#include "teddy.h"
#include "teddy_internal.h"
#include "util/simd_utils.h"
+#include "util/uniform_ops.h"
/** \brief number of bytes processed in each iteration */
#define ITER_BYTES 16
*
* The incoming buffer is to split in multiple zones to ensure two properties:
* 1: that we can read 8? bytes behind to generate a hash safely
- * 2: that we can read the byte after the current byte (domain > 8)
+ * 2: that we can read the 3 byte after the current byte (domain > 8)
*/
struct zone {
/** \brief copied buffer, used only when it is a boundary zone. */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
};
+/* compilers don't reliably synthesize the ANDN instruction here,
+ * so we force its generation.
+ */
+static really_inline
+u64a andn(const u32 a, const u32 *b) {
+ u64a r;
+#if defined(__BMI__)
+ __asm__ ("andn\t%2,%1,%k0" : "=r"(r) : "r"(a), "m"(*b));
+#else
+ r = *b & ~a;
+#endif
+ return r;
+}
+
/* generates an initial state mask based on the last byte-ish of history rather
* than being all accepting. If there is no history to consider, the state is
* generated based on the minimum length of each bucket in order to prevent
* confirms.
*/
static really_inline
-m128 getInitState(const struct FDR *fdr, u8 len_history, const u8 *ft,
+m128 getInitState(const struct FDR *fdr, u8 len_history, const u64a *ft,
const struct zone *z) {
m128 s;
if (len_history) {
/* +1: the zones ensure that we can read the byte at z->end */
u32 tmp = lv_u16(z->start + z->shift - 1, z->buf, z->end + 1);
tmp &= fdr->domainMask;
- s = *((const m128 *)ft + tmp);
+ s = load_m128_from_u64a(ft + tmp);
s = rshiftbyte_m128(s, 1);
} else {
s = fdr->start;
}
static really_inline
-void get_conf_stride_1(const u8 *itPtr, const u8 *start_ptr, const u8 *end_ptr,
- u64a domain_mask_adjusted, const u8 *ft, u64a *conf0,
- u64a *conf8, m128 *s) {
+void get_conf_stride_1(const u8 *itPtr, UNUSED const u8 *start_ptr,
+ UNUSED const u8 *end_ptr, u32 domain_mask_flipped,
+ const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) {
/* +1: the zones ensure that we can read the byte at z->end */
-
- u64a current_data_0;
- u64a current_data_8;
-
- current_data_0 = lv_u64a(itPtr + 0, start_ptr, end_ptr);
- u64a v7 = (lv_u16(itPtr + 7, start_ptr, end_ptr + 1) << 1) &
- domain_mask_adjusted;
- u64a v0 = (current_data_0 << 1) & domain_mask_adjusted;
- u64a v1 = (current_data_0 >> 7) & domain_mask_adjusted;
- u64a v2 = (current_data_0 >> 15) & domain_mask_adjusted;
- u64a v3 = (current_data_0 >> 23) & domain_mask_adjusted;
- u64a v4 = (current_data_0 >> 31) & domain_mask_adjusted;
- u64a v5 = (current_data_0 >> 39) & domain_mask_adjusted;
- u64a v6 = (current_data_0 >> 47) & domain_mask_adjusted;
- current_data_8 = lv_u64a(itPtr + 8, start_ptr, end_ptr);
- u64a v15 = (lv_u16(itPtr + 15, start_ptr, end_ptr + 1) << 1) &
- domain_mask_adjusted;
- u64a v8 = (current_data_8 << 1) & domain_mask_adjusted;
- u64a v9 = (current_data_8 >> 7) & domain_mask_adjusted;
- u64a v10 = (current_data_8 >> 15) & domain_mask_adjusted;
- u64a v11 = (current_data_8 >> 23) & domain_mask_adjusted;
- u64a v12 = (current_data_8 >> 31) & domain_mask_adjusted;
- u64a v13 = (current_data_8 >> 39) & domain_mask_adjusted;
- u64a v14 = (current_data_8 >> 47) & domain_mask_adjusted;
-
- m128 st0 = *(const m128 *)(ft + v0*8);
- m128 st1 = *(const m128 *)(ft + v1*8);
- m128 st2 = *(const m128 *)(ft + v2*8);
- m128 st3 = *(const m128 *)(ft + v3*8);
- m128 st4 = *(const m128 *)(ft + v4*8);
- m128 st5 = *(const m128 *)(ft + v5*8);
- m128 st6 = *(const m128 *)(ft + v6*8);
- m128 st7 = *(const m128 *)(ft + v7*8);
- m128 st8 = *(const m128 *)(ft + v8*8);
- m128 st9 = *(const m128 *)(ft + v9*8);
- m128 st10 = *(const m128 *)(ft + v10*8);
- m128 st11 = *(const m128 *)(ft + v11*8);
- m128 st12 = *(const m128 *)(ft + v12*8);
- m128 st13 = *(const m128 *)(ft + v13*8);
- m128 st14 = *(const m128 *)(ft + v14*8);
- m128 st15 = *(const m128 *)(ft + v15*8);
+ assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr);
+ u64a reach0 = andn(domain_mask_flipped, (const u32 *)(itPtr));
+ u64a reach1 = andn(domain_mask_flipped, (const u32 *)(itPtr + 1));
+ u64a reach2 = andn(domain_mask_flipped, (const u32 *)(itPtr + 2));
+ u64a reach3 = andn(domain_mask_flipped, (const u32 *)(itPtr + 3));
+
+ m128 st0 = load_m128_from_u64a(ft + reach0);
+ m128 st1 = load_m128_from_u64a(ft + reach1);
+ m128 st2 = load_m128_from_u64a(ft + reach2);
+ m128 st3 = load_m128_from_u64a(ft + reach3);
+
+ u64a reach4 = andn(domain_mask_flipped, (const u32 *)(itPtr + 4));
+ u64a reach5 = andn(domain_mask_flipped, (const u32 *)(itPtr + 5));
+ u64a reach6 = andn(domain_mask_flipped, (const u32 *)(itPtr + 6));
+ u64a reach7 = andn(domain_mask_flipped, (const u32 *)(itPtr + 7));
+
+ m128 st4 = load_m128_from_u64a(ft + reach4);
+ m128 st5 = load_m128_from_u64a(ft + reach5);
+ m128 st6 = load_m128_from_u64a(ft + reach6);
+ m128 st7 = load_m128_from_u64a(ft + reach7);
st1 = lshiftbyte_m128(st1, 1);
st2 = lshiftbyte_m128(st2, 2);
st5 = lshiftbyte_m128(st5, 5);
st6 = lshiftbyte_m128(st6, 6);
st7 = lshiftbyte_m128(st7, 7);
+
+ st0 = or128(st0, st1);
+ st2 = or128(st2, st3);
+ st4 = or128(st4, st5);
+ st6 = or128(st6, st7);
+ st0 = or128(st0, st2);
+ st4 = or128(st4, st6);
+ st0 = or128(st0, st4);
+ *s = or128(*s, st0);
+
+ *conf0 = movq(*s);
+ *s = rshiftbyte_m128(*s, 8);
+ *conf0 ^= ~0ULL;
+
+ u64a reach8 = andn(domain_mask_flipped, (const u32 *)(itPtr + 8));
+ u64a reach9 = andn(domain_mask_flipped, (const u32 *)(itPtr + 9));
+ u64a reach10 = andn(domain_mask_flipped, (const u32 *)(itPtr + 10));
+ u64a reach11 = andn(domain_mask_flipped, (const u32 *)(itPtr + 11));
+
+ m128 st8 = load_m128_from_u64a(ft + reach8);
+ m128 st9 = load_m128_from_u64a(ft + reach9);
+ m128 st10 = load_m128_from_u64a(ft + reach10);
+ m128 st11 = load_m128_from_u64a(ft + reach11);
+
+ u64a reach12 = andn(domain_mask_flipped, (const u32 *)(itPtr + 12));
+ u64a reach13 = andn(domain_mask_flipped, (const u32 *)(itPtr + 13));
+ u64a reach14 = andn(domain_mask_flipped, (const u32 *)(itPtr + 14));
+ u64a reach15 = andn(domain_mask_flipped, (const u32 *)(itPtr + 15));
+
+ m128 st12 = load_m128_from_u64a(ft + reach12);
+ m128 st13 = load_m128_from_u64a(ft + reach13);
+ m128 st14 = load_m128_from_u64a(ft + reach14);
+ m128 st15 = load_m128_from_u64a(ft + reach15);
+
st9 = lshiftbyte_m128(st9, 1);
st10 = lshiftbyte_m128(st10, 2);
st11 = lshiftbyte_m128(st11, 3);
st14 = lshiftbyte_m128(st14, 6);
st15 = lshiftbyte_m128(st15, 7);
- *s = or128(*s, st0);
- *s = or128(*s, st1);
- *s = or128(*s, st2);
- *s = or128(*s, st3);
- *s = or128(*s, st4);
- *s = or128(*s, st5);
- *s = or128(*s, st6);
- *s = or128(*s, st7);
- *conf0 = movq(*s);
- *s = rshiftbyte_m128(*s, 8);
- *conf0 ^= ~0ULL;
-
+ st8 = or128(st8, st9);
+ st10 = or128(st10, st11);
+ st12 = or128(st12, st13);
+ st14 = or128(st14, st15);
+ st8 = or128(st8, st10);
+ st12 = or128(st12, st14);
+ st8 = or128(st8, st12);
*s = or128(*s, st8);
- *s = or128(*s, st9);
- *s = or128(*s, st10);
- *s = or128(*s, st11);
- *s = or128(*s, st12);
- *s = or128(*s, st13);
- *s = or128(*s, st14);
- *s = or128(*s, st15);
+
*conf8 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf8 ^= ~0ULL;
}
static really_inline
-void get_conf_stride_2(const u8 *itPtr, const u8 *start_ptr, const u8 *end_ptr,
- u64a domain_mask_adjusted, const u8 *ft, u64a *conf0,
- u64a *conf8, m128 *s) {
- u64a current_data_0;
- u64a current_data_8;
-
- current_data_0 = lv_u64a(itPtr + 0, start_ptr, end_ptr);
- u64a v0 = (current_data_0 << 1) & domain_mask_adjusted;
- u64a v2 = (current_data_0 >> 15) & domain_mask_adjusted;
- u64a v4 = (current_data_0 >> 31) & domain_mask_adjusted;
- u64a v6 = (current_data_0 >> 47) & domain_mask_adjusted;
- current_data_8 = lv_u64a(itPtr + 8, start_ptr, end_ptr);
- u64a v8 = (current_data_8 << 1) & domain_mask_adjusted;
- u64a v10 = (current_data_8 >> 15) & domain_mask_adjusted;
- u64a v12 = (current_data_8 >> 31) & domain_mask_adjusted;
- u64a v14 = (current_data_8 >> 47) & domain_mask_adjusted;
-
- m128 st0 = *(const m128 *)(ft + v0*8);
- m128 st2 = *(const m128 *)(ft + v2*8);
- m128 st4 = *(const m128 *)(ft + v4*8);
- m128 st6 = *(const m128 *)(ft + v6*8);
- m128 st8 = *(const m128 *)(ft + v8*8);
- m128 st10 = *(const m128 *)(ft + v10*8);
- m128 st12 = *(const m128 *)(ft + v12*8);
- m128 st14 = *(const m128 *)(ft + v14*8);
+void get_conf_stride_2(const u8 *itPtr, UNUSED const u8 *start_ptr,
+ UNUSED const u8 *end_ptr, u32 domain_mask_flipped,
+ const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) {
+ assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr);
+ u64a reach0 = andn(domain_mask_flipped, (const u32 *)itPtr);
+ u64a reach2 = andn(domain_mask_flipped, (const u32 *)(itPtr + 2));
+ u64a reach4 = andn(domain_mask_flipped, (const u32 *)(itPtr + 4));
+ u64a reach6 = andn(domain_mask_flipped, (const u32 *)(itPtr + 6));
+
+ m128 st0 = load_m128_from_u64a(ft + reach0);
+ m128 st2 = load_m128_from_u64a(ft + reach2);
+ m128 st4 = load_m128_from_u64a(ft + reach4);
+ m128 st6 = load_m128_from_u64a(ft + reach6);
+
+ u64a reach8 = andn(domain_mask_flipped, (const u32 *)(itPtr + 8));
+ u64a reach10 = andn(domain_mask_flipped, (const u32 *)(itPtr + 10));
+ u64a reach12 = andn(domain_mask_flipped, (const u32 *)(itPtr + 12));
+ u64a reach14 = andn(domain_mask_flipped, (const u32 *)(itPtr + 14));
+
+ m128 st8 = load_m128_from_u64a(ft + reach8);
+ m128 st10 = load_m128_from_u64a(ft + reach10);
+ m128 st12 = load_m128_from_u64a(ft + reach12);
+ m128 st14 = load_m128_from_u64a(ft + reach14);
st2 = lshiftbyte_m128(st2, 2);
st4 = lshiftbyte_m128(st4, 4);
st6 = lshiftbyte_m128(st6, 6);
- st10 = lshiftbyte_m128(st10, 2);
- st12 = lshiftbyte_m128(st12, 4);
- st14 = lshiftbyte_m128(st14, 6);
*s = or128(*s, st0);
*s = or128(*s, st2);
*s = or128(*s, st4);
*s = or128(*s, st6);
+
*conf0 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf0 ^= ~0ULL;
+ st10 = lshiftbyte_m128(st10, 2);
+ st12 = lshiftbyte_m128(st12, 4);
+ st14 = lshiftbyte_m128(st14, 6);
+
*s = or128(*s, st8);
*s = or128(*s, st10);
*s = or128(*s, st12);
*s = or128(*s, st14);
+
*conf8 = movq(*s);
*s = rshiftbyte_m128(*s, 8);
*conf8 ^= ~0ULL;
}
static really_inline
-void get_conf_stride_4(const u8 *itPtr, const u8 *start_ptr, const u8 *end_ptr,
- u64a domain_mask_adjusted, const u8 *ft, u64a *conf0,
- u64a *conf8, m128 *s) {
- u64a current_data_0;
- u64a current_data_8;
-
- current_data_0 = lv_u64a(itPtr + 0, start_ptr, end_ptr);
- u64a v0 = (current_data_0 << 1) & domain_mask_adjusted;
- u64a v4 = (current_data_0 >> 31) & domain_mask_adjusted;
- current_data_8 = lv_u64a(itPtr + 8, start_ptr, end_ptr);
- u64a v8 = (current_data_8 << 1) & domain_mask_adjusted;
- u64a v12 = (current_data_8 >> 31) & domain_mask_adjusted;
-
- m128 st0 = *(const m128 *)(ft + v0*8);
- m128 st4 = *(const m128 *)(ft + v4*8);
- m128 st8 = *(const m128 *)(ft + v8*8);
- m128 st12 = *(const m128 *)(ft + v12*8);
+void get_conf_stride_4(const u8 *itPtr, UNUSED const u8 *start_ptr,
+ UNUSED const u8 *end_ptr, u32 domain_mask_flipped,
+ const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) {
+ assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr);
+ u64a reach0 = andn(domain_mask_flipped, (const u32 *)itPtr);
+ u64a reach4 = andn(domain_mask_flipped, (const u32 *)(itPtr + 4));
+ u64a reach8 = andn(domain_mask_flipped, (const u32 *)(itPtr + 8));
+ u64a reach12 = andn(domain_mask_flipped, (const u32 *)(itPtr + 12));
+
+ m128 st0 = load_m128_from_u64a(ft + reach0);
+ m128 st4 = load_m128_from_u64a(ft + reach4);
+ m128 st8 = load_m128_from_u64a(ft + reach8);
+ m128 st12 = load_m128_from_u64a(ft + reach12);
st4 = lshiftbyte_m128(st4, 4);
st12 = lshiftbyte_m128(st12, 4);
/* copy the post-padding byte; this is required for domain > 8 due to
* overhang */
+ assert(ZONE_SHORT_DATA_OFFSET + copy_len + 3 < 64);
*z_end = 0;
z->end = z_end;
storeu128(z_end - sizeof(m128), loadu128(end - sizeof(m128)));
z->zone_pointer_adjust = (ptrdiff_t)((uintptr_t)end - (uintptr_t)z_end);
+
+ assert(ZONE_START_BEGIN + copy_len + 3 < 64);
}
/**
* \brief Create a zone for the end region.
*
* This function requires that there is > ITER_BYTES of data in the buffer to
- * scan. The end zone, however, is only responsible for a scanning the <=
- * ITER_BYTES rump of data. The end zone is required to handle a full ITER_BYTES
- * iteration as the main loop cannot handle the last byte of the buffer.
+ * scan. The end zone is responsible for a scanning the <= ITER_BYTES rump of
+ * data and optional ITER_BYTES. The main zone cannot handle the last 3 bytes
+ * of the buffer. The end zone is required to handle an optional full
+ * ITER_BYTES from main zone when there are less than 3 bytes to scan. The
+ * main zone size is reduced by ITER_BYTES in this case.
*
* This zone ensures that the byte at z->end can be read by filling it with a
* padding character.
ptrdiff_t z_len = end - begin;
assert(z_len > 0);
- assert(z_len <= ITER_BYTES);
+ size_t iter_bytes_second = 0;
+ size_t z_len_first = z_len;
+ if (z_len > ITER_BYTES) {
+ z_len_first = z_len - ITER_BYTES;
+ iter_bytes_second = ITER_BYTES;
+ }
+ z->shift = ITER_BYTES - z_len_first;
- z->shift = ITER_BYTES - z_len;
+ const u8 *end_first = end - iter_bytes_second;
+ /* The amount of data we have to copy from main buffer for the
+ * first iteration. */
+ size_t copy_len_first = MIN((size_t)(end_first - buf),
+ ITER_BYTES + sizeof(CONF_TYPE));
+ assert(copy_len_first >= 16);
- /* The amount of data we have to copy from main buffer. */
- size_t copy_len = MIN((size_t)(end - buf),
- ITER_BYTES + sizeof(CONF_TYPE));
- assert(copy_len >= 16);
+ size_t total_copy_len = copy_len_first + iter_bytes_second;
+ assert(total_copy_len + 3 < 64);
/* copy the post-padding byte; this is required for domain > 8 due to
* overhang */
- z->buf[copy_len] = 0;
+ z->buf[total_copy_len] = 0;
/* set the start and end location of the zone buf
* to be scanned */
- u8 *z_end = z->buf + copy_len;
+ u8 *z_end = z->buf + total_copy_len;
z->end = z_end;
- z->start = z_end - ITER_BYTES;
+ z->start = z_end - ITER_BYTES - iter_bytes_second;
assert(z->start + z->shift == z_end - z_len);
+ u8 *z_end_first = z_end - iter_bytes_second;
/* copy the first 8 bytes of the valid region */
- unaligned_store_u64a(z->buf, unaligned_load_u64a(end - copy_len));
+ unaligned_store_u64a(z->buf,
+ unaligned_load_u64a(end_first - copy_len_first));
/* copy the last 16 bytes, may overlap with the previous 8 byte write */
- storeu128(z_end - sizeof(m128), loadu128(end - sizeof(m128)));
+ storeu128(z_end_first - sizeof(m128), loadu128(end_first - sizeof(m128)));
+ if (iter_bytes_second) {
+ storeu128(z_end - sizeof(m128), loadu128(end - sizeof(m128)));
+ }
z->zone_pointer_adjust = (ptrdiff_t)((uintptr_t)end - (uintptr_t)z_end);
}
/* find maximum buffer location that the main zone can scan
* - must be a multiple of ITER_BYTES, and
- * - cannot contain the last byte (due to overhang)
+ * - cannot contain the last 3 bytes (due to 3 bytes read behind the
+ end of buffer in FDR main loop)
*/
- const u8 *main_end = buf + start + ROUNDDOWN_N(len - start - 1, ITER_BYTES);
- assert(main_end >= ptr);
+ const u8 *main_end = buf + start + ROUNDDOWN_N(len - start - 3, ITER_BYTES);
/* create a zone if multiple of ITER_BYTES are found */
- if (main_end != ptr) {
+ if (main_end > ptr) {
createMainZone(flood, ptr, main_end, &zoneArr[numZone++]);
ptr = main_end;
}
return HWLM_TERMINATED; \
} \
} \
- __builtin_prefetch(itPtr + (ITER_BYTES*4)); \
+ __builtin_prefetch(itPtr + ITER_BYTES); \
u64a conf0; \
u64a conf8; \
- get_conf_fn(itPtr, start_ptr, end_ptr, domain_mask_adjusted, \
+ get_conf_fn(itPtr, start_ptr, end_ptr, domain_mask_flipped, \
ft, &conf0, &conf8, &s); \
do_confirm_fdr(&conf0, 0, &control, confBase, a, itPtr, \
&last_match_id, zz); \
hwlm_group_t control) {
u32 floodBackoff = FLOOD_BACKOFF_START;
u32 last_match_id = INVALID_MATCH_ID;
- u64a domain_mask_adjusted = fdr->domainMask << 1;
+ u32 domain_mask_flipped = ~fdr->domainMask;
u8 stride = fdr->stride;
- const u8 *ft = (const u8 *)fdr + ROUNDUP_16(sizeof(struct FDR));
- const u32 *confBase = (const u32 *)(ft + fdr->tabSize);
+ const u64a *ft =
+ (const u64a *)((const u8 *)fdr + ROUNDUP_16(sizeof(struct FDR)));
+ const u32 *confBase = (const u32 *)((const u8 *)ft + fdr->tabSize);
struct zone zones[ZONE_MAX];
assert(fdr->domain > 8 && fdr->domain < 16);