]> git.ipfire.org Git - thirdparty/Python/cpython.git/commitdiff
gh-115952: Fix a potential virtual memory allocation denial of service in pickle...
authorSerhiy Storchaka <storchaka@gmail.com>
Fri, 5 Dec 2025 17:17:01 +0000 (19:17 +0200)
committerGitHub <noreply@github.com>
Fri, 5 Dec 2025 17:17:01 +0000 (19:17 +0200)
Loading a small data which does not even involve arbitrary code execution
could consume arbitrary large amount of memory. There were three issues:

* PUT and LONG_BINPUT with large argument (the C implementation only).
  Since the memo is implemented in C as a continuous dynamic array, a single
  opcode can cause its resizing to arbitrary size. Now the sparsity of
  memo indices is limited.
* BINBYTES, BINBYTES8 and BYTEARRAY8 with large argument.  They allocated
  the bytes or bytearray object of the specified size before reading into
  it.  Now they read very large data by chunks.
* BINSTRING, BINUNICODE, LONG4, BINUNICODE8 and FRAME with large
  argument.  They read the whole data by calling the read() method of
  the underlying file object, which usually allocates the bytes object of
  the specified size before reading into it.  Now they read very large data
  by chunks.

Also add comprehensive benchmark suite to measure performance and memory
impact of chunked reading optimization in PR #119204.

Features:
- Normal mode: benchmarks legitimate pickles (time/memory metrics)
- Antagonistic mode: tests malicious pickles (DoS protection)
- Baseline comparison: side-by-side comparison of two Python builds
- Support for truncated data and sparse memo attack vectors

Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
Co-authored-by: Gregory P. Smith <greg@krypto.org>
Lib/pickle.py
Lib/test/pickletester.py
Lib/test/test_pickle.py
Misc/NEWS.d/next/Library/2024-05-20-12-35-52.gh-issue-115952.J6n_Kf.rst [new file with mode: 0644]
Modules/_pickle.c
Tools/picklebench/README.md [new file with mode: 0644]
Tools/picklebench/memory_dos_impact.py [new file with mode: 0755]

index 729c215514ad24078619d11a0aae4b0a9738b479..f3025776623d2ca116c4d659cb5857a311641779 100644 (file)
@@ -189,6 +189,11 @@ READONLY_BUFFER  = b'\x98'  # make top of stack readonly
 __all__.extend(x for x in dir() if x.isupper() and not x.startswith('_'))
 
 
+# Data larger than this will be read in chunks, to prevent extreme
+# overallocation.
+_MIN_READ_BUF_SIZE = (1 << 20)
+
+
 class _Framer:
 
     _FRAME_SIZE_MIN = 4
@@ -287,7 +292,7 @@ class _Unframer:
                     "pickle exhausted before end of frame")
             return data
         else:
-            return self.file_read(n)
+            return self._chunked_file_read(n)
 
     def readline(self):
         if self.current_frame:
@@ -302,11 +307,23 @@ class _Unframer:
         else:
             return self.file_readline()
 
+    def _chunked_file_read(self, size):
+        cursize = min(size, _MIN_READ_BUF_SIZE)
+        b = self.file_read(cursize)
+        while cursize < size and len(b) == cursize:
+            delta = min(cursize, size - cursize)
+            b += self.file_read(delta)
+            cursize += delta
+        return b
+
     def load_frame(self, frame_size):
         if self.current_frame and self.current_frame.read() != b'':
             raise UnpicklingError(
                 "beginning of a new frame before end of current frame")
-        self.current_frame = io.BytesIO(self.file_read(frame_size))
+        data = self._chunked_file_read(frame_size)
+        if len(data) < frame_size:
+            raise EOFError
+        self.current_frame = io.BytesIO(data)
 
 
 # Tools used for pickling.
@@ -1496,12 +1513,17 @@ class _Unpickler:
     dispatch[BINBYTES8[0]] = load_binbytes8
 
     def load_bytearray8(self):
-        len, = unpack('<Q', self.read(8))
-        if len > maxsize:
+        size, = unpack('<Q', self.read(8))
+        if size > maxsize:
             raise UnpicklingError("BYTEARRAY8 exceeds system's maximum size "
                                   "of %d bytes" % maxsize)
-        b = bytearray(len)
-        self.readinto(b)
+        cursize = min(size, _MIN_READ_BUF_SIZE)
+        b = bytearray(cursize)
+        if self.readinto(b) == cursize:
+            while cursize < size and len(b) == cursize:
+                delta = min(cursize, size - cursize)
+                b += self.read(delta)
+                cursize += delta
         self.append(b)
     dispatch[BYTEARRAY8[0]] = load_bytearray8
 
index e3663e44546dedcd3f601b69cba5f7d77f735ccf..4e3468bfcde9c363958259e5b1e10ec38daa3342 100644 (file)
@@ -74,6 +74,15 @@ def count_opcode(code, pickle):
 def identity(x):
     return x
 
+def itersize(start, stop):
+    # Produce geometrical increasing sequence from start to stop
+    # (inclusively) for tests.
+    size = start
+    while size < stop:
+        yield size
+        size <<= 1
+    yield stop
+
 
 class UnseekableIO(io.BytesIO):
     def peek(self, *args):
@@ -853,9 +862,8 @@ class AbstractUnpickleTests:
                 self.assertEqual(getattr(obj, slot, None),
                                  getattr(objcopy, slot, None), msg=msg)
 
-    def check_unpickling_error(self, errors, data):
-        with self.subTest(data=data), \
-             self.assertRaises(errors):
+    def check_unpickling_error_strict(self, errors, data):
+        with self.assertRaises(errors):
             try:
                 self.loads(data)
             except BaseException as exc:
@@ -864,6 +872,10 @@ class AbstractUnpickleTests:
                           (data, exc.__class__.__name__, exc))
                 raise
 
+    def check_unpickling_error(self, errors, data):
+        with self.subTest(data=data):
+            self.check_unpickling_error_strict(errors, data)
+
     def test_load_from_data0(self):
         self.assert_is_copy(self._testdata, self.loads(DATA0))
 
@@ -1150,6 +1162,155 @@ class AbstractUnpickleTests:
         dumped = b'\x80\x03X\x01\x00\x00\x00ar\xff\xff\xff\xff.'
         self.check_unpickling_error(ValueError, dumped)
 
+    def test_too_large_put(self):
+        # Test that PUT with large id does not cause allocation of
+        # too large memo table. The C implementation uses a dict-based memo
+        # for sparse indices (when idx > memo_len * 2) instead of allocating
+        # a massive array. This test verifies large sparse indices work without
+        # causing memory exhaustion.
+        #
+        # The following simple pickle creates an empty list, memoizes it
+        # using a large index, then loads it back on the stack, builds
+        # a tuple containing 2 identical empty lists and returns it.
+        data = lambda n: (b'((lp' + str(n).encode() + b'\n' +
+                          b'g' + str(n).encode() + b'\nt.')
+        #    0: (    MARK
+        #    1: (        MARK
+        #    2: l            LIST       (MARK at 1)
+        #    3: p        PUT        1000000000000
+        #   18: g        GET        1000000000000
+        #   33: t        TUPLE      (MARK at 0)
+        #   34: .    STOP
+        for idx in [10**6, 10**9, 10**12]:
+            if idx > sys.maxsize:
+                continue
+            self.assertEqual(self.loads(data(idx)), ([],)*2)
+
+    def test_too_large_long_binput(self):
+        # Test that LONG_BINPUT with large id does not cause allocation of
+        # too large memo table. The C implementation uses a dict-based memo
+        # for sparse indices (when idx > memo_len * 2) instead of allocating
+        # a massive array. This test verifies large sparse indices work without
+        # causing memory exhaustion.
+        #
+        # The following simple pickle creates an empty list, memoizes it
+        # using a large index, then loads it back on the stack, builds
+        # a tuple containing 2 identical empty lists and returns it.
+        data = lambda n: (b'(]r' + struct.pack('<I', n) +
+                          b'j' + struct.pack('<I', n) + b't.')
+        #    0: (    MARK
+        #    1: ]        EMPTY_LIST
+        #    2: r        LONG_BINPUT 4294967295
+        #    7: j        LONG_BINGET 4294967295
+        #   12: t        TUPLE      (MARK at 0)
+        #   13: .    STOP
+        for idx in itersize(1 << 20, min(sys.maxsize, (1 << 32) - 1)):
+            self.assertEqual(self.loads(data(idx)), ([],)*2)
+
+    def _test_truncated_data(self, dumped, expected_error=None):
+        # Test that instructions to read large data without providing
+        # such amount of data do not cause large memory usage.
+        if expected_error is None:
+            expected_error = self.truncated_data_error
+        # BytesIO
+        with self.assertRaisesRegex(*expected_error):
+            self.loads(dumped)
+        if hasattr(self, 'unpickler'):
+            try:
+                with open(TESTFN, 'wb') as f:
+                    f.write(dumped)
+                # buffered file
+                with open(TESTFN, 'rb') as f:
+                    u = self.unpickler(f)
+                    with self.assertRaisesRegex(*expected_error):
+                        u.load()
+                # unbuffered file
+                with open(TESTFN, 'rb', buffering=0) as f:
+                    u = self.unpickler(f)
+                    with self.assertRaisesRegex(*expected_error):
+                        u.load()
+            finally:
+                os_helper.unlink(TESTFN)
+
+    def test_truncated_large_binstring(self):
+        data = lambda size: b'T' + struct.pack('<I', size) + b'.' * 5
+        #    0: T    BINSTRING  '....'
+        #    9: .    STOP
+        self.assertEqual(self.loads(data(4)), '....') # self-testing
+        for size in itersize(1 << 10, min(sys.maxsize - 5, (1 << 31) - 1)):
+            self._test_truncated_data(data(size))
+        self._test_truncated_data(data(1 << 31),
+            (pickle.UnpicklingError, 'truncated|exceeds|negative byte count'))
+
+    def test_truncated_large_binunicode(self):
+        data = lambda size: b'X' + struct.pack('<I', size) + b'.' * 5
+        #    0: X    BINUNICODE '....'
+        #    9: .    STOP
+        self.assertEqual(self.loads(data(4)), '....') # self-testing
+        for size in itersize(1 << 10, min(sys.maxsize - 5, (1 << 32) - 1)):
+            self._test_truncated_data(data(size))
+
+    def test_truncated_large_binbytes(self):
+        data = lambda size: b'B' + struct.pack('<I', size) + b'.' * 5
+        #    0: B    BINBYTES   b'....'
+        #    9: .    STOP
+        self.assertEqual(self.loads(data(4)), b'....') # self-testing
+        for size in itersize(1 << 10, min(sys.maxsize, 1 << 31)):
+            self._test_truncated_data(data(size))
+
+    def test_truncated_large_long4(self):
+        data = lambda size: b'\x8b' + struct.pack('<I', size) + b'.' * 5
+        #    0: \x8b LONG4      0x2e2e2e2e
+        #    9: .    STOP
+        self.assertEqual(self.loads(data(4)), 0x2e2e2e2e) # self-testing
+        for size in itersize(1 << 10, min(sys.maxsize - 5, (1 << 31) - 1)):
+            self._test_truncated_data(data(size))
+        self._test_truncated_data(data(1 << 31),
+            (pickle.UnpicklingError, 'LONG pickle has negative byte count'))
+
+    def test_truncated_large_frame(self):
+        data = lambda size: b'\x95' + struct.pack('<Q', size) + b'N.'
+        #    0: \x95 FRAME      2
+        #    9: N    NONE
+        #   10: .    STOP
+        self.assertIsNone(self.loads(data(2))) # self-testing
+        for size in itersize(1 << 10, sys.maxsize - 9):
+            self._test_truncated_data(data(size))
+        if sys.maxsize + 1 < 1 << 64:
+            self._test_truncated_data(data(sys.maxsize + 1),
+                ((OverflowError, ValueError),
+                 'FRAME length exceeds|frame size > sys.maxsize'))
+
+    def test_truncated_large_binunicode8(self):
+        data = lambda size: b'\x8d' + struct.pack('<Q', size) + b'.' * 5
+        #    0: \x8d BINUNICODE8 '....'
+        #   13: .    STOP
+        self.assertEqual(self.loads(data(4)), '....') # self-testing
+        for size in itersize(1 << 10, sys.maxsize - 9):
+            self._test_truncated_data(data(size))
+        if sys.maxsize + 1 < 1 << 64:
+            self._test_truncated_data(data(sys.maxsize + 1), self.size_overflow_error)
+
+    def test_truncated_large_binbytes8(self):
+        data = lambda size: b'\x8e' + struct.pack('<Q', size) + b'.' * 5
+        #    0: \x8e BINBYTES8  b'....'
+        #   13: .    STOP
+        self.assertEqual(self.loads(data(4)), b'....') # self-testing
+        for size in itersize(1 << 10, sys.maxsize):
+            self._test_truncated_data(data(size))
+        if sys.maxsize + 1 < 1 << 64:
+            self._test_truncated_data(data(sys.maxsize + 1), self.size_overflow_error)
+
+    def test_truncated_large_bytearray8(self):
+        data = lambda size: b'\x96' + struct.pack('<Q', size) + b'.' * 5
+        #    0: \x96 BYTEARRAY8 bytearray(b'....')
+        #   13: .    STOP
+        self.assertEqual(self.loads(data(4)), bytearray(b'....')) # self-testing
+        for size in itersize(1 << 10, sys.maxsize):
+            self._test_truncated_data(data(size))
+        if sys.maxsize + 1 < 1 << 64:
+            self._test_truncated_data(data(sys.maxsize + 1), self.size_overflow_error)
+
     def test_badly_escaped_string(self):
         self.check_unpickling_error(ValueError, b"S'\\'\n.")
 
index e2384b33345a459289b43ac0bfd8d30a42d089ca..22c70327fb061dc5e815c56b133b6d5d496a9693 100644 (file)
@@ -59,6 +59,8 @@ class PyUnpicklerTests(AbstractUnpickleTests, unittest.TestCase):
     truncated_errors = (pickle.UnpicklingError, EOFError,
                         AttributeError, ValueError,
                         struct.error, IndexError, ImportError)
+    truncated_data_error = (EOFError, '')
+    size_overflow_error = (pickle.UnpicklingError, 'exceeds')
 
     def loads(self, buf, **kwds):
         f = io.BytesIO(buf)
@@ -103,6 +105,8 @@ class InMemoryPickleTests(AbstractPickleTests, AbstractUnpickleTests,
     truncated_errors = (pickle.UnpicklingError, EOFError,
                         AttributeError, ValueError,
                         struct.error, IndexError, ImportError)
+    truncated_data_error = ((pickle.UnpicklingError, EOFError), '')
+    size_overflow_error = ((OverflowError, pickle.UnpicklingError), 'exceeds')
 
     def dumps(self, arg, protocol=None, **kwargs):
         return pickle.dumps(arg, protocol, **kwargs)
@@ -375,6 +379,8 @@ if has_c_implementation:
         unpickler = _pickle.Unpickler
         bad_stack_errors = (pickle.UnpicklingError,)
         truncated_errors = (pickle.UnpicklingError,)
+        truncated_data_error = (pickle.UnpicklingError, 'truncated')
+        size_overflow_error = (OverflowError, 'exceeds')
 
     class CPicklingErrorTests(PyPicklingErrorTests):
         pickler = _pickle.Pickler
@@ -478,7 +484,7 @@ if has_c_implementation:
                 0)  # Write buffer is cleared after every dump().
 
         def test_unpickler(self):
-            basesize = support.calcobjsize('2P2n2P 2P2n2i5P 2P3n8P2n2i')
+            basesize = support.calcobjsize('2P2n3P 2P2n2i5P 2P3n8P2n2i')
             unpickler = _pickle.Unpickler
             P = struct.calcsize('P')  # Size of memo table entry.
             n = struct.calcsize('n')  # Size of mark table entry.
diff --git a/Misc/NEWS.d/next/Library/2024-05-20-12-35-52.gh-issue-115952.J6n_Kf.rst b/Misc/NEWS.d/next/Library/2024-05-20-12-35-52.gh-issue-115952.J6n_Kf.rst
new file mode 100644 (file)
index 0000000..4c4c65d
--- /dev/null
@@ -0,0 +1,7 @@
+Fix a potential memory denial of service in the :mod:`pickle` module.
+When reading a pickled data received from untrusted source, it could cause
+an arbitrary amount of memory to be allocated, even if the code that is
+allowed to execute is restricted by overriding the
+:meth:`~pickle.Unpickler.find_class` method.
+This could have led to symptoms including a :exc:`MemoryError`, swapping, out
+of memory (OOM) killed processes or containers, or even system crashes.
index bfb2830f3893d6a220f54a8fd1603099ff346982..608598eb5a536ce2a22072c0cf03d8c6716dfbdd 100644 (file)
@@ -155,6 +155,9 @@ enum {
 
     /* Prefetch size when unpickling (disabled on unpeekable streams) */
     PREFETCH = 8192 * 16,
+    /* Data larger that this will be read in chunks, to prevent extreme
+       overallocation. */
+    MIN_READ_BUF_SIZE = 1 << 20,
 
     FRAME_SIZE_MIN = 4,
     FRAME_SIZE_TARGET = 64 * 1024,
@@ -647,10 +650,11 @@ typedef struct UnpicklerObject {
     Pdata *stack;               /* Pickle data stack, store unpickled objects. */
 
     /* The unpickler memo is just an array of PyObject *s. Using a dict
-       is unnecessary, since the keys are contiguous ints. */
+       is unnecessary, since the keys usually are contiguous ints. */
     PyObject **memo;
     size_t memo_size;       /* Capacity of the memo array */
     size_t memo_len;        /* Number of objects in the memo */
+    PyObject *memo_dict;    /* The backup memo dict for non-continuous keys. */
 
     PyObject *persistent_load;  /* persistent_load() method, can be NULL. */
     PyObject *persistent_load_attr;  /* instance attribute, can be NULL. */
@@ -1247,6 +1251,66 @@ _Unpickler_SkipConsumed(UnpicklerObject *self)
 
 static const Py_ssize_t READ_WHOLE_LINE = -1;
 
+/* Don't call it directly: use _Unpickler_ReadInto() */
+static Py_ssize_t
+_Unpickler_ReadIntoFromFile(PickleState *state, UnpicklerObject *self, char *buf,
+                            Py_ssize_t n)
+{
+    assert(n != READ_WHOLE_LINE);
+
+    if (!self->readinto) {
+        /* readinto() not supported on file-like object, fall back to read()
+         * and copy into destination buffer (bpo-39681) */
+        PyObject* len = PyLong_FromSsize_t(n);
+        if (len == NULL) {
+            return -1;
+        }
+        PyObject* data = _Pickle_FastCall(self->read, len);
+        if (data == NULL) {
+            return -1;
+        }
+        if (!PyBytes_Check(data)) {
+            PyErr_Format(PyExc_ValueError,
+                         "read() returned non-bytes object (%R)",
+                         Py_TYPE(data));
+            Py_DECREF(data);
+            return -1;
+        }
+        Py_ssize_t read_size = PyBytes_GET_SIZE(data);
+        if (read_size < n) {
+            Py_DECREF(data);
+            return bad_readline(state);
+        }
+        memcpy(buf, PyBytes_AS_STRING(data), n);
+        Py_DECREF(data);
+        return n;
+    }
+
+    /* Call readinto() into user buffer */
+    PyObject *buf_obj = PyMemoryView_FromMemory(buf, n, PyBUF_WRITE);
+    if (buf_obj == NULL) {
+        return -1;
+    }
+    PyObject *read_size_obj = _Pickle_FastCall(self->readinto, buf_obj);
+    if (read_size_obj == NULL) {
+        return -1;
+    }
+    Py_ssize_t read_size = PyLong_AsSsize_t(read_size_obj);
+    Py_DECREF(read_size_obj);
+
+    if (read_size < 0) {
+        if (!PyErr_Occurred()) {
+            PyErr_SetString(PyExc_ValueError,
+                            "readinto() returned negative size");
+        }
+        return -1;
+    }
+    if (read_size < n) {
+        return bad_readline(state);
+    }
+    return n;
+}
+
 /* If reading from a file, we need to only pull the bytes we need, since there
    may be multiple pickle objects arranged contiguously in the same input
    buffer.
@@ -1262,7 +1326,7 @@ static const Py_ssize_t READ_WHOLE_LINE = -1;
    causing the Unpickler to go back to the file for more data. Use the returned
    size to tell you how much data you can process. */
 static Py_ssize_t
-_Unpickler_ReadFromFile(UnpicklerObject *self, Py_ssize_t n)
+_Unpickler_ReadFromFile(PickleState *state, UnpicklerObject *self, Py_ssize_t n)
 {
     PyObject *data;
     Py_ssize_t read_size;
@@ -1274,6 +1338,9 @@ _Unpickler_ReadFromFile(UnpicklerObject *self, Py_ssize_t n)
 
     if (n == READ_WHOLE_LINE) {
         data = PyObject_CallNoArgs(self->readline);
+        if (data == NULL) {
+            return -1;
+        }
     }
     else {
         PyObject *len;
@@ -1302,13 +1369,29 @@ _Unpickler_ReadFromFile(UnpicklerObject *self, Py_ssize_t n)
                     return n;
             }
         }
-        len = PyLong_FromSsize_t(n);
+        Py_ssize_t cursize = Py_MIN(n, MIN_READ_BUF_SIZE);
+        len = PyLong_FromSsize_t(cursize);
         if (len == NULL)
             return -1;
         data = _Pickle_FastCall(self->read, len);
+        if (data == NULL) {
+            return -1;
+        }
+        while (cursize < n) {
+            Py_ssize_t prevsize = cursize;
+            // geometrically double the chunk size to avoid CPU DoS
+            cursize += Py_MIN(cursize, n - cursize);
+            if (_PyBytes_Resize(&data, cursize) < 0) {
+                return -1;
+            }
+            if (_Unpickler_ReadIntoFromFile(state, self,
+                    PyBytes_AS_STRING(data) + prevsize, cursize - prevsize) < 0)
+            {
+                Py_DECREF(data);
+                return -1;
+            }
+        }
     }
-    if (data == NULL)
-        return -1;
 
     read_size = _Unpickler_SetStringInput(self, data);
     Py_DECREF(data);
@@ -1335,7 +1418,7 @@ _Unpickler_ReadImpl(UnpicklerObject *self, PickleState *st, char **s, Py_ssize_t
         return bad_readline(st);
 
     /* Extend the buffer to satisfy desired size */
-    num_read = _Unpickler_ReadFromFile(self, n);
+    num_read = _Unpickler_ReadFromFile(st, self, n);
     if (num_read < 0)
         return -1;
     if (num_read < n)
@@ -1382,57 +1465,7 @@ _Unpickler_ReadInto(PickleState *state, UnpicklerObject *self, char *buf,
         return -1;
     }
 
-    if (!self->readinto) {
-        /* readinto() not supported on file-like object, fall back to read()
-         * and copy into destination buffer (bpo-39681) */
-        PyObject* len = PyLong_FromSsize_t(n);
-        if (len == NULL) {
-            return -1;
-        }
-        PyObject* data = _Pickle_FastCall(self->read, len);
-        if (data == NULL) {
-            return -1;
-        }
-        if (!PyBytes_Check(data)) {
-            PyErr_Format(PyExc_ValueError,
-                         "read() returned non-bytes object (%R)",
-                         Py_TYPE(data));
-            Py_DECREF(data);
-            return -1;
-        }
-        Py_ssize_t read_size = PyBytes_GET_SIZE(data);
-        if (read_size < n) {
-            Py_DECREF(data);
-            return bad_readline(state);
-        }
-        memcpy(buf, PyBytes_AS_STRING(data), n);
-        Py_DECREF(data);
-        return n;
-    }
-
-    /* Call readinto() into user buffer */
-    PyObject *buf_obj = PyMemoryView_FromMemory(buf, n, PyBUF_WRITE);
-    if (buf_obj == NULL) {
-        return -1;
-    }
-    PyObject *read_size_obj = _Pickle_FastCall(self->readinto, buf_obj);
-    if (read_size_obj == NULL) {
-        return -1;
-    }
-    Py_ssize_t read_size = PyLong_AsSsize_t(read_size_obj);
-    Py_DECREF(read_size_obj);
-
-    if (read_size < 0) {
-        if (!PyErr_Occurred()) {
-            PyErr_SetString(PyExc_ValueError,
-                            "readinto() returned negative size");
-        }
-        return -1;
-    }
-    if (read_size < n) {
-        return bad_readline(state);
-    }
-    return n;
+    return _Unpickler_ReadIntoFromFile(state, self, buf, n);
 }
 
 /* Read `n` bytes from the unpickler's data source, storing the result in `*s`.
@@ -1492,7 +1525,7 @@ _Unpickler_Readline(PickleState *state, UnpicklerObject *self, char **result)
     if (!self->read)
         return bad_readline(state);
 
-    num_read = _Unpickler_ReadFromFile(self, READ_WHOLE_LINE);
+    num_read = _Unpickler_ReadFromFile(state, self, READ_WHOLE_LINE);
     if (num_read < 0)
         return -1;
     if (num_read == 0 || self->input_buffer[num_read - 1] != '\n')
@@ -1525,12 +1558,35 @@ _Unpickler_ResizeMemoList(UnpicklerObject *self, size_t new_size)
 
 /* Returns NULL if idx is out of bounds. */
 static PyObject *
-_Unpickler_MemoGet(UnpicklerObject *self, size_t idx)
+_Unpickler_MemoGet(PickleState *st, UnpicklerObject *self, size_t idx)
 {
-    if (idx >= self->memo_size)
-        return NULL;
-
-    return self->memo[idx];
+    PyObject *value;
+    if (idx < self->memo_size) {
+        value = self->memo[idx];
+        if (value != NULL) {
+            return value;
+        }
+    }
+    if (self->memo_dict != NULL) {
+        PyObject *key = PyLong_FromSize_t(idx);
+        if (key == NULL) {
+            return NULL;
+        }
+        if (idx < self->memo_size) {
+            (void)PyDict_Pop(self->memo_dict, key, &value);
+            // Migrate dict entry to array for faster future access
+            self->memo[idx] = value;
+        }
+        else {
+            value = PyDict_GetItemWithError(self->memo_dict, key);
+        }
+        Py_DECREF(key);
+        if (value != NULL || PyErr_Occurred()) {
+            return value;
+        }
+    }
+    PyErr_Format(st->UnpicklingError, "Memo value not found at index %zd", idx);
+    return NULL;
 }
 
 /* Returns -1 (with an exception set) on failure, 0 on success.
@@ -1541,6 +1597,27 @@ _Unpickler_MemoPut(UnpicklerObject *self, size_t idx, PyObject *value)
     PyObject *old_item;
 
     if (idx >= self->memo_size) {
+        if (idx > self->memo_len * 2) {
+            /* The memo keys are too sparse. Use a dict instead of
+             * a continuous array for the memo. */
+            if (self->memo_dict == NULL) {
+                self->memo_dict = PyDict_New();
+                if (self->memo_dict == NULL) {
+                    return -1;
+                }
+            }
+            PyObject *key = PyLong_FromSize_t(idx);
+            if (key == NULL) {
+                return -1;
+            }
+
+            if (PyDict_SetItem(self->memo_dict, key, value) < 0) {
+                Py_DECREF(key);
+                return -1;
+            }
+            Py_DECREF(key);
+            return 0;
+        }
         if (_Unpickler_ResizeMemoList(self, idx * 2) < 0)
             return -1;
         assert(idx < self->memo_size);
@@ -1610,6 +1687,7 @@ _Unpickler_New(PyObject *module)
     self->memo = memo;
     self->memo_size = MEMO_SIZE;
     self->memo_len = 0;
+    self->memo_dict = NULL;
     self->persistent_load = NULL;
     self->persistent_load_attr = NULL;
     memset(&self->buffer, 0, sizeof(Py_buffer));
@@ -5582,13 +5660,28 @@ load_counted_binbytes(PickleState *state, UnpicklerObject *self, int nbytes)
         return -1;
     }
 
-    bytes = PyBytes_FromStringAndSize(NULL, size);
-    if (bytes == NULL)
-        return -1;
-    if (_Unpickler_ReadInto(state, self, PyBytes_AS_STRING(bytes), size) < 0) {
-        Py_DECREF(bytes);
+    Py_ssize_t cursize = Py_MIN(size, MIN_READ_BUF_SIZE);
+    Py_ssize_t prevsize = 0;
+    bytes = PyBytes_FromStringAndSize(NULL, cursize);
+    if (bytes == NULL) {
         return -1;
     }
+    while (1) {
+        if (_Unpickler_ReadInto(state, self,
+                PyBytes_AS_STRING(bytes) + prevsize, cursize - prevsize) < 0)
+        {
+            Py_DECREF(bytes);
+            return -1;
+        }
+        if (cursize >= size) {
+            break;
+        }
+        prevsize = cursize;
+        cursize += Py_MIN(cursize, size - cursize);
+        if (_PyBytes_Resize(&bytes, cursize) < 0) {
+            return -1;
+        }
+    }
 
     PDATA_PUSH(self->stack, bytes, -1);
     return 0;
@@ -5613,14 +5706,27 @@ load_counted_bytearray(PickleState *state, UnpicklerObject *self)
         return -1;
     }
 
-    bytearray = PyByteArray_FromStringAndSize(NULL, size);
+    Py_ssize_t cursize = Py_MIN(size, MIN_READ_BUF_SIZE);
+    Py_ssize_t prevsize = 0;
+    bytearray = PyByteArray_FromStringAndSize(NULL, cursize);
     if (bytearray == NULL) {
         return -1;
     }
-    char *str = PyByteArray_AS_STRING(bytearray);
-    if (_Unpickler_ReadInto(state, self, str, size) < 0) {
-        Py_DECREF(bytearray);
-        return -1;
+    while (1) {
+        if (_Unpickler_ReadInto(state, self,
+                PyByteArray_AS_STRING(bytearray) + prevsize,
+                cursize - prevsize) < 0) {
+            Py_DECREF(bytearray);
+            return -1;
+        }
+        if (cursize >= size) {
+            break;
+        }
+        prevsize = cursize;
+        cursize += Py_MIN(cursize, size - cursize);
+        if (PyByteArray_Resize(bytearray, cursize) < 0) {
+            return -1;
+        }
     }
 
     PDATA_PUSH(self->stack, bytearray, -1);
@@ -6222,20 +6328,15 @@ load_get(PickleState *st, UnpicklerObject *self)
     if (key == NULL)
         return -1;
     idx = PyLong_AsSsize_t(key);
+    Py_DECREF(key);
     if (idx == -1 && PyErr_Occurred()) {
-        Py_DECREF(key);
         return -1;
     }
 
-    value = _Unpickler_MemoGet(self, idx);
+    value = _Unpickler_MemoGet(st, self, idx);
     if (value == NULL) {
-        if (!PyErr_Occurred()) {
-           PyErr_Format(st->UnpicklingError, "Memo value not found at index %ld", idx);
-        }
-        Py_DECREF(key);
         return -1;
     }
-    Py_DECREF(key);
 
     PDATA_APPEND(self->stack, value, -1);
     return 0;
@@ -6253,13 +6354,8 @@ load_binget(PickleState *st, UnpicklerObject *self)
 
     idx = Py_CHARMASK(s[0]);
 
-    value = _Unpickler_MemoGet(self, idx);
+    value = _Unpickler_MemoGet(st, self, idx);
     if (value == NULL) {
-        PyObject *key = PyLong_FromSsize_t(idx);
-        if (key != NULL) {
-            PyErr_Format(st->UnpicklingError, "Memo value not found at index %ld", idx);
-            Py_DECREF(key);
-        }
         return -1;
     }
 
@@ -6279,13 +6375,8 @@ load_long_binget(PickleState *st, UnpicklerObject *self)
 
     idx = calc_binsize(s, 4);
 
-    value = _Unpickler_MemoGet(self, idx);
+    value = _Unpickler_MemoGet(st, self, idx);
     if (value == NULL) {
-        PyObject *key = PyLong_FromSsize_t(idx);
-        if (key != NULL) {
-            PyErr_Format(st->UnpicklingError, "Memo value not found at index %ld", idx);
-            Py_DECREF(key);
-        }
         return -1;
     }
 
@@ -7250,6 +7341,7 @@ Unpickler_clear(PyObject *op)
         self->buffer.buf = NULL;
     }
 
+    Py_CLEAR(self->memo_dict);
     _Unpickler_MemoCleanup(self);
     PyMem_Free(self->marks);
     self->marks = NULL;
@@ -7286,6 +7378,7 @@ Unpickler_traverse(PyObject *op, visitproc visit, void *arg)
     Py_VISIT(self->persistent_load);
     Py_VISIT(self->persistent_load_attr);
     Py_VISIT(self->buffers);
+    Py_VISIT(self->memo_dict);
     PyObject **memo = self->memo;
     if (memo) {
         Py_ssize_t i = self->memo_size;
diff --git a/Tools/picklebench/README.md b/Tools/picklebench/README.md
new file mode 100644 (file)
index 0000000..7d52485
--- /dev/null
@@ -0,0 +1,232 @@
+# Pickle Chunked Reading Benchmark
+
+This benchmark measures the performance impact of the chunked reading optimization in GH PR #119204 for the pickle module.
+
+## What This Tests
+
+The PR adds chunked reading (1MB chunks) to prevent memory exhaustion when unpickling large objects:
+- **BINBYTES8** - Large bytes objects (protocol 4+)
+- **BINUNICODE8** - Large strings (protocol 4+)
+- **BYTEARRAY8** - Large bytearrays (protocol 5)
+- **FRAME** - Large frames
+- **LONG4** - Large integers
+- An antagonistic mode that tests using memory denial of service inducing malicious pickles.
+
+## Quick Start
+
+```bash
+# Run full benchmark suite (1MiB → 200MiB, takes several minutes)
+build/python Tools/picklebench/memory_dos_impact.py
+
+# Test just a few sizes (quick test: 1, 10, 50 MiB)
+build/python Tools/picklebench/memory_dos_impact.py --sizes 1 10 50
+
+# Test smaller range for faster results
+build/python Tools/picklebench/memory_dos_impact.py --sizes 1 5 10
+
+# Output as markdown for reports
+build/python Tools/picklebench/memory_dos_impact.py --format markdown > results.md
+
+# Test with protocol 4 instead of 5
+build/python Tools/picklebench/memory_dos_impact.py --protocol 4
+```
+
+**Note:** Sizes are specified in MiB. Use `--sizes 1 2 5` for 1MiB, 2MiB, 5MiB objects.
+
+## Antagonistic Mode (DoS Protection Test)
+
+The `--antagonistic` flag tests **malicious pickles** that demonstrate the memory DoS protection:
+
+```bash
+# Quick DoS protection test (claims 10, 50, 100 MB but provides 1KB)
+build/python Tools/picklebench/memory_dos_impact.py --antagonistic --sizes 10 50 100
+
+# Full DoS test (default: 10, 50, 100, 500, 1000, 5000 MB claimed)
+build/python Tools/picklebench/memory_dos_impact.py --antagonistic
+```
+
+### What This Tests
+
+Unlike normal benchmarks that test **legitimate pickles**, antagonistic mode tests:
+- **Truncated BINBYTES8**: Claims 100MB but provides only 1KB (will fail to unpickle)
+- **Truncated BINUNICODE8**: Same for strings
+- **Truncated BYTEARRAY8**: Same for bytearrays
+- **Sparse memo attacks**: PUT at index 1 billion (would allocate huge array before PR)
+
+**Key difference:**
+- **Normal mode**: Tests real data, shows ~5% time overhead
+- **Antagonistic mode**: Tests malicious data, shows ~99% memory savings
+
+### Expected Results
+
+```
+100MB Claimed (actual: 1KB)
+  binbytes8_100MB_claim
+    Peak memory:     1.00 MB (claimed: 100 MB, saved: 99.00 MB, 99.0%)
+    Error: UnpicklingError  ← Expected!
+
+Summary:
+  Average claimed: 126.2 MB
+  Average peak:    0.54 MB
+  Average saved:   125.7 MB (99.6% reduction)
+Protection Status: ✓ Memory DoS attacks mitigated by chunked reading
+```
+
+**Before PR**: Would allocate full claimed size (100MB+), potentially crash
+**After PR**: Allocates 1MB chunks, fails fast with minimal memory
+
+This demonstrates the **security improvement** - protection against memory exhaustion attacks.
+
+## Before/After Comparison
+
+The benchmark includes an automatic comparison feature that runs the same tests on both a baseline and current Python build.
+
+### Option 1: Automatic Comparison (Recommended)
+
+Build both versions, then use `--baseline` to automatically compare:
+
+```bash
+# Build the baseline (main branch without PR)
+git checkout main
+mkdir -p build-main
+cd build-main && ../configure && make -j $(nproc) && cd ..
+
+# Build the current version (with PR)
+git checkout unpickle-overallocate
+mkdir -p build
+cd build && ../configure && make -j $(nproc) && cd ..
+
+# Run automatic comparison (quick test with a few sizes)
+build/python Tools/picklebench/memory_dos_impact.py \
+  --baseline build-main/python \
+  --sizes 1 10 50
+
+# Full comparison (all default sizes)
+build/python Tools/picklebench/memory_dos_impact.py \
+  --baseline build-main/python
+```
+
+The comparison output shows:
+- Side-by-side metrics (Current vs Baseline)
+- Percentage change for time and memory
+- Overall summary statistics
+
+### Interpreting Comparison Results
+
+- **Time change**: Small positive % is expected (chunking adds overhead, typically 5-10%)
+- **Memory change**: Negative % is good (chunking saves memory, especially for large objects)
+- **Trade-off**: Slightly slower but much safer against memory exhaustion attacks
+
+### Option 2: Manual Comparison
+
+Save results separately and compare manually:
+
+```bash
+# Baseline results
+build-main/python Tools/picklebench/memory_dos_impact.py --format json > baseline.json
+
+# Current results
+build/python Tools/picklebench/memory_dos_impact.py --format json > current.json
+
+# Manual comparison
+diff -y <(jq '.' baseline.json) <(jq '.' current.json)
+```
+
+## Understanding the Results
+
+### Critical Sizes
+
+The default test suite includes:
+- **< 1MiB (999,000 bytes)**: No chunking, allocates full size upfront
+- **= 1MiB (1,048,576 bytes)**: Threshold, chunking just starts
+- **> 1MiB (1,048,577 bytes)**: Chunked reading engaged
+- **1, 2, 5, 10MiB**: Show scaling behavior with chunking
+- **20, 50, 100, 200MiB**: Stress test large object handling
+
+**Note:** The full suite may require more than 16GiB of RAM.
+
+### Key Metrics
+
+- **Time (mean)**: Average unpickling time - should be similar before/after
+- **Time (stdev)**: Consistency - lower is better
+- **Peak Memory**: Maximum memory during unpickling - **expected to be LOWER after PR**
+- **Pickle Size**: Size of the serialized data on disk
+
+### Test Types
+
+| Test | What It Stresses |
+|------|------------------|
+| `bytes_*` | BINBYTES8 opcode, raw binary data |
+| `string_ascii_*` | BINUNICODE8 with simple ASCII |
+| `string_utf8_*` | BINUNICODE8 with multibyte UTF-8 (€ chars) |
+| `bytearray_*` | BYTEARRAY8 opcode (protocol 5) |
+| `list_large_items_*` | Multiple chunked reads in sequence |
+| `dict_large_values_*` | Chunking in dict deserialization |
+| `nested_*` | Realistic mixed data structures |
+| `tuple_*` | Immutable structures |
+
+## Expected Results
+
+### Before PR (main branch)
+- Single large allocation per object
+- Risk of memory exhaustion with malicious pickles
+
+### After PR (unpickle-overallocate branch)
+- Chunked allocation (1MB at a time)
+- **Slightly higher CPU time** (multiple allocations + resizing)
+- **Significantly lower peak memory** (no large pre-allocation)
+- Protection against DoS via memory exhaustion
+
+## Advanced Usage
+
+### Test Specific Sizes
+
+```bash
+# Test only 5MiB and 10MiB objects
+build/python Tools/picklebench/memory_dos_impact.py --sizes 5 10
+
+# Test large objects: 50, 100, 200 MiB
+build/python Tools/picklebench/memory_dos_impact.py --sizes 50 100 200
+```
+
+### More Iterations for Stable Timing
+
+```bash
+# Run 10 iterations per test for better statistics
+build/python Tools/picklebench/memory_dos_impact.py --iterations 10 --sizes 1 10
+```
+
+### JSON Output for Analysis
+
+```bash
+# Generate JSON for programmatic analysis
+build/python Tools/picklebench/memory_dos_impact.py --format json | python -m json.tool
+```
+
+## Interpreting Memory Results
+
+The **peak memory** metric shows the maximum memory allocated during unpickling:
+
+- **Without chunking**: Allocates full size immediately
+  - 10MB object → 10MB allocation upfront
+
+- **With chunking**: Allocates in 1MB chunks, grows geometrically
+  - 10MB object → starts with 1MB, grows: 2MB, 4MB, 8MB (final: ~10MB total)
+  - Peak is lower because allocation is incremental
+
+## Typical Results
+
+On a system with the PR applied, you should see:
+
+```
+1.00MiB Test Results
+  bytes_1.00MiB:     ~0.3ms, 1.00MiB peak  (just at threshold)
+
+2.00MiB Test Results
+  bytes_2.00MiB:     ~0.8ms, 2.00MiB peak  (chunked: 1MiB → 2MiB)
+
+10.00MiB Test Results
+  bytes_10.00MiB:    ~3-5ms, 10.00MiB peak (chunked: 1→2→4→8→10 MiB)
+```
+
+Time overhead is minimal (~10-20% for very large objects), but memory safety is significantly improved.
diff --git a/Tools/picklebench/memory_dos_impact.py b/Tools/picklebench/memory_dos_impact.py
new file mode 100755 (executable)
index 0000000..3bad658
--- /dev/null
@@ -0,0 +1,1069 @@
+#!/usr/bin/env python3
+#
+# Author: Claude Sonnet 4.5 as driven by gpshead
+#
+"""
+Microbenchmark for pickle module chunked reading performance (GH PR #119204).
+
+This script generates Python data structures that act as antagonistic load
+tests for the chunked reading code introduced to prevent memory exhaustion when
+unpickling large objects.
+
+The PR adds chunked reading (1MB chunks) for:
+- BINBYTES8 (large bytes)
+- BINUNICODE8 (large strings)
+- BYTEARRAY8 (large bytearrays)
+- FRAME (large frames)
+- LONG4 (large integers)
+
+Including an antagonistic mode that exercies memory denial of service pickles.
+
+Usage:
+    python memory_dos_impact.py --help
+"""
+
+import argparse
+import gc
+import io
+import json
+import os
+import pickle
+import statistics
+import struct
+import subprocess
+import sys
+import tempfile
+import tracemalloc
+from pathlib import Path
+from time import perf_counter
+from typing import Any, Dict, List, Tuple, Optional
+
+
+# Configuration
+MIN_READ_BUF_SIZE = 1 << 20  # 1MB - matches pickle.py _MIN_READ_BUF_SIZE
+
+# Test sizes in MiB
+DEFAULT_SIZES_MIB = [1, 2, 5, 10, 20, 50, 100, 200]
+
+# Convert to bytes, plus threshold boundary tests
+DEFAULT_SIZES = (
+    [999_000]  # Below 1MiB (no chunking)
+    + [size * (1 << 20) for size in DEFAULT_SIZES_MIB]  # MiB to bytes
+    + [1_048_577]  # Just above 1MiB (minimal chunking overhead)
+)
+DEFAULT_SIZES.sort()
+
+# Baseline benchmark configuration
+BASELINE_BENCHMARK_TIMEOUT_SECONDS = 600  # 10 minutes
+
+# Sparse memo attack test configuration
+# Format: test_name -> (memo_index, baseline_memory_note)
+SPARSE_MEMO_TESTS = {
+    "sparse_memo_1M": (1_000_000, "~8 MB array"),
+    "sparse_memo_100M": (100_000_000, "~800 MB array"),
+    "sparse_memo_1B": (1_000_000_000, "~8 GB array"),
+}
+
+
+# Utility functions
+
+def _extract_size_mb(size_key: str) -> float:
+    """Extract numeric MiB value from size_key like '10.00MB' or '1.00MiB'.
+
+    Returns 0.0 for non-numeric keys (they'll be sorted last).
+    """
+    try:
+        return float(size_key.replace('MB', '').replace('MiB', ''))
+    except ValueError:
+        return 999999.0  # Put non-numeric keys last
+
+
+def _format_output(results: Dict[str, Dict[str, Any]], format_type: str, is_antagonistic: bool) -> str:
+    """Format benchmark results according to requested format.
+
+    Args:
+        results: Benchmark results dictionary
+        format_type: Output format ('text', 'markdown', or 'json')
+        is_antagonistic: Whether these are antagonistic (DoS) test results
+
+    Returns:
+        Formatted output string
+    """
+    if format_type == 'json':
+        return Reporter.format_json(results)
+    elif is_antagonistic:
+        # Antagonistic mode uses specialized formatter for text/markdown
+        return Reporter.format_antagonistic(results)
+    elif format_type == 'text':
+        return Reporter.format_text(results)
+    elif format_type == 'markdown':
+        return Reporter.format_markdown(results)
+    else:
+        # Default to text format
+        return Reporter.format_text(results)
+
+
+class AntagonisticGenerator:
+    """Generate malicious/truncated pickles for DoS protection testing.
+
+    These pickles claim large sizes but provide minimal data, causing them to fail
+    during unpickling. They demonstrate the memory protection of chunked reading.
+    """
+
+    @staticmethod
+    def truncated_binbytes8(claimed_size: int, actual_size: int = 1024) -> bytes:
+        """BINBYTES8 claiming `claimed_size` but providing only `actual_size` bytes.
+
+        This will fail with UnpicklingError but demonstrates peak memory usage.
+        Before PR: Allocates full claimed_size
+        After PR: Allocates in 1MB chunks, fails fast
+        """
+        return b'\x8e' + struct.pack('<Q', claimed_size) + b'x' * actual_size
+
+    @staticmethod
+    def truncated_binunicode8(claimed_size: int, actual_size: int = 1024) -> bytes:
+        """BINUNICODE8 claiming `claimed_size` but providing only `actual_size` bytes."""
+        return b'\x8d' + struct.pack('<Q', claimed_size) + b'x' * actual_size
+
+    @staticmethod
+    def truncated_bytearray8(claimed_size: int, actual_size: int = 1024) -> bytes:
+        """BYTEARRAY8 claiming `claimed_size` but providing only `actual_size` bytes."""
+        return b'\x96' + struct.pack('<Q', claimed_size) + b'x' * actual_size
+
+    @staticmethod
+    def truncated_frame(claimed_size: int) -> bytes:
+        """FRAME claiming `claimed_size` but providing minimal data."""
+        return b'\x95' + struct.pack('<Q', claimed_size) + b'N.'
+
+    @staticmethod
+    def sparse_memo_attack(index: int) -> bytes:
+        """LONG_BINPUT with huge sparse index.
+
+        Before PR: Tries to allocate array with `index` slots (OOM)
+        After PR: Uses dict-based memo for sparse indices
+        """
+        return (b'(]r' + struct.pack('<I', index & 0xFFFFFFFF) +
+                b'j' + struct.pack('<I', index & 0xFFFFFFFF) + b't.')
+
+    @staticmethod
+    def multi_claim_attack(count: int, size_each: int) -> bytes:
+        """Multiple BINBYTES8 claims in sequence.
+
+        Tests that multiple large claims don't accumulate memory.
+        """
+        data = b'('  # MARK
+        for _ in range(count):
+            data += b'\x8e' + struct.pack('<Q', size_each) + b'x' * 1024
+        data += b't.'  # TUPLE + STOP
+        return data
+
+
+class DataGenerator:
+    """Generate various types of large data structures for pickle testing."""
+
+    @staticmethod
+    def large_bytes(size: int) -> bytes:
+        """Generate random bytes of specified size."""
+        return os.urandom(size)
+
+    @staticmethod
+    def large_string_ascii(size: int) -> str:
+        """Generate ASCII string of specified size."""
+        return 'x' * size
+
+    @staticmethod
+    def large_string_multibyte(size: int) -> str:
+        """Generate multibyte UTF-8 string (3 bytes per char for €)."""
+        # Each € is 3 bytes in UTF-8
+        return '€' * (size // 3)
+
+    @staticmethod
+    def large_bytearray(size: int) -> bytearray:
+        """Generate bytearray of specified size."""
+        return bytearray(os.urandom(size))
+
+    @staticmethod
+    def list_of_large_bytes(item_size: int, count: int) -> List[bytes]:
+        """Generate list containing multiple large bytes objects."""
+        return [os.urandom(item_size) for _ in range(count)]
+
+    @staticmethod
+    def dict_with_large_values(value_size: int, count: int) -> Dict[str, bytes]:
+        """Generate dict with large bytes values."""
+        return {
+            f'key_{i}': os.urandom(value_size)
+            for i in range(count)
+        }
+
+    @staticmethod
+    def nested_structure(size: int) -> Dict[str, Any]:
+        """Generate nested structure with various large objects."""
+        chunk_size = size // 4
+        return {
+            'name': 'test_object',
+            'data': {
+                'bytes': os.urandom(chunk_size),
+                'string': 's' * chunk_size,
+                'bytearray': bytearray(b'b' * chunk_size),
+            },
+            'items': [os.urandom(chunk_size // 4) for _ in range(4)],
+            'metadata': {
+                'size': size,
+                'type': 'nested',
+            },
+        }
+
+    @staticmethod
+    def tuple_of_large_objects(size: int) -> Tuple[bytes, str, bytearray]:
+        """Generate tuple with large objects (immutable, different pickle path)."""
+        chunk_size = size // 3
+        return (
+            os.urandom(chunk_size),
+            'x' * chunk_size,
+            bytearray(b'y' * chunk_size),
+        )
+
+
+class PickleBenchmark:
+    """Benchmark pickle unpickling performance and memory usage."""
+
+    def __init__(self, obj: Any, protocol: int = 5, iterations: int = 3):
+        self.obj = obj
+        self.protocol = protocol
+        self.iterations = iterations
+        self.pickle_data = pickle.dumps(obj, protocol=protocol)
+        self.pickle_size = len(self.pickle_data)
+
+    def benchmark_time(self) -> Dict[str, float]:
+        """Measure unpickling time over multiple iterations."""
+        times = []
+
+        for _ in range(self.iterations):
+            start = perf_counter()
+            result = pickle.loads(self.pickle_data)
+            elapsed = perf_counter() - start
+            times.append(elapsed)
+
+            # Verify correctness (first iteration only)
+            if len(times) == 1:
+                if result != self.obj:
+                    raise ValueError("Unpickled object doesn't match original!")
+
+        return {
+            'mean': statistics.mean(times),
+            'median': statistics.median(times),
+            'stdev': statistics.stdev(times) if len(times) > 1 else 0.0,
+            'min': min(times),
+            'max': max(times),
+        }
+
+    def benchmark_memory(self) -> int:
+        """Measure peak memory usage during unpickling."""
+        tracemalloc.start()
+
+        # Warmup
+        pickle.loads(self.pickle_data)
+
+        # Actual measurement
+        gc.collect()
+        tracemalloc.reset_peak()
+        result = pickle.loads(self.pickle_data)
+        current, peak = tracemalloc.get_traced_memory()
+
+        tracemalloc.stop()
+
+        # Verify correctness
+        if result != self.obj:
+            raise ValueError("Unpickled object doesn't match original!")
+
+        return peak
+
+    def run_all(self) -> Dict[str, Any]:
+        """Run all benchmarks and return comprehensive results."""
+        time_stats = self.benchmark_time()
+        peak_memory = self.benchmark_memory()
+
+        return {
+            'pickle_size_bytes': self.pickle_size,
+            'pickle_size_mb': self.pickle_size / (1 << 20),
+            'protocol': self.protocol,
+            'time': time_stats,
+            'memory_peak_bytes': peak_memory,
+            'memory_peak_mb': peak_memory / (1 << 20),
+            'iterations': self.iterations,
+        }
+
+
+class AntagonisticBenchmark:
+    """Benchmark antagonistic/malicious pickles that demonstrate DoS protection.
+
+    These pickles are designed to FAIL unpickling, but we measure peak memory
+    usage before the failure to demonstrate the memory protection.
+    """
+
+    def __init__(self, pickle_data: bytes, name: str):
+        self.pickle_data = pickle_data
+        self.name = name
+
+    def measure_peak_memory(self, expect_success: bool = False) -> Dict[str, Any]:
+        """Measure peak memory when attempting to unpickle antagonistic data.
+
+        Args:
+            expect_success: If True, test expects successful unpickling (e.g., sparse memo).
+                          If False, test expects failure (e.g., truncated data).
+        """
+        tracemalloc.start()
+        gc.collect()
+        tracemalloc.reset_peak()
+
+        error_type = None
+        error_msg = None
+        succeeded = False
+
+        try:
+            result = pickle.loads(self.pickle_data)
+            succeeded = True
+            if expect_success:
+                error_type = "Success (expected)"
+            else:
+                error_type = "WARNING: Expected failure but succeeded"
+        except (pickle.UnpicklingError, EOFError, ValueError, OverflowError) as e:
+            if expect_success:
+                error_type = f"UNEXPECTED FAILURE: {type(e).__name__}"
+                error_msg = str(e)[:100]
+            else:
+                # Expected failure for truncated data tests
+                error_type = type(e).__name__
+                error_msg = str(e)[:100]
+
+        current, peak = tracemalloc.get_traced_memory()
+        tracemalloc.stop()
+
+        return {
+            'test_name': self.name,
+            'peak_memory_bytes': peak,
+            'peak_memory_mb': peak / (1 << 20),
+            'error_type': error_type,
+            'error_msg': error_msg,
+            'pickle_size_bytes': len(self.pickle_data),
+            'expected_outcome': 'success' if expect_success else 'failure',
+            'succeeded': succeeded,
+        }
+
+
+class AntagonisticTestSuite:
+    """Manage a suite of antagonistic (DoS protection) tests."""
+
+    # Default sizes in MB to claim (will provide only 1KB actual data)
+    DEFAULT_ANTAGONISTIC_SIZES_MB = [10, 50, 100, 500, 1000, 5000]
+
+    def __init__(self, claimed_sizes_mb: List[int]):
+        self.claimed_sizes_mb = claimed_sizes_mb
+
+    def _run_truncated_test(
+        self,
+        test_type: str,
+        generator_func,
+        claimed_bytes: int,
+        claimed_mb: int,
+        size_key: str,
+        all_results: Dict[str, Dict[str, Any]]
+    ) -> None:
+        """Run a single truncated data test and store results.
+
+        Args:
+            test_type: Type identifier (e.g., 'binbytes8', 'binunicode8')
+            generator_func: Function to generate malicious pickle data
+            claimed_bytes: Size claimed in the pickle (bytes)
+            claimed_mb: Size claimed in the pickle (MB)
+            size_key: Result key for this size (e.g., '10MB')
+            all_results: Dictionary to store results in
+        """
+        test_name = f"{test_type}_{size_key}_claim"
+        data = generator_func(claimed_bytes)
+        bench = AntagonisticBenchmark(data, test_name)
+        result = bench.measure_peak_memory(expect_success=False)
+        result['claimed_mb'] = claimed_mb
+        all_results[size_key][test_name] = result
+
+    def run_all_tests(self) -> Dict[str, Dict[str, Any]]:
+        """Run comprehensive antagonistic test suite."""
+        all_results = {}
+
+        for claimed_mb in self.claimed_sizes_mb:
+            claimed_bytes = claimed_mb << 20
+            size_key = f"{claimed_mb}MB"
+            all_results[size_key] = {}
+
+            # Run truncated data tests (expect failure)
+            self._run_truncated_test('binbytes8', AntagonisticGenerator.truncated_binbytes8,
+                                    claimed_bytes, claimed_mb, size_key, all_results)
+            self._run_truncated_test('binunicode8', AntagonisticGenerator.truncated_binunicode8,
+                                    claimed_bytes, claimed_mb, size_key, all_results)
+            self._run_truncated_test('bytearray8', AntagonisticGenerator.truncated_bytearray8,
+                                    claimed_bytes, claimed_mb, size_key, all_results)
+            self._run_truncated_test('frame', AntagonisticGenerator.truncated_frame,
+                                    claimed_bytes, claimed_mb, size_key, all_results)
+
+        # Test 5: Sparse memo (expect success - dict-based memo works!)
+        all_results["Sparse Memo (Success Expected)"] = {}
+        for test_name, (index, baseline_note) in SPARSE_MEMO_TESTS.items():
+            data = AntagonisticGenerator.sparse_memo_attack(index)
+            bench = AntagonisticBenchmark(data, test_name)
+            result = bench.measure_peak_memory(expect_success=True)
+            result['claimed_mb'] = "N/A"
+            result['baseline_note'] = f"Without PR: {baseline_note}"
+            all_results["Sparse Memo (Success Expected)"][test_name] = result
+
+        # Test 6: Multi-claim attack (expect failure)
+        test_name = "multi_claim_10x100MB"
+        data = AntagonisticGenerator.multi_claim_attack(10, 100 << 20)
+        bench = AntagonisticBenchmark(data, test_name)
+        result = bench.measure_peak_memory(expect_success=False)
+        result['claimed_mb'] = 1000  # 10 * 100MB
+        all_results["Multi-Claim (Failure Expected)"] = {test_name: result}
+
+        return all_results
+
+
+class TestSuite:
+    """Manage a suite of benchmark tests."""
+
+    def __init__(self, sizes: List[int], protocol: int = 5, iterations: int = 3):
+        self.sizes = sizes
+        self.protocol = protocol
+        self.iterations = iterations
+        self.results = {}
+
+    def run_test(self, name: str, obj: Any) -> Dict[str, Any]:
+        """Run benchmark for a single test object."""
+        bench = PickleBenchmark(obj, self.protocol, self.iterations)
+        results = bench.run_all()
+        results['test_name'] = name
+        results['object_type'] = type(obj).__name__
+        return results
+
+    def run_all_tests(self) -> Dict[str, Dict[str, Any]]:
+        """Run comprehensive test suite across all sizes and types."""
+        all_results = {}
+
+        for size in self.sizes:
+            size_key = f"{size / (1 << 20):.2f}MB"
+            all_results[size_key] = {}
+
+            # Test 1: Large bytes object (BINBYTES8)
+            test_name = f"bytes_{size_key}"
+            obj = DataGenerator.large_bytes(size)
+            all_results[size_key][test_name] = self.run_test(test_name, obj)
+
+            # Test 2: Large ASCII string (BINUNICODE8)
+            test_name = f"string_ascii_{size_key}"
+            obj = DataGenerator.large_string_ascii(size)
+            all_results[size_key][test_name] = self.run_test(test_name, obj)
+
+            # Test 3: Large multibyte UTF-8 string
+            if size >= 3:
+                test_name = f"string_utf8_{size_key}"
+                obj = DataGenerator.large_string_multibyte(size)
+                all_results[size_key][test_name] = self.run_test(test_name, obj)
+
+            # Test 4: Large bytearray (BYTEARRAY8, protocol 5)
+            if self.protocol >= 5:
+                test_name = f"bytearray_{size_key}"
+                obj = DataGenerator.large_bytearray(size)
+                all_results[size_key][test_name] = self.run_test(test_name, obj)
+
+            # Test 5: List of large objects (repeated chunking)
+            if size >= MIN_READ_BUF_SIZE * 2:
+                test_name = f"list_large_items_{size_key}"
+                item_size = size // 5
+                obj = DataGenerator.list_of_large_bytes(item_size, 5)
+                all_results[size_key][test_name] = self.run_test(test_name, obj)
+
+            # Test 6: Dict with large values
+            if size >= MIN_READ_BUF_SIZE * 2:
+                test_name = f"dict_large_values_{size_key}"
+                value_size = size // 3
+                obj = DataGenerator.dict_with_large_values(value_size, 3)
+                all_results[size_key][test_name] = self.run_test(test_name, obj)
+
+            # Test 7: Nested structure
+            if size >= MIN_READ_BUF_SIZE:
+                test_name = f"nested_{size_key}"
+                obj = DataGenerator.nested_structure(size)
+                all_results[size_key][test_name] = self.run_test(test_name, obj)
+
+            # Test 8: Tuple (immutable)
+            if size >= 3:
+                test_name = f"tuple_{size_key}"
+                obj = DataGenerator.tuple_of_large_objects(size)
+                all_results[size_key][test_name] = self.run_test(test_name, obj)
+
+        return all_results
+
+
+class Comparator:
+    """Compare benchmark results between current and baseline interpreters."""
+
+    @staticmethod
+    def _extract_json_from_output(output: str) -> Dict[str, Dict[str, Any]]:
+        """Extract JSON data from subprocess output.
+
+        Skips any print statements before the JSON output and parses the JSON.
+
+        Args:
+            output: Raw stdout from subprocess
+
+        Returns:
+            Parsed JSON as dictionary
+
+        Raises:
+            SystemExit: If JSON cannot be found or parsed
+        """
+        output_lines = output.strip().split('\n')
+        json_start = -1
+        for i, line in enumerate(output_lines):
+            if line.strip().startswith('{'):
+                json_start = i
+                break
+
+        if json_start == -1:
+            print("Error: Could not find JSON output from baseline", file=sys.stderr)
+            sys.exit(1)
+
+        json_output = '\n'.join(output_lines[json_start:])
+        try:
+            return json.loads(json_output)
+        except json.JSONDecodeError as e:
+            print(f"Error: Could not parse baseline JSON output: {e}", file=sys.stderr)
+            sys.exit(1)
+
+    @staticmethod
+    def run_baseline_benchmark(baseline_python: str, args: argparse.Namespace) -> Dict[str, Dict[str, Any]]:
+        """Run the benchmark using the baseline Python interpreter."""
+        # Build command to run this script with baseline Python
+        cmd = [
+            baseline_python,
+            __file__,
+            '--format', 'json',
+            '--protocol', str(args.protocol),
+            '--iterations', str(args.iterations),
+        ]
+
+        if args.sizes is not None:
+            cmd.extend(['--sizes'] + [str(s) for s in args.sizes])
+
+        if args.antagonistic:
+            cmd.append('--antagonistic')
+
+        print(f"\nRunning baseline benchmark with: {baseline_python}")
+        print(f"Command: {' '.join(cmd)}\n")
+
+        try:
+            result = subprocess.run(
+                cmd,
+                capture_output=True,
+                text=True,
+                timeout=BASELINE_BENCHMARK_TIMEOUT_SECONDS,
+            )
+
+            if result.returncode != 0:
+                print(f"Error running baseline benchmark:", file=sys.stderr)
+                print(result.stderr, file=sys.stderr)
+                sys.exit(1)
+
+            # Extract and parse JSON from output
+            return Comparator._extract_json_from_output(result.stdout)
+
+        except subprocess.TimeoutExpired:
+            print("Error: Baseline benchmark timed out", file=sys.stderr)
+            sys.exit(1)
+
+    @staticmethod
+    def calculate_change(baseline_value: float, current_value: float) -> float:
+        """Calculate percentage change from baseline to current."""
+        if baseline_value == 0:
+            return 0.0
+        return ((current_value - baseline_value) / baseline_value) * 100
+
+    @staticmethod
+    def format_comparison(
+        current_results: Dict[str, Dict[str, Any]],
+        baseline_results: Dict[str, Dict[str, Any]]
+    ) -> str:
+        """Format comparison results as readable text."""
+        lines = []
+        lines.append("=" * 100)
+        lines.append("Pickle Unpickling Benchmark Comparison")
+        lines.append("=" * 100)
+        lines.append("")
+        lines.append("Legend: Current vs Baseline | % Change (+ is slower/more memory, - is faster/less memory)")
+        lines.append("")
+
+        # Sort size keys numerically
+        for size_key in sorted(current_results.keys(), key=_extract_size_mb):
+            if size_key not in baseline_results:
+                continue
+
+            lines.append(f"\n{size_key} Comparison")
+            lines.append("-" * 100)
+
+            current_tests = current_results[size_key]
+            baseline_tests = baseline_results[size_key]
+
+            for test_name in sorted(current_tests.keys()):
+                if test_name not in baseline_tests:
+                    continue
+
+                curr = current_tests[test_name]
+                base = baseline_tests[test_name]
+
+                time_change = Comparator.calculate_change(
+                    base['time']['mean'], curr['time']['mean']
+                )
+                mem_change = Comparator.calculate_change(
+                    base['memory_peak_mb'], curr['memory_peak_mb']
+                )
+
+                lines.append(f"\n  {curr['test_name']}")
+                lines.append(f"    Time:   {curr['time']['mean']*1000:6.2f}ms vs {base['time']['mean']*1000:6.2f}ms | "
+                           f"{time_change:+6.1f}%")
+                lines.append(f"    Memory: {curr['memory_peak_mb']:6.2f}MB vs {base['memory_peak_mb']:6.2f}MB | "
+                           f"{mem_change:+6.1f}%")
+
+        lines.append("\n" + "=" * 100)
+        lines.append("\nSummary:")
+
+        # Calculate overall statistics
+        time_changes = []
+        mem_changes = []
+
+        for size_key in current_results.keys():
+            if size_key not in baseline_results:
+                continue
+            for test_name in current_results[size_key].keys():
+                if test_name not in baseline_results[size_key]:
+                    continue
+                curr = current_results[size_key][test_name]
+                base = baseline_results[size_key][test_name]
+
+                time_changes.append(Comparator.calculate_change(
+                    base['time']['mean'], curr['time']['mean']
+                ))
+                mem_changes.append(Comparator.calculate_change(
+                    base['memory_peak_mb'], curr['memory_peak_mb']
+                ))
+
+        if time_changes:
+            lines.append(f"  Time change:   mean={statistics.mean(time_changes):+.1f}%, "
+                       f"median={statistics.median(time_changes):+.1f}%")
+        if mem_changes:
+            lines.append(f"  Memory change: mean={statistics.mean(mem_changes):+.1f}%, "
+                       f"median={statistics.median(mem_changes):+.1f}%")
+
+        lines.append("=" * 100)
+        return "\n".join(lines)
+
+    @staticmethod
+    def format_antagonistic_comparison(
+        current_results: Dict[str, Dict[str, Any]],
+        baseline_results: Dict[str, Dict[str, Any]]
+    ) -> str:
+        """Format antagonistic benchmark comparison results."""
+        lines = []
+        lines.append("=" * 100)
+        lines.append("Antagonistic Pickle Benchmark Comparison (Memory DoS Protection)")
+        lines.append("=" * 100)
+        lines.append("")
+        lines.append("Legend: Current vs Baseline | Memory Change (- is better, shows memory saved)")
+        lines.append("")
+        lines.append("This compares TWO types of DoS protection:")
+        lines.append("  1. Truncated data → Baseline allocates full claimed size, Current uses chunked reading")
+        lines.append("  2. Sparse memo → Baseline uses huge arrays, Current uses dict-based memo")
+        lines.append("")
+
+        # Track statistics
+        truncated_memory_changes = []
+        sparse_memory_changes = []
+
+        # Sort size keys numerically
+        for size_key in sorted(current_results.keys(), key=_extract_size_mb):
+            if size_key not in baseline_results:
+                continue
+
+            lines.append(f"\n{size_key} Comparison")
+            lines.append("-" * 100)
+
+            current_tests = current_results[size_key]
+            baseline_tests = baseline_results[size_key]
+
+            for test_name in sorted(current_tests.keys()):
+                if test_name not in baseline_tests:
+                    continue
+
+                curr = current_tests[test_name]
+                base = baseline_tests[test_name]
+
+                curr_peak_mb = curr['peak_memory_mb']
+                base_peak_mb = base['peak_memory_mb']
+                expected_outcome = curr.get('expected_outcome', 'failure')
+
+                mem_change = Comparator.calculate_change(base_peak_mb, curr_peak_mb)
+                mem_saved_mb = base_peak_mb - curr_peak_mb
+
+                lines.append(f"\n  {curr['test_name']}")
+                lines.append(f"    Memory: {curr_peak_mb:6.2f}MB vs {base_peak_mb:6.2f}MB | "
+                           f"{mem_change:+6.1f}% ({mem_saved_mb:+.2f}MB saved)")
+
+                # Track based on test type
+                if expected_outcome == 'success':
+                    sparse_memory_changes.append(mem_change)
+                    if curr.get('baseline_note'):
+                        lines.append(f"    Note: {curr['baseline_note']}")
+                else:
+                    truncated_memory_changes.append(mem_change)
+                    claimed_mb = curr.get('claimed_mb', 'N/A')
+                    if claimed_mb != 'N/A':
+                        lines.append(f"    Claimed: {claimed_mb:,}MB")
+
+                # Show status
+                curr_status = curr.get('error_type', 'Unknown')
+                base_status = base.get('error_type', 'Unknown')
+                if curr_status != base_status:
+                    lines.append(f"    Status: {curr_status} (baseline: {base_status})")
+                else:
+                    lines.append(f"    Status: {curr_status}")
+
+        lines.append("\n" + "=" * 100)
+        lines.append("\nSummary:")
+        lines.append("")
+
+        if truncated_memory_changes:
+            lines.append("  Truncated Data Protection (chunked reading):")
+            lines.append(f"    Mean memory change:   {statistics.mean(truncated_memory_changes):+.1f}%")
+            lines.append(f"    Median memory change: {statistics.median(truncated_memory_changes):+.1f}%")
+            avg_change = statistics.mean(truncated_memory_changes)
+            if avg_change < -50:
+                lines.append(f"    Result: ✓ Dramatic memory reduction ({avg_change:.1f}%) - DoS protection working!")
+            elif avg_change < 0:
+                lines.append(f"    Result: ✓ Memory reduced ({avg_change:.1f}%)")
+            else:
+                lines.append(f"    Result: ⚠ Memory increased ({avg_change:.1f}%) - unexpected!")
+            lines.append("")
+
+        if sparse_memory_changes:
+            lines.append("  Sparse Memo Protection (dict-based memo):")
+            lines.append(f"    Mean memory change:   {statistics.mean(sparse_memory_changes):+.1f}%")
+            lines.append(f"    Median memory change: {statistics.median(sparse_memory_changes):+.1f}%")
+            avg_change = statistics.mean(sparse_memory_changes)
+            if avg_change < -50:
+                lines.append(f"    Result: ✓ Dramatic memory reduction ({avg_change:.1f}%) - Dict optimization working!")
+            elif avg_change < 0:
+                lines.append(f"    Result: ✓ Memory reduced ({avg_change:.1f}%)")
+            else:
+                lines.append(f"    Result: ⚠ Memory increased ({avg_change:.1f}%) - unexpected!")
+
+        lines.append("")
+        lines.append("=" * 100)
+        return "\n".join(lines)
+
+
+class Reporter:
+    """Format and display benchmark results."""
+
+    @staticmethod
+    def format_text(results: Dict[str, Dict[str, Any]]) -> str:
+        """Format results as readable text."""
+        lines = []
+        lines.append("=" * 80)
+        lines.append("Pickle Unpickling Benchmark Results")
+        lines.append("=" * 80)
+        lines.append("")
+
+        for size_key, tests in results.items():
+            lines.append(f"\n{size_key} Test Results")
+            lines.append("-" * 80)
+
+            for test_name, data in tests.items():
+                lines.append(f"\n  Test: {data['test_name']}")
+                lines.append(f"  Type: {data['object_type']}")
+                lines.append(f"  Pickle size: {data['pickle_size_mb']:.2f} MB")
+                lines.append(f"  Time (mean): {data['time']['mean']*1000:.2f} ms")
+                lines.append(f"  Time (stdev): {data['time']['stdev']*1000:.2f} ms")
+                lines.append(f"  Peak memory: {data['memory_peak_mb']:.2f} MB")
+                lines.append(f"  Protocol: {data['protocol']}")
+
+        lines.append("\n" + "=" * 80)
+        return "\n".join(lines)
+
+    @staticmethod
+    def format_markdown(results: Dict[str, Dict[str, Any]]) -> str:
+        """Format results as markdown table."""
+        lines = []
+        lines.append("# Pickle Unpickling Benchmark Results\n")
+
+        for size_key, tests in results.items():
+            lines.append(f"## {size_key}\n")
+            lines.append("| Test | Type | Pickle Size (MB) | Time (ms) | Stdev (ms) | Peak Memory (MB) |")
+            lines.append("|------|------|------------------|-----------|------------|------------------|")
+
+            for test_name, data in tests.items():
+                lines.append(
+                    f"| {data['test_name']} | "
+                    f"{data['object_type']} | "
+                    f"{data['pickle_size_mb']:.2f} | "
+                    f"{data['time']['mean']*1000:.2f} | "
+                    f"{data['time']['stdev']*1000:.2f} | "
+                    f"{data['memory_peak_mb']:.2f} |"
+                )
+            lines.append("")
+
+        return "\n".join(lines)
+
+    @staticmethod
+    def format_json(results: Dict[str, Dict[str, Any]]) -> str:
+        """Format results as JSON."""
+        import json
+        return json.dumps(results, indent=2)
+
+    @staticmethod
+    def format_antagonistic(results: Dict[str, Dict[str, Any]]) -> str:
+        """Format antagonistic benchmark results."""
+        lines = []
+        lines.append("=" * 100)
+        lines.append("Antagonistic Pickle Benchmark (Memory DoS Protection Test)")
+        lines.append("=" * 100)
+        lines.append("")
+        lines.append("This benchmark tests TWO types of DoS protection:")
+        lines.append("  1. Truncated data attacks → Expect FAILURE with minimal memory before failure")
+        lines.append("  2. Sparse memo attacks → Expect SUCCESS with dict-based memo (vs huge array)")
+        lines.append("")
+
+        # Sort size keys numerically
+        for size_key in sorted(results.keys(), key=_extract_size_mb):
+            tests = results[size_key]
+
+            # Determine test type from first test
+            if tests:
+                first_test = next(iter(tests.values()))
+                expected_outcome = first_test.get('expected_outcome', 'failure')
+                claimed_mb = first_test.get('claimed_mb', 'N/A')
+
+                # Header varies by test type
+                if "Sparse Memo" in size_key:
+                    lines.append(f"\n{size_key}")
+                    lines.append("-" * 100)
+                elif "Multi-Claim" in size_key:
+                    lines.append(f"\n{size_key}")
+                    lines.append("-" * 100)
+                elif claimed_mb != 'N/A':
+                    lines.append(f"\n{size_key} Claimed (actual: 1KB) - Expect Failure")
+                    lines.append("-" * 100)
+                else:
+                    lines.append(f"\n{size_key}")
+                    lines.append("-" * 100)
+
+            for test_name, data in tests.items():
+                peak_mb = data['peak_memory_mb']
+                claimed = data.get('claimed_mb', 'N/A')
+                expected_outcome = data.get('expected_outcome', 'failure')
+                succeeded = data.get('succeeded', False)
+                baseline_note = data.get('baseline_note', '')
+
+                lines.append(f"  {data['test_name']}")
+
+                # Format output based on test type
+                if expected_outcome == 'success':
+                    # Sparse memo test - show success with dict
+                    status_icon = "✓" if succeeded else "✗"
+                    lines.append(f"    Peak memory: {peak_mb:8.2f} MB {status_icon}")
+                    lines.append(f"    Status: {data['error_type']}")
+                    if baseline_note:
+                        lines.append(f"    {baseline_note}")
+                else:
+                    # Truncated data test - show savings before failure
+                    if claimed != 'N/A':
+                        saved_mb = claimed - peak_mb
+                        savings_pct = (saved_mb / claimed * 100) if claimed > 0 else 0
+                        lines.append(f"    Peak memory: {peak_mb:8.2f} MB (claimed: {claimed:,} MB, saved: {saved_mb:.2f} MB, {savings_pct:.1f}%)")
+                    else:
+                        lines.append(f"    Peak memory: {peak_mb:8.2f} MB")
+                    lines.append(f"    Status: {data['error_type']}")
+
+        lines.append("\n" + "=" * 100)
+
+        # Calculate statistics by test type
+        truncated_claimed = 0
+        truncated_peak = 0
+        truncated_count = 0
+
+        sparse_peak_total = 0
+        sparse_count = 0
+
+        for size_key, tests in results.items():
+            for test_name, data in tests.items():
+                expected_outcome = data.get('expected_outcome', 'failure')
+
+                if expected_outcome == 'failure':
+                    # Truncated data test
+                    claimed = data.get('claimed_mb', 0)
+                    if claimed != 'N/A' and claimed > 0:
+                        truncated_claimed += claimed
+                        truncated_peak += data['peak_memory_mb']
+                        truncated_count += 1
+                else:
+                    # Sparse memo test
+                    sparse_peak_total += data['peak_memory_mb']
+                    sparse_count += 1
+
+        lines.append("\nSummary:")
+        lines.append("")
+
+        if truncated_count > 0:
+            avg_claimed = truncated_claimed / truncated_count
+            avg_peak = truncated_peak / truncated_count
+            avg_saved = avg_claimed - avg_peak
+            avg_savings_pct = (avg_saved / avg_claimed * 100) if avg_claimed > 0 else 0
+
+            lines.append("  Truncated Data Protection (chunked reading):")
+            lines.append(f"    Average claimed: {avg_claimed:,.1f} MB")
+            lines.append(f"    Average peak:    {avg_peak:,.2f} MB")
+            lines.append(f"    Average saved:   {avg_saved:,.2f} MB ({avg_savings_pct:.1f}% reduction)")
+            lines.append(f"    Status: ✓ Fails fast with minimal memory")
+            lines.append("")
+
+        if sparse_count > 0:
+            avg_sparse_peak = sparse_peak_total / sparse_count
+            lines.append("  Sparse Memo Protection (dict-based memo):")
+            lines.append(f"    Average peak:    {avg_sparse_peak:,.2f} MB")
+            lines.append(f"    Status: ✓ Succeeds with dict (vs GB-sized arrays without PR)")
+            lines.append(f"    Note: Compare with --baseline to see actual memory savings")
+
+        lines.append("")
+        lines.append("=" * 100)
+        return "\n".join(lines)
+
+
+def main():
+    parser = argparse.ArgumentParser(
+        description="Benchmark pickle unpickling performance for large objects"
+    )
+    parser.add_argument(
+        '--sizes',
+        type=int,
+        nargs='+',
+        default=None,
+        metavar='MiB',
+        help=f'Object sizes to test in MiB (default: {DEFAULT_SIZES_MIB})'
+    )
+    parser.add_argument(
+        '--protocol',
+        type=int,
+        default=5,
+        choices=[0, 1, 2, 3, 4, 5],
+        help='Pickle protocol version (default: 5)'
+    )
+    parser.add_argument(
+        '--iterations',
+        type=int,
+        default=3,
+        help='Number of benchmark iterations (default: 3)'
+    )
+    parser.add_argument(
+        '--format',
+        choices=['text', 'markdown', 'json'],
+        default='text',
+        help='Output format (default: text)'
+    )
+    parser.add_argument(
+        '--baseline',
+        type=str,
+        metavar='PYTHON',
+        help='Path to baseline Python interpreter for comparison (e.g., ../main-build/python)'
+    )
+    parser.add_argument(
+        '--antagonistic',
+        action='store_true',
+        help='Run antagonistic/malicious pickle tests (DoS protection benchmark)'
+    )
+
+    args = parser.parse_args()
+
+    # Handle antagonistic mode
+    if args.antagonistic:
+        # Antagonistic mode uses claimed sizes in MB, not actual data sizes
+        if args.sizes is None:
+            claimed_sizes_mb = AntagonisticTestSuite.DEFAULT_ANTAGONISTIC_SIZES_MB
+        else:
+            claimed_sizes_mb = args.sizes
+
+        print(f"Running ANTAGONISTIC pickle benchmark (DoS protection test)...")
+        print(f"Claimed sizes: {claimed_sizes_mb} MiB (actual data: 1KB each)")
+        print(f"NOTE: These pickles will FAIL to unpickle (expected)")
+        print()
+
+        # Run antagonistic benchmark suite
+        suite = AntagonisticTestSuite(claimed_sizes_mb)
+        results = suite.run_all_tests()
+
+        # Format and display results
+        if args.baseline:
+            # Verify baseline Python exists
+            baseline_path = Path(args.baseline)
+            if not baseline_path.exists():
+                print(f"Error: Baseline Python not found: {args.baseline}", file=sys.stderr)
+                return 1
+
+            # Run baseline benchmark
+            baseline_results = Comparator.run_baseline_benchmark(args.baseline, args)
+
+            # Show comparison
+            comparison_output = Comparator.format_antagonistic_comparison(results, baseline_results)
+            print(comparison_output)
+        else:
+            # Format and display results
+            output = _format_output(results, args.format, is_antagonistic=True)
+            print(output)
+
+    else:
+        # Normal mode: legitimate pickle benchmarks
+        # Convert sizes from MiB to bytes
+        if args.sizes is None:
+            sizes_bytes = DEFAULT_SIZES
+        else:
+            sizes_bytes = [size * (1 << 20) for size in args.sizes]
+
+        print(f"Running pickle benchmark with protocol {args.protocol}...")
+        print(f"Test sizes: {[f'{s/(1<<20):.2f}MiB' for s in sizes_bytes]}")
+        print(f"Iterations per test: {args.iterations}")
+        print()
+
+        # Run benchmark suite
+        suite = TestSuite(sizes_bytes, args.protocol, args.iterations)
+        results = suite.run_all_tests()
+
+        # If baseline comparison requested, run baseline and compare
+        if args.baseline:
+            # Verify baseline Python exists
+            baseline_path = Path(args.baseline)
+            if not baseline_path.exists():
+                print(f"Error: Baseline Python not found: {args.baseline}", file=sys.stderr)
+                return 1
+
+            # Run baseline benchmark
+            baseline_results = Comparator.run_baseline_benchmark(args.baseline, args)
+
+            # Show comparison
+            comparison_output = Comparator.format_comparison(results, baseline_results)
+            print(comparison_output)
+
+        else:
+            # Format and display results
+            output = _format_output(results, args.format, is_antagonistic=False)
+            print(output)
+
+    return 0
+
+
+if __name__ == '__main__':
+    sys.exit(main())