};
/**
- * get_prefetch_disable_bits - prefetch disable bits of supported platforms
+ * resctrl_arch_get_prefetch_disable_bits - prefetch disable bits of supported
+ * platforms
* @void: It takes no parameters.
*
* Capture the list of platforms that have been validated to support
* in the SDM.
*
* When adding a platform here also add support for its cache events to
- * measure_cycles_perf_fn()
+ * resctrl_arch_measure_l*_residency()
*
* Return:
* If platform is supported, the bits to disable hardware prefetchers, 0
* if platform is not supported.
*/
-static u64 get_prefetch_disable_bits(void)
+u64 resctrl_arch_get_prefetch_disable_bits(void)
{
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
boot_cpu_data.x86 != 6)
}
/**
- * pseudo_lock_fn - Load kernel memory into cache
+ * resctrl_arch_pseudo_lock_fn - Load kernel memory into cache
* @_rdtgrp: resource group to which pseudo-lock region belongs
*
* This is the core pseudo-locking flow.
*
* Return: 0. Waiter on waitqueue will be woken on completion.
*/
-static int pseudo_lock_fn(void *_rdtgrp)
+int resctrl_arch_pseudo_lock_fn(void *_rdtgrp)
{
struct rdtgroup *rdtgrp = _rdtgrp;
struct pseudo_lock_region *plr = rdtgrp->plr;
* Not knowing the bits to disable prefetching implies that this
* platform does not support Cache Pseudo-Locking.
*/
- prefetch_disable_bits = get_prefetch_disable_bits();
+ prefetch_disable_bits = resctrl_arch_get_prefetch_disable_bits();
if (prefetch_disable_bits == 0) {
rdt_last_cmd_puts("Pseudo-locking not supported\n");
return -EINVAL;
}
/**
- * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
+ * resctrl_arch_measure_cycles_lat_fn - Measure cycle latency to read
+ * pseudo-locked memory
* @_plr: pseudo-lock region to measure
*
* There is no deterministic way to test if a memory region is cached. One
*
* Return: 0. Waiter on waitqueue will be woken on completion.
*/
-static int measure_cycles_lat_fn(void *_plr)
+int resctrl_arch_measure_cycles_lat_fn(void *_plr)
{
struct pseudo_lock_region *plr = _plr;
u32 saved_low, saved_high;
return 0;
}
-static int measure_l2_residency(void *_plr)
+int resctrl_arch_measure_l2_residency(void *_plr)
{
struct pseudo_lock_region *plr = _plr;
struct residency_counts counts = {0};
return 0;
}
-static int measure_l3_residency(void *_plr)
+int resctrl_arch_measure_l3_residency(void *_plr)
{
struct pseudo_lock_region *plr = _plr;
struct residency_counts counts = {0};
plr->cpu = cpu;
if (sel == 1)
- thread = kthread_run_on_cpu(measure_cycles_lat_fn, plr,
- cpu, "pseudo_lock_measure/%u");
+ thread = kthread_run_on_cpu(resctrl_arch_measure_cycles_lat_fn,
+ plr, cpu, "pseudo_lock_measure/%u");
else if (sel == 2)
- thread = kthread_run_on_cpu(measure_l2_residency, plr,
- cpu, "pseudo_lock_measure/%u");
+ thread = kthread_run_on_cpu(resctrl_arch_measure_l2_residency,
+ plr, cpu, "pseudo_lock_measure/%u");
else if (sel == 3)
- thread = kthread_run_on_cpu(measure_l3_residency, plr,
- cpu, "pseudo_lock_measure/%u");
+ thread = kthread_run_on_cpu(resctrl_arch_measure_l3_residency,
+ plr, cpu, "pseudo_lock_measure/%u");
else
goto out;
plr->thread_done = 0;
- thread = kthread_run_on_cpu(pseudo_lock_fn, rdtgrp,
+ thread = kthread_run_on_cpu(resctrl_arch_pseudo_lock_fn, rdtgrp,
plr->cpu, "pseudo_lock/%u");
if (IS_ERR(thread)) {
ret = PTR_ERR(thread);