]> git.ipfire.org Git - thirdparty/zstd.git/commitdiff
Add COVER dictionary builder
authorNick Terrell <terrelln@fb.com>
Sun, 1 Jan 2017 05:07:44 +0000 (21:07 -0800)
committerNick Terrell <terrelln@fb.com>
Mon, 2 Jan 2017 21:22:51 +0000 (13:22 -0800)
lib/dictBuilder/cover.c [new file with mode: 0644]
lib/dictBuilder/zdict.h

diff --git a/lib/dictBuilder/cover.c b/lib/dictBuilder/cover.c
new file mode 100644 (file)
index 0000000..1bad018
--- /dev/null
@@ -0,0 +1,1041 @@
+/**
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
+ * All rights reserved.
+ *
+ * This source code is licensed under the BSD-style license found in the
+ * LICENSE file in the root directory of this source tree. An additional grant
+ * of patent rights can be found in the PATENTS file in the same directory.
+ */
+
+/*-*************************************
+*  Dependencies
+***************************************/
+#include <stdio.h>  /* fprintf */
+#include <stdlib.h> /* malloc, free, qsort */
+#include <string.h> /* memset */
+#include <time.h>   /* clock */
+#ifdef ZSTD_PTHREAD
+#include "threading.h"
+#endif
+
+#include "mem.h"           /* read */
+#include "zstd_internal.h" /* includes zstd.h */
+#ifndef ZDICT_STATIC_LINKING_ONLY
+#define ZDICT_STATIC_LINKING_ONLY
+#endif
+#include "zdict.h"
+
+/*-*************************************
+*  Constants
+***************************************/
+#define COVER_MAX_SAMPLES_SIZE ((U32)-1)
+
+/*-*************************************
+*  Console display
+***************************************/
+static int g_displayLevel = 2;
+#define DISPLAY(...)                                                           \
+  {                                                                            \
+    fprintf(stderr, __VA_ARGS__);                                              \
+    fflush(stderr);                                                            \
+  }
+#define LOCALDISPLAYLEVEL(displayLevel, l, ...)                                \
+  if (displayLevel >= l) {                                                     \
+    DISPLAY(__VA_ARGS__);                                                      \
+  } /* 0 : no display;   1: errors;   2: default;  3: details;  4: debug */
+#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
+
+#define LOCALDISPLAYUPDATE(displayLevel, l, ...)                               \
+  if (displayLevel >= l) {                                                     \
+    if ((clock() - g_time > refreshRate) || (displayLevel >= 4)) {             \
+      g_time = clock();                                                        \
+      DISPLAY(__VA_ARGS__);                                                    \
+      if (displayLevel >= 4)                                                   \
+        fflush(stdout);                                                        \
+    }                                                                          \
+  }
+#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
+static const clock_t refreshRate = CLOCKS_PER_SEC * 15 / 100;
+static clock_t g_time = 0;
+
+/*-*************************************
+* Hash table
+***************************************
+* A small specialized hash map for storing activeDmers.
+* The map does not resize, so if it becomes full it will loop forever.
+* Thus, the map must be large enough to store every value.
+* The map implements linear probing and keeps its load less than 0.5.
+*/
+
+#define MAP_EMPTY_VALUE ((U32)-1)
+typedef struct COVER_map_pair_t_s {
+  U32 key;
+  U32 value;
+} COVER_map_pair_t;
+
+typedef struct COVER_map_s {
+  COVER_map_pair_t *data;
+  U32 sizeLog;
+  U32 size;
+  U32 sizeMask;
+} COVER_map_t;
+
+/**
+ * Clear the map.
+ */
+static void COVER_map_clear(COVER_map_t *map) {
+  memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t));
+}
+
+/**
+ * Initializes a map of the given size.
+ * Returns 1 on success and 0 on failure.
+ * The map must be destroyed with COVER_map_destroy().
+ * The map is only guaranteed to be large enough to hold size elements.
+ */
+static int COVER_map_init(COVER_map_t *map, U32 size) {
+  map->sizeLog = ZSTD_highbit32(size) + 2;
+  map->size = (U32)1 << map->sizeLog;
+  map->sizeMask = map->size - 1;
+  map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t));
+  if (!map->data) {
+    map->sizeLog = 0;
+    map->size = 0;
+    return 0;
+  }
+  COVER_map_clear(map);
+  return 1;
+}
+
+/**
+ * Internal hash function
+ */
+static const U32 prime4bytes = 2654435761U;
+static U32 COVER_map_hash(COVER_map_t *map, U32 key) {
+  return (key * prime4bytes) >> (32 - map->sizeLog);
+}
+
+/**
+ * Helper function that returns the index that a key should be placed into.
+ */
+static U32 COVER_map_index(COVER_map_t *map, U32 key) {
+  const U32 hash = COVER_map_hash(map, key);
+  U32 i;
+  for (i = hash;; i = (i + 1) & map->sizeMask) {
+    COVER_map_pair_t *pos = &map->data[i];
+    if (pos->value == MAP_EMPTY_VALUE) {
+      return i;
+    }
+    if (pos->key == key) {
+      return i;
+    }
+  }
+}
+
+/**
+ * Returns the pointer to the value for key.
+ * If key is not in the map, it is inserted and the value is set to 0.
+ * The map must not be full.
+ */
+static U32 *COVER_map_at(COVER_map_t *map, U32 key) {
+  COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)];
+  if (pos->value == MAP_EMPTY_VALUE) {
+    pos->key = key;
+    pos->value = 0;
+  }
+  return &pos->value;
+}
+
+/**
+ * Deletes key from the map if present.
+ */
+static void COVER_map_remove(COVER_map_t *map, U32 key) {
+  U32 i = COVER_map_index(map, key);
+  COVER_map_pair_t *del = &map->data[i];
+  U32 shift = 1;
+  if (del->value == MAP_EMPTY_VALUE) {
+    return;
+  }
+  for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) {
+    COVER_map_pair_t *const pos = &map->data[i];
+    /* If the position is empty we are done */
+    if (pos->value == MAP_EMPTY_VALUE) {
+      del->value = MAP_EMPTY_VALUE;
+      return;
+    }
+    /* If pos can be moved to del do so */
+    if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) {
+      del->key = pos->key;
+      del->value = pos->value;
+      del = pos;
+      shift = 1;
+    } else {
+      ++shift;
+    }
+  }
+}
+
+/**
+ * Destroyes a map that is inited with COVER_map_init().
+ */
+static void COVER_map_destroy(COVER_map_t *map) {
+  if (map->data) {
+    free(map->data);
+  }
+  map->data = NULL;
+  map->size = 0;
+}
+
+/*-*************************************
+* Context
+***************************************/
+
+typedef struct {
+  const BYTE *samples;
+  size_t *offsets;
+  const size_t *samplesSizes;
+  size_t nbSamples;
+  U32 *suffix;
+  size_t suffixSize;
+  U32 *freqs;
+  U32 *dmerAt;
+  unsigned d;
+} COVER_ctx_t;
+
+/* We need a global context for qsort... */
+static COVER_ctx_t *g_ctx = NULL;
+
+/*-*************************************
+*  Helper functions
+***************************************/
+
+/**
+ * Returns the sum of the sample sizes.
+ */
+static size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
+  size_t sum = 0;
+  size_t i;
+  for (i = 0; i < nbSamples; ++i) {
+    sum += samplesSizes[i];
+  }
+  return sum;
+}
+
+/**
+ * Returns -1 if the dmer at lp is less than the dmer at rp.
+ * Return 0 if the dmers at lp and rp are equal.
+ * Returns 1 if the dmer at lp is greater than the dmer at rp.
+ */
+static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) {
+  const U32 lhs = *(const U32 *)lp;
+  const U32 rhs = *(const U32 *)rp;
+  return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d);
+}
+
+/**
+ * Same as COVER_cmp() except ties are broken by pointer value
+ * NOTE: g_ctx must be set to call this function.  A global is required because
+ * qsort doesn't take an opaque pointer.
+ */
+static int COVER_strict_cmp(const void *lp, const void *rp) {
+  int result = COVER_cmp(g_ctx, lp, rp);
+  if (result == 0) {
+    result = lp < rp ? -1 : 1;
+  }
+  return result;
+}
+
+/**
+ * Returns the first pointer in [first, last) whose element does not compare
+ * less than value.  If no such element exists it returns last.
+ */
+static const size_t *COVER_lower_bound(const size_t *first, const size_t *last,
+                                       size_t value) {
+  size_t count = last - first;
+  while (count != 0) {
+    size_t step = count / 2;
+    const size_t *ptr = first;
+    ptr += step;
+    if (*ptr < value) {
+      first = ++ptr;
+      count -= step + 1;
+    } else {
+      count = step;
+    }
+  }
+  return first;
+}
+
+/**
+ * Generic groupBy function.
+ * Groups an array sorted by cmp into groups with equivalent values.
+ * Calls grp for each group.
+ */
+static void
+COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx,
+              int (*cmp)(COVER_ctx_t *, const void *, const void *),
+              void (*grp)(COVER_ctx_t *, const void *, const void *)) {
+  const BYTE *ptr = (const BYTE *)data;
+  size_t num = 0;
+  while (num < count) {
+    const BYTE *grpEnd = ptr + size;
+    ++num;
+    while (num < count && cmp(ctx, ptr, grpEnd) == 0) {
+      grpEnd += size;
+      ++num;
+    }
+    grp(ctx, ptr, grpEnd);
+    ptr = grpEnd;
+  }
+}
+
+/*-*************************************
+*  Cover functions
+***************************************/
+
+/**
+ * Called on each group of positions with the same dmer.
+ * Counts the frequency of each dmer and saves it in the suffix array.
+ * Fills `ctx->dmerAt`.
+ */
+static void COVER_group(COVER_ctx_t *ctx, const void *group,
+                        const void *groupEnd) {
+  /* The group consists of all the positions with the same first d bytes. */
+  const U32 *grpPtr = (const U32 *)group;
+  const U32 *grpEnd = (const U32 *)groupEnd;
+  /* The dmerId is how we will reference this dmer.
+   * This allows us to map the whole dmer space to a much smaller space, the
+   * size of the suffix array.
+   */
+  const U32 dmerId = (U32)(grpPtr - ctx->suffix);
+  /* Count the number of samples this dmer shows up in */
+  U32 freq = 0;
+  /* Details */
+  const size_t *curOffsetPtr = ctx->offsets;
+  const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples;
+  /* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a
+   * different sample than the last.
+   */
+  size_t curSampleEnd = ctx->offsets[0];
+  for (; grpPtr != grpEnd; ++grpPtr) {
+    /* Save the dmerId for this position so we can get back to it. */
+    ctx->dmerAt[*grpPtr] = dmerId;
+    /* Dictionaries only help for the first reference to the dmer.
+     * After that zstd can reference the match from the previous reference.
+     * So only count each dmer once for each sample it is in.
+     */
+    if (*grpPtr < curSampleEnd) {
+      continue;
+    }
+    freq += 1;
+    /* Binary search to find the end of the sample *grpPtr is in.
+     * In the common case that grpPtr + 1 == grpEnd we can skip the binary
+     * search because the loop is over.
+     */
+    if (grpPtr + 1 != grpEnd) {
+      const size_t *sampleEndPtr =
+          COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr);
+      curSampleEnd = *sampleEndPtr;
+      curOffsetPtr = sampleEndPtr + 1;
+    }
+  }
+  /* At this point we are never going to look at this segment of the suffix
+   * array again.  We take advantage of this fact to save memory.
+   * We store the frequency of the dmer in the first position of the group,
+   * which is dmerId.
+   */
+  ctx->suffix[dmerId] = freq;
+}
+
+/**
+ * A segment is a range in the source as well as the score of the segment.
+ */
+typedef struct {
+  U32 begin;
+  U32 end;
+  double score;
+} COVER_segment_t;
+
+/**
+ * Selects the best segment in an epoch.
+ * Segments of are scored according to the function:
+ *
+ * Let F(d) be the frequency of dmer d.
+ * Let L(S) be the length of segment S.
+ * Let S_i be the dmer at position i of segment S.
+ *
+ *                 F(S_1) + F(S_2) + ... + F(S_{L(S)-d+1})
+ *     Score(S) = --------------------------------------
+ *                          smoothing + L(S)
+ *
+ * We try kStep segment lengths in the range [kMin, kMax].
+ * For each segment length we find the best segment according to Score.
+ * We then take the best segment overall according to Score and return it.
+ *
+ * The difference from the paper is that we try multiple segment lengths.
+ * We want to fit the segment length closer to the length of the useful part.
+ * Longer segments allow longer matches, so they are worth more than shorter
+ * ones.  However, if the extra length isn't high frequency it hurts us.
+ * We add the smoothing in to give an advantage to longer segments.
+ * The larger smoothing is, the more longer matches are favored.
+ */
+static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
+                                           COVER_map_t *activeDmers, U32 begin,
+                                           U32 end, COVER_params_t parameters) {
+  /* Saves the best segment of any length tried */
+  COVER_segment_t globalBestSegment = {0, 0, 0};
+  /* For each segment length */
+  U32 k;
+  U32 step = MAX((parameters.kMax - parameters.kMin) / parameters.kStep, 1);
+  for (k = parameters.kMin; k <= parameters.kMax; k += step) {
+    /* Save the best segment of this length */
+    COVER_segment_t bestSegment = {0, 0, 0};
+    COVER_segment_t activeSegment;
+    const size_t dmersInK = k - ctx->d + 1;
+    /* Reset the activeDmers in the segment */
+    COVER_map_clear(activeDmers);
+    activeSegment.begin = begin;
+    activeSegment.end = begin;
+    activeSegment.score = 0;
+    /* Slide the active segment through the whole epoch.
+     * Save the best segment in bestSegment.
+     */
+    while (activeSegment.end < end) {
+      /* The dmerId for the dmer at the next position */
+      U32 newDmer = ctx->dmerAt[activeSegment.end];
+      /* The entry in activeDmers for this dmerId */
+      U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer);
+      /* If the dmer isn't already present in the segment add its score. */
+      if (*newDmerOcc == 0) {
+        /* The paper suggest using the L-0.5 norm, but experiments show that it
+         * doesn't help.
+         */
+        activeSegment.score += freqs[newDmer];
+      }
+      /* Add the dmer to the segment */
+      activeSegment.end += 1;
+      *newDmerOcc += 1;
+
+      /* If the window is now too large, drop the first position */
+      if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
+        U32 delDmer = ctx->dmerAt[activeSegment.begin];
+        U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
+        activeSegment.begin += 1;
+        *delDmerOcc -= 1;
+        /* If this is the last occurence of the dmer, subtract its score */
+        if (*delDmerOcc == 0) {
+          COVER_map_remove(activeDmers, delDmer);
+          activeSegment.score -= freqs[delDmer];
+        }
+      }
+
+      /* If this segment is the best so far save it */
+      if (activeSegment.score > bestSegment.score) {
+        bestSegment = activeSegment;
+      }
+    }
+    {
+      /* Trim off the zero frequency head and tail from the segment. */
+      U32 newBegin = bestSegment.end;
+      U32 newEnd = bestSegment.begin;
+      U32 pos;
+      for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
+        U32 freq = freqs[ctx->dmerAt[pos]];
+        if (freq != 0) {
+          newBegin = MIN(newBegin, pos);
+          newEnd = pos + 1;
+        }
+      }
+      bestSegment.begin = newBegin;
+      bestSegment.end = newEnd;
+      /* Calculate the final score normalizing for segment length */
+      bestSegment.score /=
+          (parameters.smoothing + (bestSegment.end - bestSegment.begin));
+    }
+    /* If this segment is the best so far for any length save it */
+    if (bestSegment.score > globalBestSegment.score) {
+      globalBestSegment = bestSegment;
+    }
+  }
+  {
+    /* Zero out the frequency of each dmer covered by the chosen segment. */
+    size_t pos;
+    for (pos = globalBestSegment.begin; pos != globalBestSegment.end; ++pos) {
+      freqs[ctx->dmerAt[pos]] = 0;
+    }
+  }
+  return globalBestSegment;
+}
+
+/**
+ * Check the validity of the parameters.
+ * If the parameters are valid and any are default, set them to the correct
+ * values.
+ * Returns 1 on success, 0 on failure.
+ */
+static int COVER_defaultParameters(COVER_params_t *parameters) {
+  /* kMin and d are required parameters */
+  if (parameters->d == 0 || parameters->kMin == 0) {
+    return 0;
+  }
+  /* d <= kMin */
+  if (parameters->d > parameters->kMin) {
+    return 0;
+  }
+  /* If kMax is set (non-zero) then kMin <= kMax */
+  if (parameters->kMax != 0 && parameters->kMax < parameters->kMin) {
+    return 0;
+  }
+  /* If kMax is set, then kStep must be as well */
+  if (parameters->kMax != 0 && parameters->kStep == 0) {
+    return 0;
+  }
+  parameters->kMax = MAX(parameters->kMin, parameters->kMax);
+  parameters->kStep = MAX(1, parameters->kStep);
+  return 1;
+}
+
+/**
+ * Clean up a context initialized with `COVER_ctx_init()`.
+ */
+static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
+  if (!ctx) {
+    return;
+  }
+  if (ctx->suffix) {
+    free(ctx->suffix);
+    ctx->suffix = NULL;
+  }
+  if (ctx->freqs) {
+    free(ctx->freqs);
+    ctx->freqs = NULL;
+  }
+  if (ctx->dmerAt) {
+    free(ctx->dmerAt);
+    ctx->dmerAt = NULL;
+  }
+  if (ctx->offsets) {
+    free(ctx->offsets);
+    ctx->offsets = NULL;
+  }
+}
+
+/**
+ * Prepare a context for dictionary building.
+ * The context is only dependent on the parameter `d` and can used multiple
+ * times.
+ * Returns 1 on success or zero on error.
+ * The context must be destroyed with `COVER_ctx_destroy()`.
+ */
+static int COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
+                          const size_t *samplesSizes, unsigned nbSamples,
+                          unsigned d) {
+  const BYTE *const samples = (const BYTE *)samplesBuffer;
+  const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
+  /* Checks */
+  if (totalSamplesSize < d ||
+      totalSamplesSize > (size_t)COVER_MAX_SAMPLES_SIZE) {
+    return 0;
+  }
+  /* Zero the context */
+  memset(ctx, 0, sizeof(*ctx));
+  DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbSamples,
+               (U32)totalSamplesSize);
+  ctx->samples = samples;
+  ctx->samplesSizes = samplesSizes;
+  ctx->nbSamples = nbSamples;
+  /* Partial suffix array */
+  ctx->suffixSize = totalSamplesSize - d + 1;
+  ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
+  /* Maps index to the dmerID */
+  ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
+  /* The offsets of each file */
+  ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
+  if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
+    COVER_ctx_destroy(ctx);
+    return 0;
+  }
+  ctx->freqs = NULL;
+  ctx->d = d;
+
+  /* Fill offsets from the samlesSizes */
+  {
+    U32 i;
+    ctx->offsets[0] = 0;
+    for (i = 1; i <= nbSamples; ++i) {
+      ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
+    }
+  }
+  DISPLAYLEVEL(2, "Constructing partial suffix array\n");
+  {
+    /* suffix is a partial suffix array.
+     * It only sorts suffixes by their first parameters.d bytes.
+     * The sort is stable, so each dmer group is sorted by position in input.
+     */
+    U32 i;
+    for (i = 0; i < ctx->suffixSize; ++i) {
+      ctx->suffix[i] = i;
+    }
+    /* qsort doesn't take an opaque pointer, so pass as a global */
+    g_ctx = ctx;
+    qsort(ctx->suffix, ctx->suffixSize, sizeof(U32), &COVER_strict_cmp);
+  }
+  DISPLAYLEVEL(2, "Computing frequencies\n");
+  /* For each dmer group (group of positions with the same first d bytes):
+   * 1. For each position we set dmerAt[position] = dmerID.  The dmerID is
+   *    (groupBeginPtr - suffix).  This allows us to go from position to
+   *    dmerID so we can look up values in freq.
+   * 2. We calculate how many samples the dmer occurs in and save it in
+   *    freqs[dmerId].
+   */
+  COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx, &COVER_cmp,
+                &COVER_group);
+  ctx->freqs = ctx->suffix;
+  ctx->suffix = NULL;
+  return 1;
+}
+
+/**
+ * Given the prepared context build the dictionary.
+ */
+static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
+                                    COVER_map_t *activeDmers, void *dictBuffer,
+                                    size_t dictBufferCapacity,
+                                    COVER_params_t parameters) {
+  BYTE *const dict = (BYTE *)dictBuffer;
+  size_t tail = dictBufferCapacity;
+  /* Divide the data up into epochs of equal size.
+   * We will select at least one segment from each epoch.
+   */
+  const U32 epochs = (U32)(dictBufferCapacity / parameters.kMax);
+  const U32 epochSize = (U32)(ctx->suffixSize / epochs);
+  size_t epoch;
+  DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n", epochs,
+               epochSize);
+  for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs) {
+    const U32 epochBegin = (U32)(epoch * epochSize);
+    const U32 epochEnd = epochBegin + epochSize;
+    size_t segmentSize;
+    COVER_segment_t segment = COVER_selectSegment(
+        ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
+    segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
+    if (segmentSize == 0) {
+      break;
+    }
+    /* We fill the dictionary from the back to allow the best segments to be
+     * referenced with the smallest offsets.
+     */
+    tail -= segmentSize;
+    memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
+    DISPLAYUPDATE(
+        2, "\r%u%%       ",
+        (U32)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
+  }
+  DISPLAYLEVEL(2, "\r%79s\r", "");
+  return tail;
+}
+
+/**
+ * Translate from COVER_params_t to ZDICT_params_t required for finalizing the
+ * dictionary.
+ */
+static ZDICT_params_t COVER_translateParams(COVER_params_t parameters) {
+  ZDICT_params_t zdictParams;
+  memset(&zdictParams, 0, sizeof(zdictParams));
+  zdictParams.notificationLevel = 1;
+  zdictParams.dictID = parameters.dictID;
+  zdictParams.compressionLevel = parameters.compressionLevel;
+  return zdictParams;
+}
+
+/**
+ * Constructs a dictionary using a heuristic based on the following paper:
+ *
+ * Liao, Petri, Moffat, Wirth
+ * Effective Construction of Relative Lempel-Ziv Dictionaries
+ * Published in WWW 2016.
+ */
+ZDICTLIB_API size_t COVER_trainFromBuffer(
+    void *dictBuffer, size_t dictBufferCapacity, const void *samplesBuffer,
+    const size_t *samplesSizes, unsigned nbSamples, COVER_params_t parameters) {
+  BYTE *const dict = (BYTE *)dictBuffer;
+  COVER_ctx_t ctx;
+  COVER_map_t activeDmers;
+  size_t rc;
+  /* Checks */
+  if (!COVER_defaultParameters(&parameters)) {
+    DISPLAYLEVEL(1, "Cover parameters incorrect\n");
+    return ERROR(GENERIC);
+  }
+  if (nbSamples == 0) {
+    DISPLAYLEVEL(1, "Cover must have at least one input file\n");
+    return ERROR(GENERIC);
+  }
+  if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
+    return ERROR(dstSize_tooSmall);
+  }
+  /* Initialize global data */
+  g_displayLevel = parameters.notificationLevel;
+  /* Initialize context and activeDmers */
+  if (!COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
+                      parameters.d)) {
+    DISPLAYLEVEL(1, "Failed to initialize context\n");
+    return ERROR(GENERIC);
+  }
+  if (!COVER_map_init(&activeDmers, parameters.kMax - parameters.d + 1)) {
+    DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
+    COVER_ctx_destroy(&ctx);
+    return ERROR(GENERIC);
+  }
+
+  DISPLAYLEVEL(2, "Building dictionary\n");
+  {
+    const size_t tail =
+        COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer,
+                              dictBufferCapacity, parameters);
+    ZDICT_params_t zdictParams = COVER_translateParams(parameters);
+    DISPLAYLEVEL(2, "Dictionary content size: %u",
+                 (U32)(dictBufferCapacity - tail));
+    rc = ZDICT_finalizeDictionary(dict, dictBufferCapacity, dict + tail,
+                                  dictBufferCapacity - tail, samplesBuffer,
+                                  samplesSizes, nbSamples, zdictParams);
+  }
+  if (!ZSTD_isError(rc)) {
+    DISPLAYLEVEL(2, "Constructed dictionary of size %u\n", (U32)rc);
+  }
+  COVER_ctx_destroy(&ctx);
+  COVER_map_destroy(&activeDmers);
+  return rc;
+}
+
+/**
+ * COVER_best_t is used for two purposes:
+ * 1. Synchronizing threads.
+ * 2. Saving the best parameters and dictionary.
+ *
+ * All of the methods are thread safe if `ZSTD_PTHREAD` is defined.
+ */
+typedef struct COVER_best_s {
+#ifdef ZSTD_PTHREAD
+  pthread_mutex_t mutex;
+  pthread_cond_t cond;
+  size_t liveJobs;
+#endif
+  void *dict;
+  size_t dictSize;
+  COVER_params_t parameters;
+  size_t compressedSize;
+} COVER_best_t;
+
+/**
+ * Initialize the `COVER_best_t`.
+ */
+static void COVER_best_init(COVER_best_t *best) {
+  if (!best) {
+    return;
+  }
+#ifdef ZSTD_PTHREAD
+  pthread_mutex_init(&best->mutex, NULL);
+  pthread_cond_init(&best->cond, NULL);
+  best->liveJobs = 0;
+#endif
+  best->dict = NULL;
+  best->dictSize = 0;
+  best->compressedSize = (size_t)-1;
+  memset(&best->parameters, 0, sizeof(best->parameters));
+}
+
+/**
+ * Wait until liveJobs == 0.
+ */
+static void COVER_best_wait(COVER_best_t *best) {
+  if (!best) {
+    return;
+  }
+#ifdef ZSTD_PTHREAD
+  pthread_mutex_lock(&best->mutex);
+  while (best->liveJobs != 0) {
+    pthread_cond_wait(&best->cond, &best->mutex);
+  }
+  pthread_mutex_unlock(&best->mutex);
+#endif
+}
+
+/**
+ * Call COVER_best_wait() and then destroy the COVER_best_t.
+ */
+static void COVER_best_destroy(COVER_best_t *best) {
+  if (!best) {
+    return;
+  }
+  COVER_best_wait(best);
+  if (best->dict) {
+    free(best->dict);
+  }
+#ifdef ZSTD_PTHREAD
+  pthread_mutex_destroy(&best->mutex);
+  pthread_cond_destroy(&best->cond);
+#endif
+}
+
+/**
+ * Called when a thread is about to be launched.
+ * Increments liveJobs.
+ */
+static void COVER_best_start(COVER_best_t *best) {
+  if (!best) {
+    return;
+  }
+#ifdef ZSTD_PTHREAD
+  pthread_mutex_lock(&best->mutex);
+  ++best->liveJobs;
+  pthread_mutex_unlock(&best->mutex);
+#endif
+}
+
+/**
+ * Called when a thread finishes executing, both on error or success.
+ * Decrements liveJobs and signals any waiting threads if liveJobs == 0.
+ * If this dictionary is the best so far save it and its parameters.
+ */
+static void COVER_best_finish(COVER_best_t *best, size_t compressedSize,
+                              COVER_params_t parameters, void *dict,
+                              size_t dictSize) {
+  if (!best) {
+    return;
+  }
+  {
+#ifdef ZSTD_PTHREAD
+    size_t liveJobs;
+    pthread_mutex_lock(&best->mutex);
+    --best->liveJobs;
+    liveJobs = best->liveJobs;
+#endif
+    /* If the new dictionary is better */
+    if (compressedSize < best->compressedSize) {
+      /* Allocate space if necessary */
+      if (!best->dict || best->dictSize < dictSize) {
+        if (best->dict) {
+          free(best->dict);
+        }
+        best->dict = malloc(dictSize);
+        if (!best->dict) {
+          best->compressedSize = ERROR(GENERIC);
+          best->dictSize = 0;
+          return;
+        }
+      }
+      /* Save the dictionary, parameters, and size */
+      memcpy(best->dict, dict, dictSize);
+      best->dictSize = dictSize;
+      best->parameters = parameters;
+      best->compressedSize = compressedSize;
+    }
+#ifdef ZSTD_PTHREAD
+    pthread_mutex_unlock(&best->mutex);
+    if (liveJobs == 0) {
+      pthread_cond_broadcast(&best->cond);
+    }
+#endif
+  }
+}
+
+/**
+ * Parameters for COVER_tryParameters().
+ */
+typedef struct COVER_tryParameters_data_s {
+  const COVER_ctx_t *ctx;
+  COVER_best_t *best;
+  size_t dictBufferCapacity;
+  COVER_params_t parameters;
+} COVER_tryParameters_data_t;
+
+/**
+ * Tries a set of parameters and upates the COVER_best_t with the results.
+ * This function is thread safe if ZSTD_PTHREAD is defined.
+ * It takes its parameters as an *OWNING* opaque pointer to support threading.
+ */
+static void COVER_tryParameters(void *opaque) {
+  /* Save parameters as local variables */
+  COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)opaque;
+  const COVER_ctx_t *ctx = data->ctx;
+  COVER_params_t parameters = data->parameters;
+  size_t dictBufferCapacity = data->dictBufferCapacity;
+  size_t totalCompressedSize = ERROR(GENERIC);
+  /* Allocate space for hash table, dict, and freqs */
+  COVER_map_t activeDmers;
+  BYTE *const dict = (BYTE * const)malloc(dictBufferCapacity);
+  U32 *freqs = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
+  if (!COVER_map_init(&activeDmers, parameters.kMax - parameters.d + 1)) {
+    DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
+    goto _cleanup;
+  }
+  if (!dict || !freqs) {
+    DISPLAYLEVEL(1, "Failed to allocate dictionary buffer\n");
+    goto _cleanup;
+  }
+  /* Copy the frequencies because we need to modify them */
+  memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32));
+  /* Build the dictionary */
+  {
+    const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
+                                              dictBufferCapacity, parameters);
+    ZDICT_params_t zdictParams = COVER_translateParams(parameters);
+    dictBufferCapacity = ZDICT_finalizeDictionary(
+        dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
+        ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbSamples, zdictParams);
+    if (ZDICT_isError(dictBufferCapacity)) {
+      DISPLAYLEVEL(1, "Failed to finalize dictionary\n");
+      goto _cleanup;
+    }
+  }
+  /* Check total compressed size */
+  {
+    /* Pointers */
+    ZSTD_CCtx *cctx;
+    ZSTD_CDict *cdict;
+    void *dst;
+    /* Local variables */
+    size_t dstCapacity;
+    size_t i;
+    /* Allocate dst with enough space to compress the maximum sized sample */
+    {
+      size_t maxSampleSize = 0;
+      for (i = 0; i < ctx->nbSamples; ++i) {
+        maxSampleSize = MAX(ctx->samplesSizes[i], maxSampleSize);
+      }
+      dstCapacity = ZSTD_compressBound(maxSampleSize);
+      dst = malloc(dstCapacity);
+    }
+    /* Create the cctx and cdict */
+    cctx = ZSTD_createCCtx();
+    cdict =
+        ZSTD_createCDict(dict, dictBufferCapacity, parameters.compressionLevel);
+    if (!dst || !cctx || !cdict) {
+      goto _compressCleanup;
+    }
+    /* Compress each sample and sum their sizes (or error) */
+    totalCompressedSize = 0;
+    for (i = 0; i < ctx->nbSamples; ++i) {
+      const size_t size = ZSTD_compress_usingCDict(
+          cctx, dst, dstCapacity, ctx->samples + ctx->offsets[i],
+          ctx->samplesSizes[i], cdict);
+      if (ZSTD_isError(size)) {
+        totalCompressedSize = ERROR(GENERIC);
+        goto _compressCleanup;
+      }
+      totalCompressedSize += size;
+    }
+  _compressCleanup:
+    ZSTD_freeCCtx(cctx);
+    ZSTD_freeCDict(cdict);
+    if (dst) {
+      free(dst);
+    }
+  }
+
+_cleanup:
+  COVER_best_finish(data->best, totalCompressedSize, parameters, dict,
+                    dictBufferCapacity);
+  free(data);
+  COVER_map_destroy(&activeDmers);
+  if (dict) {
+    free(dict);
+  }
+  if (freqs) {
+    free(freqs);
+  }
+}
+
+ZDICTLIB_API size_t COVER_optimizeTrainFromBuffer(void *dictBuffer,
+                                                  size_t dictBufferCapacity,
+                                                  const void *samplesBuffer,
+                                                  const size_t *samplesSizes,
+                                                  unsigned nbSamples,
+                                                  COVER_params_t *parameters) {
+  /* constants */
+  const unsigned dMin = parameters->d == 0 ? 6 : parameters->d;
+  const unsigned dMax = parameters->d == 0 ? 16 : parameters->d;
+  const unsigned min = parameters->kMin == 0 ? 32 : parameters->kMin;
+  const unsigned max = parameters->kMax == 0 ? 1024 : parameters->kMax;
+  const unsigned kStep = parameters->kStep == 0 ? 8 : parameters->kStep;
+  const unsigned step = MAX((max - min) / kStep, 1);
+  /* Local variables */
+  unsigned iteration = 1;
+  const unsigned iterations =
+      (1 + (dMax - dMin) / 2) * (((1 + kStep) * (2 + kStep)) / 2) * 4;
+  const int displayLevel = parameters->notificationLevel;
+  unsigned d;
+  COVER_best_t best;
+  COVER_best_init(&best);
+  /* Turn down display level to clean up display at level 2 and below */
+  g_displayLevel = parameters->notificationLevel - 1;
+  /* Loop through d first because each new value needs a new context */
+  LOCALDISPLAYLEVEL(displayLevel, 3, "Trying %u different sets of parameters\n",
+                    iterations);
+  for (d = dMin; d <= dMax; d += 2) {
+    unsigned kMin;
+    /* Initialize the context for this value of d */
+    COVER_ctx_t ctx;
+    LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
+    if (!COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d)) {
+      LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
+      COVER_best_destroy(&best);
+      return ERROR(GENERIC);
+    }
+    /* Loop through the rest of the parameters reusing the same context */
+    for (kMin = min; kMin <= max; kMin += step) {
+      unsigned kMax;
+      LOCALDISPLAYLEVEL(displayLevel, 3, "kMin=%u\n", kMin);
+      for (kMax = kMin; kMax <= max; kMax += step) {
+        unsigned smoothing;
+        LOCALDISPLAYLEVEL(displayLevel, 3, "kMax=%u\n", kMax);
+        for (smoothing = kMin / 4; smoothing <= kMin * 2; smoothing *= 2) {
+          /* Prepare the arguments */
+          COVER_tryParameters_data_t *data =
+              (COVER_tryParameters_data_t *)malloc(
+                  sizeof(COVER_tryParameters_data_t));
+          LOCALDISPLAYLEVEL(displayLevel, 3, "smoothing=%u\n", smoothing);
+          if (!data) {
+            LOCALDISPLAYLEVEL(displayLevel, 1,
+                              "Failed to allocate parameters\n");
+            COVER_best_destroy(&best);
+            COVER_ctx_destroy(&ctx);
+            return ERROR(GENERIC);
+          }
+          data->ctx = &ctx;
+          data->best = &best;
+          data->dictBufferCapacity = dictBufferCapacity;
+          data->parameters = *parameters;
+          data->parameters.d = d;
+          data->parameters.kMin = kMin;
+          data->parameters.kStep = kStep;
+          data->parameters.kMax = kMax;
+          data->parameters.smoothing = smoothing;
+          /* Call the function and pass ownership of data to it */
+          COVER_best_start(&best);
+          COVER_tryParameters(data);
+          /* Print status */
+          LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%%       ",
+                             (U32)((iteration * 100) / iterations));
+          ++iteration;
+        }
+      }
+    }
+    COVER_best_wait(&best);
+    COVER_ctx_destroy(&ctx);
+  }
+  LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
+  /* Fill the output buffer and parameters with output of the best parameters */
+  {
+    const size_t dictSize = best.dictSize;
+    if (ZSTD_isError(best.compressedSize)) {
+      COVER_best_destroy(&best);
+      return best.compressedSize;
+    }
+    *parameters = best.parameters;
+    memcpy(dictBuffer, best.dict, dictSize);
+    COVER_best_destroy(&best);
+    return dictSize;
+  }
+}
index 63b8f0722a626cdefc0ebff28db0afec92e2faa0..4a2e79448b60b16030f908f40e9ebdcb2757d230 100644 (file)
@@ -86,6 +86,58 @@ ZDICTLIB_API size_t ZDICT_trainFromBuffer_advanced(void* dictBuffer, size_t dict
                                 const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
                                 ZDICT_params_t parameters);
 
+/*! COVER_params_t :
+    For all values 0 means default.
+    kMin and d are the only required parameters.
+*/
+typedef struct {
+    unsigned d;                  /* dmer size : constraint: <= kMin : Should probably be in the range [6, 16]. */
+    unsigned kMin;               /* Minimum segment size : constraint: > 0 */
+    unsigned kStep;              /* Try kStep segment lengths uniformly distributed in the range [kMin, kMax] : 0 (default) only if kMax == 0 */
+    unsigned kMax;               /* Maximum segment size : 0 = kMin (default) : constraint : 0 or >= kMin */
+    unsigned smoothing;          /* Higher smoothing => larger segments are selected.  Only useful if kMax > kMin. */
+
+    unsigned notificationLevel;  /* Write to stderr; 0 = none (default); 1 = errors; 2 = progression; 3 = details; 4 = debug; */
+    unsigned dictID;             /* 0 means auto mode (32-bits random value); other : force dictID value */
+    int      compressionLevel;   /* 0 means default; target a specific zstd compression level */
+} COVER_params_t;
+
+
+/*! COVER_trainFromBuffer() :
+    Train a dictionary from an array of samples using the COVER algorithm.
+    Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
+    supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
+    The resulting dictionary will be saved into `dictBuffer`.
+    @return : size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
+              or an error code, which can be tested with ZDICT_isError().
+    Tips : In general, a reasonable dictionary has a size of ~ 100 KB.
+           It's obviously possible to target smaller or larger ones, just by specifying different `dictBufferCapacity`.
+           In general, it's recommended to provide a few thousands samples, but this can vary a lot.
+           It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
+*/
+ZDICTLIB_API size_t COVER_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
+                              const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
+                              COVER_params_t parameters);
+
+/*! COVER_optimizeTrainFromBuffer() :
+    The same requirements as above hold for all the parameters except `parameters`.
+    This function tries many parameter combinations and picks the best parameters.
+    `*parameters` is filled with the best parameters found, and the dictionary
+    constructed with those parameters is stored in `dictBuffer`.
+
+    All of the {d, kMin, kStep, kMax} are optional, and smoothing is ignored.
+    If d is non-zero then we don't check multiple values of d, otherwise we check d = {6, 8, 10, 12, 14, 16}.
+    If kStep is non-zero then it is used, otherwise we pick 8.
+    If kMin and kMax are non-zero, then they limit the search space for kMin and kMax,
+    otherwise we check kMin and kMax values in the range [32, 1024].
+
+    @return : size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
+              or an error code, which can be tested with ZDICT_isError().
+              On success `*parameters` contains the parameters selected.
+*/
+ZDICTLIB_API size_t COVER_optimizeTrainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
+                                     const void* samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
+                                     COVER_params_t *parameters);
 
 /*! ZDICT_finalizeDictionary() :