#define LVTS_MINIMUM_THRESHOLD 20000
+#define LVTS_MAX_CAL_OFFSETS 3
+#define LVTS_NUM_CAL_OFFSETS_MT7988 3
+
static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
static int golden_temp_offset;
struct lvts_sensor_data {
int dt_id;
- u8 cal_offsets[3];
+ u8 cal_offsets[LVTS_MAX_CAL_OFFSETS];
};
struct lvts_ctrl_data {
const struct lvts_ctrl_data *lvts_ctrl;
const u32 *conn_cmd;
const u32 *init_cmd;
+ int num_cal_offsets;
int num_lvts_ctrl;
int num_conn_cmd;
int num_init_cmd;
return 0;
}
+static int lvts_decode_sensor_calibration(const struct lvts_sensor_data *sensor,
+ const u8 *efuse_calibration, u32 calib_len,
+ u8 num_offsets, u32 *calib)
+{
+ int i;
+ u32 calib_val = 0;
+
+ for (i = 0; i < num_offsets; i++) {
+ u8 offset = sensor->cal_offsets[i];
+
+ if (offset >= calib_len)
+ return -EINVAL;
+ // Pack each calibration byte into the correct position
+ calib_val |= efuse_calibration[offset] << (8 * i);
+ }
+
+ *calib = calib_val;
+ return 0;
+}
+
/*
* The efuse blob values follows the sensor enumeration per thermal
* controller. The decoding of the stream is as follow:
u8 *efuse_calibration,
size_t calib_len)
{
- int i;
+ const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
+ int i, ret;
u32 gt;
/* A zero value for gt means that device has invalid efuse data */
- gt = (((u32 *)efuse_calibration)[0] >> lvts_ctrl->lvts_data->gt_calib_bit_offset) & 0xff;
+ gt = (((u32 *)efuse_calibration)[0] >> lvts_data->gt_calib_bit_offset) & 0xff;
lvts_for_each_valid_sensor(i, lvts_ctrl_data) {
const struct lvts_sensor_data *sensor =
&lvts_ctrl_data->lvts_sensor[i];
+ u32 calib = 0;
- if (sensor->cal_offsets[0] >= calib_len ||
- sensor->cal_offsets[1] >= calib_len ||
- sensor->cal_offsets[2] >= calib_len)
- return -EINVAL;
+ ret = lvts_decode_sensor_calibration(sensor, efuse_calibration,
+ calib_len,
+ lvts_data->num_cal_offsets,
+ &calib);
+ if (ret)
+ return ret;
if (gt) {
- lvts_ctrl->calibration[i] =
- (efuse_calibration[sensor->cal_offsets[0]] << 0) +
- (efuse_calibration[sensor->cal_offsets[1]] << 8) +
- (efuse_calibration[sensor->cal_offsets[2]] << 16);
+ lvts_ctrl->calibration[i] = calib;
} else if (lvts_ctrl->lvts_data->def_calibration) {
lvts_ctrl->calibration[i] = lvts_ctrl->lvts_data->def_calibration;
} else {
.temp_factor = LVTS_COEFF_A_MT7988,
.temp_offset = LVTS_COEFF_B_MT7988,
.gt_calib_bit_offset = 24,
+ .num_cal_offsets = LVTS_NUM_CAL_OFFSETS_MT7988,
};
static const struct lvts_data mt8186_lvts_data = {
.temp_offset = LVTS_COEFF_B_MT7988,
.gt_calib_bit_offset = 24,
.def_calibration = 19000,
+ .num_cal_offsets = LVTS_NUM_CAL_OFFSETS_MT7988,
};
static const struct lvts_data mt8188_lvts_mcu_data = {
.temp_offset = LVTS_COEFF_B_MT8195,
.gt_calib_bit_offset = 20,
.def_calibration = 35000,
+ .num_cal_offsets = LVTS_NUM_CAL_OFFSETS_MT7988,
};
static const struct lvts_data mt8188_lvts_ap_data = {
.temp_offset = LVTS_COEFF_B_MT8195,
.gt_calib_bit_offset = 20,
.def_calibration = 35000,
+ .num_cal_offsets = LVTS_NUM_CAL_OFFSETS_MT7988,
};
static const struct lvts_data mt8192_lvts_mcu_data = {
.temp_offset = LVTS_COEFF_B_MT8195,
.gt_calib_bit_offset = 24,
.def_calibration = 35000,
+ .num_cal_offsets = LVTS_NUM_CAL_OFFSETS_MT7988,
};
static const struct lvts_data mt8192_lvts_ap_data = {
.temp_offset = LVTS_COEFF_B_MT8195,
.gt_calib_bit_offset = 24,
.def_calibration = 35000,
+ .num_cal_offsets = LVTS_NUM_CAL_OFFSETS_MT7988,
};
static const struct lvts_data mt8195_lvts_mcu_data = {
.temp_offset = LVTS_COEFF_B_MT8195,
.gt_calib_bit_offset = 24,
.def_calibration = 35000,
+ .num_cal_offsets = LVTS_NUM_CAL_OFFSETS_MT7988,
};
static const struct lvts_data mt8195_lvts_ap_data = {
.temp_offset = LVTS_COEFF_B_MT8195,
.gt_calib_bit_offset = 24,
.def_calibration = 35000,
+ .num_cal_offsets = LVTS_NUM_CAL_OFFSETS_MT7988,
};
static const struct of_device_id lvts_of_match[] = {