* POSSIBILITY OF SUCH DAMAGE.
*/
-/** \file
-* \brief Build code for DFA minimization
-*/
+/**
+ * \file
+ * \brief Build code for DFA minimization.
+ */
/**
- * /Summary of the Hopcrofts algorithm/
+ * /Summary of the Hopcroft minimisation algorithm/
+ *
* partition := {F, Q \ F};
* work_queue := {F};
* while (work_queue is not empty) do
#include "dfa_min.h"
#include "grey.h"
-#include "nfa/rdfa.h"
-#include "nfagraph/ng_mcclellan.h"
+#include "rdfa.h"
#include "ue2common.h"
#include "util/container.h"
#include "util/noncopyable.h"
#include <algorithm>
#include <functional>
+#include <iterator>
#include <map>
+#include <queue>
#include <set>
#include <vector>
-#include <iterator>
-
-#include <boost/dynamic_bitset.hpp>
using namespace std;
namespace {
struct hopcroft_state_info {
- vector<vector<dstate_id_t> > prev;
+ explicit hopcroft_state_info(size_t alpha_size) : prev(alpha_size) {}
+
+ /** \brief Mapping from symbol to a list of predecessors that transition to
+ * this state on that symbol. */
+ vector<vector<dstate_id_t>> prev;
};
-struct DFA_components : noncopyable {
- dstate_id_t nstates;
- size_t inp_size;
- set<size_t> work_queue;
- /*Partition contains reduced states*/
- partitioned_set<dstate_id_t> partition;
- vector<hopcroft_state_info> states;
+struct HopcroftInfo : noncopyable {
+ size_t alpha_size; //!< Size of DFA alphabet.
+ queue<size_t> work_queue; //!< Hopcroft work queue of partition indices.
+ partitioned_set<dstate_id_t> partition; //!< Partition set of DFA states.
+ vector<hopcroft_state_info> states; //!< Pre-calculated state info (preds)
- explicit DFA_components(const raw_dfa &rdfa);
+ explicit HopcroftInfo(const raw_dfa &rdfa);
};
-} //namespace
+} // namespace
/**
- * create_map:
- * Creates an initial partitioning and work_queue.
- * Initial partition contains {accepting states..., Non-accepting states}
- * Initial work_queue contains accepting state subsets
+ * \brief Create an initial partitioning and work_queue.
*
- * The initial partitioning needs to distinguish between the different
- * reporting behaviours (unlike standard hopcroft) --> more than one subset
- * possible for the accepting states.
+ * Initial partition contains {accepting states..., Non-accepting states}
+ * Initial work_queue contains accepting state subsets
*
- * Look for accepting states in both reports and reports_eod.
- * Creates a map with a key(reports, reports_eod) and an id.
- * Reports of each state are searched against the map and
- * added to the corresponding id -> partition[id] and work_queue[id].
- * Non Accept states are added to partition[id+1].
+ * The initial partitioning needs to distinguish between the different
+ * reporting behaviours (unlike standard Hopcroft) --> more than one subset
+ * possible for the accepting states.
+ *
+ * Look for accepting states in both reports and reports_eod.
+ * Creates a map with a key(reports, reports_eod) and an id.
+ * Reports of each state are searched against the map and
+ * added to the corresponding id -> partition[id] and work_queue[id].
+ * Non Accept states are added to partition[id+1].
*/
static
-vector<size_t> create_map(const raw_dfa &rdfa, set<size_t> &work_queue) {
+vector<size_t> create_map(const raw_dfa &rdfa, queue<size_t> &work_queue) {
using ReportKey = pair<flat_set<ReportID>, flat_set<ReportID>>;
map<ReportKey, size_t> subset_map;
vector<size_t> state_to_subset(rdfa.states.size(), INVALID_SUBSET);
for (size_t i = 0; i < rdfa.states.size(); i++) {
- if (!rdfa.states[i].reports.empty() ||
- !rdfa.states[i].reports_eod.empty()) {
- ReportKey key(rdfa.states[i].reports, rdfa.states[i].reports_eod);
+ const auto &ds = rdfa.states[i];
+ if (!ds.reports.empty() || !ds.reports_eod.empty()) {
+ ReportKey key(ds.reports, ds.reports_eod);
if (contains(subset_map, key)) {
state_to_subset[i] = subset_map[key];
} else {
size_t sub = subset_map.size();
- subset_map[key] = sub;
+ subset_map.emplace(std::move(key), sub);
state_to_subset[i] = sub;
- work_queue.insert(sub);
+ work_queue.push(sub);
}
}
}
- /* handle non accepts */
+ /* Give non-accept states their own subset. */
size_t non_accept_sub = subset_map.size();
- for (size_t i = 0; i < state_to_subset.size(); i++) {
- if (state_to_subset[i] == INVALID_SUBSET) {
- state_to_subset[i] = non_accept_sub;
- }
- }
+ replace(state_to_subset.begin(), state_to_subset.end(), INVALID_SUBSET,
+ non_accept_sub);
return state_to_subset;
}
-DFA_components::DFA_components(const raw_dfa &rdfa)
- : nstates(rdfa.states.size()),
- inp_size(rdfa.states[nstates - 1].next.size()),
- partition(create_map(rdfa, work_queue)) {
- /* initializing states */
- for (size_t i = 0; i < nstates; i++) {
- states.push_back(hopcroft_state_info());
- states.back().prev.resize(inp_size);
- }
-
- for (size_t i = 0; i < nstates; i++) { // i is the previous state
- for (size_t j = 0; j < inp_size; j++) {
- /* Creating X_table */
- dstate_id_t present_state = rdfa.states[i].next[j];
- states[present_state].prev[j].push_back(i);
-
- DEBUG_PRINTF("rdfa.states[%zu].next[%zu] %hu \n", i, j,
- rdfa.states[i].next[j]);
+HopcroftInfo::HopcroftInfo(const raw_dfa &rdfa)
+ : alpha_size(rdfa.alpha_size), partition(create_map(rdfa, work_queue)),
+ states(rdfa.states.size(), hopcroft_state_info(alpha_size)) {
+ /* Construct predecessor lists for each state, indexed by symbol. */
+ for (size_t i = 0; i < states.size(); i++) { // i is the previous state
+ for (size_t sym = 0; sym < alpha_size; sym++) {
+ dstate_id_t present_state = rdfa.states[i].next[sym];
+ states[present_state].prev[sym].push_back(i);
}
}
}
-/**
- * choose and remove a set A from work_queue.
- */
-static
-void get_work_item(DFA_components &mdfa, ue2::flat_set<dstate_id_t> &A) {
- A.clear();
- assert(!mdfa.work_queue.empty());
- set<size_t>::iterator pt = mdfa.work_queue.begin();
- insert(&A, mdfa.partition[*pt]);
- mdfa.work_queue.erase(pt);
-}
-
-/**
- * X is the set of states for which a transition on the input leads to a state
- * in A.
- */
-static
-void create_X(const DFA_components &mdfa, const ue2::flat_set<dstate_id_t> &A,
- size_t inp, ue2::flat_set<dstate_id_t> &X) {
- X.clear();
-
- for (dstate_id_t id : A) {
- insert(&X, mdfa.states[id].prev[inp]);
- }
-}
-
/**
* For a split set X, each subset S (given by part_index) in the partition, two
* sets are created: v_inter (X intersection S) and v_sub (S - X).
* - replace S in work_queue by the smaller of the two sets.
*/
static
-void split_and_replace_set(const size_t part_index, DFA_components &mdfa,
- const ue2::flat_set<dstate_id_t> &splitter) {
+void split_and_replace_set(const size_t part_index, HopcroftInfo &info,
+ const flat_set<dstate_id_t> &splitter) {
/* singleton sets cannot be split */
- if (mdfa.partition[part_index].size() == 1) {
+ if (info.partition[part_index].size() == 1) {
return;
}
- size_t small_index = mdfa.partition.split(part_index, splitter);
+ size_t small_index = info.partition.split(part_index, splitter);
if (small_index == INVALID_SUBSET) {
/* the set could not be split */
/* larger subset remains at the input subset index, if the input subset was
* already in the work queue then the larger subset will remain there. */
- mdfa.work_queue.insert(small_index);
+ info.work_queue.push(small_index);
}
/**
- * The complete Hopcrofts algorithm is implemented in this function.
- * Choose and remove a set tray from work_queue
- * For each input- X is created.
- * For each subset in the partition, split_and_replace_sets are called with the
- * split set.
+ * \brief Core of the Hopcroft minimisation algorithm.
*/
static
-void dfa_min(DFA_components &mdfa) {
- ue2::flat_set<dstate_id_t> A, X;
+void dfa_min(HopcroftInfo &info) {
+ flat_set<dstate_id_t> curr, sym_preds;
vector<size_t> cand_subsets;
- while (!mdfa.work_queue.empty()) {
- get_work_item(mdfa, A);
+ while (!info.work_queue.empty()) {
+ /* Choose and remove a set of states (curr, or A in the description
+ * above) from the work queue. Note that we copy the set because the
+ * partition may be split by the loop below. */
+ curr.clear();
+ insert(&curr, info.partition[info.work_queue.front()]);
+ info.work_queue.pop();
+
+ for (size_t sym = 0; sym < info.alpha_size; sym++) {
+ /* Find the set of states sym_preds for which a transition on the
+ * given symbol leads to a state in curr. */
+ sym_preds.clear();
+ for (dstate_id_t s : curr) {
+ insert(&sym_preds, info.states[s].prev[sym]);
+ }
- for (size_t inp = 0; inp < mdfa.inp_size; inp++) {
- create_X(mdfa, A, inp, X);
- if (X.empty()) {
+ if (sym_preds.empty()) {
continue;
}
- /* we only need to consider subsets with at least one member in X for
- * splitting */
+ /* we only need to consider subsets with at least one member in
+ * sym_preds for splitting */
cand_subsets.clear();
- mdfa.partition.find_overlapping(X, &cand_subsets);
+ info.partition.find_overlapping(sym_preds, &cand_subsets);
for (size_t sub : cand_subsets) {
- split_and_replace_set(sub, mdfa, X);
+ split_and_replace_set(sub, info, sym_preds);
}
}
}
}
/**
- * Creating new dfa table
- * Map ordering contains key being an equivalence classes first state
- * and the value being the equivalence class index.
- * Eq_state[i] tells us new state id the equivalence class located at
- * partition[i].
+ * \brief Build the new DFA state table.
*/
static
-void mapping_new_states(const DFA_components &mdfa,
- vector<dstate_id_t> &old_to_new,
- raw_dfa &rdfa) {
- const size_t num_partitions = mdfa.partition.size();
+void mapping_new_states(const HopcroftInfo &info,
+ vector<dstate_id_t> &old_to_new, raw_dfa &rdfa) {
+ const size_t num_partitions = info.partition.size();
// Mapping from equiv class's first state to equiv class index.
map<dstate_id_t, size_t> ordering;
vector<dstate_id_t> eq_state(num_partitions);
for (size_t i = 0; i < num_partitions; i++) {
- ordering[*mdfa.partition[i].begin()] = i;
+ ordering[*info.partition[i].begin()] = i;
}
dstate_id_t new_id = 0;
eq_state[m.second] = new_id++;
}
- for (size_t t = 0; t < mdfa.partition.size(); t++) {
- for (dstate_id_t id : mdfa.partition[t]) {
+ for (size_t t = 0; t < info.partition.size(); t++) {
+ for (dstate_id_t id : info.partition[t]) {
old_to_new[id] = eq_state[t];
}
}
vector<dstate> new_states;
new_states.reserve(num_partitions);
- for (size_t i = 0; i < mdfa.nstates; i++) {
- if (contains(ordering, i)) {
- new_states.push_back(rdfa.states[i]);
- }
+
+ for (const auto &m : ordering) {
+ new_states.push_back(rdfa.states[m.first]);
}
- rdfa.states.swap(new_states);
+ rdfa.states = std::move(new_states);
}
static
-void renumber_new_states(const DFA_components &mdfa,
- const vector<dstate_id_t> &old_to_new,
- raw_dfa &rdfa) {
- for (size_t i = 0; i < mdfa.partition.size(); i++) {
- for (size_t j = 0; j < mdfa.inp_size; j++) {
- dstate_id_t output = rdfa.states[i].next[j];
- rdfa.states[i].next[j] = old_to_new[output];
+void renumber_new_states(const HopcroftInfo &info,
+ const vector<dstate_id_t> &old_to_new, raw_dfa &rdfa) {
+ for (size_t i = 0; i < info.partition.size(); i++) {
+ for (size_t sym = 0; sym < info.alpha_size; sym++) {
+ dstate_id_t output = rdfa.states[i].next[sym];
+ rdfa.states[i].next[sym] = old_to_new[output];
}
dstate_id_t dad = rdfa.states[i].daddy;
rdfa.states[i].daddy = old_to_new[dad];
}
static
-void new_dfa(raw_dfa &rdfa, const DFA_components &mdfa) {
- if (mdfa.partition.size() != mdfa.nstates) {
- vector<dstate_id_t> old_to_new(mdfa.nstates);
- mapping_new_states(mdfa, old_to_new, rdfa);
- renumber_new_states(mdfa, old_to_new, rdfa);
+void new_dfa(raw_dfa &rdfa, const HopcroftInfo &info) {
+ if (info.partition.size() == info.states.size()) {
+ return;
}
+
+ vector<dstate_id_t> old_to_new(info.states.size());
+ mapping_new_states(info, old_to_new, rdfa);
+ renumber_new_states(info, old_to_new, rdfa);
}
-/**
- * MAIN FUNCTION
- */
void minimize_hopcroft(raw_dfa &rdfa, const Grey &grey) {
if (!grey.minimizeDFA) {
return;
UNUSED const size_t states_before = rdfa.states.size();
- DFA_components mdfa(rdfa);
+ HopcroftInfo info(rdfa);
- dfa_min(mdfa);
- new_dfa(rdfa, mdfa);
+ dfa_min(info);
+ new_dfa(rdfa, info);
DEBUG_PRINTF("reduced from %zu to %zu states\n", states_before,
rdfa.states.size());