#define NTP_REFID_LOCAL 0x7F7F0101UL /* 127.127.1.1 */
#define NTP_REFID_SMOOTH 0x7F7F01FFUL /* 127.127.1.255 */
+/* Structure used to save NTP measurements. time is the local time at which
+ the sample is to be considered to have been made and offset is the offset at
+ the time (positive indicates that the local clock is slow relative to the
+ source). root_delay/root_dispersion include peer_delay/peer_dispersion. */
+typedef struct {
+ struct timespec time;
+ double offset;
+ double peer_delay;
+ double peer_dispersion;
+ double root_delay;
+ double root_dispersion;
+ int stratum;
+ NTP_Leap leap;
+} NTP_Sample;
+
#endif /* GOT_NTP_H */
receive_packet(NCR_Instance inst, NTP_Local_Address *local_addr,
NTP_Local_Timestamp *rx_ts, NTP_Packet *message, int length)
{
+ NTP_Sample sample;
SST_Stats stats;
int pkt_leap, pkt_version;
double pkt_root_dispersion;
AuthenticationMode pkt_auth_mode;
- /* The local time to which the (offset, delay, dispersion) triple will
- be taken to relate. For client/server operation this is practically
- the same as either the transmit or receive time. The difference comes
- in symmetric active mode, when the receive may come minutes after the
- transmit, and this time will be midway between the two */
- struct timespec sample_time;
-
- /* The estimated offset in seconds, a positive value indicates that the local
- clock is SLOW of the remote source and a negative value indicates that the
- local clock is FAST of the remote source */
- double offset;
-
- /* The estimated peer delay, dispersion and distance */
- double delay, dispersion, distance;
-
- /* The total root delay and dispersion */
- double root_delay, root_dispersion;
-
/* The skew and estimated frequency offset relative to the remote source */
double skew, source_freq_lo, source_freq_hi;
precision = LCL_GetSysPrecisionAsQuantum() + UTI_Log2ToDouble(message->precision);
/* Calculate delay */
- delay = fabs(local_interval - remote_interval);
- if (delay < precision)
- delay = precision;
+ sample.peer_delay = fabs(local_interval - remote_interval);
+ if (sample.peer_delay < precision)
+ sample.peer_delay = precision;
/* Calculate offset. Following the NTP definition, this is negative
if we are fast of the remote source. */
- offset = UTI_DiffTimespecsToDouble(&remote_average, &local_average);
+ sample.offset = UTI_DiffTimespecsToDouble(&remote_average, &local_average);
/* Apply configured correction */
- offset += inst->offset_correction;
+ sample.offset += inst->offset_correction;
/* We treat the time of the sample as being midway through the local
measurement period. An analysis assuming constant relative
frequency and zero network delay shows this is the only possible
choice to estimate the frequency difference correctly for every
sample pair. */
- sample_time = local_average;
+ sample.time = local_average;
SST_GetFrequencyRange(stats, &source_freq_lo, &source_freq_hi);
skew = (source_freq_hi - source_freq_lo) / 2.0;
/* and then calculate peer dispersion */
- dispersion = MAX(precision, MAX(local_transmit.err, local_receive.err)) +
- skew * fabs(local_interval);
+ sample.peer_dispersion = MAX(precision, MAX(local_transmit.err, local_receive.err)) +
+ skew * fabs(local_interval);
/* If the source is an active peer, this is the minimum assumed interval
between previous two transmissions (if not constrained by minpoll) */
processing time is sane, and in interleaved symmetric mode that the
measured delay and intervals between remote timestamps don't indicate
a missed response */
- testA = delay - dispersion <= inst->max_delay && precision <= inst->max_delay &&
+ testA = sample.peer_delay - sample.peer_dispersion <= inst->max_delay &&
+ precision <= inst->max_delay &&
!(inst->mode == MODE_CLIENT && response_time > MAX_SERVER_INTERVAL) &&
!(inst->mode == MODE_ACTIVE && interleaved_packet &&
- (delay > 0.5 * prev_remote_poll_interval ||
+ (sample.peer_delay > 0.5 * prev_remote_poll_interval ||
UTI_CompareNtp64(&message->receive_ts, &message->transmit_ts) <= 0 ||
(inst->remote_poll <= inst->prev_local_poll &&
UTI_DiffTimespecsToDouble(&remote_transmit, &prev_remote_transmit) >
/* Test B requires in client mode that the ratio of the round trip delay
to the minimum one currently in the stats data register is less than an
administrator-defined value */
- testB = check_delay_ratio(inst, stats, &sample_time, delay);
+ testB = check_delay_ratio(inst, stats, &sample.time, sample.peer_delay);
/* Test C requires that the ratio of the increase in delay from the minimum
one in the stats data register to the standard deviation of the offsets
in the register is less than an administrator-defined value or the
difference between measured offset and predicted offset is larger than
the increase in delay */
- testC = check_delay_dev_ratio(inst, stats, &sample_time, offset, delay);
+ testC = check_delay_dev_ratio(inst, stats, &sample.time, sample.offset, sample.peer_delay);
/* Test D requires that the remote peer is not synchronised to us to
prevent a synchronisation loop */
pkt_refid != UTI_IPToRefid(&local_addr->ip_addr);
} else {
remote_interval = local_interval = response_time = 0.0;
- offset = delay = dispersion = 0.0;
- sample_time = rx_ts->ts;
+ sample.offset = sample.peer_delay = sample.peer_dispersion = 0.0;
+ sample.time = rx_ts->ts;
local_receive = *rx_ts;
local_transmit = inst->local_tx;
testA = testB = testC = testD = 0;
the additional tests passed */
good_packet = testA && testB && testC && testD;
- root_delay = pkt_root_delay + delay;
- root_dispersion = pkt_root_dispersion + dispersion;
- distance = dispersion + 0.5 * delay;
+ sample.root_delay = pkt_root_delay + sample.peer_delay;
+ sample.root_dispersion = pkt_root_dispersion + sample.peer_dispersion;
+ sample.stratum = MAX(message->stratum, inst->min_stratum);
+ sample.leap = (NTP_Leap)pkt_leap;
/* Update the NTP timestamps. If it's a valid packet from a synchronised
source, the timestamps may be used later when processing a packet in the
UTI_Ntp64ToString(&message->receive_ts),
UTI_Ntp64ToString(&message->transmit_ts));
DEBUG_LOG("offset=%.9f delay=%.9f dispersion=%f root_delay=%f root_dispersion=%f",
- offset, delay, dispersion, root_delay, root_dispersion);
+ sample.offset, sample.peer_delay, sample.peer_dispersion,
+ sample.root_delay, sample.root_dispersion);
DEBUG_LOG("remote_interval=%.9f local_interval=%.9f response_time=%.9f txs=%c rxs=%c",
remote_interval, local_interval, response_time,
tss_chars[local_transmit.source], tss_chars[local_receive.source]);
if (good_packet) {
/* Do this before we accumulate a new sample into the stats registers, obviously */
- estimated_offset = SST_PredictOffset(stats, &sample_time);
-
- SRC_AccumulateSample(inst->source,
- &sample_time,
- offset, delay, dispersion,
- root_delay, root_dispersion,
- MAX(message->stratum, inst->min_stratum),
- (NTP_Leap) pkt_leap);
+ estimated_offset = SST_PredictOffset(stats, &sample.time);
+ SRC_AccumulateSample(inst->source, &sample);
SRC_SelectSource(inst->source);
/* Now examine the registers. First though, if the prediction is
not even within +/- the peer distance of the peer, we are clearly
not tracking the peer at all well, so we back off the sampling
rate depending on just how bad the situation is. */
- error_in_estimate = fabs(-offset - estimated_offset);
+ error_in_estimate = fabs(-sample.offset - estimated_offset);
/* Now update the polling interval */
- adjust_poll(inst, get_poll_adj(inst, error_in_estimate, distance));
+ adjust_poll(inst, get_poll_adj(inst, error_in_estimate,
+ sample.peer_dispersion + 0.5 * sample.peer_delay));
/* If we're in burst mode, check whether the burst is completed and
revert to the previous mode */
inst->report.root_dispersion = pkt_root_dispersion;
inst->report.ref_id = pkt_refid;
UTI_Ntp64ToTimespec(&message->reference_ts, &inst->report.ref_time);
- inst->report.offset = offset;
- inst->report.peer_delay = delay;
- inst->report.peer_dispersion = dispersion;
+ inst->report.offset = sample.offset;
+ inst->report.peer_delay = sample.peer_delay;
+ inst->report.peer_dispersion = sample.peer_dispersion;
inst->report.response_time = response_time;
inst->report.jitter_asymmetry = SST_GetJitterAsymmetry(stats);
inst->report.tests = ((((((((test1 << 1 | test2) << 1 | test3) << 1 |
/* Do measurement logging */
if (logfileid != -1 && (log_raw_measurements || synced_packet)) {
LOG_FileWrite(logfileid, "%s %-15s %1c %2d %1d%1d%1d %1d%1d%1d %1d%1d%1d%d %2d %2d %4.2f %10.3e %10.3e %10.3e %10.3e %10.3e %08"PRIX32" %1d%1c %1c %1c",
- UTI_TimeToLogForm(sample_time.tv_sec),
+ UTI_TimeToLogForm(sample.time.tv_sec),
UTI_IPToString(&inst->remote_addr.ip_addr),
leap_chars[pkt_leap],
message->stratum,
test1, test2, test3, test5, test6, test7, testA, testB, testC, testD,
inst->local_poll, message->poll,
inst->poll_score,
- offset, delay, dispersion,
+ sample.offset, sample.peer_delay, sample.peer_dispersion,
pkt_root_delay, pkt_root_dispersion, pkt_refid,
NTP_LVM_TO_MODE(message->lvm), interleaved_packet ? 'I' : 'B',
tss_chars[local_transmit.source],
}
if (!(inst->driver->poll && inst->driver_polled < (1 << (inst->poll - inst->driver_poll)))) {
- double offset, dispersion;
- struct timespec sample_time;
- int sample_ok, stratum;
+ NTP_Sample sample;
+ int sample_ok;
- sample_ok = filter_get_sample(&inst->filter, &sample_time, &offset, &dispersion);
+ sample_ok = filter_get_sample(&inst->filter, &sample.time,
+ &sample.offset, &sample.peer_dispersion);
inst->driver_polled = 0;
if (sample_ok) {
+ sample.peer_delay = inst->delay;
+ sample.root_delay = sample.peer_delay;
+ sample.root_dispersion = sample.peer_dispersion;
+ sample.leap = inst->leap_status;
+
if (inst->pps_active && inst->lock_ref == -1)
/* Handle special case when PPS is used with local stratum */
- stratum = pps_stratum(inst, &sample_time);
+ sample.stratum = pps_stratum(inst, &sample.time);
else
- stratum = inst->stratum;
+ sample.stratum = inst->stratum;
SRC_UpdateReachability(inst->source, 1);
- SRC_AccumulateSample(inst->source, &sample_time, offset,
- inst->delay, dispersion, inst->delay, dispersion, stratum, inst->leap_status);
+ SRC_AccumulateSample(inst->source, &sample);
SRC_SelectSource(inst->source);
- log_sample(inst, &sample_time, 1, 0, 0.0, offset, dispersion);
+ log_sample(inst, &sample.time, 1, 0, 0.0, sample.offset, sample.peer_dispersion);
} else {
SRC_UpdateReachability(inst->source, 0);
}
This function causes the frequency estimation to be re-run for the
designated source, and the clock selection procedure to be re-run
afterwards.
-
- Parameters are described in sources.h
-
*/
-void SRC_AccumulateSample
-(SRC_Instance inst,
- struct timespec *sample_time,
- double offset,
- double peer_delay,
- double peer_dispersion,
- double root_delay,
- double root_dispersion,
- int stratum,
- NTP_Leap leap_status)
+void
+SRC_AccumulateSample(SRC_Instance inst, NTP_Sample *sample)
{
assert(initialised);
DEBUG_LOG("ip=[%s] t=%s ofs=%f del=%f disp=%f str=%d",
- source_to_string(inst), UTI_TimespecToString(sample_time), -offset,
- root_delay, root_dispersion, stratum);
+ source_to_string(inst), UTI_TimespecToString(&sample->time), -sample->offset,
+ sample->root_delay, sample->root_dispersion, sample->stratum);
if (REF_IsLeapSecondClose()) {
LOG(LOGS_INFO, "Dropping sample around leap second");
return;
}
- /* WE HAVE TO NEGATE OFFSET IN THIS CALL, IT IS HERE THAT THE SENSE OF OFFSET
- IS FLIPPED */
- SST_AccumulateSample(inst->stats, sample_time, -offset, peer_delay, peer_dispersion,
- root_delay, root_dispersion, stratum, leap_status);
+ SST_AccumulateSample(inst->stats, sample);
SST_DoNewRegression(inst->stats);
}
extern SST_Stats SRC_GetSourcestats(SRC_Instance instance);
/* This function is called by one of the source drivers when it has
- a new sample that is to be accumulated.
-
- This function causes the frequency estimation to be re-run for the
- designated source, and the clock selection procedure to be re-run
- afterwards.
-
- sample_time is the local time at which the sample is to be
- considered to have been made, in terms of doing a regression fit of
- offset against local time.
-
- offset is the offset at the time, in seconds. Positive indicates
- that the local clock is SLOW relative to the source, negative
- indicates that the local clock is FAST relative to it.
-
- root_delay and root_dispersion are in seconds, and are as per
- RFC 5905. root_dispersion only includes the peer's root dispersion
- + local sampling precision + skew dispersion accrued during the
- measurement. It is the job of the source statistics algorithms +
- track.c to add on the extra dispersion due to the residual standard
- deviation of the offsets from this source after regression, to form
- the root_dispersion field in the packets transmitted to clients or
- peers.
-
- stratum is the stratum of the source that supplied the sample.
-
- */
-
-extern void SRC_AccumulateSample(SRC_Instance instance, struct timespec *sample_time, double offset, double peer_delay, double peer_dispersion, double root_delay, double root_dispersion, int stratum, NTP_Leap leap_status);
+ a new sample that is to be accumulated */
+extern void SRC_AccumulateSample(SRC_Instance instance, NTP_Sample *sample);
/* This routine sets the source as receiving reachability updates */
extern void SRC_SetActive(SRC_Instance inst);
/* ================================================== */
void
-SST_AccumulateSample(SST_Stats inst, struct timespec *sample_time,
- double offset,
- double peer_delay, double peer_dispersion,
- double root_delay, double root_dispersion,
- int stratum, NTP_Leap leap)
+SST_AccumulateSample(SST_Stats inst, NTP_Sample *sample)
{
int n, m;
/* Make sure it's newer than the last sample */
if (inst->n_samples &&
- UTI_CompareTimespecs(&inst->sample_times[inst->last_sample], sample_time) >= 0) {
+ UTI_CompareTimespecs(&inst->sample_times[inst->last_sample], &sample->time) >= 0) {
LOG(LOGS_WARN, "Out of order sample detected, discarding history for %s",
inst->ip_addr ? UTI_IPToString(inst->ip_addr) : UTI_RefidToString(inst->refid));
SST_ResetInstance(inst);
(MAX_SAMPLES * REGRESS_RUNS_RATIO);
m = n % MAX_SAMPLES;
- inst->sample_times[n] = *sample_time;
- inst->offsets[n] = offset;
- inst->orig_offsets[m] = offset;
- inst->peer_delays[n] = peer_delay;
- inst->peer_dispersions[m] = peer_dispersion;
- inst->root_delays[m] = root_delay;
- inst->root_dispersions[m] = root_dispersion;
- inst->stratum = stratum;
- inst->leap = leap;
+ /* WE HAVE TO NEGATE OFFSET IN THIS CALL, IT IS HERE THAT THE SENSE OF OFFSET
+ IS FLIPPED */
+ inst->sample_times[n] = sample->time;
+ inst->offsets[n] = -sample->offset;
+ inst->orig_offsets[m] = -sample->offset;
+ inst->peer_delays[n] = sample->peer_delay;
+ inst->peer_dispersions[m] = sample->peer_dispersion;
+ inst->root_delays[m] = sample->root_delay;
+ inst->root_dispersions[m] = sample->root_dispersion;
+ inst->stratum = sample->stratum;
+ inst->leap = sample->leap;
if (inst->peer_delays[n] < inst->fixed_min_delay)
inst->peer_delays[n] = 2.0 * inst->fixed_min_delay - inst->peer_delays[n];
/* This function changes the reference ID and IP address */
extern void SST_SetRefid(SST_Stats inst, uint32_t refid, IPAddr *addr);
-/* This function accumulates a single sample into the statistics handler
-
- sample_time is the epoch at which the sample is to be considered to
- have been made.
-
- offset is the offset of the local clock relative to the source in
- seconds. Positive indicates that the local clock if FAST (contrary
- to the NTP parts of the software)
-
- stratum is the stratum of the source from which the sample came.
- */
-
-extern void SST_AccumulateSample(SST_Stats inst, struct timespec *sample_time, double offset, double peer_delay, double peer_dispersion, double root_delay, double root_dispersion, int stratum, NTP_Leap leap);
+/* This function accumulates a single sample into the statistics handler */
+extern void SST_AccumulateSample(SST_Stats inst, NTP_Sample *sample);
/* This function runs the linear regression operation on the data. It
finds the set of most recent samples that give the tightest
{
SRC_Instance srcs[16];
RPT_SourceReport report;
+ NTP_Sample sample;
IPAddr addr;
int i, j, k, l, samples, sel_options;
- double offset, delay, disp;
- struct timespec ts;
CNF_Initialise(0, 0);
LCL_Initialise();
samples = (i + j) % 5 + 3;
- offset = TST_GetRandomDouble(-1.0, 1.0);
+ sample.offset = TST_GetRandomDouble(-1.0, 1.0);
for (k = 0; k < samples; k++) {
- SCH_GetLastEventTime(&ts, NULL, NULL);
- UTI_AddDoubleToTimespec(&ts, TST_GetRandomDouble(k - samples, k - samples + 1), &ts);
-
- offset += TST_GetRandomDouble(-1.0e-2, 1.0e-2);
- delay = TST_GetRandomDouble(1.0e-6, 1.0e-1);
- disp = TST_GetRandomDouble(1.0e-6, 1.0e-1);
+ SCH_GetLastEventTime(&sample.time, NULL, NULL);
+ UTI_AddDoubleToTimespec(&sample.time, TST_GetRandomDouble(k - samples, k - samples + 1),
+ &sample.time);
+
+ sample.offset += TST_GetRandomDouble(-1.0e-2, 1.0e-2);
+ sample.peer_delay = TST_GetRandomDouble(1.0e-6, 1.0e-1);
+ sample.peer_dispersion = TST_GetRandomDouble(1.0e-6, 1.0e-1);
+ sample.root_delay = sample.peer_delay;
+ sample.root_dispersion = sample.peer_dispersion;
+ sample.stratum = 1;
+ sample.leap = LEAP_Normal;
DEBUG_LOG("source %d sample %d offset %f delay %f disp %f", j, k,
- offset, delay, disp);
+ sample.offset, sample.peer_delay, sample.peer_dispersion);
- SRC_AccumulateSample(srcs[j], &ts, offset, delay, disp, delay, disp,
- 1, LEAP_Normal);
+ SRC_AccumulateSample(srcs[j], &sample);
}
for (k = 0; k <= j; k++) {
}
for (j = 0; j < sizeof (srcs) / sizeof (srcs[0]); j++) {
- SRC_ReportSource(j, &report, &ts);
+ SRC_ReportSource(j, &report, &sample.time);
SRC_DestroyInstance(srcs[j]);
}
}