--- /dev/null
+/*-*************************************
+* Dependencies
+***************************************/
+#include <stdio.h> /* fprintf */
+#include <stdlib.h> /* malloc, free, qsort */
+#include <string.h> /* memset */
+#include <time.h> /* clock */
+#include "mem.h" /* read */
+#include "pool.h"
+#include "threading.h"
+#include "fastCover.h"
+#include "zstd_internal.h" /* includes zstd.h */
+#include "zdict.h"
+
+
+/*-*************************************
+* Constants
+***************************************/
+#define FASTCOVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((U32)-1) : ((U32)1 GB))
+#define FASTCOVER_MAX_F 32
+#define DEFAULT_SPLITPOINT 1.0
+
+/*-*************************************
+* Console display
+***************************************/
+static int g_displayLevel = 2;
+#define DISPLAY(...) \
+ { \
+ fprintf(stderr, __VA_ARGS__); \
+ fflush(stderr); \
+ }
+#define LOCALDISPLAYLEVEL(displayLevel, l, ...) \
+ if (displayLevel >= l) { \
+ DISPLAY(__VA_ARGS__); \
+ } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
+#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
+
+#define LOCALDISPLAYUPDATE(displayLevel, l, ...) \
+ if (displayLevel >= l) { \
+ if ((clock() - g_time > refreshRate) || (displayLevel >= 4)) { \
+ g_time = clock(); \
+ DISPLAY(__VA_ARGS__); \
+ } \
+ }
+#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
+static const clock_t refreshRate = CLOCKS_PER_SEC * 15 / 100;
+static clock_t g_time = 0;
+
+
+/*-*************************************
+* Hash Function
+***************************************/
+static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
+static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
+static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
+
+/**
+ * Hash the 8-byte value pointed to by p and mod 2^f
+ */
+static size_t FASTCOVER_hash8PtrToIndex(const void* p, U32 h) {
+ return ZSTD_hash8Ptr(p, h) & ((1 << h) - 1);
+}
+
+
+/*-*************************************
+* Context
+***************************************/
+typedef struct {
+ const BYTE *samples;
+ size_t *offsets;
+ const size_t *samplesSizes;
+ size_t nbSamples;
+ size_t nbTrainSamples;
+ size_t nbTestSamples;
+ size_t nbDmers;
+ U32 *freqs;
+ unsigned d;
+} FASTCOVER_ctx_t;
+
+
+/*-*************************************
+* Helper functions
+***************************************/
+/**
+ * Returns the sum of the sample sizes.
+ */
+static size_t FASTCOVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
+ size_t sum = 0;
+ unsigned i;
+ for (i = 0; i < nbSamples; ++i) {
+ sum += samplesSizes[i];
+ }
+ return sum;
+}
+
+
+/*-*************************************
+* fast functions
+***************************************/
+/**
+ * A segment is a range in the source as well as the score of the segment.
+ */
+typedef struct {
+ U32 begin;
+ U32 end;
+ U32 score;
+} FASTCOVER_segment_t;
+
+
+/**
+ * Selects the best segment in an epoch.
+ * Segments of are scored according to the function:
+ *
+ * Let F(d) be the frequency of all dmers with hash value d.
+ * Let S_i be hash value of the dmer at position i of segment S which has length k.
+ *
+ * Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
+ *
+ * Once the dmer with hash value d is in the dictionay we set F(d) = F(d)/2.
+ */
+static FASTCOVER_segment_t FASTCOVER_selectSegment(const FASTCOVER_ctx_t *ctx,
+ U32 *freqs, U32 begin,U32 end,
+ ZDICT_fastCover_params_t parameters) {
+ /* Constants */
+ const U32 k = parameters.k;
+ const U32 d = parameters.d;
+ const U32 dmersInK = k - d + 1;
+ /* Try each segment (activeSegment) and save the best (bestSegment) */
+ FASTCOVER_segment_t bestSegment = {0, 0, 0};
+ FASTCOVER_segment_t activeSegment;
+ /* Reset the activeDmers in the segment */
+ /* The activeSegment starts at the beginning of the epoch. */
+ activeSegment.begin = begin;
+ activeSegment.end = begin;
+ activeSegment.score = 0;
+ /* Slide the activeSegment through the whole epoch.
+ * Save the best segment in bestSegment.
+ */
+ while (activeSegment.end < end) {
+ /* Get hash value of current dmer */
+ size_t index = FASTCOVER_hash8PtrToIndex(ctx->samples + activeSegment.end, parameters.f);
+ /* Add frequency of this index to score */
+ activeSegment.score += freqs[index];
+ /* Increment end of segment */
+ activeSegment.end += 1;
+ /* If the window is now too large, drop the first position */
+ if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
+ /* Get hash value of the dmer to be eliminated from active segment */
+ size_t delIndex = FASTCOVER_hash8PtrToIndex(ctx->samples + activeSegment.begin, parameters.f);
+ /* Subtract frequency of this index from score */
+ activeSegment.score -= freqs[delIndex];
+ /* Increment start of segment */
+ activeSegment.begin += 1;
+ }
+ /* If this segment is the best so far save it */
+ if (activeSegment.score > bestSegment.score) {
+ bestSegment = activeSegment;
+ }
+ }
+ {
+ /* Trim off the zero frequency head and tail from the segment. */
+ U32 newBegin = bestSegment.end;
+ U32 newEnd = bestSegment.begin;
+ U32 pos;
+ for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
+ size_t index = FASTCOVER_hash8PtrToIndex(ctx->samples + pos, parameters.f);
+ U32 freq = freqs[index];
+ if (freq != 0) {
+ newBegin = MIN(newBegin, pos);
+ newEnd = pos + 1;
+ }
+ }
+ bestSegment.begin = newBegin;
+ bestSegment.end = newEnd;
+ }
+ {
+ /* Half the frequency of hash value of each dmer covered by the chosen segment. */
+ U32 pos;
+ for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
+ size_t i = FASTCOVER_hash8PtrToIndex(ctx->samples + pos, parameters.f);
+ freqs[i] = freqs[i]/2;
+ }
+ }
+ return bestSegment;
+}
+
+/**
+ * Check the validity of the parameters.
+ * Returns non-zero if the parameters are valid and 0 otherwise.
+ */
+static int FASTCOVER_checkParameters(ZDICT_fastCover_params_t parameters,
+ size_t maxDictSize) {
+ /* k, d, and f are required parameters */
+ if (parameters.d == 0 || parameters.k == 0 || parameters.f == 0) {
+ return 0;
+ }
+ /* 0 < f <= FASTCOVER_MAX_F */
+ if (parameters.f > FASTCOVER_MAX_F) {
+ return 0;
+ }
+ /* k <= maxDictSize */
+ if (parameters.k > maxDictSize) {
+ return 0;
+ }
+ /* d <= k */
+ if (parameters.d > parameters.k) {
+ return 0;
+ }
+ /* 0 < splitPoint <= 1 */
+ if (parameters.splitPoint <= 0 || parameters.splitPoint > 1) {
+ return 0;
+ }
+ return 1;
+}
+
+
+/**
+ * Clean up a context initialized with `FASTCOVER_ctx_init()`.
+ */
+static void FASTCOVER_ctx_destroy(FASTCOVER_ctx_t *ctx) {
+ if (!ctx) {
+ return;
+ }
+ if (ctx->freqs) {
+ free(ctx->freqs);
+ ctx->freqs = NULL;
+ }
+ if (ctx->offsets) {
+ free(ctx->offsets);
+ ctx->offsets = NULL;
+ }
+}
+
+/**
+ * Calculate for frequency of hash value of each dmer in ctx->samples
+ */
+static void FASTCOVER_getFrequency(U32 *freqs, unsigned f, FASTCOVER_ctx_t *ctx){
+ /* inCurrSample keeps track of this hash value has already be seen in previous dmers in the same sample*/
+ size_t* inCurrSample = (size_t *)malloc((1<<f)*sizeof(size_t));
+ size_t start; /* start of current dmer */
+ for (unsigned i = 0; i < ctx->nbTrainSamples; i++) {
+ memset(inCurrSample, 0, (1 << f)); /* Reset inCurrSample for each sample */
+ size_t currSampleStart = ctx->offsets[i];
+ size_t currSampleEnd = ctx->offsets[i+1];
+ start = currSampleStart;
+ while (start + f < currSampleEnd) {
+ size_t dmerIndex = FASTCOVER_hash8PtrToIndex(ctx->samples + start, f);
+ /* if no dmer with same hash value has been seen in current sample */
+ if (inCurrSample[dmerIndex] == 0) {
+ inCurrSample[dmerIndex]++;
+ freqs[dmerIndex]++;
+ }
+ start++;
+ }
+ }
+ free(inCurrSample);
+}
+
+/**
+ * Prepare a context for dictionary building.
+ * The context is only dependent on the parameter `d` and can used multiple
+ * times.
+ * Returns 1 on success or zero on error.
+ * The context must be destroyed with `FASTCOVER_ctx_destroy()`.
+ */
+static int FASTCOVER_ctx_init(FASTCOVER_ctx_t *ctx, const void *samplesBuffer,
+ const size_t *samplesSizes, unsigned nbSamples,
+ unsigned d, double splitPoint, unsigned f) {
+ const BYTE *const samples = (const BYTE *)samplesBuffer;
+ const size_t totalSamplesSize = FASTCOVER_sum(samplesSizes, nbSamples);
+ /* Split samples into testing and training sets */
+ const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
+ const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
+ const size_t trainingSamplesSize = splitPoint < 1.0 ? FASTCOVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
+ const size_t testSamplesSize = splitPoint < 1.0 ? FASTCOVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
+ /* Checks */
+ if (totalSamplesSize < MAX(d, sizeof(U64)) ||
+ totalSamplesSize >= (size_t)FASTCOVER_MAX_SAMPLES_SIZE) {
+ DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
+ (U32)(totalSamplesSize>>20), (FASTCOVER_MAX_SAMPLES_SIZE >> 20));
+ return 0;
+ }
+ /* Check if there are at least 5 training samples */
+ if (nbTrainSamples < 5) {
+ DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples);
+ return 0;
+ }
+ /* Check if there's testing sample */
+ if (nbTestSamples < 1) {
+ DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples);
+ return 0;
+ }
+ /* Zero the context */
+ memset(ctx, 0, sizeof(*ctx));
+ DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
+ (U32)trainingSamplesSize);
+ DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
+ (U32)testSamplesSize);
+
+ ctx->samples = samples;
+ ctx->samplesSizes = samplesSizes;
+ ctx->nbSamples = nbSamples;
+ ctx->nbTrainSamples = nbTrainSamples;
+ ctx->nbTestSamples = nbTestSamples;
+ ctx->nbDmers = trainingSamplesSize - d + 1;
+ ctx->d = d;
+
+ /* The offsets of each file */
+ ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
+ if (!ctx->offsets) {
+ DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
+ FASTCOVER_ctx_destroy(ctx);
+ return 0;
+ }
+
+ /* Fill offsets from the samplesSizes */
+ {
+ U32 i;
+ ctx->offsets[0] = 0;
+ for (i = 1; i <= nbSamples; ++i) {
+ ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
+ }
+ }
+
+ /* Initialize frequency array of size 2^f */
+ ctx->freqs =(U32 *)malloc((1 << f) * sizeof(U32));
+ memset(ctx->freqs, 0, (1 << f) * sizeof(U32));
+
+ DISPLAYLEVEL(2, "Computing frequencies\n");
+ FASTCOVER_getFrequency(ctx->freqs, f, ctx);
+
+ return 1;
+}
+
+
+/**
+ * Given the prepared context build the dictionary.
+ */
+static size_t FASTCOVER_buildDictionary(const FASTCOVER_ctx_t *ctx, U32 *freqs,
+ void *dictBuffer,
+ size_t dictBufferCapacity,
+ ZDICT_fastCover_params_t parameters){
+ BYTE *const dict = (BYTE *)dictBuffer;
+ size_t tail = dictBufferCapacity;
+ /* Divide the data up into epochs of equal size.
+ * We will select at least one segment from each epoch.
+ */
+ const U32 epochs = MAX(1, (U32)(dictBufferCapacity / parameters.k));
+ const U32 epochSize = (U32)(ctx->nbDmers / epochs);
+ size_t epoch;
+ DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n", epochs,
+ epochSize);
+ /* Loop through the epochs until there are no more segments or the dictionary
+ * is full.
+ */
+ for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs) {
+ const U32 epochBegin = (U32)(epoch * epochSize);
+ const U32 epochEnd = epochBegin + epochSize;
+ size_t segmentSize;
+ /* Select a segment */
+ FASTCOVER_segment_t segment = FASTCOVER_selectSegment(
+ ctx, freqs, epochBegin, epochEnd, parameters);
+
+ /* If the segment covers no dmers, then we are out of content */
+ if (segment.score == 0) {
+ break;
+ }
+
+ /* Trim the segment if necessary and if it is too small then we are done */
+ segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
+ if (segmentSize < parameters.d) {
+ break;
+ }
+
+ /* We fill the dictionary from the back to allow the best segments to be
+ * referenced with the smallest offsets.
+ */
+ tail -= segmentSize;
+ memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
+ DISPLAYUPDATE(
+ 2, "\r%u%% ",
+ (U32)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
+ }
+ DISPLAYLEVEL(2, "\r%79s\r", "");
+ return tail;
+}
+
+
+/**
+ * FASTCOVER_best_t is used for two purposes:
+ * 1. Synchronizing threads.
+ * 2. Saving the best parameters and dictionary.
+ *
+ * All of the methods except FASTCOVER_best_init() are thread safe if zstd is
+ * compiled with multithreaded support.
+ */
+typedef struct fast_best_s {
+ ZSTD_pthread_mutex_t mutex;
+ ZSTD_pthread_cond_t cond;
+ size_t liveJobs;
+ void *dict;
+ size_t dictSize;
+ ZDICT_fastCover_params_t parameters;
+ size_t compressedSize;
+} FASTCOVER_best_t;
+
+/**
+ * Initialize the `FASTCOVER_best_t`.
+ */
+static void FASTCOVER_best_init(FASTCOVER_best_t *best) {
+ if (best==NULL) return; /* compatible with init on NULL */
+ (void)ZSTD_pthread_mutex_init(&best->mutex, NULL);
+ (void)ZSTD_pthread_cond_init(&best->cond, NULL);
+ best->liveJobs = 0;
+ best->dict = NULL;
+ best->dictSize = 0;
+ best->compressedSize = (size_t)-1;
+ memset(&best->parameters, 0, sizeof(best->parameters));
+}
+
+/**
+ * Wait until liveJobs == 0.
+ */
+static void FASTCOVER_best_wait(FASTCOVER_best_t *best) {
+ if (!best) {
+ return;
+ }
+ ZSTD_pthread_mutex_lock(&best->mutex);
+ while (best->liveJobs != 0) {
+ ZSTD_pthread_cond_wait(&best->cond, &best->mutex);
+ }
+ ZSTD_pthread_mutex_unlock(&best->mutex);
+}
+
+/**
+ * Call FASTCOVER_best_wait() and then destroy the FASTCOVER_best_t.
+ */
+static void FASTCOVER_best_destroy(FASTCOVER_best_t *best) {
+ if (!best) {
+ return;
+ }
+ FASTCOVER_best_wait(best);
+ if (best->dict) {
+ free(best->dict);
+ }
+ ZSTD_pthread_mutex_destroy(&best->mutex);
+ ZSTD_pthread_cond_destroy(&best->cond);
+}
+
+/**
+ * Called when a thread is about to be launched.
+ * Increments liveJobs.
+ */
+static void FASTCOVER_best_start(FASTCOVER_best_t *best) {
+ if (!best) {
+ return;
+ }
+ ZSTD_pthread_mutex_lock(&best->mutex);
+ ++best->liveJobs;
+ ZSTD_pthread_mutex_unlock(&best->mutex);
+}
+
+/**
+ * Called when a thread finishes executing, both on error or success.
+ * Decrements liveJobs and signals any waiting threads if liveJobs == 0.
+ * If this dictionary is the best so far save it and its parameters.
+ */
+static void FASTCOVER_best_finish(FASTCOVER_best_t *best, size_t compressedSize,
+ ZDICT_fastCover_params_t parameters, void *dict,
+ size_t dictSize) {
+ if (!best) {
+ return;
+ }
+ {
+ size_t liveJobs;
+ ZSTD_pthread_mutex_lock(&best->mutex);
+ --best->liveJobs;
+ liveJobs = best->liveJobs;
+ /* If the new dictionary is better */
+ if (compressedSize < best->compressedSize) {
+ /* Allocate space if necessary */
+ if (!best->dict || best->dictSize < dictSize) {
+ if (best->dict) {
+ free(best->dict);
+ }
+ best->dict = malloc(dictSize);
+ if (!best->dict) {
+ best->compressedSize = ERROR(GENERIC);
+ best->dictSize = 0;
+ return;
+ }
+ }
+ /* Save the dictionary, parameters, and size */
+ memcpy(best->dict, dict, dictSize);
+ best->dictSize = dictSize;
+ best->parameters = parameters;
+ best->compressedSize = compressedSize;
+ }
+ ZSTD_pthread_mutex_unlock(&best->mutex);
+ if (liveJobs == 0) {
+ ZSTD_pthread_cond_broadcast(&best->cond);
+ }
+ }
+}
+
+/**
+ * Parameters for FASTCOVER_tryParameters().
+ */
+typedef struct FASTCOVER_tryParameters_data_s {
+ const FASTCOVER_ctx_t *ctx;
+ FASTCOVER_best_t *best;
+ size_t dictBufferCapacity;
+ ZDICT_fastCover_params_t parameters;
+} FASTCOVER_tryParameters_data_t;
+
+/**
+ * Tries a set of parameters and updates the FASTCOVER_best_t with the results.
+ * This function is thread safe if zstd is compiled with multithreaded support.
+ * It takes its parameters as an *OWNING* opaque pointer to support threading.
+ */
+static void FASTCOVER_tryParameters(void *opaque) {
+ /* Save parameters as local variables */
+ FASTCOVER_tryParameters_data_t *const data = (FASTCOVER_tryParameters_data_t *)opaque;
+ const FASTCOVER_ctx_t *const ctx = data->ctx;
+ const ZDICT_fastCover_params_t parameters = data->parameters;
+ size_t dictBufferCapacity = data->dictBufferCapacity;
+ size_t totalCompressedSize = ERROR(GENERIC);
+ /* Allocate space for hash table, dict, and freqs */
+ BYTE *const dict = (BYTE * const)malloc(dictBufferCapacity);
+ U32 *freqs = (U32*) malloc((1 << parameters.f) * sizeof(U32));
+ if (!dict || !freqs) {
+ DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
+ goto _cleanup;
+ }
+ /* Copy the frequencies because we need to modify them */
+ memcpy(freqs, ctx->freqs, (1 << parameters.f) * sizeof(U32));
+ /* Build the dictionary */
+ {
+ const size_t tail = FASTCOVER_buildDictionary(ctx, freqs, dict,
+ dictBufferCapacity, parameters);
+
+ dictBufferCapacity = ZDICT_finalizeDictionary(
+ dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
+ ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples,
+ parameters.zParams);
+ if (ZDICT_isError(dictBufferCapacity)) {
+ DISPLAYLEVEL(1, "Failed to finalize dictionary\n");
+ goto _cleanup;
+ }
+ }
+ /* Check total compressed size */
+ {
+ /* Pointers */
+ ZSTD_CCtx *cctx;
+ ZSTD_CDict *cdict;
+ void *dst;
+ /* Local variables */
+ size_t dstCapacity;
+ size_t i;
+ /* Allocate dst with enough space to compress the maximum sized sample */
+ {
+ size_t maxSampleSize = 0;
+ i = parameters.splitPoint < 1.0 ? ctx->nbTrainSamples : 0;
+ for (; i < ctx->nbSamples; ++i) {
+ maxSampleSize = MAX(ctx->samplesSizes[i], maxSampleSize);
+ }
+ dstCapacity = ZSTD_compressBound(maxSampleSize);
+ dst = malloc(dstCapacity);
+ }
+ /* Create the cctx and cdict */
+ cctx = ZSTD_createCCtx();
+ cdict = ZSTD_createCDict(dict, dictBufferCapacity,
+ parameters.zParams.compressionLevel);
+ if (!dst || !cctx || !cdict) {
+ goto _compressCleanup;
+ }
+ /* Compress each sample and sum their sizes (or error) */
+ totalCompressedSize = dictBufferCapacity;
+ i = parameters.splitPoint < 1.0 ? ctx->nbTrainSamples : 0;
+ for (; i < ctx->nbSamples; ++i) {
+ const size_t size = ZSTD_compress_usingCDict(
+ cctx, dst, dstCapacity, ctx->samples + ctx->offsets[i],
+ ctx->samplesSizes[i], cdict);
+ if (ZSTD_isError(size)) {
+ totalCompressedSize = ERROR(GENERIC);
+ goto _compressCleanup;
+ }
+ totalCompressedSize += size;
+ }
+ _compressCleanup:
+ ZSTD_freeCCtx(cctx);
+ ZSTD_freeCDict(cdict);
+ if (dst) {
+ free(dst);
+ }
+ }
+
+_cleanup:
+ FASTCOVER_best_finish(data->best, totalCompressedSize, parameters, dict,
+ dictBufferCapacity);
+ free(data);
+ if (dict) {
+ free(dict);
+ }
+ if (freqs) {
+ free(freqs);
+ }
+}
+
+ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_fastCover(
+ void *dictBuffer, size_t dictBufferCapacity, const void *samplesBuffer,
+ const size_t *samplesSizes, unsigned nbSamples,
+ ZDICT_fastCover_params_t *parameters) {
+ /* constants */
+ const unsigned nbThreads = parameters->nbThreads;
+ const double splitPoint =
+ parameters->splitPoint <= 0.0 ? DEFAULT_SPLITPOINT : parameters->splitPoint;
+ const unsigned kMinD = parameters->d == 0 ? 8 : parameters->d;
+ const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
+ const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
+ const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
+ const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
+ const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
+ const unsigned kIterations =
+ (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
+ const unsigned f = parameters->f == 0 ? 23 : parameters->f;
+
+ /* Local variables */
+ const int displayLevel = parameters->zParams.notificationLevel;
+ unsigned iteration = 1;
+ unsigned d;
+ unsigned k;
+ FASTCOVER_best_t best;
+ POOL_ctx *pool = NULL;
+
+ /* Checks */
+ if (splitPoint <= 0 || splitPoint > 1) {
+ LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
+ return ERROR(GENERIC);
+ }
+ if (kMinK < kMaxD || kMaxK < kMinK) {
+ LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
+ return ERROR(GENERIC);
+ }
+ if (nbSamples == 0) {
+ DISPLAYLEVEL(1, "fast must have at least one input file\n");
+ return ERROR(GENERIC);
+ }
+ if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
+ DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
+ ZDICT_DICTSIZE_MIN);
+ return ERROR(dstSize_tooSmall);
+ }
+ if (nbThreads > 1) {
+ pool = POOL_create(nbThreads, 1);
+ if (!pool) {
+ return ERROR(memory_allocation);
+ }
+ }
+ /* Initialization */
+ FASTCOVER_best_init(&best);
+ /* Turn down global display level to clean up display at level 2 and below */
+ g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
+ /* Loop through d first because each new value needs a new context */
+ LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
+ kIterations);
+ for (d = kMinD; d <= kMaxD; d += 2) {
+ /* Initialize the context for this value of d */
+ FASTCOVER_ctx_t ctx;
+ LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
+ if (!FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint, f)) {
+ LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
+ FASTCOVER_best_destroy(&best);
+ POOL_free(pool);
+ return ERROR(GENERIC);
+ }
+ /* Loop through k reusing the same context */
+ for (k = kMinK; k <= kMaxK; k += kStepSize) {
+ /* Prepare the arguments */
+ FASTCOVER_tryParameters_data_t *data = (FASTCOVER_tryParameters_data_t *)malloc(
+ sizeof(FASTCOVER_tryParameters_data_t));
+ LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
+ if (!data) {
+ LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
+ FASTCOVER_best_destroy(&best);
+ FASTCOVER_ctx_destroy(&ctx);
+ POOL_free(pool);
+ return ERROR(GENERIC);
+ }
+ data->ctx = &ctx;
+ data->best = &best;
+ data->dictBufferCapacity = dictBufferCapacity;
+ data->parameters = *parameters;
+ data->parameters.k = k;
+ data->parameters.d = d;
+ data->parameters.f = f;
+ data->parameters.splitPoint = splitPoint;
+ data->parameters.steps = kSteps;
+ data->parameters.zParams.notificationLevel = g_displayLevel;
+ /* Check the parameters */
+ if (!FASTCOVER_checkParameters(data->parameters, dictBufferCapacity)) {
+ DISPLAYLEVEL(1, "fastCover parameters incorrect\n");
+ free(data);
+ continue;
+ }
+ /* Call the function and pass ownership of data to it */
+ FASTCOVER_best_start(&best);
+ if (pool) {
+ POOL_add(pool, &FASTCOVER_tryParameters, data);
+ } else {
+ FASTCOVER_tryParameters(data);
+ }
+ /* Print status */
+ LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ",
+ (U32)((iteration * 100) / kIterations));
+ ++iteration;
+ }
+ FASTCOVER_best_wait(&best);
+ FASTCOVER_ctx_destroy(&ctx);
+ }
+ LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
+ /* Fill the output buffer and parameters with output of the best parameters */
+ {
+ const size_t dictSize = best.dictSize;
+ if (ZSTD_isError(best.compressedSize)) {
+ const size_t compressedSize = best.compressedSize;
+ FASTCOVER_best_destroy(&best);
+ POOL_free(pool);
+ return compressedSize;
+ }
+ *parameters = best.parameters;
+ memcpy(dictBuffer, best.dict, dictSize);
+ FASTCOVER_best_destroy(&best);
+ POOL_free(pool);
+ return dictSize;
+ }
+
+}
--- /dev/null
+#include <stdio.h> /* fprintf */
+#include <stdlib.h> /* malloc, free, qsort */
+#include <string.h> /* strcmp, strlen */
+#include <errno.h> /* errno */
+#include <ctype.h>
+#include "fastCover.h"
+#include "io.h"
+#include "util.h"
+#include "zdict.h"
+
+
+/*-*************************************
+* Console display
+***************************************/
+#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
+#define DISPLAYLEVEL(l, ...) if (displayLevel>=l) { DISPLAY(__VA_ARGS__); }
+
+static const U64 g_refreshRate = SEC_TO_MICRO / 6;
+static UTIL_time_t g_displayClock = UTIL_TIME_INITIALIZER;
+
+#define DISPLAYUPDATE(l, ...) { if (displayLevel>=l) { \
+ if ((UTIL_clockSpanMicro(g_displayClock) > g_refreshRate) || (displayLevel>=4)) \
+ { g_displayClock = UTIL_getTime(); DISPLAY(__VA_ARGS__); \
+ if (displayLevel>=4) fflush(stderr); } } }
+
+
+/*-*************************************
+* Exceptions
+***************************************/
+#ifndef DEBUG
+# define DEBUG 0
+#endif
+#define DEBUGOUTPUT(...) if (DEBUG) DISPLAY(__VA_ARGS__);
+#define EXM_THROW(error, ...) \
+{ \
+ DEBUGOUTPUT("Error defined at %s, line %i : \n", __FILE__, __LINE__); \
+ DISPLAY("Error %i : ", error); \
+ DISPLAY(__VA_ARGS__); \
+ DISPLAY("\n"); \
+ exit(error); \
+}
+
+
+/*-*************************************
+* Constants
+***************************************/
+static const unsigned g_defaultMaxDictSize = 110 KB;
+#define DEFAULT_CLEVEL 3
+
+
+/*-*************************************
+* FASTCOVER
+***************************************/
+int FASTCOVER_trainFromFiles(const char* dictFileName, sampleInfo *info,
+ unsigned maxDictSize,
+ ZDICT_fastCover_params_t *params) {
+ unsigned const displayLevel = params->zParams.notificationLevel;
+ void* const dictBuffer = malloc(maxDictSize);
+
+ int result = 0;
+
+ /* Checks */
+ if (!dictBuffer)
+ EXM_THROW(12, "not enough memory for trainFromFiles"); /* should not happen */
+
+ { size_t dictSize;
+ dictSize = ZDICT_optimizeTrainFromBuffer_fastCover(dictBuffer, maxDictSize, info->srcBuffer,
+ info->samplesSizes, info->nbSamples, params);
+ DISPLAYLEVEL(2, "k=%u\nd=%u\nf=%u\nsteps=%u\nsplit=%u\n", params->k, params->d, params->f, params->steps, (unsigned)(params->splitPoint*100));
+ if (ZDICT_isError(dictSize)) {
+ DISPLAYLEVEL(1, "dictionary training failed : %s \n", ZDICT_getErrorName(dictSize)); /* should not happen */
+ result = 1;
+ goto _done;
+ }
+ /* save dict */
+ DISPLAYLEVEL(2, "Save dictionary of size %u into file %s \n", (U32)dictSize, dictFileName);
+ saveDict(dictFileName, dictBuffer, dictSize);
+ }
+
+ /* clean up */
+_done:
+ free(dictBuffer);
+ return result;
+}
+
+
+
+int main(int argCount, const char* argv[])
+{
+ int displayLevel = 2;
+ const char* programName = argv[0];
+ int operationResult = 0;
+
+ /* Initialize arguments to default values */
+ unsigned k = 200;
+ unsigned d = 8;
+ unsigned f = 23;
+ unsigned steps = 32;
+ unsigned nbThreads = 1;
+ unsigned split = 100;
+ const char* outputFile = "fastCoverDict";
+ unsigned dictID = 0;
+ unsigned maxDictSize = g_defaultMaxDictSize;
+
+ /* Initialize table to store input files */
+ const char** filenameTable = (const char**)malloc(argCount * sizeof(const char*));
+ unsigned filenameIdx = 0;
+
+ char* fileNamesBuf = NULL;
+ unsigned fileNamesNb = filenameIdx;
+ int followLinks = 0; /* follow directory recursively */
+ const char** extendedFileList = NULL;
+
+ /* Parse arguments */
+ for (int i = 1; i < argCount; i++) {
+ const char* argument = argv[i];
+ if (longCommandWArg(&argument, "k=")) { k = readU32FromChar(&argument); continue; }
+ if (longCommandWArg(&argument, "d=")) { d = readU32FromChar(&argument); continue; }
+ if (longCommandWArg(&argument, "f=")) { f = readU32FromChar(&argument); continue; }
+ if (longCommandWArg(&argument, "steps=")) { steps = readU32FromChar(&argument); continue; }
+ if (longCommandWArg(&argument, "split=")) { split = readU32FromChar(&argument); continue; }
+ if (longCommandWArg(&argument, "dictID=")) { dictID = readU32FromChar(&argument); continue; }
+ if (longCommandWArg(&argument, "maxdict=")) { maxDictSize = readU32FromChar(&argument); continue; }
+ if (longCommandWArg(&argument, "in=")) {
+ filenameTable[filenameIdx] = argument;
+ filenameIdx++;
+ continue;
+ }
+ if (longCommandWArg(&argument, "out=")) {
+ outputFile = argument;
+ continue;
+ }
+ DISPLAYLEVEL(1, "Incorrect parameters\n");
+ operationResult = 1;
+ return operationResult;
+ }
+
+ /* Get the list of all files recursively (because followLinks==0)*/
+ extendedFileList = UTIL_createFileList(filenameTable, filenameIdx, &fileNamesBuf,
+ &fileNamesNb, followLinks);
+ if (extendedFileList) {
+ unsigned u;
+ for (u=0; u<fileNamesNb; u++) DISPLAYLEVEL(4, "%u %s\n", u, extendedFileList[u]);
+ free((void*)filenameTable);
+ filenameTable = extendedFileList;
+ filenameIdx = fileNamesNb;
+ }
+
+ size_t blockSize = 0;
+
+ /* Set up zParams */
+ ZDICT_params_t zParams;
+ zParams.compressionLevel = DEFAULT_CLEVEL;
+ zParams.notificationLevel = displayLevel;
+ zParams.dictID = dictID;
+
+ /* Set up fastCover params */
+ ZDICT_fastCover_params_t params;
+ params.zParams = zParams;
+ params.k = k;
+ params.d = d;
+ params.f = f;
+ params.steps = steps;
+ params.nbThreads = nbThreads;
+ params.splitPoint = (double)split/100;
+
+ /* Build dictionary */
+ sampleInfo* info= getSampleInfo(filenameTable,
+ filenameIdx, blockSize, maxDictSize, zParams.notificationLevel);
+ operationResult = FASTCOVER_trainFromFiles(outputFile, info, maxDictSize, ¶ms);
+
+ /* Free allocated memory */
+ UTIL_freeFileList(extendedFileList, fileNamesBuf);
+ freeSampleInfo(info);
+
+ return operationResult;
+}