u, buckets=%u, stride=%u "
+ DEBUG_PRINTF("fdr %u: width=%u, domain=%u, buckets=%u, stride=%zu "
"-> score=%u\n",
- eng.getID(), eng.schemeWidth, eng.bits,
- eng.getNumBuckets(), eng.stride, score);
+ eng.getID(), eng.schemeWidth, domain,
+ eng.getNumBuckets(), stride, score);
if (!best || score > best_score) {
eng.bits = domain;
+ eng.stride = stride;
best = ŋ
best_score = score;
}
/*
- * Copyright (c) 2015, Intel Corporation
+ * Copyright (c) 2015-2016, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
u32 id;
u32 schemeWidth;
u32 numBuckets;
- u32 stride;
u64a cpu_features;
u32 confirmPullBackDistance;
u32 confirmTopLevelSplit;
bool make_small);
std::unique_ptr<FDREngineDescription> getFdrDescription(u32 engineID);
void getFdrDescriptions(std::vector<FDREngineDescription> *out);
-
} // namespace ue2
#endif
/*
- * Copyright (c) 2015, Intel Corporation
+ * Copyright (c) 2015-2016, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* structures (spillover strings and hash table) if we're a secondary
* structure. */
u32 link;
- u8 domain; /* dynamic domain info */
- u8 schemeWidthByte; /* scheme width in bytes */
+ u8 stride; /* stride - how frequeuntly the data is consulted by the first
+ * stage matcher */
+ u8 domain; /* number of bits used to index into main FDR table. This value
+ * is used only of debugging/asserts. */
u16 domainMask; /* pre-computed domain mask */
u32 tabSize; /* pre-computed hashtable size in bytes */
- u32 pad1;
+ u32 pad;
- union {
- u32 s_u32;
- u64a s_u64a;
- m128 s_m128;
- } start;
+ m128 start; /* initial start state to use at offset 0. The state has been set
+ * up based on the min length of buckets to reduce the need for
+ * pointless confirms. */
};
/** \brief FDR runtime arguments.
/*
- * Copyright (c) 2015, Intel Corporation
+ * Copyright (c) 2015-2016, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
#define MAKE_LOADVAL(type, name) \
static really_inline type name (const u8 * ptr, UNUSED const u8 * lo, UNUSED const u8 * hi)
-#define NORMAL_SAFE(type) assert(ptr >= lo && (ptr + sizeof(type) - 1) < hi)
+#define NORMAL_SAFE(type) \
+ do { \
+ assert(ptr >= lo); \
+ assert(ptr + sizeof(type) - 1 < hi); \
+ } while(0)
+
#define ALIGNED_SAFE(type) NORMAL_SAFE(type); assert(((size_t)ptr % sizeof(type)) == 0);
// these ones need asserts to test the property that we're not handling dynamically
#define CAUTIOUS_FORWARD_SAFE(type) assert(ptr >= lo)
#!/usr/bin/python
-# Copyright (c) 2015, Intel Corporation
+# Copyright (c) 2015-2016, Intel Corporation
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
import sys
from autogen_utils import *
-from base_autogen import *
from string import Template
-class MT(MatcherBase):
+class MT:
+ def produce_header(self, visible, header_only = False):
+ s = ""
+ if not visible:
+ s += "static never_inline"
+ s += """
+hwlm_error_t %s(UNUSED const struct FDR *fdr,
+ UNUSED const struct FDR_Runtime_Args * a)""" % self.get_name()
+ if header_only:
+ s += ";"
+ else:
+ s += "{"
+ s += "\n"
+ return s
+
+ def produce_guard(self):
+ print self.arch.get_guard()
+
+ def produce_zero_alternative(self):
+ print """
+#else
+#define %s 0
+#endif
+""" % self.get_name()
+
+ def close_guard(self):
+ print "#endif"
+
+ def produce_confirm_base(self, conf_var_name, conf_var_size, offset, cautious, enable_confirmless, do_bailout = False):
+ if cautious:
+ caution_string = "VECTORING"
+ else:
+ caution_string = "NOT_CAUTIOUS"
+ conf_split_mask = IntegerType(32).constant_to_string(
+ self.conf_top_level_split - 1)
+ if enable_confirmless:
+ quick_check_string = """
+ if (!fdrc->mult) {
+ u32 id = fdrc->nBitsOrSoleID;
+ if ((last_match == id) && (fdrc->flags & NoRepeat))
+ continue;
+ last_match = id;
+ controlVal = a->cb(ptr+byte-buf, ptr+byte-buf, id, a->ctxt);
+ continue;
+ } """
+ else:
+ quick_check_string = ""
+ if do_bailout:
+ bailout_string = """
+ if ((ptr + byte < buf + a->start_offset) || (ptr + byte >= buf + len)) continue;"""
+ else:
+ bailout_string = ""
+
+ return Template("""
+if (P0(!!$CONFVAR)) {
+ do {
+ u32 bit = findAndClearLSB_$CONFVAR_SIZE(&$CONFVAR);
+ u32 byte = bit / $NUM_BUCKETS + $OFFSET;
+ u32 bitRem = bit % $NUM_BUCKETS;
+ $BAILOUT_STRING
+ u32 confSplit = *(ptr+byte) & $SPLIT_MASK;
+ u32 idx = confSplit * $NUM_BUCKETS + bitRem;
+ u32 cf = confBase[idx];
+ if (!cf)
+ continue;
+ fdrc = (const struct FDRConfirm *)((const u8 *)confBase + cf);
+ if (!(fdrc->groups & *control))
+ continue;
+ $QUICK_CHECK_STRING
+ CautionReason reason = $CAUTION_STRING;
+ CONF_TYPE v;
+ const u8 * confirm_loc = ptr + byte - $CONF_PULL_BACK - 7;
+ if (likely(reason == NOT_CAUTIOUS || confirm_loc >= buf)) {
+ v = lv_u64a(confirm_loc, buf, buf + len);
+ } else { // r == VECTORING, confirm_loc < buf
+ u64a histBytes = a->histBytes;
+ v = lv_u64a_ce(confirm_loc, buf, buf + len);
+ // stitch together v (which doesn't move) and history (which does)
+ u32 overhang = buf - confirm_loc;
+ histBytes >>= 64 - (overhang * 8);
+ v |= histBytes;
+ }
+ confWithBit(fdrc, a, ptr - buf + byte, $CONF_PULL_BACK, control, &last_match, v);
+ } while(P0(!!$CONFVAR));
+ if (P0(controlVal == HWLM_TERMINATE_MATCHING)) {
+ *a->groups = controlVal;
+ return HWLM_TERMINATED;
+ }
+}""").substitute(CONFVAR = conf_var_name,
+ CONFVAR_SIZE = conf_var_size,
+ NUM_BUCKETS = self.num_buckets,
+ OFFSET = offset,
+ SPLIT_MASK = conf_split_mask,
+ QUICK_CHECK_STRING = quick_check_string,
+ BAILOUT_STRING = bailout_string,
+ CAUTION_STRING = caution_string,
+ CONF_PULL_BACK = self.conf_pull_back)
+
def produce_confirm(self, iter, var_name, offset, bits, cautious = True):
if self.packed:
print self.produce_confirm_base(var_name, bits, iter*16 + offset, cautious, enable_confirmless = False, do_bailout = False)
else:
- if self.num_masks == 1:
- conf_func = "confWithBit1"
- else:
- conf_func = "confWithBitMany"
-
if cautious:
caution_string = "VECTORING"
else:
print " if (P0(!!%s)) {" % var_name
print " do {"
if bits == 64:
- print " bit = findAndClearLSB_64(&%s);" % (var_name)
+ print " u32 bit = findAndClearLSB_64(&%s);" % (var_name)
else:
- print " bit = findAndClearLSB_32(&%s);" % (var_name)
- print " byte = bit / %d + %d;" % (self.num_buckets, iter*16 + offset)
- print " idx = bit %% %d;" % self.num_buckets
- print " cf = confBase[idx];"
+ print " u32 bit = findAndClearLSB_32(&%s);" % (var_name)
+ print " u32 byte = bit / %d + %d;" % (self.num_buckets, iter*16 + offset)
+ print " u32 idx = bit %% %d;" % self.num_buckets
+ print " u32 cf = confBase[idx];"
print " fdrc = (const struct FDRConfirm *)((const u8 *)confBase + cf);"
print " if (!(fdrc->groups & *control))"
print " continue;"
- print " %s(fdrc, a, ptr - buf + byte, %s, control, &last_match);" % (conf_func, caution_string)
+ print """
+ CautionReason reason = %s;
+ CONF_TYPE v;
+ const u8 * confirm_loc = ptr + byte - 7;
+ if (likely(reason == NOT_CAUTIOUS || confirm_loc >= buf)) {
+ v = lv_u64a(confirm_loc, buf, buf + len);
+ } else { // r == VECTORING, confirm_loc < buf
+ u64a histBytes = a->histBytes;
+ v = lv_u64a_ce(confirm_loc, buf, buf + len);
+ // stitch together v (which doesn't move) and history (which does)
+ u32 overhang = buf - confirm_loc;
+ histBytes >>= 64 - (overhang * 8);
+ v |= histBytes;
+ }""" % (caution_string)
+ if self.num_masks == 1:
+ print " confWithBit1(fdrc, a, ptr - buf + byte, control, &last_match, v);"
+ else:
+ print " confWithBitMany(fdrc, a, ptr - buf + byte, %s, control, &last_match, v);" % (caution_string)
print " } while(P0(!!%s));" % var_name
print " if (P0(controlVal == HWLM_TERMINATE_MATCHING)) {"
print " *a->groups = controlVal;"
def produce_code(self):
print self.produce_header(visible = True, header_only = False)
- print self.produce_common_declarations()
+ print """
+ const u8 * buf = a->buf;
+ const size_t len = a->len;
+ const u8 * ptr = buf + a->start_offset;
+ hwlmcb_rv_t controlVal = *a->groups;
+ hwlmcb_rv_t * control = &controlVal;
+ u32 floodBackoff = FLOOD_BACKOFF_START;
+ const u8 * tryFloodDetect = a->firstFloodDetect;
+ const struct FDRConfirm *fdrc;
+ u32 last_match = (u32)-1;
+"""
print
self.produce_needed_temporaries(self.num_iterations)
print " ptr += 16;"
print " }"
- print " for ( ; ptr + iterBytes <= buf + len; ptr += iterBytes) {"
- print " __builtin_prefetch(ptr + (iterBytes*4));"
- print self.produce_flood_check()
-
+ print """
+ for ( ; ptr + iterBytes <= buf + len; ptr += iterBytes) {
+ __builtin_prefetch(ptr + (iterBytes*4));
+ if (P0(ptr > tryFloodDetect)) {
+ tryFloodDetect = floodDetect(fdr, a, &ptr, tryFloodDetect, &floodBackoff, &controlVal, iterBytes);
+ if (P0(controlVal == HWLM_TERMINATE_MATCHING)) {
+ *a->groups = controlVal;
+ return HWLM_TERMINATED;
+ }
+ }
+"""
for iter in range(self.num_iterations):
self.produce_one_iteration(iter, self.num_iterations, cautious = False, confirmCautious = False)
self.produce_one_iteration(0, 1, cautious = True, confirmCautious = True, save_old = True)
print " }"
- print self.produce_footer()
+ print """
+ *a->groups = controlVal;
+ return HWLM_SUCCESS;
+}
+"""
def produce_compile_call(self):
packed_str = { False : "false", True : "true"}[self.packed]
def produce_code(self):
print self.produce_header(visible = True, header_only = False)
- print self.produce_common_declarations()
+ print """
+ const u8 * buf = a->buf;
+ const size_t len = a->len;
+ const u8 * ptr = buf + a->start_offset;
+ hwlmcb_rv_t controlVal = *a->groups;
+ hwlmcb_rv_t * control = &controlVal;
+ u32 floodBackoff = FLOOD_BACKOFF_START;
+ const u8 * tryFloodDetect = a->firstFloodDetect;
+ const struct FDRConfirm *fdrc;
+ u32 last_match = (u32)-1;
+"""
print
self.produce_needed_temporaries(self.num_iterations)
print " ptr += 16;"
print " }"
- print " for ( ; ptr + iterBytes <= buf + len; ptr += iterBytes) {"
- print " __builtin_prefetch(ptr + (iterBytes*4));"
- print self.produce_flood_check()
+ print """
+ for ( ; ptr + iterBytes <= buf + len; ptr += iterBytes) {
+ __builtin_prefetch(ptr + (iterBytes*4));
+ if (P0(ptr > tryFloodDetect)) {
+ tryFloodDetect = floodDetect(fdr, a, &ptr, tryFloodDetect, &floodBackoff, &controlVal, iterBytes);
+ if (P0(controlVal == HWLM_TERMINATE_MATCHING)) {
+ *a->groups = controlVal;
+ return HWLM_TERMINATED;
+ }
+ }
+"""
for iter in range(self.num_iterations):
self.produce_one_iteration(iter, self.num_iterations, False, confirmCautious = False)
self.produce_one_iteration(0, 1, cautious = True, confirmCautious = True, save_old = True)
print " }"
- print self.produce_footer()
+ print """
+ *a->groups = controlVal;
+ return HWLM_SUCCESS;
+}
+"""
def produce_one_iteration_state_calc(self, iter, effective_num_iterations,
cautious, save_old):
print "#endif"
print " }"
-class MTFast(MatcherBase):
+class MTFast:
+ def produce_header(self, visible, header_only = False):
+ s = ""
+ if not visible:
+ s += "static never_inline"
+ s += """
+hwlm_error_t %s(UNUSED const struct FDR *fdr,
+ UNUSED const struct FDR_Runtime_Args * a)""" % self.get_name()
+ if header_only:
+ s += ";"
+ else:
+ s += "{"
+ s += "\n"
+ return s
+
+ def produce_guard(self):
+ print self.arch.get_guard()
+
+ def produce_zero_alternative(self):
+ print """
+#else
+#define %s 0
+#endif
+""" % self.get_name()
+
+ def close_guard(self):
+ print "#endif"
def produce_confirm(self, cautious):
if cautious:
cautious_str = "NOT_CAUTIOUS"
print " for (u32 i = 0; i < arrCnt; i++) {"
- print " byte = bitArr[i] / 8;"
+ print " u32 byte = bitArr[i] / 8;"
if self.packed:
conf_split_mask = IntegerType(32).constant_to_string(
self.conf_top_level_split - 1)
- print " bitRem = bitArr[i] % 8;"
- print " confSplit = *(ptr+byte) & 0x1f;"
- print " idx = confSplit * %d + bitRem;" % self.num_buckets
- print " cf = confBase[idx];"
+ print " u32 bitRem = bitArr[i] % 8;"
+ print " u32 confSplit = *(ptr+byte) & 0x1f;"
+ print " u32 idx = confSplit * %d + bitRem;" % self.num_buckets
+ print " u32 cf = confBase[idx];"
print " if (!cf)"
print " continue;"
print " fdrc = (const struct FDRConfirm *)((const u8 *)confBase + cf);"
print " if (!(fdrc->groups & *control))"
print " continue;"
- print " confWithBit(fdrc, a, ptr - buf + byte, %s, 0, control, &last_match);" % cautious_str
+ print """
+ CautionReason reason = %s;
+ CONF_TYPE v;
+ const u8 * confirm_loc = ptr + byte - 7;
+ if (likely(reason == NOT_CAUTIOUS || confirm_loc >= buf)) {
+ v = lv_u64a(confirm_loc, buf, buf + len);
+ } else { // r == VECTORING, confirm_loc < buf
+ u64a histBytes = a->histBytes;
+ v = lv_u64a_ce(confirm_loc, buf, buf + len);
+ // stitch together v (which doesn't move) and history (which does)
+ u32 overhang = buf - confirm_loc;
+ histBytes >>= 64 - (overhang * 8);
+ v |= histBytes;
+ }""" % (cautious_str)
+ print " confWithBit(fdrc, a, ptr - buf + byte, 0, control, &last_match, v);"
else:
- print " cf = confBase[bitArr[i] % 8];"
+ print " u32 cf = confBase[bitArr[i] % 8];"
print " fdrc = (const struct FDRConfirm *)((const u8 *)confBase + cf);"
- print " confWithBit1(fdrc, a, ptr - buf + byte, %s, control, &last_match);" % cautious_str
+ print """
+ CautionReason reason = %s;
+ CONF_TYPE v;
+ const u8 * confirm_loc = ptr + byte - 7;
+ if (likely(reason == NOT_CAUTIOUS || confirm_loc >= buf)) {
+ v = lv_u64a(confirm_loc, buf, buf + len);
+ } else { // r == VECTORING, confirm_loc < buf
+ u64a histBytes = a->histBytes;
+ v = lv_u64a_ce(confirm_loc, buf, buf + len);
+ // stitch together v (which doesn't move) and history (which does)
+ u32 overhang = buf - confirm_loc;
+ histBytes >>= 64 - (overhang * 8);
+ v |= histBytes;
+ }""" % (cautious_str)
+ print " confWithBit1(fdrc, a, ptr - buf + byte, control, &last_match, v);"
print " if (P0(controlVal == HWLM_TERMINATE_MATCHING)) {"
print " *a->groups = controlVal;"
print " return HWLM_TERMINATED;"
def produce_code(self):
print self.produce_header(visible = True, header_only = False)
- print self.produce_common_declarations()
+ print """
+ const u8 * buf = a->buf;
+ const size_t len = a->len;
+ const u8 * ptr = buf + a->start_offset;
+ hwlmcb_rv_t controlVal = *a->groups;
+ hwlmcb_rv_t * control = &controlVal;
+ u32 floodBackoff = FLOOD_BACKOFF_START;
+ const u8 * tryFloodDetect = a->firstFloodDetect;
+ const struct FDRConfirm *fdrc;
+ u32 last_match = (u32)-1;
+"""
print
self.produce_needed_temporaries(self.num_iterations)
self.produce_bit_check_256(iter = 0, single_iter = True, cautious = True)
print " ptr += 32;"
print " }"
- print " for ( ; ptr + iterBytes <= buf + len; ptr += iterBytes) {"
- print " __builtin_prefetch(ptr + (iterBytes*4));"
- print self.produce_flood_check()
+ print """
+ for ( ; ptr + iterBytes <= buf + len; ptr += iterBytes) {
+ __builtin_prefetch(ptr + (iterBytes*4));
+ if (P0(ptr > tryFloodDetect)) {
+ tryFloodDetect = floodDetect(fdr, a, &ptr, tryFloodDetect, &floodBackoff, &controlVal, iterBytes);
+ if (P0(controlVal == HWLM_TERMINATE_MATCHING)) {
+ *a->groups = controlVal;
+ return HWLM_TERMINATED;
+ }
+ }
+"""
+
for iter in range (0, self.num_iterations):
self.produce_one_iteration_state_calc(iter = iter, cautious = False)
print " arrCnt = 0;"
self.produce_bit_check_256(iter = 0, single_iter = True, cautious = True)
print " }"
- print self.produce_footer()
+ print """
+ *a->groups = controlVal;
+ return HWLM_SUCCESS;
+}
+"""
def get_name(self):
if self.packed:
static really_inline
void init_stream(struct hs_stream *s, const struct RoseEngine *rose) {
+ char *state = getMultiState(s);
+
+ // Make absolutely sure that the 16 bytes leading up to the end of the
+ // history buffer are initialised, as we rely on this (regardless of the
+ // actual values used) in FDR.
+ char *hist_end = state + rose->stateOffsets.history + rose->historyRequired;
+ assert(hist_end - 16 >= (const char *)s);
+ unaligned_store_u64a(hist_end - 16, 0xDEADDEADDEADDEADull);
+ unaligned_store_u64a(hist_end - 8, 0xDEADDEADDEADDEADull);
+
s->rose = rose;
s->offset = 0;
- char *state = getMultiState(s);
-
setStreamStatus(state, 0);
roseInitState(rose, state);
/*
- * Copyright (c) 2015, Intel Corporation
+ * Copyright (c) 2015-2016, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
TEST_P(FDRFloodp, StreamingMask) {
const u32 hint = GetParam();
SCOPED_TRACE(hint);
+ const size_t fake_history_size = 16;
+ const vector<u8> fake_history(fake_history_size, 0);
const size_t dataSize = 1024;
vector<u8> data(dataSize);
+ vector<u8> tempdata(dataSize + fake_history_size); // headroom
u8 c = '\0';
while (1) {
for (u32 streamChunk = 1; streamChunk <= 16; streamChunk *= 2) {
matchesCounts.clear();
- fdrStatus = fdrExecStreaming(fdr.get(), nullptr, 0, &data[0], streamChunk,
- 0, countCallback, &matchesCounts, HWLM_ALL_GROUPS, nullptr);
+ const u8 *d = data.data();
+ // reference past the end of fake history to allow headroom
+ const u8 *fhist = fake_history.data() + fake_history_size;
+ fdrStatus = fdrExecStreaming(fdr.get(), fhist, 0, d, streamChunk, 0,
+ countCallback, &matchesCounts,
+ HWLM_ALL_GROUPS, nullptr);
ASSERT_EQ(0, fdrStatus);
for (u32 j = streamChunk; j < dataSize; j += streamChunk) {
- if (j < 8) {
- fdrStatus = fdrExecStreaming(fdr.get(), &data[0], j,
- &data[0] + j, streamChunk, 0, countCallback,
- &matchesCounts, HWLM_ALL_GROUPS, nullptr);
+ if (j < 16) {
+ /* allow 16 bytes headroom on read to avoid invalid
+ * memory read during the FDR zone creation.*/
+ memset(tempdata.data(), c, dataSize + fake_history_size);
+ const u8 *tmp_d = tempdata.data() + fake_history_size;
+ fdrStatus = fdrExecStreaming(fdr.get(), tmp_d, j, tmp_d + j,
+ streamChunk, 0, countCallback,
+ &matchesCounts,
+ HWLM_ALL_GROUPS, nullptr);
} else {
- fdrStatus = fdrExecStreaming(fdr.get(), &data[0] + j - 8,
- 8, &data[0] + j, streamChunk, 0, countCallback,
- &matchesCounts, HWLM_ALL_GROUPS, nullptr);
+ fdrStatus = fdrExecStreaming(fdr.get(), d + j - 8, 8, d + j,
+ streamChunk, 0, countCallback,
+ &matchesCounts,
+ HWLM_ALL_GROUPS, nullptr);
}
ASSERT_EQ(0, fdrStatus);
}