&& operand_equal_p (real, imag, OEP_PURE_SAME))
{
const REAL_VALUE_TYPE sqrt2_trunc
- = real_value_truncate (TYPE_MODE (type),
- *get_real_const (rv_sqrt2));
+ = real_value_truncate (TYPE_MODE (type), dconst_sqrt2 ());
STRIP_NOPS (real);
return fold_build2 (MULT_EXPR, type,
fold_build1 (ABS_EXPR, type, real),
tree tree_root;
/* The inner root was either sqrt or cbrt. */
REAL_VALUE_TYPE dconstroot =
- BUILTIN_SQRT_P (fcode) ? dconsthalf : *get_real_const (rv_third);
+ BUILTIN_SQRT_P (fcode) ? dconsthalf : dconst_third ();
/* Adjust for the outer root. */
SET_REAL_EXP (&dconstroot, REAL_EXP (&dconstroot) - 1);
{
tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg), 0);
const REAL_VALUE_TYPE third_trunc =
- real_value_truncate (TYPE_MODE (type), *get_real_const (rv_third));
+ real_value_truncate (TYPE_MODE (type), dconst_third ());
arg = fold_build2 (MULT_EXPR, type,
CALL_EXPR_ARG (arg, 0),
build_real (type, third_trunc));
{
tree arg0 = CALL_EXPR_ARG (arg, 0);
tree tree_root;
- REAL_VALUE_TYPE dconstroot = *get_real_const (rv_third);
+ REAL_VALUE_TYPE dconstroot = dconst_third ();
SET_REAL_EXP (&dconstroot, REAL_EXP (&dconstroot) - 1);
dconstroot = real_value_truncate (TYPE_MODE (type), dconstroot);
REAL_VALUE_TYPE dconstroot;
real_arithmetic (&dconstroot, MULT_EXPR,
- get_real_const (rv_third),
- get_real_const (rv_third));
+ dconst_third_ptr (), dconst_third_ptr ());
dconstroot = real_value_truncate (TYPE_MODE (type), dconstroot);
tree_root = build_real (type, dconstroot);
return build_call_expr (powfn, 2, arg0, tree_root);
{
tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg), 0);
const REAL_VALUE_TYPE dconstroot
- = real_value_truncate (TYPE_MODE (type),
- *get_real_const (rv_third));
+ = real_value_truncate (TYPE_MODE (type), dconst_third ());
tree narg01 = fold_build2 (MULT_EXPR, type, arg01,
build_real (type, dconstroot));
return build_call_expr (powfn, 2, arg00, narg01);
if (flag_unsafe_math_optimizations && func == mpfr_log)
{
const REAL_VALUE_TYPE e_truncated =
- real_value_truncate (TYPE_MODE (type), *get_real_const (rv_e));
+ real_value_truncate (TYPE_MODE (type), dconst_e ());
if (real_dconstp (arg, &e_truncated))
return build_real (type, dconst1);
}
{
CASE_FLT_FN (BUILT_IN_EXP):
/* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
- x = build_real (type,
- real_value_truncate (TYPE_MODE (type),
- *get_real_const (rv_e)));
+ x = build_real (type, real_value_truncate (TYPE_MODE (type),
+ dconst_e ()));
exponent = CALL_EXPR_ARG (arg, 0);
break;
CASE_FLT_FN (BUILT_IN_EXP2):
/* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
x = CALL_EXPR_ARG (arg, 0);
exponent = build_real (type, real_value_truncate (TYPE_MODE (type),
- *get_real_const (rv_third)));
+ dconst_third ()));
break;
CASE_FLT_FN (BUILT_IN_POW):
/* Prepare to do logN(pow(x,exponent) -> exponent*logN(x). */
&& operand_equal_p (arg0, arg1, OEP_PURE_SAME))
{
const REAL_VALUE_TYPE sqrt2_trunc
- = real_value_truncate (TYPE_MODE (type), *get_real_const (rv_sqrt2));
+ = real_value_truncate (TYPE_MODE (type), dconst_sqrt2 ());
return fold_build2 (MULT_EXPR, type,
fold_build1 (ABS_EXPR, type, arg0),
build_real (type, sqrt2_trunc));
if (flag_unsafe_math_optimizations)
{
const REAL_VALUE_TYPE dconstroot
- = real_value_truncate (TYPE_MODE (type),
- *get_real_const (rv_third));
+ = real_value_truncate (TYPE_MODE (type), dconst_third ());
if (REAL_VALUES_EQUAL (c, dconstroot))
{
if (tree_expr_nonnegative_p (arg))
{
const REAL_VALUE_TYPE dconstroot
- = real_value_truncate (TYPE_MODE (type),
- *get_real_const (rv_third));
+ = real_value_truncate (TYPE_MODE (type), dconst_third ());
tree narg1 = fold_build2 (MULT_EXPR, type, arg1,
build_real (type, dconstroot));
return build_call_expr (fndecl, 2, arg, narg1);
do_divide (r, r, &pten);
}
-/* Returns the special REAL_VALUE_TYPE enumerated by E. */
+/* Returns the special REAL_VALUE_TYPE corresponding to 'e'. */
const REAL_VALUE_TYPE *
-get_real_const (enum real_value_const e)
+dconst_e_ptr (void)
{
- static REAL_VALUE_TYPE value[rv_max];
+ static REAL_VALUE_TYPE value;
- gcc_assert (e < rv_max);
+ /* Initialize mathematical constants for constant folding builtins.
+ These constants need to be given to at least 160 bits precision. */
+ if (value.cl == rvc_zero)
+ {
+ mpfr_t m;
+ mpfr_init2 (m, SIGNIFICAND_BITS);
+ mpfr_set_ui (m, 1, GMP_RNDN);
+ mpfr_exp (m, m, GMP_RNDN);
+ real_from_mpfr (&value, m, NULL_TREE, GMP_RNDN);
+ mpfr_clear (m);
+
+ }
+ return &value;
+}
+
+/* Returns the special REAL_VALUE_TYPE corresponding to 1/3. */
+
+const REAL_VALUE_TYPE *
+dconst_third_ptr (void)
+{
+ static REAL_VALUE_TYPE value;
/* Initialize mathematical constants for constant folding builtins.
These constants need to be given to at least 160 bits precision. */
- if (value[e].cl == rvc_zero)
- switch (e)
+ if (value.cl == rvc_zero)
{
- case rv_e:
- {
- mpfr_t m;
- mpfr_init2 (m, SIGNIFICAND_BITS);
- mpfr_set_ui (m, 1, GMP_RNDN);
- mpfr_exp (m, m, GMP_RNDN);
- real_from_mpfr (&value[e], m, NULL_TREE, GMP_RNDN);
- mpfr_clear (m);
- }
- break;
- case rv_third:
- real_arithmetic (&value[e], RDIV_EXPR, &dconst1, real_digit (3));
- break;
- case rv_sqrt2:
- {
- mpfr_t m;
- mpfr_init2 (m, SIGNIFICAND_BITS);
- mpfr_sqrt_ui (m, 2, GMP_RNDN);
- real_from_mpfr (&value[e], m, NULL_TREE, GMP_RNDN);
- mpfr_clear (m);
- }
- break;
- default:
- gcc_unreachable();
+ real_arithmetic (&value, RDIV_EXPR, &dconst1, real_digit (3));
}
+ return &value;
+}
+
+/* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
- return &value[e];
+const REAL_VALUE_TYPE *
+dconst_sqrt2_ptr (void)
+{
+ static REAL_VALUE_TYPE value;
+
+ /* Initialize mathematical constants for constant folding builtins.
+ These constants need to be given to at least 160 bits precision. */
+ if (value.cl == rvc_zero)
+ {
+ mpfr_t m;
+ mpfr_init2 (m, SIGNIFICAND_BITS);
+ mpfr_sqrt_ui (m, 2, GMP_RNDN);
+ real_from_mpfr (&value, m, NULL_TREE, GMP_RNDN);
+ mpfr_clear (m);
+ }
+ return &value;
}
/* Fills R with +Inf. */