--- /dev/null
+#!/usr/bin/make
+#
+# This is a temporary makefile for use during experimental development.
+# Replace with something more portable, if the experiments actually work out.
+#
+CC = gcc
+CFLAGS =-g -fPIC -Wall -I. -I/home/drh/sqlite/bld
+
+LSMOBJ = \
+ lsm_ckpt.o \
+ lsm_file.o \
+ lsm_log.o \
+ lsm_main.o \
+ lsm_mem.o \
+ lsm_mutex.o \
+ lsm_shared.o \
+ lsm_sorted.o \
+ lsm_str.o \
+ lsm_tree.o \
+ lsm_unix.o \
+ lsm_varint.o
+
+LSMHDR = \
+ lsm.h \
+ lsmInt.h
+
+all: lsm.so
+
+lsm.so: $(LSMOBJ)
+ $(CC) $(CFLAGS) -shared -o lsm.so $(LSMOBJ)
+
+%.o: %.c $(LSMHDR)
+ $(CC) $(CFLAGS) -c $<
--- /dev/null
+/*
+** 2011-08-10
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file defines the LSM API.
+*/
+#ifndef _LSM_H
+#define _LSM_H
+#include <stddef.h>
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+** Opaque handle types.
+*/
+typedef struct lsm_compress lsm_compress; /* Compression library functions */
+typedef struct lsm_compress_factory lsm_compress_factory;
+typedef struct lsm_cursor lsm_cursor; /* Database cursor handle */
+typedef struct lsm_db lsm_db; /* Database connection handle */
+typedef struct lsm_env lsm_env; /* Runtime environment */
+typedef struct lsm_file lsm_file; /* OS file handle */
+typedef struct lsm_mutex lsm_mutex; /* Mutex handle */
+
+/* 64-bit integer type used for file offsets. */
+typedef long long int lsm_i64; /* 64-bit signed integer type */
+
+/* Candidate values for the 3rd argument to lsm_env.xLock() */
+#define LSM_LOCK_UNLOCK 0
+#define LSM_LOCK_SHARED 1
+#define LSM_LOCK_EXCL 2
+
+/* Flags for lsm_env.xOpen() */
+#define LSM_OPEN_READONLY 0x0001
+
+/*
+** CAPI: Database Runtime Environment
+**
+** Run-time environment used by LSM
+*/
+struct lsm_env {
+ int nByte; /* Size of this structure in bytes */
+ int iVersion; /* Version number of this structure (1) */
+ /****** file i/o ***********************************************/
+ void *pVfsCtx;
+ int (*xFullpath)(lsm_env*, const char *, char *, int *);
+ int (*xOpen)(lsm_env*, const char *, int flags, lsm_file **);
+ int (*xRead)(lsm_file *, lsm_i64, void *, int);
+ int (*xWrite)(lsm_file *, lsm_i64, void *, int);
+ int (*xTruncate)(lsm_file *, lsm_i64);
+ int (*xSync)(lsm_file *);
+ int (*xSectorSize)(lsm_file *);
+ int (*xRemap)(lsm_file *, lsm_i64, void **, lsm_i64*);
+ int (*xFileid)(lsm_file *, void *pBuf, int *pnBuf);
+ int (*xClose)(lsm_file *);
+ int (*xUnlink)(lsm_env*, const char *);
+ int (*xLock)(lsm_file*, int, int);
+ int (*xTestLock)(lsm_file*, int, int, int);
+ int (*xShmMap)(lsm_file*, int, int, void **);
+ void (*xShmBarrier)(void);
+ int (*xShmUnmap)(lsm_file*, int);
+ /****** memory allocation ****************************************/
+ void *pMemCtx;
+ void *(*xMalloc)(lsm_env*, size_t); /* malloc(3) function */
+ void *(*xRealloc)(lsm_env*, void *, size_t); /* realloc(3) function */
+ void (*xFree)(lsm_env*, void *); /* free(3) function */
+ size_t (*xSize)(lsm_env*, void *); /* xSize function */
+ /****** mutexes ****************************************************/
+ void *pMutexCtx;
+ int (*xMutexStatic)(lsm_env*,int,lsm_mutex**); /* Obtain a static mutex */
+ int (*xMutexNew)(lsm_env*, lsm_mutex**); /* Get a new dynamic mutex */
+ void (*xMutexDel)(lsm_mutex *); /* Delete an allocated mutex */
+ void (*xMutexEnter)(lsm_mutex *); /* Grab a mutex */
+ int (*xMutexTry)(lsm_mutex *); /* Attempt to obtain a mutex */
+ void (*xMutexLeave)(lsm_mutex *); /* Leave a mutex */
+ int (*xMutexHeld)(lsm_mutex *); /* Return true if mutex is held */
+ int (*xMutexNotHeld)(lsm_mutex *); /* Return true if mutex not held */
+ /****** other ****************************************************/
+ int (*xSleep)(lsm_env*, int microseconds);
+
+ /* New fields may be added in future releases, in which case the
+ ** iVersion value will increase. */
+};
+
+/*
+** Values that may be passed as the second argument to xMutexStatic.
+*/
+#define LSM_MUTEX_GLOBAL 1
+#define LSM_MUTEX_HEAP 2
+
+/*
+** CAPI: LSM Error Codes
+*/
+#define LSM_OK 0
+#define LSM_ERROR 1
+#define LSM_BUSY 5
+#define LSM_NOMEM 7
+#define LSM_READONLY 8
+#define LSM_IOERR 10
+#define LSM_CORRUPT 11
+#define LSM_FULL 13
+#define LSM_CANTOPEN 14
+#define LSM_PROTOCOL 15
+#define LSM_MISUSE 21
+
+#define LSM_MISMATCH 50
+
+
+#define LSM_IOERR_NOENT (LSM_IOERR | (1<<8))
+
+/*
+** CAPI: Creating and Destroying Database Connection Handles
+**
+** Open and close a database connection handle.
+*/
+int lsm_new(lsm_env*, lsm_db **ppDb);
+int lsm_close(lsm_db *pDb);
+
+/*
+** CAPI: Connecting to a Database
+*/
+int lsm_open(lsm_db *pDb, const char *zFilename);
+
+/*
+** CAPI: Obtaining pointers to database environments
+**
+** Return a pointer to the environment used by the database connection
+** passed as the first argument. Assuming the argument is valid, this
+** function always returns a valid environment pointer - it cannot fail.
+*/
+lsm_env *lsm_get_env(lsm_db *pDb);
+
+/*
+** The lsm_default_env() function returns a pointer to the default LSM
+** environment for the current platform.
+*/
+lsm_env *lsm_default_env(void);
+
+
+/*
+** CAPI: Configuring a database connection.
+**
+** The lsm_config() function is used to configure a database connection.
+*/
+int lsm_config(lsm_db *, int, ...);
+
+/*
+** The following values may be passed as the second argument to lsm_config().
+**
+** LSM_CONFIG_AUTOFLUSH:
+** A read/write integer parameter.
+**
+** This value determines the amount of data allowed to accumulate in a
+** live in-memory tree before it is marked as old. After committing a
+** transaction, a connection checks if the size of the live in-memory tree,
+** including data structure overhead, is greater than the value of this
+** option in KB. If it is, and there is not already an old in-memory tree,
+** the live in-memory tree is marked as old.
+**
+** The maximum allowable value is 1048576 (1GB). There is no minimum
+** value. If this parameter is set to zero, then an attempt is made to
+** mark the live in-memory tree as old after each transaction is committed.
+**
+** The default value is 1024 (1MB).
+**
+** LSM_CONFIG_PAGE_SIZE:
+** A read/write integer parameter. This parameter may only be set before
+** lsm_open() has been called.
+**
+** LSM_CONFIG_BLOCK_SIZE:
+** A read/write integer parameter.
+**
+** This parameter may only be set before lsm_open() has been called. It
+** must be set to a power of two between 64 and 65536, inclusive (block
+** sizes between 64KB and 64MB).
+**
+** If the connection creates a new database, the block size of the new
+** database is set to the value of this option in KB. After lsm_open()
+** has been called, querying this parameter returns the actual block
+** size of the opened database.
+**
+** The default value is 1024 (1MB blocks).
+**
+** LSM_CONFIG_SAFETY:
+** A read/write integer parameter. Valid values are 0, 1 (the default)
+** and 2. This parameter determines how robust the database is in the
+** face of a system crash (e.g. a power failure or operating system
+** crash). As follows:
+**
+** 0 (off): No robustness. A system crash may corrupt the database.
+**
+** 1 (normal): Some robustness. A system crash may not corrupt the
+** database file, but recently committed transactions may
+** be lost following recovery.
+**
+** 2 (full): Full robustness. A system crash may not corrupt the
+** database file. Following recovery the database file
+** contains all successfully committed transactions.
+**
+** LSM_CONFIG_AUTOWORK:
+** A read/write integer parameter.
+**
+** LSM_CONFIG_AUTOCHECKPOINT:
+** A read/write integer parameter.
+**
+** If this option is set to non-zero value N, then a checkpoint is
+** automatically attempted after each N KB of data have been written to
+** the database file.
+**
+** The amount of uncheckpointed data already written to the database file
+** is a global parameter. After performing database work (writing to the
+** database file), the process checks if the total amount of uncheckpointed
+** data exceeds the value of this paramter. If so, a checkpoint is performed.
+** This means that this option may cause the connection to perform a
+** checkpoint even if the current connection has itself written very little
+** data into the database file.
+**
+** The default value is 2048 (checkpoint every 2MB).
+**
+** LSM_CONFIG_MMAP:
+** A read/write integer parameter. If this value is set to 0, then the
+** database file is accessed using ordinary read/write IO functions. Or,
+** if it is set to 1, then the database file is memory mapped and accessed
+** that way. If this parameter is set to any value N greater than 1, then
+** up to the first N KB of the file are memory mapped, and any remainder
+** accessed using read/write IO.
+**
+** The default value is 1 on 64-bit platforms and 32768 on 32-bit platforms.
+**
+**
+** LSM_CONFIG_USE_LOG:
+** A read/write boolean parameter. True (the default) to use the log
+** file normally. False otherwise.
+**
+** LSM_CONFIG_AUTOMERGE:
+** A read/write integer parameter. The minimum number of segments to
+** merge together at a time. Default value 4.
+**
+** LSM_CONFIG_MAX_FREELIST:
+** A read/write integer parameter. The maximum number of free-list
+** entries that are stored in a database checkpoint (the others are
+** stored elsewhere in the database).
+**
+** There is no reason for an application to configure or query this
+** parameter. It is only present because configuring a small value
+** makes certain parts of the lsm code easier to test.
+**
+** LSM_CONFIG_MULTIPLE_PROCESSES:
+** A read/write boolean parameter. This parameter may only be set before
+** lsm_open() has been called. If true, the library uses shared-memory
+** and posix advisory locks to co-ordinate access by clients from within
+** multiple processes. Otherwise, if false, all database clients must be
+** located in the same process. The default value is true.
+**
+** LSM_CONFIG_SET_COMPRESSION:
+** Set the compression methods used to compress and decompress database
+** content. The argument to this option should be a pointer to a structure
+** of type lsm_compress. The lsm_config() method takes a copy of the
+** structures contents.
+**
+** This option may only be used before lsm_open() is called. Invoking it
+** after lsm_open() has been called results in an LSM_MISUSE error.
+**
+** LSM_CONFIG_GET_COMPRESSION:
+** Query the compression methods used to compress and decompress database
+** content.
+**
+** LSM_CONFIG_SET_COMPRESSION_FACTORY:
+** Configure a factory method to be invoked in case of an LSM_MISMATCH
+** error.
+**
+** LSM_CONFIG_READONLY:
+** A read/write boolean parameter. This parameter may only be set before
+** lsm_open() is called.
+*/
+#define LSM_CONFIG_AUTOFLUSH 1
+#define LSM_CONFIG_PAGE_SIZE 2
+#define LSM_CONFIG_SAFETY 3
+#define LSM_CONFIG_BLOCK_SIZE 4
+#define LSM_CONFIG_AUTOWORK 5
+#define LSM_CONFIG_MMAP 7
+#define LSM_CONFIG_USE_LOG 8
+#define LSM_CONFIG_AUTOMERGE 9
+#define LSM_CONFIG_MAX_FREELIST 10
+#define LSM_CONFIG_MULTIPLE_PROCESSES 11
+#define LSM_CONFIG_AUTOCHECKPOINT 12
+#define LSM_CONFIG_SET_COMPRESSION 13
+#define LSM_CONFIG_GET_COMPRESSION 14
+#define LSM_CONFIG_SET_COMPRESSION_FACTORY 15
+#define LSM_CONFIG_READONLY 16
+
+#define LSM_SAFETY_OFF 0
+#define LSM_SAFETY_NORMAL 1
+#define LSM_SAFETY_FULL 2
+
+/*
+** CAPI: Compression and/or Encryption Hooks
+*/
+struct lsm_compress {
+ void *pCtx;
+ unsigned int iId;
+ int (*xBound)(void *, int nSrc);
+ int (*xCompress)(void *, char *, int *, const char *, int);
+ int (*xUncompress)(void *, char *, int *, const char *, int);
+ void (*xFree)(void *pCtx);
+};
+
+struct lsm_compress_factory {
+ void *pCtx;
+ int (*xFactory)(void *, lsm_db *, unsigned int);
+ void (*xFree)(void *pCtx);
+};
+
+#define LSM_COMPRESSION_EMPTY 0
+#define LSM_COMPRESSION_NONE 1
+
+/*
+** CAPI: Allocating and Freeing Memory
+**
+** Invoke the memory allocation functions that belong to environment
+** pEnv. Or the system defaults if no memory allocation functions have
+** been registered.
+*/
+void *lsm_malloc(lsm_env*, size_t);
+void *lsm_realloc(lsm_env*, void *, size_t);
+void lsm_free(lsm_env*, void *);
+
+/*
+** CAPI: Querying a Connection For Operational Data
+**
+** Query a database connection for operational statistics or data.
+*/
+int lsm_info(lsm_db *, int, ...);
+
+int lsm_get_user_version(lsm_db *, unsigned int *);
+int lsm_set_user_version(lsm_db *, unsigned int);
+
+/*
+** The following values may be passed as the second argument to lsm_info().
+**
+** LSM_INFO_NWRITE:
+** The third parameter should be of type (int *). The location pointed
+** to by the third parameter is set to the number of 4KB pages written to
+** the database file during the lifetime of this connection.
+**
+** LSM_INFO_NREAD:
+** The third parameter should be of type (int *). The location pointed
+** to by the third parameter is set to the number of 4KB pages read from
+** the database file during the lifetime of this connection.
+**
+** LSM_INFO_DB_STRUCTURE:
+** The third argument should be of type (char **). The location pointed
+** to is populated with a pointer to a nul-terminated string containing
+** the string representation of a Tcl data-structure reflecting the
+** current structure of the database file. Specifically, the current state
+** of the worker snapshot. The returned string should be eventually freed
+** by the caller using lsm_free().
+**
+** The returned list contains one element for each level in the database,
+** in order from most to least recent. Each element contains a
+** single element for each segment comprising the corresponding level,
+** starting with the lhs segment, then each of the rhs segments (if any)
+** in order from most to least recent.
+**
+** Each segment element is itself a list of 4 integer values, as follows:
+**
+** <ol><li> First page of segment
+** <li> Last page of segment
+** <li> Root page of segment (if applicable)
+** <li> Total number of pages in segment
+** </ol>
+**
+** LSM_INFO_ARRAY_STRUCTURE:
+** There should be two arguments passed following this option (i.e. a
+** total of four arguments passed to lsm_info()). The first argument
+** should be the page number of the first page in a database array
+** (perhaps obtained from an earlier INFO_DB_STRUCTURE call). The second
+** trailing argument should be of type (char **). The location pointed
+** to is populated with a pointer to a nul-terminated string that must
+** be eventually freed using lsm_free() by the caller.
+**
+** The output string contains the text representation of a Tcl list of
+** integers. Each pair of integers represent a range of pages used by
+** the identified array. For example, if the array occupies database
+** pages 993 to 1024, then pages 2048 to 2777, then the returned string
+** will be "993 1024 2048 2777".
+**
+** If the specified integer argument does not correspond to the first
+** page of any database array, LSM_ERROR is returned and the output
+** pointer is set to a NULL value.
+**
+** LSM_INFO_LOG_STRUCTURE:
+** The third argument should be of type (char **). The location pointed
+** to is populated with a pointer to a nul-terminated string containing
+** the string representation of a Tcl data-structure. The returned
+** string should be eventually freed by the caller using lsm_free().
+**
+** The Tcl structure returned is a list of six integers that describe
+** the current structure of the log file.
+**
+** LSM_INFO_ARRAY_PAGES:
+**
+** LSM_INFO_PAGE_ASCII_DUMP:
+** As with LSM_INFO_ARRAY_STRUCTURE, there should be two arguments passed
+** with calls that specify this option - an integer page number and a
+** (char **) used to return a nul-terminated string that must be later
+** freed using lsm_free(). In this case the output string is populated
+** with a human-readable description of the page content.
+**
+** If the page cannot be decoded, it is not an error. In this case the
+** human-readable output message will report the systems failure to
+** interpret the page data.
+**
+** LSM_INFO_PAGE_HEX_DUMP:
+** This argument is similar to PAGE_ASCII_DUMP, except that keys and
+** values are represented using hexadecimal notation instead of ascii.
+**
+** LSM_INFO_FREELIST:
+** The third argument should be of type (char **). The location pointed
+** to is populated with a pointer to a nul-terminated string containing
+** the string representation of a Tcl data-structure. The returned
+** string should be eventually freed by the caller using lsm_free().
+**
+** The Tcl structure returned is a list containing one element for each
+** free block in the database. The element itself consists of two
+** integers - the block number and the id of the snapshot that freed it.
+**
+** LSM_INFO_CHECKPOINT_SIZE:
+** The third argument should be of type (int *). The location pointed to
+** by this argument is populated with the number of KB written to the
+** database file since the most recent checkpoint.
+**
+** LSM_INFO_TREE_SIZE:
+** If this value is passed as the second argument to an lsm_info() call, it
+** should be followed by two arguments of type (int *) (for a total of four
+** arguments).
+**
+** At any time, there are either one or two tree structures held in shared
+** memory that new database clients will access (there may also be additional
+** tree structures being used by older clients - this API does not provide
+** information on them). One tree structure - the current tree - is used to
+** accumulate new data written to the database. The other tree structure -
+** the old tree - is a read-only tree holding older data and may be flushed
+** to disk at any time.
+**
+** Assuming no error occurs, the location pointed to by the first of the two
+** (int *) arguments is set to the size of the old in-memory tree in KB.
+** The second is set to the size of the current, or live in-memory tree.
+**
+** LSM_INFO_COMPRESSION_ID:
+** This value should be followed by a single argument of type
+** (unsigned int *). If successful, the location pointed to is populated
+** with the database compression id before returning.
+*/
+#define LSM_INFO_NWRITE 1
+#define LSM_INFO_NREAD 2
+#define LSM_INFO_DB_STRUCTURE 3
+#define LSM_INFO_LOG_STRUCTURE 4
+#define LSM_INFO_ARRAY_STRUCTURE 5
+#define LSM_INFO_PAGE_ASCII_DUMP 6
+#define LSM_INFO_PAGE_HEX_DUMP 7
+#define LSM_INFO_FREELIST 8
+#define LSM_INFO_ARRAY_PAGES 9
+#define LSM_INFO_CHECKPOINT_SIZE 10
+#define LSM_INFO_TREE_SIZE 11
+#define LSM_INFO_FREELIST_SIZE 12
+#define LSM_INFO_COMPRESSION_ID 13
+
+
+/*
+** CAPI: Opening and Closing Write Transactions
+**
+** These functions are used to open and close transactions and nested
+** sub-transactions.
+**
+** The lsm_begin() function is used to open transactions and sub-transactions.
+** A successful call to lsm_begin() ensures that there are at least iLevel
+** nested transactions open. To open a top-level transaction, pass iLevel=1.
+** To open a sub-transaction within the top-level transaction, iLevel=2.
+** Passing iLevel=0 is a no-op.
+**
+** lsm_commit() is used to commit transactions and sub-transactions. A
+** successful call to lsm_commit() ensures that there are at most iLevel
+** nested transactions open. To commit a top-level transaction, pass iLevel=0.
+** To commit all sub-transactions inside the main transaction, pass iLevel=1.
+**
+** Function lsm_rollback() is used to roll back transactions and
+** sub-transactions. A successful call to lsm_rollback() restores the database
+** to the state it was in when the iLevel'th nested sub-transaction (if any)
+** was first opened. And then closes transactions to ensure that there are
+** at most iLevel nested transactions open. Passing iLevel=0 rolls back and
+** closes the top-level transaction. iLevel=1 also rolls back the top-level
+** transaction, but leaves it open. iLevel=2 rolls back the sub-transaction
+** nested directly inside the top-level transaction (and leaves it open).
+*/
+int lsm_begin(lsm_db *pDb, int iLevel);
+int lsm_commit(lsm_db *pDb, int iLevel);
+int lsm_rollback(lsm_db *pDb, int iLevel);
+
+/*
+** CAPI: Writing to a Database
+**
+** Write a new value into the database. If a value with a duplicate key
+** already exists it is replaced.
+*/
+int lsm_insert(lsm_db*, const void *pKey, int nKey, const void *pVal, int nVal);
+
+/*
+** Delete a value from the database. No error is returned if the specified
+** key value does not exist in the database.
+*/
+int lsm_delete(lsm_db *, const void *pKey, int nKey);
+
+/*
+** Delete all database entries with keys that are greater than (pKey1/nKey1)
+** and smaller than (pKey2/nKey2). Note that keys (pKey1/nKey1) and
+** (pKey2/nKey2) themselves, if they exist in the database, are not deleted.
+**
+** Return LSM_OK if successful, or an LSM error code otherwise.
+*/
+int lsm_delete_range(lsm_db *,
+ const void *pKey1, int nKey1, const void *pKey2, int nKey2
+);
+
+/*
+** CAPI: Explicit Database Work and Checkpointing
+**
+** This function is called by a thread to work on the database structure.
+*/
+int lsm_work(lsm_db *pDb, int nMerge, int nKB, int *pnWrite);
+
+int lsm_flush(lsm_db *pDb);
+
+/*
+** Attempt to checkpoint the current database snapshot. Return an LSM
+** error code if an error occurs or LSM_OK otherwise.
+**
+** If the current snapshot has already been checkpointed, calling this
+** function is a no-op. In this case if pnKB is not NULL, *pnKB is
+** set to 0. Or, if the current snapshot is successfully checkpointed
+** by this function and pbKB is not NULL, *pnKB is set to the number
+** of bytes written to the database file since the previous checkpoint
+** (the same measure as returned by the LSM_INFO_CHECKPOINT_SIZE query).
+*/
+int lsm_checkpoint(lsm_db *pDb, int *pnKB);
+
+/*
+** CAPI: Opening and Closing Database Cursors
+**
+** Open and close a database cursor.
+*/
+int lsm_csr_open(lsm_db *pDb, lsm_cursor **ppCsr);
+int lsm_csr_close(lsm_cursor *pCsr);
+
+/*
+** CAPI: Positioning Database Cursors
+**
+** If the fourth parameter is LSM_SEEK_EQ, LSM_SEEK_GE or LSM_SEEK_LE,
+** this function searches the database for an entry with key (pKey/nKey).
+** If an error occurs, an LSM error code is returned. Otherwise, LSM_OK.
+**
+** If no error occurs and the requested key is present in the database, the
+** cursor is left pointing to the entry with the specified key. Or, if the
+** specified key is not present in the database the state of the cursor
+** depends on the value passed as the final parameter, as follows:
+**
+** LSM_SEEK_EQ:
+** The cursor is left at EOF (invalidated). A call to lsm_csr_valid()
+** returns non-zero.
+**
+** LSM_SEEK_LE:
+** The cursor is left pointing to the largest key in the database that
+** is smaller than (pKey/nKey). If the database contains no keys smaller
+** than (pKey/nKey), the cursor is left at EOF.
+**
+** LSM_SEEK_GE:
+** The cursor is left pointing to the smallest key in the database that
+** is larger than (pKey/nKey). If the database contains no keys larger
+** than (pKey/nKey), the cursor is left at EOF.
+**
+** If the fourth parameter is LSM_SEEK_LEFAST, this function searches the
+** database in a similar manner to LSM_SEEK_LE, with two differences:
+**
+** <ol><li>Even if a key can be found (the cursor is not left at EOF), the
+** lsm_csr_value() function may not be used (attempts to do so return
+** LSM_MISUSE).
+**
+** <li>The key that the cursor is left pointing to may be one that has
+** been recently deleted from the database. In this case it is
+** guaranteed that the returned key is larger than any key currently
+** in the database that is less than or equal to (pKey/nKey).
+** </ol>
+**
+** LSM_SEEK_LEFAST requests are intended to be used to allocate database
+** keys.
+*/
+int lsm_csr_seek(lsm_cursor *pCsr, const void *pKey, int nKey, int eSeek);
+
+int lsm_csr_first(lsm_cursor *pCsr);
+int lsm_csr_last(lsm_cursor *pCsr);
+
+/*
+** Advance the specified cursor to the next or previous key in the database.
+** Return LSM_OK if successful, or an LSM error code otherwise.
+**
+** Functions lsm_csr_seek(), lsm_csr_first() and lsm_csr_last() are "seek"
+** functions. Whether or not lsm_csr_next and lsm_csr_prev may be called
+** successfully also depends on the most recent seek function called on
+** the cursor. Specifically:
+**
+** <ul>
+** <li> At least one seek function must have been called on the cursor.
+** <li> To call lsm_csr_next(), the most recent call to a seek function must
+** have been either lsm_csr_first() or a call to lsm_csr_seek() specifying
+** LSM_SEEK_GE.
+** <li> To call lsm_csr_prev(), the most recent call to a seek function must
+** have been either lsm_csr_first() or a call to lsm_csr_seek() specifying
+** LSM_SEEK_GE.
+** </ul>
+**
+** Otherwise, if the above conditions are not met when lsm_csr_next or
+** lsm_csr_prev is called, LSM_MISUSE is returned and the cursor position
+** remains unchanged.
+*/
+int lsm_csr_next(lsm_cursor *pCsr);
+int lsm_csr_prev(lsm_cursor *pCsr);
+
+/*
+** Values that may be passed as the fourth argument to lsm_csr_seek().
+*/
+#define LSM_SEEK_LEFAST -2
+#define LSM_SEEK_LE -1
+#define LSM_SEEK_EQ 0
+#define LSM_SEEK_GE 1
+
+/*
+** CAPI: Extracting Data From Database Cursors
+**
+** Retrieve data from a database cursor.
+*/
+int lsm_csr_valid(lsm_cursor *pCsr);
+int lsm_csr_key(lsm_cursor *pCsr, const void **ppKey, int *pnKey);
+int lsm_csr_value(lsm_cursor *pCsr, const void **ppVal, int *pnVal);
+
+/*
+** If no error occurs, this function compares the database key passed via
+** the pKey/nKey arguments with the key that the cursor passed as the first
+** argument currently points to. If the cursors key is less than, equal to
+** or greater than pKey/nKey, *piRes is set to less than, equal to or greater
+** than zero before returning. LSM_OK is returned in this case.
+**
+** Or, if an error occurs, an LSM error code is returned and the final
+** value of *piRes is undefined. If the cursor does not point to a valid
+** key when this function is called, LSM_MISUSE is returned.
+*/
+int lsm_csr_cmp(lsm_cursor *pCsr, const void *pKey, int nKey, int *piRes);
+
+/*
+** CAPI: Change these!!
+**
+** Configure a callback to which debugging and other messages should
+** be directed. Only useful for debugging lsm.
+*/
+void lsm_config_log(lsm_db *, void (*)(void *, int, const char *), void *);
+
+/*
+** Configure a callback that is invoked if the database connection ever
+** writes to the database file.
+*/
+void lsm_config_work_hook(lsm_db *, void (*)(lsm_db *, void *), void *);
+
+/* ENDOFAPI */
+#ifdef __cplusplus
+} /* End of the 'extern "C"' block */
+#endif
+#endif /* ifndef _LSM_H */
--- /dev/null
+/*
+** 2011-08-18
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Internal structure definitions for the LSM module.
+*/
+#ifndef _LSM_INT_H
+#define _LSM_INT_H
+
+#include "lsm.h"
+#include <assert.h>
+#include <string.h>
+
+#include <stdarg.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include <ctype.h>
+
+#include <unistd.h>
+
+#ifdef NDEBUG
+# ifdef LSM_DEBUG_EXPENSIVE
+# undef LSM_DEBUG_EXPENSIVE
+# endif
+# ifdef LSM_DEBUG
+# undef LSM_DEBUG
+# endif
+#else
+# ifndef LSM_DEBUG
+# define LSM_DEBUG
+# endif
+#endif
+
+/*
+** Default values for various data structure parameters. These may be
+** overridden by calls to lsm_config().
+*/
+#define LSM_DFLT_PAGE_SIZE (4 * 1024)
+#define LSM_DFLT_BLOCK_SIZE (1 * 1024 * 1024)
+#define LSM_DFLT_AUTOFLUSH (1 * 1024 * 1024)
+#define LSM_DFLT_AUTOCHECKPOINT (i64)(2 * 1024 * 1024)
+#define LSM_DFLT_AUTOWORK 1
+#define LSM_DFLT_LOG_SIZE (128*1024)
+#define LSM_DFLT_AUTOMERGE 4
+#define LSM_DFLT_SAFETY LSM_SAFETY_NORMAL
+#define LSM_DFLT_MMAP (LSM_IS_64_BIT ? 1 : 32768)
+#define LSM_DFLT_MULTIPLE_PROCESSES 1
+#define LSM_DFLT_USE_LOG 1
+
+/* Initial values for log file checksums. These are only used if the
+** database file does not contain a valid checkpoint. */
+#define LSM_CKSUM0_INIT 42
+#define LSM_CKSUM1_INIT 42
+
+#define LSM_META_PAGE_SIZE 4096
+
+/* "mmap" mode is currently only used in environments with 64-bit address
+** spaces. The following macro is used to test for this. */
+#define LSM_IS_64_BIT (sizeof(void*)==8)
+
+#define LSM_AUTOWORK_QUANT 32
+
+typedef struct Database Database;
+typedef struct DbLog DbLog;
+typedef struct FileSystem FileSystem;
+typedef struct Freelist Freelist;
+typedef struct FreelistEntry FreelistEntry;
+typedef struct Level Level;
+typedef struct LogMark LogMark;
+typedef struct LogRegion LogRegion;
+typedef struct LogWriter LogWriter;
+typedef struct LsmString LsmString;
+typedef struct Mempool Mempool;
+typedef struct Merge Merge;
+typedef struct MergeInput MergeInput;
+typedef struct MetaPage MetaPage;
+typedef struct MultiCursor MultiCursor;
+typedef struct Page Page;
+typedef struct Redirect Redirect;
+typedef struct Segment Segment;
+typedef struct SegmentMerger SegmentMerger;
+typedef struct ShmChunk ShmChunk;
+typedef struct ShmHeader ShmHeader;
+typedef struct ShmReader ShmReader;
+typedef struct Snapshot Snapshot;
+typedef struct TransMark TransMark;
+typedef struct Tree Tree;
+typedef struct TreeCursor TreeCursor;
+typedef struct TreeHeader TreeHeader;
+typedef struct TreeMark TreeMark;
+typedef struct TreeRoot TreeRoot;
+
+#ifndef _SQLITEINT_H_
+typedef unsigned char u8;
+typedef unsigned short int u16;
+typedef unsigned int u32;
+typedef lsm_i64 i64;
+typedef unsigned long long int u64;
+#endif
+
+/* A page number is a 64-bit integer. */
+typedef i64 Pgno;
+
+#ifdef LSM_DEBUG
+int lsmErrorBkpt(int);
+#else
+# define lsmErrorBkpt(x) (x)
+#endif
+
+#define LSM_PROTOCOL_BKPT lsmErrorBkpt(LSM_PROTOCOL)
+#define LSM_IOERR_BKPT lsmErrorBkpt(LSM_IOERR)
+#define LSM_NOMEM_BKPT lsmErrorBkpt(LSM_NOMEM)
+#define LSM_CORRUPT_BKPT lsmErrorBkpt(LSM_CORRUPT)
+#define LSM_MISUSE_BKPT lsmErrorBkpt(LSM_MISUSE)
+
+#define unused_parameter(x) (void)(x)
+#define array_size(x) (sizeof(x)/sizeof(x[0]))
+
+
+/* The size of each shared-memory chunk */
+#define LSM_SHM_CHUNK_SIZE (32*1024)
+
+/* The number of bytes reserved at the start of each shm chunk for MM. */
+#define LSM_SHM_CHUNK_HDR (sizeof(ShmChunk))
+
+/* The number of available read locks. */
+#define LSM_LOCK_NREADER 6
+
+/* The number of available read-write client locks. */
+#define LSM_LOCK_NRWCLIENT 16
+
+/* Lock definitions.
+*/
+#define LSM_LOCK_DMS1 1 /* Serialize connect/disconnect ops */
+#define LSM_LOCK_DMS2 2 /* Read-write connections */
+#define LSM_LOCK_DMS3 3 /* Read-only connections */
+#define LSM_LOCK_WRITER 4
+#define LSM_LOCK_WORKER 5
+#define LSM_LOCK_CHECKPOINTER 6
+#define LSM_LOCK_ROTRANS 7
+#define LSM_LOCK_READER(i) ((i) + LSM_LOCK_ROTRANS + 1)
+#define LSM_LOCK_RWCLIENT(i) ((i) + LSM_LOCK_READER(LSM_LOCK_NREADER))
+
+/*
+** Hard limit on the number of free-list entries that may be stored in
+** a checkpoint (the remainder are stored as a system record in the LSM).
+** See also LSM_CONFIG_MAX_FREELIST.
+*/
+#define LSM_MAX_FREELIST_ENTRIES 24
+
+#define LSM_MAX_BLOCK_REDIRECTS 16
+
+#define LSM_ATTEMPTS_BEFORE_PROTOCOL 10000
+
+
+/*
+** Each entry stored in the LSM (or in-memory tree structure) has an
+** associated mask of the following flags.
+*/
+#define LSM_START_DELETE 0x01 /* Start of open-ended delete range */
+#define LSM_END_DELETE 0x02 /* End of open-ended delete range */
+#define LSM_POINT_DELETE 0x04 /* Delete this key */
+#define LSM_INSERT 0x08 /* Insert this key and value */
+#define LSM_SEPARATOR 0x10 /* True if entry is separator key only */
+#define LSM_SYSTEMKEY 0x20 /* True if entry is a system key (FREELIST) */
+
+#define LSM_CONTIGUOUS 0x40 /* Used in lsm_tree.c */
+
+/*
+** A string that can grow by appending.
+*/
+struct LsmString {
+ lsm_env *pEnv; /* Run-time environment */
+ int n; /* Size of string. -1 indicates error */
+ int nAlloc; /* Space allocated for z[] */
+ char *z; /* The string content */
+};
+
+typedef struct LsmFile LsmFile;
+struct LsmFile {
+ lsm_file *pFile;
+ LsmFile *pNext;
+};
+
+/*
+** An instance of the following type is used to store an ordered list of
+** u32 values.
+**
+** Note: This is a place-holder implementation. It should be replaced by
+** a version that avoids making a single large allocation when the array
+** contains a large number of values. For this reason, the internals of
+** this object should only manipulated by the intArrayXXX() functions in
+** lsm_tree.c.
+*/
+typedef struct IntArray IntArray;
+struct IntArray {
+ int nAlloc;
+ int nArray;
+ u32 *aArray;
+};
+
+struct Redirect {
+ int n; /* Number of redirects */
+ struct RedirectEntry {
+ int iFrom;
+ int iTo;
+ } *a;
+};
+
+/*
+** An instance of this structure represents a point in the history of the
+** tree structure to roll back to. Refer to comments in lsm_tree.c for
+** details.
+*/
+struct TreeMark {
+ u32 iRoot; /* Offset of root node in shm file */
+ u32 nHeight; /* Current height of tree structure */
+ u32 iWrite; /* Write offset in shm file */
+ u32 nChunk; /* Number of chunks in shared-memory file */
+ u32 iFirst; /* First chunk in linked list */
+ u32 iNextShmid; /* Next id to allocate */
+ int iRollback; /* Index in lsm->rollback to revert to */
+};
+
+/*
+** An instance of this structure represents a point in the database log.
+*/
+struct LogMark {
+ i64 iOff; /* Offset into log (see lsm_log.c) */
+ int nBuf; /* Size of in-memory buffer here */
+ u8 aBuf[8]; /* Bytes of content in aBuf[] */
+ u32 cksum0; /* Checksum 0 at offset (iOff-nBuf) */
+ u32 cksum1; /* Checksum 1 at offset (iOff-nBuf) */
+};
+
+struct TransMark {
+ TreeMark tree;
+ LogMark log;
+};
+
+/*
+** A structure that defines the start and end offsets of a region in the
+** log file. The size of the region in bytes is (iEnd - iStart), so if
+** iEnd==iStart the region is zero bytes in size.
+*/
+struct LogRegion {
+ i64 iStart; /* Start of region in log file */
+ i64 iEnd; /* End of region in log file */
+};
+
+struct DbLog {
+ u32 cksum0; /* Checksum 0 at offset iOff */
+ u32 cksum1; /* Checksum 1 at offset iOff */
+ i64 iSnapshotId; /* Log space has been reclaimed to this ss */
+ LogRegion aRegion[3]; /* Log file regions (see docs in lsm_log.c) */
+};
+
+struct TreeRoot {
+ u32 iRoot;
+ u32 nHeight;
+ u32 nByte; /* Total size of this tree in bytes */
+ u32 iTransId;
+};
+
+/*
+** Tree header structure.
+*/
+struct TreeHeader {
+ u32 iUsedShmid; /* Id of first shm chunk used by this tree */
+ u32 iNextShmid; /* Shm-id of next chunk allocated */
+ u32 iFirst; /* Chunk number of smallest shm-id */
+ u32 nChunk; /* Number of chunks in shared-memory file */
+ TreeRoot root; /* Root and height of current tree */
+ u32 iWrite; /* Write offset in shm file */
+ TreeRoot oldroot; /* Root and height of the previous tree */
+ u32 iOldShmid; /* Last shm-id used by previous tree */
+ u32 iUsrVersion; /* get/set_user_version() value */
+ i64 iOldLog; /* Log offset associated with old tree */
+ u32 oldcksum0;
+ u32 oldcksum1;
+ DbLog log; /* Current layout of log file */
+ u32 aCksum[2]; /* Checksums 1 and 2. */
+};
+
+/*
+** Database handle structure.
+**
+** mLock:
+** A bitmask representing the locks currently held by the connection.
+** An LSM database supports N distinct locks, where N is some number less
+** than or equal to 32. Locks are numbered starting from 1 (see the
+** definitions for LSM_LOCK_WRITER and co.).
+**
+** The least significant 32-bits in mLock represent EXCLUSIVE locks. The
+** most significant are SHARED locks. So, if a connection holds a SHARED
+** lock on lock region iLock, then the following is true:
+**
+** (mLock & ((iLock+32-1) << 1))
+**
+** Or for an EXCLUSIVE lock:
+**
+** (mLock & ((iLock-1) << 1))
+**
+** pCsr:
+** Points to the head of a linked list that contains all currently open
+** cursors. Once this list becomes empty, the user has no outstanding
+** cursors and the database handle can be successfully closed.
+**
+** pCsrCache:
+** This list contains cursor objects that have been closed using
+** lsm_csr_close(). Each time a cursor is closed, it is shifted from
+** the pCsr list to this list. When a new cursor is opened, this list
+** is inspected to see if there exists a cursor object that can be
+** reused. This is an optimization only.
+*/
+struct lsm_db {
+
+ /* Database handle configuration */
+ lsm_env *pEnv; /* runtime environment */
+ int (*xCmp)(void *, int, void *, int); /* Compare function */
+
+ /* Values configured by calls to lsm_config */
+ int eSafety; /* LSM_SAFETY_OFF, NORMAL or FULL */
+ int bAutowork; /* Configured by LSM_CONFIG_AUTOWORK */
+ int nTreeLimit; /* Configured by LSM_CONFIG_AUTOFLUSH */
+ int nMerge; /* Configured by LSM_CONFIG_AUTOMERGE */
+ int bUseLog; /* Configured by LSM_CONFIG_USE_LOG */
+ int nDfltPgsz; /* Configured by LSM_CONFIG_PAGE_SIZE */
+ int nDfltBlksz; /* Configured by LSM_CONFIG_BLOCK_SIZE */
+ int nMaxFreelist; /* Configured by LSM_CONFIG_MAX_FREELIST */
+ int iMmap; /* Configured by LSM_CONFIG_MMAP */
+ i64 nAutockpt; /* Configured by LSM_CONFIG_AUTOCHECKPOINT */
+ int bMultiProc; /* Configured by L_C_MULTIPLE_PROCESSES */
+ int bReadonly; /* Configured by LSM_CONFIG_READONLY */
+ lsm_compress compress; /* Compression callbacks */
+ lsm_compress_factory factory; /* Compression callback factory */
+
+ /* Sub-system handles */
+ FileSystem *pFS; /* On-disk portion of database */
+ Database *pDatabase; /* Database shared data */
+
+ int iRwclient; /* Read-write client lock held (-1 == none) */
+
+ /* Client transaction context */
+ Snapshot *pClient; /* Client snapshot */
+ int iReader; /* Read lock held (-1 == unlocked) */
+ int bRoTrans; /* True if a read-only db trans is open */
+ MultiCursor *pCsr; /* List of all open cursors */
+ LogWriter *pLogWriter; /* Context for writing to the log file */
+ int nTransOpen; /* Number of opened write transactions */
+ int nTransAlloc; /* Allocated size of aTrans[] array */
+ TransMark *aTrans; /* Array of marks for transaction rollback */
+ IntArray rollback; /* List of tree-nodes to roll back */
+ int bDiscardOld; /* True if lsmTreeDiscardOld() was called */
+
+ MultiCursor *pCsrCache; /* List of all closed cursors */
+
+ /* Worker context */
+ Snapshot *pWorker; /* Worker snapshot (or NULL) */
+ Freelist *pFreelist; /* See sortedNewToplevel() */
+ int bUseFreelist; /* True to use pFreelist */
+ int bIncrMerge; /* True if currently doing a merge */
+
+ int bInFactory; /* True if within factory.xFactory() */
+
+ /* Debugging message callback */
+ void (*xLog)(void *, int, const char *);
+ void *pLogCtx;
+
+ /* Work done notification callback */
+ void (*xWork)(lsm_db *, void *);
+ void *pWorkCtx;
+
+ u64 mLock; /* Mask of current locks. See lsmShmLock(). */
+ lsm_db *pNext; /* Next connection to same database */
+
+ int nShm; /* Size of apShm[] array */
+ void **apShm; /* Shared memory chunks */
+ ShmHeader *pShmhdr; /* Live shared-memory header */
+ TreeHeader treehdr; /* Local copy of tree-header */
+ u32 aSnapshot[LSM_META_PAGE_SIZE / sizeof(u32)];
+};
+
+struct Segment {
+ Pgno iFirst; /* First page of this run */
+ Pgno iLastPg; /* Last page of this run */
+ Pgno iRoot; /* Root page number (if any) */
+ int nSize; /* Size of this run in pages */
+
+ Redirect *pRedirect; /* Block redirects (or NULL) */
+};
+
+/*
+** iSplitTopic/pSplitKey/nSplitKey:
+** If nRight>0, this buffer contains a copy of the largest key that has
+** already been written to the left-hand-side of the level.
+*/
+struct Level {
+ Segment lhs; /* Left-hand (main) segment */
+ int nRight; /* Size of apRight[] array */
+ Segment *aRhs; /* Old segments being merged into this */
+ int iSplitTopic; /* Split key topic (if nRight>0) */
+ void *pSplitKey; /* Pointer to split-key (if nRight>0) */
+ int nSplitKey; /* Number of bytes in split-key */
+
+ u16 iAge; /* Number of times data has been written */
+ u16 flags; /* Mask of LEVEL_XXX bits */
+ Merge *pMerge; /* Merge operation currently underway */
+ Level *pNext; /* Next level in tree */
+};
+
+/*
+** The Level.flags field is set to a combination of the following bits.
+**
+** LEVEL_FREELIST_ONLY:
+** Set if the level consists entirely of free-list entries.
+**
+** LEVEL_INCOMPLETE:
+** This is set while a new toplevel level is being constructed. It is
+** never set for any level other than a new toplevel.
+*/
+#define LEVEL_FREELIST_ONLY 0x0001
+#define LEVEL_INCOMPLETE 0x0002
+
+
+/*
+** A structure describing an ongoing merge. There is an instance of this
+** structure for every Level currently undergoing a merge in the worker
+** snapshot.
+**
+** It is assumed that code that uses an instance of this structure has
+** access to the associated Level struct.
+**
+** iOutputOff:
+** The byte offset to write to next within the last page of the
+** output segment.
+*/
+struct MergeInput {
+ Pgno iPg; /* Page on which next input is stored */
+ int iCell; /* Cell containing next input to merge */
+};
+struct Merge {
+ int nInput; /* Number of input runs being merged */
+ MergeInput *aInput; /* Array nInput entries in size */
+ MergeInput splitkey; /* Location in file of current splitkey */
+ int nSkip; /* Number of separators entries to skip */
+ int iOutputOff; /* Write offset on output page */
+ Pgno iCurrentPtr; /* Current pointer value */
+};
+
+/*
+** The first argument to this macro is a pointer to a Segment structure.
+** Returns true if the structure instance indicates that the separators
+** array is valid.
+*/
+#define segmentHasSeparators(pSegment) ((pSegment)->sep.iFirst>0)
+
+/*
+** The values that accompany the lock held by a database reader.
+*/
+struct ShmReader {
+ u32 iTreeId;
+ i64 iLsmId;
+};
+
+/*
+** An instance of this structure is stored in the first shared-memory
+** page. The shared-memory header.
+**
+** bWriter:
+** Immediately after opening a write transaction taking the WRITER lock,
+** each writer client sets this flag. It is cleared right before the
+** WRITER lock is relinquished. If a subsequent writer finds that this
+** flag is already set when a write transaction is opened, this indicates
+** that a previous writer failed mid-transaction.
+**
+** iMetaPage:
+** If the database file does not contain a valid, synced, checkpoint, this
+** value is set to 0. Otherwise, it is set to the meta-page number that
+** contains the most recently written checkpoint (either 1 or 2).
+**
+** hdr1, hdr2:
+** The two copies of the in-memory tree header. Two copies are required
+** in case a writer fails while updating one of them.
+*/
+struct ShmHeader {
+ u32 aSnap1[LSM_META_PAGE_SIZE / 4];
+ u32 aSnap2[LSM_META_PAGE_SIZE / 4];
+ u32 bWriter;
+ u32 iMetaPage;
+ TreeHeader hdr1;
+ TreeHeader hdr2;
+ ShmReader aReader[LSM_LOCK_NREADER];
+};
+
+/*
+** An instance of this structure is stored at the start of each shared-memory
+** chunk except the first (which is the header chunk - see above).
+*/
+struct ShmChunk {
+ u32 iShmid;
+ u32 iNext;
+};
+
+/*
+** Maximum number of shared-memory chunks allowed in the *-shm file. Since
+** each shared-memory chunk is 32KB in size, this is a theoretical limit only.
+*/
+#define LSM_MAX_SHMCHUNKS (1<<30)
+
+/* Return true if shm-sequence "a" is larger than or equal to "b" */
+#define shm_sequence_ge(a, b) (((u32)a-(u32)b) < LSM_MAX_SHMCHUNKS)
+
+#define LSM_APPLIST_SZ 4
+
+/*
+** An instance of the following structure stores the in-memory part of
+** the current free block list. This structure is to the free block list
+** as the in-memory tree is to the users database content. The contents
+** of the free block list is found by merging the in-memory components
+** with those stored in the LSM, just as the contents of the database is
+** found by merging the in-memory tree with the user data entries in the
+** LSM.
+**
+** Each FreelistEntry structure in the array represents either an insert
+** or delete operation on the free-list. For deletes, the FreelistEntry.iId
+** field is set to -1. For inserts, it is set to zero or greater.
+**
+** The array of FreelistEntry structures is always sorted in order of
+** block number (ascending).
+**
+** When the in-memory free block list is written into the LSM, each insert
+** operation is written separately. The entry key is the bitwise inverse
+** of the block number as a 32-bit big-endian integer. This is done so that
+** the entries in the LSM are sorted in descending order of block id.
+** The associated value is the snapshot id, formated as a varint.
+*/
+struct Freelist {
+ FreelistEntry *aEntry; /* Free list entries */
+ int nEntry; /* Number of valid slots in aEntry[] */
+ int nAlloc; /* Allocated size of aEntry[] */
+};
+struct FreelistEntry {
+ u32 iBlk; /* Block number */
+ i64 iId; /* Largest snapshot id to use this block */
+};
+
+/*
+** A snapshot of a database. A snapshot contains all the information required
+** to read or write a database file on disk. See the description of struct
+** Database below for futher details.
+*/
+struct Snapshot {
+ Database *pDatabase; /* Database this snapshot belongs to */
+ u32 iCmpId; /* Id of compression scheme */
+ Level *pLevel; /* Pointer to level 0 of snapshot (or NULL) */
+ i64 iId; /* Snapshot id */
+ i64 iLogOff; /* Log file offset */
+ Redirect redirect; /* Block redirection array */
+
+ /* Used by worker snapshots only */
+ int nBlock; /* Number of blocks in database file */
+ Pgno aiAppend[LSM_APPLIST_SZ]; /* Append point list */
+ Freelist freelist; /* Free block list */
+ u32 nWrite; /* Total number of pages written to disk */
+};
+#define LSM_INITIAL_SNAPSHOT_ID 11
+
+/*
+** Functions from file "lsm_ckpt.c".
+*/
+int lsmCheckpointWrite(lsm_db *, int, u32 *);
+int lsmCheckpointLevels(lsm_db *, int, void **, int *);
+int lsmCheckpointLoadLevels(lsm_db *pDb, void *pVal, int nVal);
+
+int lsmCheckpointRecover(lsm_db *);
+int lsmCheckpointDeserialize(lsm_db *, int, u32 *, Snapshot **);
+
+int lsmCheckpointLoadWorker(lsm_db *pDb);
+int lsmCheckpointStore(lsm_db *pDb, int);
+
+int lsmCheckpointLoad(lsm_db *pDb, int *);
+int lsmCheckpointLoadOk(lsm_db *pDb, int);
+int lsmCheckpointClientCacheOk(lsm_db *);
+
+u32 lsmCheckpointNBlock(u32 *);
+i64 lsmCheckpointId(u32 *, int);
+u32 lsmCheckpointNWrite(u32 *, int);
+i64 lsmCheckpointLogOffset(u32 *);
+int lsmCheckpointPgsz(u32 *);
+int lsmCheckpointBlksz(u32 *);
+void lsmCheckpointLogoffset(u32 *aCkpt, DbLog *pLog);
+void lsmCheckpointZeroLogoffset(lsm_db *);
+
+int lsmCheckpointSaveWorker(lsm_db *pDb, int);
+int lsmDatabaseFull(lsm_db *pDb);
+int lsmCheckpointSynced(lsm_db *pDb, i64 *piId, i64 *piLog, u32 *pnWrite);
+
+int lsmCheckpointSize(lsm_db *db, int *pnByte);
+
+int lsmInfoCompressionId(lsm_db *db, u32 *piCmpId);
+
+/*
+** Functions from file "lsm_tree.c".
+*/
+int lsmTreeNew(lsm_env *, int (*)(void *, int, void *, int), Tree **ppTree);
+void lsmTreeRelease(lsm_env *, Tree *);
+int lsmTreeInit(lsm_db *);
+int lsmTreeRepair(lsm_db *);
+
+void lsmTreeMakeOld(lsm_db *pDb);
+void lsmTreeDiscardOld(lsm_db *pDb);
+int lsmTreeHasOld(lsm_db *pDb);
+
+int lsmTreeSize(lsm_db *);
+int lsmTreeEndTransaction(lsm_db *pDb, int bCommit);
+int lsmTreeLoadHeader(lsm_db *pDb, int *);
+int lsmTreeLoadHeaderOk(lsm_db *, int);
+
+int lsmTreeInsert(lsm_db *pDb, void *pKey, int nKey, void *pVal, int nVal);
+int lsmTreeDelete(lsm_db *db, void *pKey1, int nKey1, void *pKey2, int nKey2);
+void lsmTreeRollback(lsm_db *pDb, TreeMark *pMark);
+void lsmTreeMark(lsm_db *pDb, TreeMark *pMark);
+
+int lsmTreeCursorNew(lsm_db *pDb, int, TreeCursor **);
+void lsmTreeCursorDestroy(TreeCursor *);
+
+int lsmTreeCursorSeek(TreeCursor *pCsr, void *pKey, int nKey, int *pRes);
+int lsmTreeCursorNext(TreeCursor *pCsr);
+int lsmTreeCursorPrev(TreeCursor *pCsr);
+int lsmTreeCursorEnd(TreeCursor *pCsr, int bLast);
+void lsmTreeCursorReset(TreeCursor *pCsr);
+int lsmTreeCursorKey(TreeCursor *pCsr, int *pFlags, void **ppKey, int *pnKey);
+int lsmTreeCursorFlags(TreeCursor *pCsr);
+int lsmTreeCursorValue(TreeCursor *pCsr, void **ppVal, int *pnVal);
+int lsmTreeCursorValid(TreeCursor *pCsr);
+int lsmTreeCursorSave(TreeCursor *pCsr);
+
+void lsmFlagsToString(int flags, char *zFlags);
+
+/*
+** Functions from file "mem.c".
+*/
+void *lsmMalloc(lsm_env*, size_t);
+void lsmFree(lsm_env*, void *);
+void *lsmRealloc(lsm_env*, void *, size_t);
+void *lsmReallocOrFree(lsm_env*, void *, size_t);
+void *lsmReallocOrFreeRc(lsm_env *, void *, size_t, int *);
+
+void *lsmMallocZeroRc(lsm_env*, size_t, int *);
+void *lsmMallocRc(lsm_env*, size_t, int *);
+
+void *lsmMallocZero(lsm_env *pEnv, size_t);
+char *lsmMallocStrdup(lsm_env *pEnv, const char *);
+
+/*
+** Functions from file "lsm_mutex.c".
+*/
+int lsmMutexStatic(lsm_env*, int, lsm_mutex **);
+int lsmMutexNew(lsm_env*, lsm_mutex **);
+void lsmMutexDel(lsm_env*, lsm_mutex *);
+void lsmMutexEnter(lsm_env*, lsm_mutex *);
+int lsmMutexTry(lsm_env*, lsm_mutex *);
+void lsmMutexLeave(lsm_env*, lsm_mutex *);
+
+#ifndef NDEBUG
+int lsmMutexHeld(lsm_env *, lsm_mutex *);
+int lsmMutexNotHeld(lsm_env *, lsm_mutex *);
+#endif
+
+/**************************************************************************
+** Start of functions from "lsm_file.c".
+*/
+int lsmFsOpen(lsm_db *, const char *, int);
+int lsmFsOpenLog(lsm_db *, int *);
+void lsmFsCloseLog(lsm_db *);
+void lsmFsClose(FileSystem *);
+
+int lsmFsConfigure(lsm_db *db);
+
+int lsmFsBlockSize(FileSystem *);
+void lsmFsSetBlockSize(FileSystem *, int);
+int lsmFsMoveBlock(FileSystem *pFS, Segment *pSeg, int iTo, int iFrom);
+
+int lsmFsPageSize(FileSystem *);
+void lsmFsSetPageSize(FileSystem *, int);
+
+int lsmFsFileid(lsm_db *pDb, void **ppId, int *pnId);
+
+/* Creating, populating, gobbling and deleting sorted runs. */
+void lsmFsGobble(lsm_db *, Segment *, Pgno *, int);
+int lsmFsSortedDelete(FileSystem *, Snapshot *, int, Segment *);
+int lsmFsSortedFinish(FileSystem *, Segment *);
+int lsmFsSortedAppend(FileSystem *, Snapshot *, Level *, int, Page **);
+int lsmFsSortedPadding(FileSystem *, Snapshot *, Segment *);
+
+/* Functions to retrieve the lsm_env pointer from a FileSystem or Page object */
+lsm_env *lsmFsEnv(FileSystem *);
+lsm_env *lsmPageEnv(Page *);
+FileSystem *lsmPageFS(Page *);
+
+int lsmFsSectorSize(FileSystem *);
+
+void lsmSortedSplitkey(lsm_db *, Level *, int *);
+
+/* Reading sorted run content. */
+int lsmFsDbPageLast(FileSystem *pFS, Segment *pSeg, Page **ppPg);
+int lsmFsDbPageGet(FileSystem *, Segment *, Pgno, Page **);
+int lsmFsDbPageNext(Segment *, Page *, int eDir, Page **);
+
+u8 *lsmFsPageData(Page *, int *);
+int lsmFsPageRelease(Page *);
+int lsmFsPagePersist(Page *);
+void lsmFsPageRef(Page *);
+Pgno lsmFsPageNumber(Page *);
+
+int lsmFsNRead(FileSystem *);
+int lsmFsNWrite(FileSystem *);
+
+int lsmFsMetaPageGet(FileSystem *, int, int, MetaPage **);
+int lsmFsMetaPageRelease(MetaPage *);
+u8 *lsmFsMetaPageData(MetaPage *, int *);
+
+#ifdef LSM_DEBUG
+int lsmFsDbPageIsLast(Segment *pSeg, Page *pPg);
+int lsmFsIntegrityCheck(lsm_db *);
+#endif
+
+Pgno lsmFsRedirectPage(FileSystem *, Redirect *, Pgno);
+
+int lsmFsPageWritable(Page *);
+
+/* Functions to read, write and sync the log file. */
+int lsmFsWriteLog(FileSystem *pFS, i64 iOff, LsmString *pStr);
+int lsmFsSyncLog(FileSystem *pFS);
+int lsmFsReadLog(FileSystem *pFS, i64 iOff, int nRead, LsmString *pStr);
+int lsmFsTruncateLog(FileSystem *pFS, i64 nByte);
+int lsmFsTruncateDb(FileSystem *pFS, i64 nByte);
+int lsmFsCloseAndDeleteLog(FileSystem *pFS);
+
+LsmFile *lsmFsDeferClose(FileSystem *pFS);
+
+/* And to sync the db file */
+int lsmFsSyncDb(FileSystem *, int);
+
+void lsmFsFlushWaiting(FileSystem *, int *);
+
+/* Used by lsm_info(ARRAY_STRUCTURE) and lsm_config(MMAP) */
+int lsmInfoArrayStructure(lsm_db *pDb, int bBlock, Pgno iFirst, char **pzOut);
+int lsmInfoArrayPages(lsm_db *pDb, Pgno iFirst, char **pzOut);
+int lsmConfigMmap(lsm_db *pDb, int *piParam);
+
+int lsmEnvOpen(lsm_env *, const char *, int, lsm_file **);
+int lsmEnvClose(lsm_env *pEnv, lsm_file *pFile);
+int lsmEnvLock(lsm_env *pEnv, lsm_file *pFile, int iLock, int eLock);
+int lsmEnvTestLock(lsm_env *pEnv, lsm_file *pFile, int iLock, int nLock, int);
+
+int lsmEnvShmMap(lsm_env *, lsm_file *, int, int, void **);
+void lsmEnvShmBarrier(lsm_env *);
+void lsmEnvShmUnmap(lsm_env *, lsm_file *, int);
+
+void lsmEnvSleep(lsm_env *, int);
+
+int lsmFsReadSyncedId(lsm_db *db, int, i64 *piVal);
+
+int lsmFsSegmentContainsPg(FileSystem *pFS, Segment *, Pgno, int *);
+
+void lsmFsPurgeCache(FileSystem *);
+
+/*
+** End of functions from "lsm_file.c".
+**************************************************************************/
+
+/*
+** Functions from file "lsm_sorted.c".
+*/
+int lsmInfoPageDump(lsm_db *, Pgno, int, char **);
+void lsmSortedCleanup(lsm_db *);
+int lsmSortedAutoWork(lsm_db *, int nUnit);
+
+int lsmSortedWalkFreelist(lsm_db *, int, int (*)(void *, int, i64), void *);
+
+int lsmSaveWorker(lsm_db *, int);
+
+int lsmFlushTreeToDisk(lsm_db *pDb);
+
+void lsmSortedRemap(lsm_db *pDb);
+
+void lsmSortedFreeLevel(lsm_env *pEnv, Level *);
+
+int lsmSortedAdvanceAll(lsm_db *pDb);
+
+int lsmSortedLoadMerge(lsm_db *, Level *, u32 *, int *);
+int lsmSortedLoadFreelist(lsm_db *pDb, void **, int *);
+
+void *lsmSortedSplitKey(Level *pLevel, int *pnByte);
+
+void lsmSortedSaveTreeCursors(lsm_db *);
+
+int lsmMCursorNew(lsm_db *, MultiCursor **);
+void lsmMCursorClose(MultiCursor *, int);
+int lsmMCursorSeek(MultiCursor *, int, void *, int , int);
+int lsmMCursorFirst(MultiCursor *);
+int lsmMCursorPrev(MultiCursor *);
+int lsmMCursorLast(MultiCursor *);
+int lsmMCursorValid(MultiCursor *);
+int lsmMCursorNext(MultiCursor *);
+int lsmMCursorKey(MultiCursor *, void **, int *);
+int lsmMCursorValue(MultiCursor *, void **, int *);
+int lsmMCursorType(MultiCursor *, int *);
+lsm_db *lsmMCursorDb(MultiCursor *);
+void lsmMCursorFreeCache(lsm_db *);
+
+int lsmSaveCursors(lsm_db *pDb);
+int lsmRestoreCursors(lsm_db *pDb);
+
+void lsmSortedDumpStructure(lsm_db *pDb, Snapshot *, int, int, const char *);
+void lsmFsDumpBlocklists(lsm_db *);
+
+void lsmSortedExpandBtreePage(Page *pPg, int nOrig);
+
+void lsmPutU32(u8 *, u32);
+u32 lsmGetU32(u8 *);
+u64 lsmGetU64(u8 *);
+
+/*
+** Functions from "lsm_varint.c".
+*/
+int lsmVarintPut32(u8 *, int);
+int lsmVarintGet32(u8 *, int *);
+int lsmVarintPut64(u8 *aData, i64 iVal);
+int lsmVarintGet64(const u8 *aData, i64 *piVal);
+
+int lsmVarintLen32(int);
+int lsmVarintSize(u8 c);
+
+/*
+** Functions from file "main.c".
+*/
+void lsmLogMessage(lsm_db *, int, const char *, ...);
+int lsmInfoFreelist(lsm_db *pDb, char **pzOut);
+
+/*
+** Functions from file "lsm_log.c".
+*/
+int lsmLogBegin(lsm_db *pDb);
+int lsmLogWrite(lsm_db *, void *, int, void *, int);
+int lsmLogCommit(lsm_db *);
+void lsmLogEnd(lsm_db *pDb, int bCommit);
+void lsmLogTell(lsm_db *, LogMark *);
+void lsmLogSeek(lsm_db *, LogMark *);
+void lsmLogClose(lsm_db *);
+
+int lsmLogRecover(lsm_db *);
+int lsmInfoLogStructure(lsm_db *pDb, char **pzVal);
+
+
+/**************************************************************************
+** Functions from file "lsm_shared.c".
+*/
+
+int lsmDbDatabaseConnect(lsm_db*, const char *);
+void lsmDbDatabaseRelease(lsm_db *);
+
+int lsmBeginReadTrans(lsm_db *);
+int lsmBeginWriteTrans(lsm_db *);
+int lsmBeginFlush(lsm_db *);
+
+int lsmDetectRoTrans(lsm_db *db, int *);
+int lsmBeginRoTrans(lsm_db *db);
+
+int lsmBeginWork(lsm_db *);
+void lsmFinishWork(lsm_db *, int, int *);
+
+int lsmFinishRecovery(lsm_db *);
+void lsmFinishReadTrans(lsm_db *);
+int lsmFinishWriteTrans(lsm_db *, int);
+int lsmFinishFlush(lsm_db *, int);
+
+int lsmSnapshotSetFreelist(lsm_db *, int *, int);
+
+Snapshot *lsmDbSnapshotClient(lsm_db *);
+Snapshot *lsmDbSnapshotWorker(lsm_db *);
+
+void lsmSnapshotSetCkptid(Snapshot *, i64);
+
+Level *lsmDbSnapshotLevel(Snapshot *);
+void lsmDbSnapshotSetLevel(Snapshot *, Level *);
+
+void lsmDbRecoveryComplete(lsm_db *, int);
+
+int lsmBlockAllocate(lsm_db *, int, int *);
+int lsmBlockFree(lsm_db *, int);
+int lsmBlockRefree(lsm_db *, int);
+
+void lsmFreelistDeltaBegin(lsm_db *);
+void lsmFreelistDeltaEnd(lsm_db *);
+int lsmFreelistDelta(lsm_db *pDb);
+
+DbLog *lsmDatabaseLog(lsm_db *pDb);
+
+#ifdef LSM_DEBUG
+ int lsmHoldingClientMutex(lsm_db *pDb);
+ int lsmShmAssertLock(lsm_db *db, int iLock, int eOp);
+ int lsmShmAssertWorker(lsm_db *db);
+#endif
+
+void lsmFreeSnapshot(lsm_env *, Snapshot *);
+
+
+/* Candidate values for the 3rd argument to lsmShmLock() */
+#define LSM_LOCK_UNLOCK 0
+#define LSM_LOCK_SHARED 1
+#define LSM_LOCK_EXCL 2
+
+int lsmShmCacheChunks(lsm_db *db, int nChunk);
+int lsmShmLock(lsm_db *db, int iLock, int eOp, int bBlock);
+int lsmShmTestLock(lsm_db *db, int iLock, int nLock, int eOp);
+void lsmShmBarrier(lsm_db *db);
+
+#ifdef LSM_DEBUG
+void lsmShmHasLock(lsm_db *db, int iLock, int eOp);
+#else
+# define lsmShmHasLock(x,y,z)
+#endif
+
+int lsmReadlock(lsm_db *, i64 iLsm, u32 iShmMin, u32 iShmMax);
+
+int lsmLsmInUse(lsm_db *db, i64 iLsmId, int *pbInUse);
+int lsmTreeInUse(lsm_db *db, u32 iLsmId, int *pbInUse);
+int lsmFreelistAppend(lsm_env *pEnv, Freelist *p, int iBlk, i64 iId);
+
+int lsmDbMultiProc(lsm_db *);
+void lsmDbDeferredClose(lsm_db *, lsm_file *, LsmFile *);
+LsmFile *lsmDbRecycleFd(lsm_db *);
+
+int lsmWalkFreelist(lsm_db *, int, int (*)(void *, int, i64), void *);
+
+int lsmCheckCompressionId(lsm_db *, u32);
+
+
+/**************************************************************************
+** functions in lsm_str.c
+*/
+void lsmStringInit(LsmString*, lsm_env *pEnv);
+int lsmStringExtend(LsmString*, int);
+int lsmStringAppend(LsmString*, const char *, int);
+void lsmStringVAppendf(LsmString*, const char *zFormat, va_list, va_list);
+void lsmStringAppendf(LsmString*, const char *zFormat, ...);
+void lsmStringClear(LsmString*);
+char *lsmMallocPrintf(lsm_env*, const char*, ...);
+int lsmStringBinAppend(LsmString *pStr, const u8 *a, int n);
+
+int lsmStrlen(const char *zName);
+
+
+
+/*
+** Round up a number to the next larger multiple of 8. This is used
+** to force 8-byte alignment on 64-bit architectures.
+*/
+#define ROUND8(x) (((x)+7)&~7)
+
+#define LSM_MIN(x,y) ((x)>(y) ? (y) : (x))
+#define LSM_MAX(x,y) ((x)>(y) ? (x) : (y))
+
+#endif
--- /dev/null
+/*
+** 2011-09-11
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code to read and write checkpoints.
+**
+** A checkpoint represents the database layout at a single point in time.
+** It includes a log offset. When an existing database is opened, the
+** current state is determined by reading the newest checkpoint and updating
+** it with all committed transactions from the log that follow the specified
+** offset.
+*/
+#include "lsmInt.h"
+
+/*
+** CHECKPOINT BLOB FORMAT:
+**
+** A checkpoint blob is a series of unsigned 32-bit integers stored in
+** big-endian byte order. As follows:
+**
+** Checkpoint header (see the CKPT_HDR_XXX #defines):
+**
+** 1. The checkpoint id MSW.
+** 2. The checkpoint id LSW.
+** 3. The number of integer values in the entire checkpoint, including
+** the two checksum values.
+** 4. The compression scheme id.
+** 5. The total number of blocks in the database.
+** 6. The block size.
+** 7. The number of levels.
+** 8. The nominal database page size.
+** 9. The number of pages (in total) written to the database file.
+**
+** Log pointer:
+**
+** 1. The log offset MSW.
+** 2. The log offset LSW.
+** 3. Log checksum 0.
+** 4. Log checksum 1.
+**
+** Note that the "log offset" is not the literal byte offset. Instead,
+** it is the byte offset multiplied by 2, with least significant bit
+** toggled each time the log pointer value is changed. This is to make
+** sure that this field changes each time the log pointer is updated,
+** even if the log file itself is disabled. See lsmTreeMakeOld().
+**
+** See ckptExportLog() and ckptImportLog().
+**
+** Append points:
+**
+** 8 integers (4 * 64-bit page numbers). See ckptExportAppendlist().
+**
+** For each level in the database, a level record. Formatted as follows:
+**
+** 0. Age of the level (least significant 16-bits). And flags mask (most
+** significant 16-bits).
+** 1. The number of right-hand segments (nRight, possibly 0),
+** 2. Segment record for left-hand segment (8 integers defined below),
+** 3. Segment record for each right-hand segment (8 integers defined below),
+** 4. If nRight>0, The number of segments involved in the merge
+** 5. if nRight>0, Current nSkip value (see Merge structure defn.),
+** 6. For each segment in the merge:
+** 5a. Page number of next cell to read during merge (this field
+** is 64-bits - 2 integers)
+** 5b. Cell number of next cell to read during merge
+** 7. Page containing current split-key (64-bits - 2 integers).
+** 8. Cell within page containing current split-key.
+** 9. Current pointer value (64-bits - 2 integers).
+**
+** The block redirect array:
+**
+** 1. Number of redirections (maximum LSM_MAX_BLOCK_REDIRECTS).
+** 2. For each redirection:
+** a. "from" block number
+** b. "to" block number
+**
+** The in-memory freelist entries. Each entry is either an insert or a
+** delete. The in-memory freelist is to the free-block-list as the
+** in-memory tree is to the users database content.
+**
+** 1. Number of free-list entries stored in checkpoint header.
+** 2. Number of free blocks (in total).
+** 3. Total number of blocks freed during database lifetime.
+** 4. For each entry:
+** 2a. Block number of free block.
+** 2b. A 64-bit integer (MSW followed by LSW). -1 for a delete entry,
+** or the associated checkpoint id for an insert.
+**
+** The checksum:
+**
+** 1. Checksum value 1.
+** 2. Checksum value 2.
+**
+** In the above, a segment record consists of the following four 64-bit
+** fields (converted to 2 * u32 by storing the MSW followed by LSW):
+**
+** 1. First page of array,
+** 2. Last page of array,
+** 3. Root page of array (or 0),
+** 4. Size of array in pages.
+*/
+
+/*
+** LARGE NUMBERS OF LEVEL RECORDS:
+**
+** A limit on the number of rhs segments that may be present in the database
+** file. Defining this limit ensures that all level records fit within
+** the 4096 byte limit for checkpoint blobs.
+**
+** The number of right-hand-side segments in a database is counted as
+** follows:
+**
+** * For each level in the database not undergoing a merge, add 1.
+**
+** * For each level in the database that is undergoing a merge, add
+** the number of segments on the rhs of the level.
+**
+** A level record not undergoing a merge is 10 integers. A level record
+** with nRhs rhs segments and (nRhs+1) input segments (i.e. including the
+** separators from the next level) is (11*nRhs+20) integers. The maximum
+** per right-hand-side level is therefore 21 integers. So the maximum
+** size of all level records in a checkpoint is 21*40=820 integers.
+**
+** TODO: Before pointer values were changed from 32 to 64 bits, the above
+** used to come to 420 bytes - leaving significant space for a free-list
+** prefix. No more. To fix this, reduce the size of the level records in
+** a db snapshot, and improve management of the free-list tail in
+** lsm_sorted.c.
+*/
+#define LSM_MAX_RHS_SEGMENTS 40
+
+/*
+** LARGE NUMBERS OF FREELIST ENTRIES:
+**
+** There is also a limit (LSM_MAX_FREELIST_ENTRIES - defined in lsmInt.h)
+** on the number of free-list entries stored in a checkpoint. Since each
+** free-list entry consists of 3 integers, the maximum free-list size is
+** 3*100=300 integers. Combined with the limit on rhs segments defined
+** above, this ensures that a checkpoint always fits within a 4096 byte
+** meta page.
+**
+** If the database contains more than 100 free blocks, the "overflow" flag
+** in the checkpoint header is set and the remainder are stored in the
+** system FREELIST entry in the LSM (along with user data). The value
+** accompanying the FREELIST key in the LSM is, like a checkpoint, an array
+** of 32-bit big-endian integers. As follows:
+**
+** For each entry:
+** a. Block number of free block.
+** b. MSW of associated checkpoint id.
+** c. LSW of associated checkpoint id.
+**
+** The number of entries is not required - it is implied by the size of the
+** value blob containing the integer array.
+**
+** Note that the limit defined by LSM_MAX_FREELIST_ENTRIES is a hard limit.
+** The actual value used may be configured using LSM_CONFIG_MAX_FREELIST.
+*/
+
+/*
+** The argument to this macro must be of type u32. On a little-endian
+** architecture, it returns the u32 value that results from interpreting
+** the 4 bytes as a big-endian value. On a big-endian architecture, it
+** returns the value that would be produced by intepreting the 4 bytes
+** of the input value as a little-endian integer.
+*/
+#define BYTESWAP32(x) ( \
+ (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
+ + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
+)
+
+static const int one = 1;
+#define LSM_LITTLE_ENDIAN (*(u8 *)(&one))
+
+/* Sizes, in integers, of various parts of the checkpoint. */
+#define CKPT_HDR_SIZE 9
+#define CKPT_LOGPTR_SIZE 4
+#define CKPT_APPENDLIST_SIZE (LSM_APPLIST_SZ * 2)
+
+/* A #define to describe each integer in the checkpoint header. */
+#define CKPT_HDR_ID_MSW 0
+#define CKPT_HDR_ID_LSW 1
+#define CKPT_HDR_NCKPT 2
+#define CKPT_HDR_CMPID 3
+#define CKPT_HDR_NBLOCK 4
+#define CKPT_HDR_BLKSZ 5
+#define CKPT_HDR_NLEVEL 6
+#define CKPT_HDR_PGSZ 7
+#define CKPT_HDR_NWRITE 8
+
+#define CKPT_HDR_LO_MSW 9
+#define CKPT_HDR_LO_LSW 10
+#define CKPT_HDR_LO_CKSUM1 11
+#define CKPT_HDR_LO_CKSUM2 12
+
+typedef struct CkptBuffer CkptBuffer;
+
+/*
+** Dynamic buffer used to accumulate data for a checkpoint.
+*/
+struct CkptBuffer {
+ lsm_env *pEnv;
+ int nAlloc;
+ u32 *aCkpt;
+};
+
+/*
+** Calculate the checksum of the checkpoint specified by arguments aCkpt and
+** nCkpt. Store the checksum in *piCksum1 and *piCksum2 before returning.
+**
+** The value of the nCkpt parameter includes the two checksum values at
+** the end of the checkpoint. They are not used as inputs to the checksum
+** calculation. The checksum is based on the array of (nCkpt-2) integers
+** at aCkpt[].
+*/
+static void ckptChecksum(u32 *aCkpt, u32 nCkpt, u32 *piCksum1, u32 *piCksum2){
+ int i;
+ u32 cksum1 = 1;
+ u32 cksum2 = 2;
+
+ if( nCkpt % 2 ){
+ cksum1 += aCkpt[nCkpt-3] & 0x0000FFFF;
+ cksum2 += aCkpt[nCkpt-3] & 0xFFFF0000;
+ }
+
+ for(i=0; (i+3)<nCkpt; i+=2){
+ cksum1 += cksum2 + aCkpt[i];
+ cksum2 += cksum1 + aCkpt[i+1];
+ }
+
+ *piCksum1 = cksum1;
+ *piCksum2 = cksum2;
+}
+
+/*
+** Set integer iIdx of the checkpoint accumulating in buffer *p to iVal.
+*/
+static void ckptSetValue(CkptBuffer *p, int iIdx, u32 iVal, int *pRc){
+ if( *pRc ) return;
+ if( iIdx>=p->nAlloc ){
+ int nNew = LSM_MAX(8, iIdx*2);
+ p->aCkpt = (u32 *)lsmReallocOrFree(p->pEnv, p->aCkpt, nNew*sizeof(u32));
+ if( !p->aCkpt ){
+ *pRc = LSM_NOMEM_BKPT;
+ return;
+ }
+ p->nAlloc = nNew;
+ }
+ p->aCkpt[iIdx] = iVal;
+}
+
+/*
+** Argument aInt points to an array nInt elements in size. Switch the
+** endian-ness of each element of the array.
+*/
+static void ckptChangeEndianness(u32 *aInt, int nInt){
+ if( LSM_LITTLE_ENDIAN ){
+ int i;
+ for(i=0; i<nInt; i++) aInt[i] = BYTESWAP32(aInt[i]);
+ }
+}
+
+/*
+** Object *p contains a checkpoint in native byte-order. The checkpoint is
+** nCkpt integers in size, not including any checksum. This function sets
+** the two checksum elements of the checkpoint accordingly.
+*/
+static void ckptAddChecksum(CkptBuffer *p, int nCkpt, int *pRc){
+ if( *pRc==LSM_OK ){
+ u32 aCksum[2] = {0, 0};
+ ckptChecksum(p->aCkpt, nCkpt+2, &aCksum[0], &aCksum[1]);
+ ckptSetValue(p, nCkpt, aCksum[0], pRc);
+ ckptSetValue(p, nCkpt+1, aCksum[1], pRc);
+ }
+}
+
+static void ckptAppend64(CkptBuffer *p, int *piOut, i64 iVal, int *pRc){
+ int iOut = *piOut;
+ ckptSetValue(p, iOut++, (iVal >> 32) & 0xFFFFFFFF, pRc);
+ ckptSetValue(p, iOut++, (iVal & 0xFFFFFFFF), pRc);
+ *piOut = iOut;
+}
+
+static i64 ckptRead64(u32 *a){
+ return (((i64)a[0]) << 32) + (i64)a[1];
+}
+
+static i64 ckptGobble64(u32 *a, int *piIn){
+ int iIn = *piIn;
+ *piIn += 2;
+ return ckptRead64(&a[iIn]);
+}
+
+
+/*
+** Append a 6-value segment record corresponding to pSeg to the checkpoint
+** buffer passed as the third argument.
+*/
+static void ckptExportSegment(
+ Segment *pSeg,
+ CkptBuffer *p,
+ int *piOut,
+ int *pRc
+){
+ ckptAppend64(p, piOut, pSeg->iFirst, pRc);
+ ckptAppend64(p, piOut, pSeg->iLastPg, pRc);
+ ckptAppend64(p, piOut, pSeg->iRoot, pRc);
+ ckptAppend64(p, piOut, pSeg->nSize, pRc);
+}
+
+static void ckptExportLevel(
+ Level *pLevel, /* Level object to serialize */
+ CkptBuffer *p, /* Append new level record to this ckpt */
+ int *piOut, /* IN/OUT: Size of checkpoint so far */
+ int *pRc /* IN/OUT: Error code */
+){
+ int iOut = *piOut;
+ Merge *pMerge;
+
+ pMerge = pLevel->pMerge;
+ ckptSetValue(p, iOut++, (u32)pLevel->iAge + (u32)(pLevel->flags<<16), pRc);
+ ckptSetValue(p, iOut++, pLevel->nRight, pRc);
+ ckptExportSegment(&pLevel->lhs, p, &iOut, pRc);
+
+ assert( (pLevel->nRight>0)==(pMerge!=0) );
+ if( pMerge ){
+ int i;
+ for(i=0; i<pLevel->nRight; i++){
+ ckptExportSegment(&pLevel->aRhs[i], p, &iOut, pRc);
+ }
+ assert( pMerge->nInput==pLevel->nRight
+ || pMerge->nInput==pLevel->nRight+1
+ );
+ ckptSetValue(p, iOut++, pMerge->nInput, pRc);
+ ckptSetValue(p, iOut++, pMerge->nSkip, pRc);
+ for(i=0; i<pMerge->nInput; i++){
+ ckptAppend64(p, &iOut, pMerge->aInput[i].iPg, pRc);
+ ckptSetValue(p, iOut++, pMerge->aInput[i].iCell, pRc);
+ }
+ ckptAppend64(p, &iOut, pMerge->splitkey.iPg, pRc);
+ ckptSetValue(p, iOut++, pMerge->splitkey.iCell, pRc);
+ ckptAppend64(p, &iOut, pMerge->iCurrentPtr, pRc);
+ }
+
+ *piOut = iOut;
+}
+
+/*
+** Populate the log offset fields of the checkpoint buffer. 4 values.
+*/
+static void ckptExportLog(
+ lsm_db *pDb,
+ int bFlush,
+ CkptBuffer *p,
+ int *piOut,
+ int *pRc
+){
+ int iOut = *piOut;
+
+ assert( iOut==CKPT_HDR_LO_MSW );
+
+ if( bFlush ){
+ i64 iOff = pDb->treehdr.iOldLog;
+ ckptAppend64(p, &iOut, iOff, pRc);
+ ckptSetValue(p, iOut++, pDb->treehdr.oldcksum0, pRc);
+ ckptSetValue(p, iOut++, pDb->treehdr.oldcksum1, pRc);
+ }else{
+ for(; iOut<=CKPT_HDR_LO_CKSUM2; iOut++){
+ ckptSetValue(p, iOut, pDb->pShmhdr->aSnap2[iOut], pRc);
+ }
+ }
+
+ assert( *pRc || iOut==CKPT_HDR_LO_CKSUM2+1 );
+ *piOut = iOut;
+}
+
+static void ckptExportAppendlist(
+ lsm_db *db, /* Database connection */
+ CkptBuffer *p, /* Checkpoint buffer to write to */
+ int *piOut, /* IN/OUT: Offset within checkpoint buffer */
+ int *pRc /* IN/OUT: Error code */
+){
+ int i;
+ Pgno *aiAppend = db->pWorker->aiAppend;
+
+ for(i=0; i<LSM_APPLIST_SZ; i++){
+ ckptAppend64(p, piOut, aiAppend[i], pRc);
+ }
+};
+
+static int ckptExportSnapshot(
+ lsm_db *pDb, /* Connection handle */
+ int bLog, /* True to update log-offset fields */
+ i64 iId, /* Checkpoint id */
+ int bCksum, /* If true, include checksums */
+ void **ppCkpt, /* OUT: Buffer containing checkpoint */
+ int *pnCkpt /* OUT: Size of checkpoint in bytes */
+){
+ int rc = LSM_OK; /* Return Code */
+ FileSystem *pFS = pDb->pFS; /* File system object */
+ Snapshot *pSnap = pDb->pWorker; /* Worker snapshot */
+ int nLevel = 0; /* Number of levels in checkpoint */
+ int iLevel; /* Used to count out nLevel levels */
+ int iOut = 0; /* Current offset in aCkpt[] */
+ Level *pLevel; /* Level iterator */
+ int i; /* Iterator used while serializing freelist */
+ CkptBuffer ckpt;
+
+ /* Initialize the output buffer */
+ memset(&ckpt, 0, sizeof(CkptBuffer));
+ ckpt.pEnv = pDb->pEnv;
+ iOut = CKPT_HDR_SIZE;
+
+ /* Write the log offset into the checkpoint. */
+ ckptExportLog(pDb, bLog, &ckpt, &iOut, &rc);
+
+ /* Write the append-point list */
+ ckptExportAppendlist(pDb, &ckpt, &iOut, &rc);
+
+ /* Figure out how many levels will be written to the checkpoint. */
+ for(pLevel=lsmDbSnapshotLevel(pSnap); pLevel; pLevel=pLevel->pNext) nLevel++;
+
+ /* Serialize nLevel levels. */
+ iLevel = 0;
+ for(pLevel=lsmDbSnapshotLevel(pSnap); iLevel<nLevel; pLevel=pLevel->pNext){
+ ckptExportLevel(pLevel, &ckpt, &iOut, &rc);
+ iLevel++;
+ }
+
+ /* Write the block-redirect list */
+ ckptSetValue(&ckpt, iOut++, pSnap->redirect.n, &rc);
+ for(i=0; i<pSnap->redirect.n; i++){
+ ckptSetValue(&ckpt, iOut++, pSnap->redirect.a[i].iFrom, &rc);
+ ckptSetValue(&ckpt, iOut++, pSnap->redirect.a[i].iTo, &rc);
+ }
+
+ /* Write the freelist */
+ assert( pSnap->freelist.nEntry<=pDb->nMaxFreelist );
+ if( rc==LSM_OK ){
+ int nFree = pSnap->freelist.nEntry;
+ ckptSetValue(&ckpt, iOut++, nFree, &rc);
+ for(i=0; i<nFree; i++){
+ FreelistEntry *p = &pSnap->freelist.aEntry[i];
+ ckptSetValue(&ckpt, iOut++, p->iBlk, &rc);
+ ckptSetValue(&ckpt, iOut++, (p->iId >> 32) & 0xFFFFFFFF, &rc);
+ ckptSetValue(&ckpt, iOut++, p->iId & 0xFFFFFFFF, &rc);
+ }
+ }
+
+ /* Write the checkpoint header */
+ assert( iId>=0 );
+ assert( pSnap->iCmpId==pDb->compress.iId
+ || pSnap->iCmpId==LSM_COMPRESSION_EMPTY
+ );
+ ckptSetValue(&ckpt, CKPT_HDR_ID_MSW, (u32)(iId>>32), &rc);
+ ckptSetValue(&ckpt, CKPT_HDR_ID_LSW, (u32)(iId&0xFFFFFFFF), &rc);
+ ckptSetValue(&ckpt, CKPT_HDR_NCKPT, iOut+2, &rc);
+ ckptSetValue(&ckpt, CKPT_HDR_CMPID, pDb->compress.iId, &rc);
+ ckptSetValue(&ckpt, CKPT_HDR_NBLOCK, pSnap->nBlock, &rc);
+ ckptSetValue(&ckpt, CKPT_HDR_BLKSZ, lsmFsBlockSize(pFS), &rc);
+ ckptSetValue(&ckpt, CKPT_HDR_NLEVEL, nLevel, &rc);
+ ckptSetValue(&ckpt, CKPT_HDR_PGSZ, lsmFsPageSize(pFS), &rc);
+ ckptSetValue(&ckpt, CKPT_HDR_NWRITE, pSnap->nWrite, &rc);
+
+ if( bCksum ){
+ ckptAddChecksum(&ckpt, iOut, &rc);
+ }else{
+ ckptSetValue(&ckpt, iOut, 0, &rc);
+ ckptSetValue(&ckpt, iOut+1, 0, &rc);
+ }
+ iOut += 2;
+ assert( iOut<=1024 );
+
+#ifdef LSM_LOG_FREELIST
+ lsmLogMessage(pDb, rc,
+ "ckptExportSnapshot(): id=%lld freelist: %d", iId, pSnap->freelist.nEntry
+ );
+ for(i=0; i<pSnap->freelist.nEntry; i++){
+ lsmLogMessage(pDb, rc,
+ "ckptExportSnapshot(): iBlk=%d id=%lld",
+ pSnap->freelist.aEntry[i].iBlk,
+ pSnap->freelist.aEntry[i].iId
+ );
+ }
+#endif
+
+ *ppCkpt = (void *)ckpt.aCkpt;
+ if( pnCkpt ) *pnCkpt = sizeof(u32)*iOut;
+ return rc;
+}
+
+
+/*
+** Helper function for ckptImport().
+*/
+static void ckptNewSegment(
+ u32 *aIn,
+ int *piIn,
+ Segment *pSegment /* Populate this structure */
+){
+ assert( pSegment->iFirst==0 && pSegment->iLastPg==0 );
+ assert( pSegment->nSize==0 && pSegment->iRoot==0 );
+ pSegment->iFirst = ckptGobble64(aIn, piIn);
+ pSegment->iLastPg = ckptGobble64(aIn, piIn);
+ pSegment->iRoot = ckptGobble64(aIn, piIn);
+ pSegment->nSize = ckptGobble64(aIn, piIn);
+ assert( pSegment->iFirst );
+}
+
+static int ckptSetupMerge(lsm_db *pDb, u32 *aInt, int *piIn, Level *pLevel){
+ Merge *pMerge; /* Allocated Merge object */
+ int nInput; /* Number of input segments in merge */
+ int iIn = *piIn; /* Next value to read from aInt[] */
+ int i; /* Iterator variable */
+ int nByte; /* Number of bytes to allocate */
+
+ /* Allocate the Merge object. If malloc() fails, return LSM_NOMEM. */
+ nInput = (int)aInt[iIn++];
+ nByte = sizeof(Merge) + sizeof(MergeInput) * nInput;
+ pMerge = (Merge *)lsmMallocZero(pDb->pEnv, nByte);
+ if( !pMerge ) return LSM_NOMEM_BKPT;
+ pLevel->pMerge = pMerge;
+
+ /* Populate the Merge object. */
+ pMerge->aInput = (MergeInput *)&pMerge[1];
+ pMerge->nInput = nInput;
+ pMerge->iOutputOff = -1;
+ pMerge->nSkip = (int)aInt[iIn++];
+ for(i=0; i<nInput; i++){
+ pMerge->aInput[i].iPg = ckptGobble64(aInt, &iIn);
+ pMerge->aInput[i].iCell = (int)aInt[iIn++];
+ }
+ pMerge->splitkey.iPg = ckptGobble64(aInt, &iIn);
+ pMerge->splitkey.iCell = (int)aInt[iIn++];
+ pMerge->iCurrentPtr = ckptGobble64(aInt, &iIn);
+
+ /* Set *piIn and return LSM_OK. */
+ *piIn = iIn;
+ return LSM_OK;
+}
+
+
+static int ckptLoadLevels(
+ lsm_db *pDb,
+ u32 *aIn,
+ int *piIn,
+ int nLevel,
+ Level **ppLevel
+){
+ int i;
+ int rc = LSM_OK;
+ Level *pRet = 0;
+ Level **ppNext;
+ int iIn = *piIn;
+
+ ppNext = &pRet;
+ for(i=0; rc==LSM_OK && i<nLevel; i++){
+ int iRight;
+ Level *pLevel;
+
+ /* Allocate space for the Level structure and Level.apRight[] array */
+ pLevel = (Level *)lsmMallocZeroRc(pDb->pEnv, sizeof(Level), &rc);
+ if( rc==LSM_OK ){
+ pLevel->iAge = (u16)(aIn[iIn] & 0x0000FFFF);
+ pLevel->flags = (u16)((aIn[iIn]>>16) & 0x0000FFFF);
+ iIn++;
+ pLevel->nRight = aIn[iIn++];
+ if( pLevel->nRight ){
+ int nByte = sizeof(Segment) * pLevel->nRight;
+ pLevel->aRhs = (Segment *)lsmMallocZeroRc(pDb->pEnv, nByte, &rc);
+ }
+ if( rc==LSM_OK ){
+ *ppNext = pLevel;
+ ppNext = &pLevel->pNext;
+
+ /* Allocate the main segment */
+ ckptNewSegment(aIn, &iIn, &pLevel->lhs);
+
+ /* Allocate each of the right-hand segments, if any */
+ for(iRight=0; iRight<pLevel->nRight; iRight++){
+ ckptNewSegment(aIn, &iIn, &pLevel->aRhs[iRight]);
+ }
+
+ /* Set up the Merge object, if required */
+ if( pLevel->nRight>0 ){
+ rc = ckptSetupMerge(pDb, aIn, &iIn, pLevel);
+ }
+ }
+ }
+ }
+
+ if( rc!=LSM_OK ){
+ /* An OOM must have occurred. Free any level structures allocated and
+ ** return the error to the caller. */
+ lsmSortedFreeLevel(pDb->pEnv, pRet);
+ pRet = 0;
+ }
+
+ *ppLevel = pRet;
+ *piIn = iIn;
+ return rc;
+}
+
+
+int lsmCheckpointLoadLevels(lsm_db *pDb, void *pVal, int nVal){
+ int rc = LSM_OK;
+ if( nVal>0 ){
+ u32 *aIn;
+
+ aIn = lsmMallocRc(pDb->pEnv, nVal, &rc);
+ if( aIn ){
+ Level *pLevel = 0;
+ Level *pParent;
+
+ int nIn;
+ int nLevel;
+ int iIn = 1;
+ memcpy(aIn, pVal, nVal);
+ nIn = nVal / sizeof(u32);
+
+ ckptChangeEndianness(aIn, nIn);
+ nLevel = aIn[0];
+ rc = ckptLoadLevels(pDb, aIn, &iIn, nLevel, &pLevel);
+ lsmFree(pDb->pEnv, aIn);
+ assert( rc==LSM_OK || pLevel==0 );
+ if( rc==LSM_OK ){
+ pParent = lsmDbSnapshotLevel(pDb->pWorker);
+ assert( pParent );
+ while( pParent->pNext ) pParent = pParent->pNext;
+ pParent->pNext = pLevel;
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Return the data for the LEVELS record.
+**
+** The size of the checkpoint that can be stored in the database header
+** must not exceed 1024 32-bit integers. Normally, it does not. However,
+** if it does, part of the checkpoint must be stored in the LSM. This
+** routine returns that part.
+*/
+int lsmCheckpointLevels(
+ lsm_db *pDb, /* Database handle */
+ int nLevel, /* Number of levels to write to blob */
+ void **paVal, /* OUT: Pointer to LEVELS blob */
+ int *pnVal /* OUT: Size of LEVELS blob in bytes */
+){
+ Level *p; /* Used to iterate through levels */
+ int nAll= 0;
+ int rc;
+ int i;
+ int iOut;
+ CkptBuffer ckpt;
+ assert( nLevel>0 );
+
+ for(p=lsmDbSnapshotLevel(pDb->pWorker); p; p=p->pNext) nAll++;
+
+ assert( nAll>nLevel );
+ nAll -= nLevel;
+ for(p=lsmDbSnapshotLevel(pDb->pWorker); p && nAll>0; p=p->pNext) nAll--;
+
+ memset(&ckpt, 0, sizeof(CkptBuffer));
+ ckpt.pEnv = pDb->pEnv;
+
+ ckptSetValue(&ckpt, 0, nLevel, &rc);
+ iOut = 1;
+ for(i=0; rc==LSM_OK && i<nLevel; i++){
+ ckptExportLevel(p, &ckpt, &iOut, &rc);
+ p = p->pNext;
+ }
+ assert( rc!=LSM_OK || p==0 );
+
+ if( rc==LSM_OK ){
+ ckptChangeEndianness(ckpt.aCkpt, iOut);
+ *paVal = (void *)ckpt.aCkpt;
+ *pnVal = iOut * sizeof(u32);
+ }else{
+ *pnVal = 0;
+ *paVal = 0;
+ }
+
+ return rc;
+}
+
+/*
+** Read the checkpoint id from meta-page pPg.
+*/
+static i64 ckptLoadId(MetaPage *pPg){
+ i64 ret = 0;
+ if( pPg ){
+ int nData;
+ u8 *aData = lsmFsMetaPageData(pPg, &nData);
+ ret = (((i64)lsmGetU32(&aData[CKPT_HDR_ID_MSW*4])) << 32) +
+ ((i64)lsmGetU32(&aData[CKPT_HDR_ID_LSW*4]));
+ }
+ return ret;
+}
+
+/*
+** Return true if the buffer passed as an argument contains a valid
+** checkpoint.
+*/
+static int ckptChecksumOk(u32 *aCkpt){
+ u32 nCkpt = aCkpt[CKPT_HDR_NCKPT];
+ u32 cksum1;
+ u32 cksum2;
+
+ if( nCkpt<CKPT_HDR_NCKPT || nCkpt>(LSM_META_PAGE_SIZE)/sizeof(u32) ) return 0;
+ ckptChecksum(aCkpt, nCkpt, &cksum1, &cksum2);
+ return (cksum1==aCkpt[nCkpt-2] && cksum2==aCkpt[nCkpt-1]);
+}
+
+/*
+** Attempt to load a checkpoint from meta page iMeta.
+**
+** This function is a no-op if *pRc is set to any value other than LSM_OK
+** when it is called. If an error occurs, *pRc is set to an LSM error code
+** before returning.
+**
+** If no error occurs and the checkpoint is successfully loaded, copy it to
+** ShmHeader.aSnap1[] and ShmHeader.aSnap2[], and set ShmHeader.iMetaPage
+** to indicate its origin. In this case return 1. Or, if the checkpoint
+** cannot be loaded (because the checksum does not compute), return 0.
+*/
+static int ckptTryLoad(lsm_db *pDb, MetaPage *pPg, u32 iMeta, int *pRc){
+ int bLoaded = 0; /* Return value */
+ if( *pRc==LSM_OK ){
+ int rc = LSM_OK; /* Error code */
+ u32 *aCkpt = 0; /* Pointer to buffer containing checkpoint */
+ u32 nCkpt; /* Number of elements in aCkpt[] */
+ int nData; /* Bytes of data in aData[] */
+ u8 *aData; /* Meta page data */
+
+ aData = lsmFsMetaPageData(pPg, &nData);
+ nCkpt = (u32)lsmGetU32(&aData[CKPT_HDR_NCKPT*sizeof(u32)]);
+ if( nCkpt<=nData/sizeof(u32) && nCkpt>CKPT_HDR_NCKPT ){
+ aCkpt = (u32 *)lsmMallocRc(pDb->pEnv, nCkpt*sizeof(u32), &rc);
+ }
+ if( aCkpt ){
+ memcpy(aCkpt, aData, nCkpt*sizeof(u32));
+ ckptChangeEndianness(aCkpt, nCkpt);
+ if( ckptChecksumOk(aCkpt) ){
+ ShmHeader *pShm = pDb->pShmhdr;
+ memcpy(pShm->aSnap1, aCkpt, nCkpt*sizeof(u32));
+ memcpy(pShm->aSnap2, aCkpt, nCkpt*sizeof(u32));
+ memcpy(pDb->aSnapshot, aCkpt, nCkpt*sizeof(u32));
+ pShm->iMetaPage = iMeta;
+ bLoaded = 1;
+ }
+ }
+
+ lsmFree(pDb->pEnv, aCkpt);
+ *pRc = rc;
+ }
+ return bLoaded;
+}
+
+/*
+** Initialize the shared-memory header with an empty snapshot. This function
+** is called when no valid snapshot can be found in the database header.
+*/
+static void ckptLoadEmpty(lsm_db *pDb){
+ u32 aCkpt[] = {
+ 0, /* CKPT_HDR_ID_MSW */
+ 10, /* CKPT_HDR_ID_LSW */
+ 0, /* CKPT_HDR_NCKPT */
+ LSM_COMPRESSION_EMPTY, /* CKPT_HDR_CMPID */
+ 0, /* CKPT_HDR_NBLOCK */
+ 0, /* CKPT_HDR_BLKSZ */
+ 0, /* CKPT_HDR_NLEVEL */
+ 0, /* CKPT_HDR_PGSZ */
+ 0, /* CKPT_HDR_NWRITE */
+ 0, 0, 1234, 5678, /* The log pointer and initial checksum */
+ 0,0,0,0, 0,0,0,0, /* The append list */
+ 0, /* The redirected block list */
+ 0, /* The free block list */
+ 0, 0 /* Space for checksum values */
+ };
+ u32 nCkpt = array_size(aCkpt);
+ ShmHeader *pShm = pDb->pShmhdr;
+
+ aCkpt[CKPT_HDR_NCKPT] = nCkpt;
+ aCkpt[CKPT_HDR_BLKSZ] = pDb->nDfltBlksz;
+ aCkpt[CKPT_HDR_PGSZ] = pDb->nDfltPgsz;
+ ckptChecksum(aCkpt, array_size(aCkpt), &aCkpt[nCkpt-2], &aCkpt[nCkpt-1]);
+
+ memcpy(pShm->aSnap1, aCkpt, nCkpt*sizeof(u32));
+ memcpy(pShm->aSnap2, aCkpt, nCkpt*sizeof(u32));
+ memcpy(pDb->aSnapshot, aCkpt, nCkpt*sizeof(u32));
+}
+
+/*
+** This function is called as part of database recovery to initialize the
+** ShmHeader.aSnap1[] and ShmHeader.aSnap2[] snapshots.
+*/
+int lsmCheckpointRecover(lsm_db *pDb){
+ int rc = LSM_OK; /* Return Code */
+ i64 iId1; /* Id of checkpoint on meta-page 1 */
+ i64 iId2; /* Id of checkpoint on meta-page 2 */
+ int bLoaded = 0; /* True once checkpoint has been loaded */
+ int cmp; /* True if (iId2>iId1) */
+ MetaPage *apPg[2] = {0, 0}; /* Meta-pages 1 and 2 */
+
+ rc = lsmFsMetaPageGet(pDb->pFS, 0, 1, &apPg[0]);
+ if( rc==LSM_OK ) rc = lsmFsMetaPageGet(pDb->pFS, 0, 2, &apPg[1]);
+
+ iId1 = ckptLoadId(apPg[0]);
+ iId2 = ckptLoadId(apPg[1]);
+ cmp = (iId2 > iId1);
+ bLoaded = ckptTryLoad(pDb, apPg[cmp?1:0], (cmp?2:1), &rc);
+ if( bLoaded==0 ){
+ bLoaded = ckptTryLoad(pDb, apPg[cmp?0:1], (cmp?1:2), &rc);
+ }
+
+ /* The database does not contain a valid checkpoint. Initialize the shared
+ ** memory header with an empty checkpoint. */
+ if( bLoaded==0 ){
+ ckptLoadEmpty(pDb);
+ }
+
+ lsmFsMetaPageRelease(apPg[0]);
+ lsmFsMetaPageRelease(apPg[1]);
+
+ return rc;
+}
+
+/*
+** Store the snapshot in pDb->aSnapshot[] in meta-page iMeta.
+*/
+int lsmCheckpointStore(lsm_db *pDb, int iMeta){
+ MetaPage *pPg = 0;
+ int rc;
+
+ assert( iMeta==1 || iMeta==2 );
+ rc = lsmFsMetaPageGet(pDb->pFS, 1, iMeta, &pPg);
+ if( rc==LSM_OK ){
+ u8 *aData;
+ int nData;
+ int nCkpt;
+
+ nCkpt = (int)pDb->aSnapshot[CKPT_HDR_NCKPT];
+ aData = lsmFsMetaPageData(pPg, &nData);
+ memcpy(aData, pDb->aSnapshot, nCkpt*sizeof(u32));
+ ckptChangeEndianness((u32 *)aData, nCkpt);
+ rc = lsmFsMetaPageRelease(pPg);
+ }
+
+ return rc;
+}
+
+/*
+** Copy the current client snapshot from shared-memory to pDb->aSnapshot[].
+*/
+int lsmCheckpointLoad(lsm_db *pDb, int *piRead){
+ int nRem = LSM_ATTEMPTS_BEFORE_PROTOCOL;
+ ShmHeader *pShm = pDb->pShmhdr;
+ while( (nRem--)>0 ){
+ int nInt;
+
+ nInt = pShm->aSnap1[CKPT_HDR_NCKPT];
+ if( nInt<=(LSM_META_PAGE_SIZE / sizeof(u32)) ){
+ memcpy(pDb->aSnapshot, pShm->aSnap1, nInt*sizeof(u32));
+ if( ckptChecksumOk(pDb->aSnapshot) ){
+ if( piRead ) *piRead = 1;
+ return LSM_OK;
+ }
+ }
+
+ nInt = pShm->aSnap2[CKPT_HDR_NCKPT];
+ if( nInt<=(LSM_META_PAGE_SIZE / sizeof(u32)) ){
+ memcpy(pDb->aSnapshot, pShm->aSnap2, nInt*sizeof(u32));
+ if( ckptChecksumOk(pDb->aSnapshot) ){
+ if( piRead ) *piRead = 2;
+ return LSM_OK;
+ }
+ }
+
+ lsmShmBarrier(pDb);
+ }
+ return LSM_PROTOCOL_BKPT;
+}
+
+int lsmInfoCompressionId(lsm_db *db, u32 *piCmpId){
+ int rc;
+
+ assert( db->pClient==0 && db->pWorker==0 );
+ rc = lsmCheckpointLoad(db, 0);
+ if( rc==LSM_OK ){
+ *piCmpId = db->aSnapshot[CKPT_HDR_CMPID];
+ }
+
+ return rc;
+}
+
+int lsmCheckpointLoadOk(lsm_db *pDb, int iSnap){
+ u32 *aShm;
+ assert( iSnap==1 || iSnap==2 );
+ aShm = (iSnap==1) ? pDb->pShmhdr->aSnap1 : pDb->pShmhdr->aSnap2;
+ return (lsmCheckpointId(pDb->aSnapshot, 0)==lsmCheckpointId(aShm, 0) );
+}
+
+int lsmCheckpointClientCacheOk(lsm_db *pDb){
+ return ( pDb->pClient
+ && pDb->pClient->iId==lsmCheckpointId(pDb->aSnapshot, 0)
+ && pDb->pClient->iId==lsmCheckpointId(pDb->pShmhdr->aSnap1, 0)
+ && pDb->pClient->iId==lsmCheckpointId(pDb->pShmhdr->aSnap2, 0)
+ );
+}
+
+int lsmCheckpointLoadWorker(lsm_db *pDb){
+ int rc;
+ ShmHeader *pShm = pDb->pShmhdr;
+ int nInt1;
+ int nInt2;
+
+ /* Must be holding the WORKER lock to do this. Or DMS2. */
+ assert(
+ lsmShmAssertLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_EXCL)
+ || lsmShmAssertLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_EXCL)
+ );
+
+ /* Check that the two snapshots match. If not, repair them. */
+ nInt1 = pShm->aSnap1[CKPT_HDR_NCKPT];
+ nInt2 = pShm->aSnap2[CKPT_HDR_NCKPT];
+ if( nInt1!=nInt2 || memcmp(pShm->aSnap1, pShm->aSnap2, nInt2*sizeof(u32)) ){
+ if( ckptChecksumOk(pShm->aSnap1) ){
+ memcpy(pShm->aSnap2, pShm->aSnap1, sizeof(u32)*nInt1);
+ }else if( ckptChecksumOk(pShm->aSnap2) ){
+ memcpy(pShm->aSnap1, pShm->aSnap2, sizeof(u32)*nInt2);
+ }else{
+ return LSM_PROTOCOL_BKPT;
+ }
+ }
+
+ rc = lsmCheckpointDeserialize(pDb, 1, pShm->aSnap1, &pDb->pWorker);
+ if( pDb->pWorker ) pDb->pWorker->pDatabase = pDb->pDatabase;
+
+ if( rc==LSM_OK ){
+ rc = lsmCheckCompressionId(pDb, pDb->pWorker->iCmpId);
+ }
+
+#if 0
+ assert( rc!=LSM_OK || lsmFsIntegrityCheck(pDb) );
+#endif
+ return rc;
+}
+
+int lsmCheckpointDeserialize(
+ lsm_db *pDb,
+ int bInclFreelist, /* If true, deserialize free-list */
+ u32 *aCkpt,
+ Snapshot **ppSnap
+){
+ int rc = LSM_OK;
+ Snapshot *pNew;
+
+ pNew = (Snapshot *)lsmMallocZeroRc(pDb->pEnv, sizeof(Snapshot), &rc);
+ if( rc==LSM_OK ){
+ Level *pLvl;
+ int nFree;
+ int i;
+ int nLevel = (int)aCkpt[CKPT_HDR_NLEVEL];
+ int iIn = CKPT_HDR_SIZE + CKPT_APPENDLIST_SIZE + CKPT_LOGPTR_SIZE;
+
+ pNew->iId = lsmCheckpointId(aCkpt, 0);
+ pNew->nBlock = aCkpt[CKPT_HDR_NBLOCK];
+ pNew->nWrite = aCkpt[CKPT_HDR_NWRITE];
+ rc = ckptLoadLevels(pDb, aCkpt, &iIn, nLevel, &pNew->pLevel);
+ pNew->iLogOff = lsmCheckpointLogOffset(aCkpt);
+ pNew->iCmpId = aCkpt[CKPT_HDR_CMPID];
+
+ /* Make a copy of the append-list */
+ for(i=0; i<LSM_APPLIST_SZ; i++){
+ u32 *a = &aCkpt[CKPT_HDR_SIZE + CKPT_LOGPTR_SIZE + i*2];
+ pNew->aiAppend[i] = ckptRead64(a);
+ }
+
+ /* Read the block-redirect list */
+ pNew->redirect.n = aCkpt[iIn++];
+ if( pNew->redirect.n ){
+ pNew->redirect.a = lsmMallocZeroRc(pDb->pEnv,
+ (sizeof(struct RedirectEntry) * LSM_MAX_BLOCK_REDIRECTS), &rc
+ );
+ if( rc==LSM_OK ){
+ for(i=0; i<pNew->redirect.n; i++){
+ pNew->redirect.a[i].iFrom = aCkpt[iIn++];
+ pNew->redirect.a[i].iTo = aCkpt[iIn++];
+ }
+ }
+ for(pLvl=pNew->pLevel; pLvl->pNext; pLvl=pLvl->pNext);
+ if( pLvl->nRight ){
+ pLvl->aRhs[pLvl->nRight-1].pRedirect = &pNew->redirect;
+ }else{
+ pLvl->lhs.pRedirect = &pNew->redirect;
+ }
+ }
+
+ /* Copy the free-list */
+ if( rc==LSM_OK && bInclFreelist ){
+ nFree = aCkpt[iIn++];
+ if( nFree ){
+ pNew->freelist.aEntry = (FreelistEntry *)lsmMallocZeroRc(
+ pDb->pEnv, sizeof(FreelistEntry)*nFree, &rc
+ );
+ if( rc==LSM_OK ){
+ int i;
+ for(i=0; i<nFree; i++){
+ FreelistEntry *p = &pNew->freelist.aEntry[i];
+ p->iBlk = aCkpt[iIn++];
+ p->iId = ((i64)(aCkpt[iIn])<<32) + aCkpt[iIn+1];
+ iIn += 2;
+ }
+ pNew->freelist.nEntry = pNew->freelist.nAlloc = nFree;
+ }
+ }
+ }
+ }
+
+ if( rc!=LSM_OK ){
+ lsmFreeSnapshot(pDb->pEnv, pNew);
+ pNew = 0;
+ }
+
+ *ppSnap = pNew;
+ return rc;
+}
+
+/*
+** Connection pDb must be the worker connection in order to call this
+** function. It returns true if the database already contains the maximum
+** number of levels or false otherwise.
+**
+** This is used when flushing the in-memory tree to disk. If the database
+** is already full, then the caller should invoke lsm_work() or similar
+** until it is not full before creating a new level by flushing the in-memory
+** tree to disk. Limiting the number of levels in the database ensures that
+** the records describing them always fit within the checkpoint blob.
+*/
+int lsmDatabaseFull(lsm_db *pDb){
+ Level *p;
+ int nRhs = 0;
+
+ assert( lsmShmAssertLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_EXCL) );
+ assert( pDb->pWorker );
+
+ for(p=pDb->pWorker->pLevel; p; p=p->pNext){
+ nRhs += (p->nRight ? p->nRight : 1);
+ }
+
+ return (nRhs >= LSM_MAX_RHS_SEGMENTS);
+}
+
+/*
+** The connection passed as the only argument is currently the worker
+** connection. Some work has been performed on the database by the connection,
+** but no new snapshot has been written into shared memory.
+**
+** This function updates the shared-memory worker and client snapshots with
+** the new snapshot produced by the work performed by pDb.
+**
+** If successful, LSM_OK is returned. Otherwise, if an error occurs, an LSM
+** error code is returned.
+*/
+int lsmCheckpointSaveWorker(lsm_db *pDb, int bFlush){
+ Snapshot *pSnap = pDb->pWorker;
+ ShmHeader *pShm = pDb->pShmhdr;
+ void *p = 0;
+ int n = 0;
+ int rc;
+
+ pSnap->iId++;
+ rc = ckptExportSnapshot(pDb, bFlush, pSnap->iId, 1, &p, &n);
+ if( rc!=LSM_OK ) return rc;
+ assert( ckptChecksumOk((u32 *)p) );
+
+ assert( n<=LSM_META_PAGE_SIZE );
+ memcpy(pShm->aSnap2, p, n);
+ lsmShmBarrier(pDb);
+ memcpy(pShm->aSnap1, p, n);
+ lsmFree(pDb->pEnv, p);
+
+ assert( lsmFsIntegrityCheck(pDb) );
+ return LSM_OK;
+}
+
+/*
+** This function is used to determine the snapshot-id of the most recently
+** checkpointed snapshot. Variable ShmHeader.iMetaPage indicates which of
+** the two meta-pages said snapshot resides on (if any).
+**
+** If successful, this function loads the snapshot from the meta-page,
+** verifies its checksum and sets *piId to the snapshot-id before returning
+** LSM_OK. Or, if the checksum attempt fails, *piId is set to zero and
+** LSM_OK returned. If an error occurs, an LSM error code is returned and
+** the final value of *piId is undefined.
+*/
+int lsmCheckpointSynced(lsm_db *pDb, i64 *piId, i64 *piLog, u32 *pnWrite){
+ int rc = LSM_OK;
+ MetaPage *pPg;
+ u32 iMeta;
+
+ iMeta = pDb->pShmhdr->iMetaPage;
+ if( iMeta==1 || iMeta==2 ){
+ rc = lsmFsMetaPageGet(pDb->pFS, 0, iMeta, &pPg);
+ if( rc==LSM_OK ){
+ int nCkpt;
+ int nData;
+ u8 *aData;
+
+ aData = lsmFsMetaPageData(pPg, &nData);
+ assert( nData==LSM_META_PAGE_SIZE );
+ nCkpt = lsmGetU32(&aData[CKPT_HDR_NCKPT*sizeof(u32)]);
+ if( nCkpt<(LSM_META_PAGE_SIZE/sizeof(u32)) ){
+ u32 *aCopy = lsmMallocRc(pDb->pEnv, sizeof(u32) * nCkpt, &rc);
+ if( aCopy ){
+ memcpy(aCopy, aData, nCkpt*sizeof(u32));
+ ckptChangeEndianness(aCopy, nCkpt);
+ if( ckptChecksumOk(aCopy) ){
+ if( piId ) *piId = lsmCheckpointId(aCopy, 0);
+ if( piLog ) *piLog = (lsmCheckpointLogOffset(aCopy) >> 1);
+ if( pnWrite ) *pnWrite = aCopy[CKPT_HDR_NWRITE];
+ }
+ lsmFree(pDb->pEnv, aCopy);
+ }
+ }
+ lsmFsMetaPageRelease(pPg);
+ }
+ }
+
+ if( (iMeta!=1 && iMeta!=2) || rc!=LSM_OK || pDb->pShmhdr->iMetaPage!=iMeta ){
+ if( piId ) *piId = 0;
+ if( piLog ) *piLog = 0;
+ if( pnWrite ) *pnWrite = 0;
+ }
+ return rc;
+}
+
+/*
+** Return the checkpoint-id of the checkpoint array passed as the first
+** argument to this function. If the second argument is true, then assume
+** that the checkpoint is made up of 32-bit big-endian integers. If it
+** is false, assume that the integers are in machine byte order.
+*/
+i64 lsmCheckpointId(u32 *aCkpt, int bDisk){
+ i64 iId;
+ if( bDisk ){
+ u8 *aData = (u8 *)aCkpt;
+ iId = (((i64)lsmGetU32(&aData[CKPT_HDR_ID_MSW*4])) << 32);
+ iId += ((i64)lsmGetU32(&aData[CKPT_HDR_ID_LSW*4]));
+ }else{
+ iId = ((i64)aCkpt[CKPT_HDR_ID_MSW] << 32) + (i64)aCkpt[CKPT_HDR_ID_LSW];
+ }
+ return iId;
+}
+
+u32 lsmCheckpointNBlock(u32 *aCkpt){
+ return aCkpt[CKPT_HDR_NBLOCK];
+}
+
+u32 lsmCheckpointNWrite(u32 *aCkpt, int bDisk){
+ if( bDisk ){
+ return lsmGetU32((u8 *)&aCkpt[CKPT_HDR_NWRITE]);
+ }else{
+ return aCkpt[CKPT_HDR_NWRITE];
+ }
+}
+
+i64 lsmCheckpointLogOffset(u32 *aCkpt){
+ return ((i64)aCkpt[CKPT_HDR_LO_MSW] << 32) + (i64)aCkpt[CKPT_HDR_LO_LSW];
+}
+
+int lsmCheckpointPgsz(u32 *aCkpt){ return (int)aCkpt[CKPT_HDR_PGSZ]; }
+
+int lsmCheckpointBlksz(u32 *aCkpt){ return (int)aCkpt[CKPT_HDR_BLKSZ]; }
+
+void lsmCheckpointLogoffset(
+ u32 *aCkpt,
+ DbLog *pLog
+){
+ pLog->aRegion[2].iStart = (lsmCheckpointLogOffset(aCkpt) >> 1);
+
+ pLog->cksum0 = aCkpt[CKPT_HDR_LO_CKSUM1];
+ pLog->cksum1 = aCkpt[CKPT_HDR_LO_CKSUM2];
+ pLog->iSnapshotId = lsmCheckpointId(aCkpt, 0);
+}
+
+void lsmCheckpointZeroLogoffset(lsm_db *pDb){
+ u32 nCkpt;
+
+ nCkpt = pDb->aSnapshot[CKPT_HDR_NCKPT];
+ assert( nCkpt>CKPT_HDR_NCKPT );
+ assert( nCkpt==pDb->pShmhdr->aSnap1[CKPT_HDR_NCKPT] );
+ assert( 0==memcmp(pDb->aSnapshot, pDb->pShmhdr->aSnap1, nCkpt*sizeof(u32)) );
+ assert( 0==memcmp(pDb->aSnapshot, pDb->pShmhdr->aSnap2, nCkpt*sizeof(u32)) );
+
+ pDb->aSnapshot[CKPT_HDR_LO_MSW] = 0;
+ pDb->aSnapshot[CKPT_HDR_LO_LSW] = 0;
+ ckptChecksum(pDb->aSnapshot, nCkpt,
+ &pDb->aSnapshot[nCkpt-2], &pDb->aSnapshot[nCkpt-1]
+ );
+
+ memcpy(pDb->pShmhdr->aSnap1, pDb->aSnapshot, nCkpt*sizeof(u32));
+ memcpy(pDb->pShmhdr->aSnap2, pDb->aSnapshot, nCkpt*sizeof(u32));
+}
+
+/*
+** Set the output variable to the number of KB of data written into the
+** database file since the most recent checkpoint.
+*/
+int lsmCheckpointSize(lsm_db *db, int *pnKB){
+ int rc = LSM_OK;
+ u32 nSynced;
+
+ /* Set nSynced to the number of pages that had been written when the
+ ** database was last checkpointed. */
+ rc = lsmCheckpointSynced(db, 0, 0, &nSynced);
+
+ if( rc==LSM_OK ){
+ u32 nPgsz = db->pShmhdr->aSnap1[CKPT_HDR_PGSZ];
+ u32 nWrite = db->pShmhdr->aSnap1[CKPT_HDR_NWRITE];
+ *pnKB = (int)(( ((i64)(nWrite - nSynced) * nPgsz) + 1023) / 1024);
+ }
+
+ return rc;
+}
--- /dev/null
+/*
+** 2011-08-26
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** NORMAL DATABASE FILE FORMAT
+**
+** The following database file format concepts are used by the code in
+** this file to read and write the database file.
+**
+** Pages:
+**
+** A database file is divided into pages. The first 8KB of the file consists
+** of two 4KB meta-pages. The meta-page size is not configurable. The
+** remainder of the file is made up of database pages. The default database
+** page size is 4KB. Database pages are aligned to page-size boundaries,
+** so if the database page size is larger than 8KB there is a gap between
+** the end of the meta pages and the start of the database pages.
+**
+** Database pages are numbered based on their position in the file. Page N
+** begins at byte offset ((N-1)*pgsz). This means that page 1 does not
+** exist - since it would always overlap with the meta pages. If the
+** page-size is (say) 512 bytes, then the first usable page in the database
+** is page 33.
+**
+** It is assumed that the first two meta pages and the data that follows
+** them are located on different disk sectors. So that if a power failure
+** while writing to a meta page there is no risk of damage to the other
+** meta page or any other part of the database file. TODO: This may need
+** to be revisited.
+**
+** Blocks:
+**
+** The database file is also divided into blocks. The default block size is
+** 1MB. When writing to the database file, an attempt is made to write data
+** in contiguous block-sized chunks.
+**
+** The first and last page on each block are special in that they are 4
+** bytes smaller than all other pages. This is because the last four bytes
+** of space on the first and last pages of each block are reserved for
+** pointers to other blocks (i.e. a 32-bit block number).
+**
+** Runs:
+**
+** A run is a sequence of pages that the upper layer uses to store a
+** sorted array of database keys (and accompanying data - values, FC
+** pointers and so on). Given a page within a run, it is possible to
+** navigate to the next page in the run as follows:
+**
+** a) if the current page is not the last in a block, the next page
+** in the run is located immediately after the current page, OR
+**
+** b) if the current page is the last page in a block, the next page
+** in the run is the first page on the block identified by the
+** block pointer stored in the last 4 bytes of the current block.
+**
+** It is possible to navigate to the previous page in a similar fashion,
+** using the block pointer embedded in the last 4 bytes of the first page
+** of each block as required.
+**
+** The upper layer is responsible for identifying by page number the
+** first and last page of any run that it needs to navigate - there are
+** no "end-of-run" markers stored or identified by this layer. This is
+** necessary as clients reading different database snapshots may access
+** different subsets of a run.
+**
+** THE LOG FILE
+**
+** This file opens and closes the log file. But it does not contain any
+** logic related to the log file format. Instead, it exports the following
+** functions that are used by the code in lsm_log.c to read and write the
+** log file:
+**
+** lsmFsOpenLog
+** lsmFsWriteLog
+** lsmFsSyncLog
+** lsmFsReadLog
+** lsmFsTruncateLog
+** lsmFsCloseAndDeleteLog
+**
+** COMPRESSED DATABASE FILE FORMAT
+**
+** The compressed database file format is very similar to the normal format.
+** The file still begins with two 4KB meta-pages (which are never compressed).
+** It is still divided into blocks.
+**
+** The first and last four bytes of each block are reserved for 32-bit
+** pointer values. Similar to the way four bytes are carved from the end of
+** the first and last page of each block in uncompressed databases. From
+** the point of view of the upper layer, all pages are the same size - this
+** is different from the uncompressed format where the first and last pages
+** on each block are 4 bytes smaller than the others.
+**
+** Pages are stored in variable length compressed form, as follows:
+**
+** * 3-byte size field containing the size of the compressed page image
+** in bytes. The most significant bit of each byte of the size field
+** is always set. The remaining 7 bits are used to store a 21-bit
+** integer value (in big-endian order - the first byte in the field
+** contains the most significant 7 bits). Since the maximum allowed
+** size of a compressed page image is (2^17 - 1) bytes, there are
+** actually 4 unused bits in the size field.
+**
+** In other words, if the size of the compressed page image is nSz,
+** the header can be serialized as follows:
+**
+** u8 aHdr[3]
+** aHdr[0] = 0x80 | (u8)(nSz >> 14);
+** aHdr[1] = 0x80 | (u8)(nSz >> 7);
+** aHdr[2] = 0x80 | (u8)(nSz >> 0);
+**
+** * Compressed page image.
+**
+** * A second copy of the 3-byte record header.
+**
+** A page number is a byte offset into the database file. So the smallest
+** possible page number is 8192 (immediately after the two meta-pages).
+** The first and root page of a segment are identified by a page number
+** corresponding to the byte offset of the first byte in the corresponding
+** page record. The last page of a segment is identified by the byte offset
+** of the last byte in its record.
+**
+** Unlike uncompressed pages, compressed page records may span blocks.
+**
+** Sometimes, in order to avoid touching sectors that contain synced data
+** when writing, it is necessary to insert unused space between compressed
+** page records. This can be done as follows:
+**
+** * For less than 6 bytes of empty space, the first and last byte
+** of the free space contain the total number of free bytes. For
+** example:
+**
+** Block of 4 free bytes: 0x04 0x?? 0x?? 0x04
+** Block of 2 free bytes: 0x02 0x02
+** A single free byte: 0x01
+**
+** * For 6 or more bytes of empty space, a record similar to a
+** compressed page record is added to the segment. A padding record
+** is distinguished from a compressed page record by the most
+** significant bit of the second byte of the size field, which is
+** cleared instead of set.
+*/
+#include "lsmInt.h"
+
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <fcntl.h>
+
+/*
+** File-system object. Each database connection allocates a single instance
+** of the following structure. It is used for all access to the database and
+** log files.
+**
+** The database file may be accessed via two methods - using mmap() or using
+** read() and write() calls. In the general case both methods are used - a
+** prefix of the file is mapped into memory and the remainder accessed using
+** read() and write(). This is helpful when accessing very large files (or
+** files that may grow very large during the lifetime of a database
+** connection) on systems with 32-bit address spaces. However, it also requires
+** that this object manage two distinct types of Page objects simultaneously -
+** those that carry pointers to the mapped file and those that carry arrays
+** populated by read() calls.
+**
+** pFree:
+** The head of a singly-linked list that containing currently unused Page
+** structures suitable for use as mmap-page handles. Connected by the
+** Page.pFreeNext pointers.
+**
+** pMapped:
+** The head of a singly-linked list that contains all pages that currently
+** carry pointers to the mapped region. This is used if the region is
+** every remapped - the pointers carried by existing pages can be adjusted
+** to account for the remapping. Connected by the Page.pMappedNext pointers.
+**
+** pWaiting:
+** When the upper layer wishes to append a new b-tree page to a segment,
+** it allocates a Page object that carries a malloc'd block of memory -
+** regardless of the mmap-related configuration. The page is not assigned
+** a page number at first. When the upper layer has finished constructing
+** the page contents, it calls lsmFsPagePersist() to assign a page number
+** to it. At this point it is likely that N pages have been written to the
+** segment, the (N+1)th page is still outstanding and the b-tree page is
+** assigned page number (N+2). To avoid writing page (N+2) before page
+** (N+1), the recently completed b-tree page is held in the singly linked
+** list headed by pWaiting until page (N+1) has been written.
+**
+** Function lsmFsFlushWaiting() is responsible for eventually writing
+** waiting pages to disk.
+**
+** apHash/nHash:
+** Hash table used to store all Page objects that carry malloc'd arrays,
+** except those b-tree pages that have not yet been assigned page numbers.
+** Once they have been assigned page numbers - they are added to this
+** hash table.
+**
+** Hash table overflow chains are connected using the Page.pHashNext
+** pointers.
+**
+** pLruFirst, pLruLast:
+** The first and last entries in a doubly-linked list of pages. This
+** list contains all pages with malloc'd data that are present in the
+** hash table and have a ref-count of zero.
+*/
+struct FileSystem {
+ lsm_db *pDb; /* Database handle that owns this object */
+ lsm_env *pEnv; /* Environment pointer */
+ char *zDb; /* Database file name */
+ char *zLog; /* Database file name */
+ int nMetasize; /* Size of meta pages in bytes */
+ int nPagesize; /* Database page-size in bytes */
+ int nBlocksize; /* Database block-size in bytes */
+
+ /* r/w file descriptors for both files. */
+ LsmFile *pLsmFile; /* Used after lsm_close() to link into list */
+ lsm_file *fdDb; /* Database file */
+ lsm_file *fdLog; /* Log file */
+ int szSector; /* Database file sector size */
+
+ /* If this is a compressed database, a pointer to the compression methods.
+ ** For an uncompressed database, a NULL pointer. */
+ lsm_compress *pCompress;
+ u8 *aIBuffer; /* Buffer to compress to */
+ u8 *aOBuffer; /* Buffer to uncompress from */
+ int nBuffer; /* Allocated size of above buffers in bytes */
+
+ /* mmap() page related things */
+ i64 nMapLimit; /* Maximum bytes of file to map */
+ void *pMap; /* Current mapping of database file */
+ i64 nMap; /* Bytes mapped at pMap */
+ Page *pFree; /* Unused Page structures */
+ Page *pMapped; /* List of Page structs that point to pMap */
+
+ /* Page cache parameters for non-mmap() pages */
+ int nCacheMax; /* Configured cache size (in pages) */
+ int nCacheAlloc; /* Current cache size (in pages) */
+ Page *pLruFirst; /* Head of the LRU list */
+ Page *pLruLast; /* Tail of the LRU list */
+ int nHash; /* Number of hash slots in hash table */
+ Page **apHash; /* nHash Hash slots */
+ Page *pWaiting; /* b-tree pages waiting to be written */
+
+ /* Statistics */
+ int nOut; /* Number of outstanding pages */
+ int nWrite; /* Total number of pages written */
+ int nRead; /* Total number of pages read */
+};
+
+/*
+** Database page handle.
+**
+** pSeg:
+** When lsmFsSortedAppend() is called on a compressed database, the new
+** page is not assigned a page number or location in the database file
+** immediately. Instead, these are assigned by the lsmFsPagePersist() call
+** right before it writes the compressed page image to disk.
+**
+** The lsmFsSortedAppend() function sets the pSeg pointer to point to the
+** segment that the new page will be a part of. It is unset by
+** lsmFsPagePersist() after the page is written to disk.
+*/
+struct Page {
+ u8 *aData; /* Buffer containing page data */
+ int nData; /* Bytes of usable data at aData[] */
+ Pgno iPg; /* Page number */
+ int nRef; /* Number of outstanding references */
+ int flags; /* Combination of PAGE_XXX flags */
+ Page *pHashNext; /* Next page in hash table slot */
+ Page *pLruNext; /* Next page in LRU list */
+ Page *pLruPrev; /* Previous page in LRU list */
+ FileSystem *pFS; /* File system that owns this page */
+
+ /* Only used in compressed database mode: */
+ int nCompress; /* Compressed size (or 0 for uncomp. db) */
+ int nCompressPrev; /* Compressed size of prev page */
+ Segment *pSeg; /* Segment this page will be written to */
+
+ /* Pointers for singly linked lists */
+ Page *pWaitingNext; /* Next page in FileSystem.pWaiting list */
+ Page *pFreeNext; /* Next page in FileSystem.pFree list */
+ Page *pMappedNext; /* Next page in FileSystem.pMapped list */
+};
+
+/*
+** Meta-data page handle. There are two meta-data pages at the start of
+** the database file, each FileSystem.nMetasize bytes in size.
+*/
+struct MetaPage {
+ int iPg; /* Either 1 or 2 */
+ int bWrite; /* Write back to db file on release */
+ u8 *aData; /* Pointer to buffer */
+ FileSystem *pFS; /* FileSystem that owns this page */
+};
+
+/*
+** Values for LsmPage.flags
+*/
+#define PAGE_DIRTY 0x00000001 /* Set if page is dirty */
+#define PAGE_FREE 0x00000002 /* Set if Page.aData requires lsmFree() */
+#define PAGE_HASPREV 0x00000004 /* Set if page is first on uncomp. block */
+
+/*
+** Number of pgsz byte pages omitted from the start of block 1. The start
+** of block 1 contains two 4096 byte meta pages (8192 bytes in total).
+*/
+#define BLOCK1_HDR_SIZE(pgsz) LSM_MAX(1, 8192/(pgsz))
+
+/*
+** If NDEBUG is not defined, set a breakpoint in function lsmIoerrBkpt()
+** to catch IO errors (any error returned by a VFS method).
+*/
+#ifndef NDEBUG
+static void lsmIoerrBkpt(){
+ static int nErr = 0;
+ nErr++;
+}
+static int IOERR_WRAPPER(int rc){
+ if( rc!=LSM_OK ) lsmIoerrBkpt();
+ return rc;
+}
+#else
+# define IOERR_WRAPPER(rc) (rc)
+#endif
+
+#ifdef NDEBUG
+# define assert_lists_are_ok(x)
+#else
+static Page *fsPageFindInHash(FileSystem *pFS, Pgno iPg, int *piHash);
+
+static void assert_lists_are_ok(FileSystem *pFS){
+#if 0
+ Page *p;
+
+ assert( pFS->nMapLimit>=0 );
+
+ /* Check that all pages in the LRU list have nRef==0, pointers to buffers
+ ** in heap memory, and corresponding entries in the hash table. */
+ for(p=pFS->pLruFirst; p; p=p->pLruNext){
+ assert( p==pFS->pLruFirst || p->pLruPrev!=0 );
+ assert( p==pFS->pLruLast || p->pLruNext!=0 );
+ assert( p->pLruPrev==0 || p->pLruPrev->pLruNext==p );
+ assert( p->pLruNext==0 || p->pLruNext->pLruPrev==p );
+ assert( p->nRef==0 );
+ assert( p->flags & PAGE_FREE );
+ assert( p==fsPageFindInHash(pFS, p->iPg, 0) );
+ }
+#endif
+}
+#endif
+
+/*
+** Wrappers around the VFS methods of the lsm_env object:
+**
+** lsmEnvOpen()
+** lsmEnvRead()
+** lsmEnvWrite()
+** lsmEnvSync()
+** lsmEnvSectorSize()
+** lsmEnvClose()
+** lsmEnvTruncate()
+** lsmEnvUnlink()
+** lsmEnvRemap()
+*/
+int lsmEnvOpen(lsm_env *pEnv, const char *zFile, int flags, lsm_file **ppNew){
+ return pEnv->xOpen(pEnv, zFile, flags, ppNew);
+}
+
+static int lsmEnvRead(
+ lsm_env *pEnv,
+ lsm_file *pFile,
+ lsm_i64 iOff,
+ void *pRead,
+ int nRead
+){
+ return IOERR_WRAPPER( pEnv->xRead(pFile, iOff, pRead, nRead) );
+}
+
+static int lsmEnvWrite(
+ lsm_env *pEnv,
+ lsm_file *pFile,
+ lsm_i64 iOff,
+ const void *pWrite,
+ int nWrite
+){
+ return IOERR_WRAPPER( pEnv->xWrite(pFile, iOff, (void *)pWrite, nWrite) );
+}
+
+static int lsmEnvSync(lsm_env *pEnv, lsm_file *pFile){
+ return IOERR_WRAPPER( pEnv->xSync(pFile) );
+}
+
+static int lsmEnvSectorSize(lsm_env *pEnv, lsm_file *pFile){
+ return pEnv->xSectorSize(pFile);
+}
+
+int lsmEnvClose(lsm_env *pEnv, lsm_file *pFile){
+ return IOERR_WRAPPER( pEnv->xClose(pFile) );
+}
+
+static int lsmEnvTruncate(lsm_env *pEnv, lsm_file *pFile, lsm_i64 nByte){
+ return IOERR_WRAPPER( pEnv->xTruncate(pFile, nByte) );
+}
+
+static int lsmEnvUnlink(lsm_env *pEnv, const char *zDel){
+ return IOERR_WRAPPER( pEnv->xUnlink(pEnv, zDel) );
+}
+
+static int lsmEnvRemap(
+ lsm_env *pEnv,
+ lsm_file *pFile,
+ i64 szMin,
+ void **ppMap,
+ i64 *pszMap
+){
+ return pEnv->xRemap(pFile, szMin, ppMap, pszMap);
+}
+
+int lsmEnvLock(lsm_env *pEnv, lsm_file *pFile, int iLock, int eLock){
+ if( pFile==0 ) return LSM_OK;
+ return pEnv->xLock(pFile, iLock, eLock);
+}
+
+int lsmEnvTestLock(
+ lsm_env *pEnv,
+ lsm_file *pFile,
+ int iLock,
+ int nLock,
+ int eLock
+){
+ return pEnv->xTestLock(pFile, iLock, nLock, eLock);
+}
+
+int lsmEnvShmMap(
+ lsm_env *pEnv,
+ lsm_file *pFile,
+ int iChunk,
+ int sz,
+ void **ppOut
+){
+ return pEnv->xShmMap(pFile, iChunk, sz, ppOut);
+}
+
+void lsmEnvShmBarrier(lsm_env *pEnv){
+ return pEnv->xShmBarrier();
+}
+
+void lsmEnvShmUnmap(lsm_env *pEnv, lsm_file *pFile, int bDel){
+ pEnv->xShmUnmap(pFile, bDel);
+}
+
+void lsmEnvSleep(lsm_env *pEnv, int nUs){
+ pEnv->xSleep(pEnv, nUs);
+}
+
+
+/*
+** Write the contents of string buffer pStr into the log file, starting at
+** offset iOff.
+*/
+int lsmFsWriteLog(FileSystem *pFS, i64 iOff, LsmString *pStr){
+ assert( pFS->fdLog );
+ return lsmEnvWrite(pFS->pEnv, pFS->fdLog, iOff, pStr->z, pStr->n);
+}
+
+/*
+** fsync() the log file.
+*/
+int lsmFsSyncLog(FileSystem *pFS){
+ assert( pFS->fdLog );
+ return lsmEnvSync(pFS->pEnv, pFS->fdLog);
+}
+
+/*
+** Read nRead bytes of data starting at offset iOff of the log file. Append
+** the results to string buffer pStr.
+*/
+int lsmFsReadLog(FileSystem *pFS, i64 iOff, int nRead, LsmString *pStr){
+ int rc; /* Return code */
+ assert( pFS->fdLog );
+ rc = lsmStringExtend(pStr, nRead);
+ if( rc==LSM_OK ){
+ rc = lsmEnvRead(pFS->pEnv, pFS->fdLog, iOff, &pStr->z[pStr->n], nRead);
+ pStr->n += nRead;
+ }
+ return rc;
+}
+
+/*
+** Truncate the log file to nByte bytes in size.
+*/
+int lsmFsTruncateLog(FileSystem *pFS, i64 nByte){
+ if( pFS->fdLog==0 ) return LSM_OK;
+ return lsmEnvTruncate(pFS->pEnv, pFS->fdLog, nByte);
+}
+
+/*
+** Truncate the db file to nByte bytes in size.
+*/
+int lsmFsTruncateDb(FileSystem *pFS, i64 nByte){
+ if( pFS->fdDb==0 ) return LSM_OK;
+ return lsmEnvTruncate(pFS->pEnv, pFS->fdDb, nByte);
+}
+
+/*
+** Close the log file. Then delete it from the file-system. This function
+** is called during database shutdown only.
+*/
+int lsmFsCloseAndDeleteLog(FileSystem *pFS){
+ char *zDel;
+
+ if( pFS->fdLog ){
+ lsmEnvClose(pFS->pEnv, pFS->fdLog );
+ pFS->fdLog = 0;
+ }
+
+ zDel = lsmMallocPrintf(pFS->pEnv, "%s-log", pFS->zDb);
+ if( zDel ){
+ lsmEnvUnlink(pFS->pEnv, zDel);
+ lsmFree(pFS->pEnv, zDel);
+ }
+ return LSM_OK;
+}
+
+/*
+** Return true if page iReal of the database should be accessed using mmap.
+** False otherwise.
+*/
+static int fsMmapPage(FileSystem *pFS, Pgno iReal){
+ return ((i64)iReal*pFS->nPagesize <= pFS->nMapLimit);
+}
+
+/*
+** Given that there are currently nHash slots in the hash table, return
+** the hash key for file iFile, page iPg.
+*/
+static int fsHashKey(int nHash, int iPg){
+ return (iPg % nHash);
+}
+
+/*
+** This is a helper function for lsmFsOpen(). It opens a single file on
+** disk (either the database or log file).
+*/
+static lsm_file *fsOpenFile(
+ FileSystem *pFS, /* File system object */
+ int bReadonly, /* True to open this file read-only */
+ int bLog, /* True for log, false for db */
+ int *pRc /* IN/OUT: Error code */
+){
+ lsm_file *pFile = 0;
+ if( *pRc==LSM_OK ){
+ int flags = (bReadonly ? LSM_OPEN_READONLY : 0);
+ const char *zPath = (bLog ? pFS->zLog : pFS->zDb);
+
+ *pRc = lsmEnvOpen(pFS->pEnv, zPath, flags, &pFile);
+ }
+ return pFile;
+}
+
+/*
+** If it is not already open, this function opens the log file. It returns
+** LSM_OK if successful (or if the log file was already open) or an LSM
+** error code otherwise.
+**
+** The log file must be opened before any of the following may be called:
+**
+** lsmFsWriteLog
+** lsmFsSyncLog
+** lsmFsReadLog
+*/
+int lsmFsOpenLog(lsm_db *db, int *pbOpen){
+ int rc = LSM_OK;
+ FileSystem *pFS = db->pFS;
+
+ if( 0==pFS->fdLog ){
+ pFS->fdLog = fsOpenFile(pFS, db->bReadonly, 1, &rc);
+
+ if( rc==LSM_IOERR_NOENT && db->bReadonly ){
+ rc = LSM_OK;
+ }
+ }
+
+ if( pbOpen ) *pbOpen = (pFS->fdLog!=0);
+ return rc;
+}
+
+/*
+** Close the log file, if it is open.
+*/
+void lsmFsCloseLog(lsm_db *db){
+ FileSystem *pFS = db->pFS;
+ if( pFS->fdLog ){
+ lsmEnvClose(pFS->pEnv, pFS->fdLog);
+ pFS->fdLog = 0;
+ }
+}
+
+/*
+** Open a connection to a database stored within the file-system.
+**
+** If parameter bReadonly is true, then open a read-only file-descriptor
+** on the database file. It is possible that bReadonly will be false even
+** if the user requested that pDb be opened read-only. This is because the
+** file-descriptor may later on be recycled by a read-write connection.
+** If the db file can be opened for read-write access, it always is. Parameter
+** bReadonly is only ever true if it has already been determined that the
+** db can only be opened for read-only access.
+**
+** Return LSM_OK if successful or an lsm error code otherwise.
+*/
+int lsmFsOpen(
+ lsm_db *pDb, /* Database connection to open fd for */
+ const char *zDb, /* Full path to database file */
+ int bReadonly /* True to open db file read-only */
+){
+ FileSystem *pFS;
+ int rc = LSM_OK;
+ int nDb = strlen(zDb);
+ int nByte;
+
+ assert( pDb->pFS==0 );
+ assert( pDb->pWorker==0 && pDb->pClient==0 );
+
+ nByte = sizeof(FileSystem) + nDb+1 + nDb+4+1;
+ pFS = (FileSystem *)lsmMallocZeroRc(pDb->pEnv, nByte, &rc);
+ if( pFS ){
+ LsmFile *pLsmFile;
+ pFS->zDb = (char *)&pFS[1];
+ pFS->zLog = &pFS->zDb[nDb+1];
+ pFS->nPagesize = LSM_DFLT_PAGE_SIZE;
+ pFS->nBlocksize = LSM_DFLT_BLOCK_SIZE;
+ pFS->nMetasize = 4 * 1024;
+ pFS->pDb = pDb;
+ pFS->pEnv = pDb->pEnv;
+
+ /* Make a copy of the database and log file names. */
+ memcpy(pFS->zDb, zDb, nDb+1);
+ memcpy(pFS->zLog, zDb, nDb);
+ memcpy(&pFS->zLog[nDb], "-log", 5);
+
+ /* Allocate the hash-table here. At some point, it should be changed
+ ** so that it can grow dynamicly. */
+ pFS->nCacheMax = 2048*1024 / pFS->nPagesize;
+ pFS->nHash = 4096;
+ pFS->apHash = lsmMallocZeroRc(pDb->pEnv, sizeof(Page *) * pFS->nHash, &rc);
+
+ /* Open the database file */
+ pLsmFile = lsmDbRecycleFd(pDb);
+ if( pLsmFile ){
+ pFS->pLsmFile = pLsmFile;
+ pFS->fdDb = pLsmFile->pFile;
+ memset(pLsmFile, 0, sizeof(LsmFile));
+ }else{
+ pFS->pLsmFile = lsmMallocZeroRc(pDb->pEnv, sizeof(LsmFile), &rc);
+ if( rc==LSM_OK ){
+ pFS->fdDb = fsOpenFile(pFS, bReadonly, 0, &rc);
+ }
+ }
+
+ if( rc!=LSM_OK ){
+ lsmFsClose(pFS);
+ pFS = 0;
+ }else{
+ pFS->szSector = lsmEnvSectorSize(pFS->pEnv, pFS->fdDb);
+ }
+ }
+
+ pDb->pFS = pFS;
+ return rc;
+}
+
+/*
+** Configure the file-system object according to the current values of
+** the LSM_CONFIG_MMAP and LSM_CONFIG_SET_COMPRESSION options.
+*/
+int lsmFsConfigure(lsm_db *db){
+ FileSystem *pFS = db->pFS;
+ if( pFS ){
+ lsm_env *pEnv = pFS->pEnv;
+ Page *pPg;
+
+ assert( pFS->nOut==0 );
+ assert( pFS->pWaiting==0 );
+ assert( pFS->pMapped==0 );
+
+ /* Reset any compression/decompression buffers already allocated */
+ lsmFree(pEnv, pFS->aIBuffer);
+ lsmFree(pEnv, pFS->aOBuffer);
+ pFS->nBuffer = 0;
+
+ /* Unmap the file, if it is currently mapped */
+ if( pFS->pMap ){
+ lsmEnvRemap(pEnv, pFS->fdDb, -1, &pFS->pMap, &pFS->nMap);
+ pFS->nMapLimit = 0;
+ }
+
+ /* Free all allocated page structures */
+ pPg = pFS->pLruFirst;
+ while( pPg ){
+ Page *pNext = pPg->pLruNext;
+ assert( pPg->flags & PAGE_FREE );
+ lsmFree(pEnv, pPg->aData);
+ lsmFree(pEnv, pPg);
+ pPg = pNext;
+ }
+
+ pPg = pFS->pFree;
+ while( pPg ){
+ Page *pNext = pPg->pFreeNext;
+ lsmFree(pEnv, pPg);
+ pPg = pNext;
+ }
+
+ /* Zero pointers that point to deleted page objects */
+ pFS->nCacheAlloc = 0;
+ pFS->pLruFirst = 0;
+ pFS->pLruLast = 0;
+ pFS->pFree = 0;
+ if( pFS->apHash ){
+ memset(pFS->apHash, 0, pFS->nHash*sizeof(pFS->apHash[0]));
+ }
+
+ /* Configure the FileSystem object */
+ if( db->compress.xCompress ){
+ pFS->pCompress = &db->compress;
+ pFS->nMapLimit = 0;
+ }else{
+ pFS->pCompress = 0;
+ if( db->iMmap==1 ){
+ /* Unlimited */
+ pFS->nMapLimit = (i64)1 << 60;
+ }else{
+ /* iMmap is a limit in KB. Set nMapLimit to the same value in bytes. */
+ pFS->nMapLimit = (i64)db->iMmap * 1024;
+ }
+ }
+ }
+
+ return LSM_OK;
+}
+
+/*
+** Close and destroy a FileSystem object.
+*/
+void lsmFsClose(FileSystem *pFS){
+ if( pFS ){
+ Page *pPg;
+ lsm_env *pEnv = pFS->pEnv;
+
+ assert( pFS->nOut==0 );
+ pPg = pFS->pLruFirst;
+ while( pPg ){
+ Page *pNext = pPg->pLruNext;
+ if( pPg->flags & PAGE_FREE ) lsmFree(pEnv, pPg->aData);
+ lsmFree(pEnv, pPg);
+ pPg = pNext;
+ }
+
+ pPg = pFS->pFree;
+ while( pPg ){
+ Page *pNext = pPg->pFreeNext;
+ if( pPg->flags & PAGE_FREE ) lsmFree(pEnv, pPg->aData);
+ lsmFree(pEnv, pPg);
+ pPg = pNext;
+ }
+
+ if( pFS->fdDb ) lsmEnvClose(pFS->pEnv, pFS->fdDb );
+ if( pFS->fdLog ) lsmEnvClose(pFS->pEnv, pFS->fdLog );
+ lsmFree(pEnv, pFS->pLsmFile);
+ lsmFree(pEnv, pFS->apHash);
+ lsmFree(pEnv, pFS->aIBuffer);
+ lsmFree(pEnv, pFS->aOBuffer);
+ lsmFree(pEnv, pFS);
+ }
+}
+
+/*
+** This function is called when closing a database handle (i.e. lsm_close())
+** if there exist other connections to the same database within this process.
+** In that case the file-descriptor open on the database file is not closed
+** when the FileSystem object is destroyed, as this would cause any POSIX
+** locks held by the other connections to be silently dropped (see "man close"
+** for details). Instead, the file-descriptor is stored in a list by the
+** lsm_shared.c module until it is either closed or reused.
+**
+** This function returns a pointer to an object that can be linked into
+** the list described above. The returned object now 'owns' the database
+** file descriptr, so that when the FileSystem object is destroyed, it
+** will not be closed.
+**
+** This function may be called at most once in the life-time of a
+** FileSystem object. The results of any operations involving the database
+** file descriptor are undefined once this function has been called.
+**
+** None of this is necessary on non-POSIX systems. But we do it anyway in
+** the name of using as similar code as possible on all platforms.
+*/
+LsmFile *lsmFsDeferClose(FileSystem *pFS){
+ LsmFile *p = pFS->pLsmFile;
+ assert( p->pNext==0 );
+ p->pFile = pFS->fdDb;
+ pFS->fdDb = 0;
+ pFS->pLsmFile = 0;
+ return p;
+}
+
+/*
+** Allocate a buffer and populate it with the output of the xFileid()
+** method of the database file handle. If successful, set *ppId to point
+** to the buffer and *pnId to the number of bytes in the buffer and return
+** LSM_OK. Otherwise, set *ppId and *pnId to zero and return an LSM
+** error code.
+*/
+int lsmFsFileid(lsm_db *pDb, void **ppId, int *pnId){
+ lsm_env *pEnv = pDb->pEnv;
+ FileSystem *pFS = pDb->pFS;
+ int rc;
+ int nId = 0;
+ void *pId;
+
+ rc = pEnv->xFileid(pFS->fdDb, 0, &nId);
+ pId = lsmMallocZeroRc(pEnv, nId, &rc);
+ if( rc==LSM_OK ) rc = pEnv->xFileid(pFS->fdDb, pId, &nId);
+
+ if( rc!=LSM_OK ){
+ lsmFree(pEnv, pId);
+ pId = 0;
+ nId = 0;
+ }
+
+ *ppId = pId;
+ *pnId = nId;
+ return rc;
+}
+
+/*
+** Return the nominal page-size used by this file-system. Actual pages
+** may be smaller or larger than this value.
+*/
+int lsmFsPageSize(FileSystem *pFS){
+ return pFS->nPagesize;
+}
+
+/*
+** Return the block-size used by this file-system.
+*/
+int lsmFsBlockSize(FileSystem *pFS){
+ return pFS->nBlocksize;
+}
+
+/*
+** Configure the nominal page-size used by this file-system. Actual
+** pages may be smaller or larger than this value.
+*/
+void lsmFsSetPageSize(FileSystem *pFS, int nPgsz){
+ pFS->nPagesize = nPgsz;
+ pFS->nCacheMax = 2048*1024 / pFS->nPagesize;
+}
+
+/*
+** Configure the block-size used by this file-system.
+*/
+void lsmFsSetBlockSize(FileSystem *pFS, int nBlocksize){
+ pFS->nBlocksize = nBlocksize;
+}
+
+/*
+** Return the page number of the first page on block iBlock. Blocks are
+** numbered starting from 1.
+**
+** For a compressed database, page numbers are byte offsets. The first
+** page on each block is the byte offset immediately following the 4-byte
+** "previous block" pointer at the start of each block.
+*/
+static Pgno fsFirstPageOnBlock(FileSystem *pFS, int iBlock){
+ Pgno iPg;
+ if( pFS->pCompress ){
+ if( iBlock==1 ){
+ iPg = pFS->nMetasize * 2 + 4;
+ }else{
+ iPg = pFS->nBlocksize * (Pgno)(iBlock-1) + 4;
+ }
+ }else{
+ const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
+ if( iBlock==1 ){
+ iPg = 1 + ((pFS->nMetasize*2 + pFS->nPagesize - 1) / pFS->nPagesize);
+ }else{
+ iPg = 1 + (iBlock-1) * nPagePerBlock;
+ }
+ }
+ return iPg;
+}
+
+/*
+** Return the page number of the last page on block iBlock. Blocks are
+** numbered starting from 1.
+**
+** For a compressed database, page numbers are byte offsets. The first
+** page on each block is the byte offset of the byte immediately before
+** the 4-byte "next block" pointer at the end of each block.
+*/
+static Pgno fsLastPageOnBlock(FileSystem *pFS, int iBlock){
+ if( pFS->pCompress ){
+ return pFS->nBlocksize * (Pgno)iBlock - 1 - 4;
+ }else{
+ const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
+ return iBlock * nPagePerBlock;
+ }
+}
+
+/*
+** Return the block number of the block that page iPg is located on.
+** Blocks are numbered starting from 1.
+*/
+static int fsPageToBlock(FileSystem *pFS, Pgno iPg){
+ if( pFS->pCompress ){
+ return (iPg / pFS->nBlocksize) + 1;
+ }else{
+ return 1 + ((iPg-1) / (pFS->nBlocksize / pFS->nPagesize));
+ }
+}
+
+/*
+** Return true if page iPg is the last page on its block.
+**
+** This function is only called in non-compressed database mode.
+*/
+static int fsIsLast(FileSystem *pFS, Pgno iPg){
+ const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
+ assert( !pFS->pCompress );
+ return ( iPg && (iPg % nPagePerBlock)==0 );
+}
+
+/*
+** Return true if page iPg is the first page on its block.
+**
+** This function is only called in non-compressed database mode.
+*/
+static int fsIsFirst(FileSystem *pFS, Pgno iPg){
+ const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
+ assert( !pFS->pCompress );
+ return ( (iPg % nPagePerBlock)==1
+ || (iPg<nPagePerBlock && iPg==fsFirstPageOnBlock(pFS, 1))
+ );
+}
+
+/*
+** Given a page reference, return a pointer to the buffer containing the
+** pages contents. If parameter pnData is not NULL, set *pnData to the size
+** of the buffer in bytes before returning.
+*/
+u8 *lsmFsPageData(Page *pPage, int *pnData){
+ if( pnData ){
+ *pnData = pPage->nData;
+ }
+ return pPage->aData;
+}
+
+/*
+** Return the page number of a page.
+*/
+Pgno lsmFsPageNumber(Page *pPage){
+ /* assert( (pPage->flags & PAGE_DIRTY)==0 ); */
+ return pPage ? pPage->iPg : 0;
+}
+
+/*
+** Page pPg is currently part of the LRU list belonging to pFS. Remove
+** it from the list. pPg->pLruNext and pPg->pLruPrev are cleared by this
+** operation.
+*/
+static void fsPageRemoveFromLru(FileSystem *pFS, Page *pPg){
+ assert( pPg->pLruNext || pPg==pFS->pLruLast );
+ assert( pPg->pLruPrev || pPg==pFS->pLruFirst );
+ if( pPg->pLruNext ){
+ pPg->pLruNext->pLruPrev = pPg->pLruPrev;
+ }else{
+ pFS->pLruLast = pPg->pLruPrev;
+ }
+ if( pPg->pLruPrev ){
+ pPg->pLruPrev->pLruNext = pPg->pLruNext;
+ }else{
+ pFS->pLruFirst = pPg->pLruNext;
+ }
+ pPg->pLruPrev = 0;
+ pPg->pLruNext = 0;
+}
+
+/*
+** Page pPg is not currently part of the LRU list belonging to pFS. Add it.
+*/
+static void fsPageAddToLru(FileSystem *pFS, Page *pPg){
+ assert( pPg->pLruNext==0 && pPg->pLruPrev==0 );
+ pPg->pLruPrev = pFS->pLruLast;
+ if( pPg->pLruPrev ){
+ pPg->pLruPrev->pLruNext = pPg;
+ }else{
+ pFS->pLruFirst = pPg;
+ }
+ pFS->pLruLast = pPg;
+}
+
+/*
+** Page pPg is currently stored in the apHash/nHash hash table. Remove it.
+*/
+static void fsPageRemoveFromHash(FileSystem *pFS, Page *pPg){
+ int iHash;
+ Page **pp;
+
+ iHash = fsHashKey(pFS->nHash, pPg->iPg);
+ for(pp=&pFS->apHash[iHash]; *pp!=pPg; pp=&(*pp)->pHashNext);
+ *pp = pPg->pHashNext;
+ pPg->pHashNext = 0;
+}
+
+/*
+** Free a Page object allocated by fsPageBuffer().
+*/
+static void fsPageBufferFree(Page *pPg){
+ pPg->pFS->nCacheAlloc--;
+ lsmFree(pPg->pFS->pEnv, pPg->aData);
+ lsmFree(pPg->pFS->pEnv, pPg);
+}
+
+
+/*
+** Purge the cache of all non-mmap pages with nRef==0.
+*/
+void lsmFsPurgeCache(FileSystem *pFS){
+ Page *pPg;
+
+ pPg = pFS->pLruFirst;
+ while( pPg ){
+ Page *pNext = pPg->pLruNext;
+ assert( pPg->flags & PAGE_FREE );
+ fsPageRemoveFromHash(pFS, pPg);
+ fsPageBufferFree(pPg);
+ pPg = pNext;
+ }
+ pFS->pLruFirst = 0;
+ pFS->pLruLast = 0;
+
+ assert( pFS->nCacheAlloc<=pFS->nOut && pFS->nCacheAlloc>=0 );
+}
+
+/*
+** Search the hash-table for page iPg. If an entry is round, return a pointer
+** to it. Otherwise, return NULL.
+**
+** Either way, if argument piHash is not NULL set *piHash to the hash slot
+** number that page iPg would be stored in before returning.
+*/
+static Page *fsPageFindInHash(FileSystem *pFS, Pgno iPg, int *piHash){
+ Page *p; /* Return value */
+ int iHash = fsHashKey(pFS->nHash, iPg);
+
+ if( piHash ) *piHash = iHash;
+ for(p=pFS->apHash[iHash]; p; p=p->pHashNext){
+ if( p->iPg==iPg) break;
+ }
+ return p;
+}
+
+/*
+** Allocate and return a non-mmap Page object. If there are already
+** nCacheMax such Page objects outstanding, try to recycle an existing
+** Page instead.
+*/
+static int fsPageBuffer(
+ FileSystem *pFS,
+ Page **ppOut
+){
+ int rc = LSM_OK;
+ Page *pPage = 0;
+ if( pFS->pLruFirst==0 || pFS->nCacheAlloc<pFS->nCacheMax ){
+ /* Allocate a new Page object */
+ pPage = lsmMallocZero(pFS->pEnv, sizeof(Page));
+ if( !pPage ){
+ rc = LSM_NOMEM_BKPT;
+ }else{
+ pPage->aData = (u8 *)lsmMalloc(pFS->pEnv, pFS->nPagesize);
+ if( !pPage->aData ){
+ lsmFree(pFS->pEnv, pPage);
+ rc = LSM_NOMEM_BKPT;
+ pPage = 0;
+ }else{
+ pFS->nCacheAlloc++;
+ }
+ }
+ }else{
+ /* Reuse an existing Page object */
+ u8 *aData;
+ pPage = pFS->pLruFirst;
+ aData = pPage->aData;
+ fsPageRemoveFromLru(pFS, pPage);
+ fsPageRemoveFromHash(pFS, pPage);
+
+ memset(pPage, 0, sizeof(Page));
+ pPage->aData = aData;
+ }
+
+ if( pPage ){
+ pPage->flags = PAGE_FREE;
+ }
+ *ppOut = pPage;
+ return rc;
+}
+
+/*
+** Assuming *pRc is initially LSM_OK, attempt to ensure that the
+** memory-mapped region is at least iSz bytes in size. If it is not already,
+** iSz bytes in size, extend it and update the pointers associated with any
+** outstanding Page objects.
+**
+** If *pRc is not LSM_OK when this function is called, it is a no-op.
+** Otherwise, *pRc is set to an lsm error code if an error occurs, or
+** left unmodified otherwise.
+**
+** This function is never called in compressed database mode.
+*/
+static void fsGrowMapping(
+ FileSystem *pFS, /* File system object */
+ i64 iSz, /* Minimum size to extend mapping to */
+ int *pRc /* IN/OUT: Error code */
+){
+ assert( pFS->pCompress==0 );
+ assert( PAGE_HASPREV==4 );
+
+ if( *pRc==LSM_OK && iSz>pFS->nMap ){
+ int rc;
+ u8 *aOld = pFS->pMap;
+ rc = lsmEnvRemap(pFS->pEnv, pFS->fdDb, iSz, &pFS->pMap, &pFS->nMap);
+ if( rc==LSM_OK && pFS->pMap!=aOld ){
+ Page *pFix;
+ i64 iOff = (u8 *)pFS->pMap - aOld;
+ for(pFix=pFS->pMapped; pFix; pFix=pFix->pMappedNext){
+ pFix->aData += iOff;
+ }
+ lsmSortedRemap(pFS->pDb);
+ }
+ *pRc = rc;
+ }
+}
+
+/*
+** fsync() the database file.
+*/
+int lsmFsSyncDb(FileSystem *pFS, int nBlock){
+ return lsmEnvSync(pFS->pEnv, pFS->fdDb);
+}
+
+/*
+** If block iBlk has been redirected according to the redirections in the
+** object passed as the first argument, return the destination block to
+** which it is redirected. Otherwise, return a copy of iBlk.
+*/
+static int fsRedirectBlock(Redirect *p, int iBlk){
+ if( p ){
+ int i;
+ for(i=0; i<p->n; i++){
+ if( iBlk==p->a[i].iFrom ) return p->a[i].iTo;
+ }
+ }
+ assert( iBlk!=0 );
+ return iBlk;
+}
+
+/*
+** If page iPg has been redirected according to the redirections in the
+** object passed as the second argument, return the destination page to
+** which it is redirected. Otherwise, return a copy of iPg.
+*/
+Pgno lsmFsRedirectPage(FileSystem *pFS, Redirect *pRedir, Pgno iPg){
+ Pgno iReal = iPg;
+
+ if( pRedir ){
+ const int nPagePerBlock = (
+ pFS->pCompress ? pFS->nBlocksize : (pFS->nBlocksize / pFS->nPagesize)
+ );
+ int iBlk = fsPageToBlock(pFS, iPg);
+ int i;
+ for(i=0; i<pRedir->n; i++){
+ int iFrom = pRedir->a[i].iFrom;
+ if( iFrom>iBlk ) break;
+ if( iFrom==iBlk ){
+ int iTo = pRedir->a[i].iTo;
+ iReal = iPg - (Pgno)(iFrom - iTo) * nPagePerBlock;
+ if( iTo==1 ){
+ iReal += (fsFirstPageOnBlock(pFS, 1)-1);
+ }
+ break;
+ }
+ }
+ }
+
+ assert( iReal!=0 );
+ return iReal;
+}
+
+/* Required by the circular fsBlockNext<->fsPageGet dependency. */
+static int fsPageGet(FileSystem *, Segment *, Pgno, int, Page **, int *);
+
+/*
+** Parameter iBlock is a database file block. This function reads the value
+** stored in the blocks "next block" pointer and stores it in *piNext.
+** LSM_OK is returned if everything is successful, or an LSM error code
+** otherwise.
+*/
+static int fsBlockNext(
+ FileSystem *pFS, /* File-system object handle */
+ Segment *pSeg, /* Use this segment for block redirects */
+ int iBlock, /* Read field from this block */
+ int *piNext /* OUT: Next block in linked list */
+){
+ int rc;
+ int iRead; /* Read block from here */
+
+ if( pSeg ){
+ iRead = fsRedirectBlock(pSeg->pRedirect, iBlock);
+ }else{
+ iRead = iBlock;
+ }
+
+ assert( pFS->nMapLimit==0 || pFS->pCompress==0 );
+ if( pFS->pCompress ){
+ i64 iOff; /* File offset to read data from */
+ u8 aNext[4]; /* 4-byte pointer read from db file */
+
+ iOff = (i64)iRead * pFS->nBlocksize - sizeof(aNext);
+ rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aNext, sizeof(aNext));
+ if( rc==LSM_OK ){
+ *piNext = (int)lsmGetU32(aNext);
+ }
+ }else{
+ const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
+ Page *pLast;
+ rc = fsPageGet(pFS, 0, iRead*nPagePerBlock, 0, &pLast, 0);
+ if( rc==LSM_OK ){
+ *piNext = lsmGetU32(&pLast->aData[pFS->nPagesize-4]);
+ lsmFsPageRelease(pLast);
+ }
+ }
+
+ if( pSeg ){
+ *piNext = fsRedirectBlock(pSeg->pRedirect, *piNext);
+ }
+ return rc;
+}
+
+/*
+** Return the page number of the last page on the same block as page iPg.
+*/
+Pgno fsLastPageOnPagesBlock(FileSystem *pFS, Pgno iPg){
+ return fsLastPageOnBlock(pFS, fsPageToBlock(pFS, iPg));
+}
+
+/*
+** Read nData bytes of data from offset iOff of the database file into
+** buffer aData. If this means reading past the end of a block, follow
+** the block pointer to the next block and continue reading.
+**
+** Offset iOff is an absolute offset - not subject to any block redirection.
+** However any block pointer followed is. Use pSeg->pRedirect in this case.
+**
+** This function is only called in compressed database mode.
+*/
+static int fsReadData(
+ FileSystem *pFS, /* File-system handle */
+ Segment *pSeg, /* Block redirection */
+ i64 iOff, /* Read data from this offset */
+ u8 *aData, /* Buffer to read data into */
+ int nData /* Number of bytes to read */
+){
+ i64 iEob; /* End of block */
+ int nRead;
+ int rc;
+
+ assert( pFS->pCompress );
+
+ iEob = fsLastPageOnPagesBlock(pFS, iOff) + 1;
+ nRead = LSM_MIN(iEob - iOff, nData);
+
+ rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aData, nRead);
+ if( rc==LSM_OK && nRead!=nData ){
+ int iBlk;
+
+ rc = fsBlockNext(pFS, pSeg, fsPageToBlock(pFS, iOff), &iBlk);
+ if( rc==LSM_OK ){
+ i64 iOff2 = fsFirstPageOnBlock(pFS, iBlk);
+ rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff2, &aData[nRead], nData-nRead);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Parameter iBlock is a database file block. This function reads the value
+** stored in the blocks "previous block" pointer and stores it in *piPrev.
+** LSM_OK is returned if everything is successful, or an LSM error code
+** otherwise.
+*/
+static int fsBlockPrev(
+ FileSystem *pFS, /* File-system object handle */
+ Segment *pSeg, /* Use this segment for block redirects */
+ int iBlock, /* Read field from this block */
+ int *piPrev /* OUT: Previous block in linked list */
+){
+ int rc = LSM_OK; /* Return code */
+
+ assert( pFS->nMapLimit==0 || pFS->pCompress==0 );
+ assert( iBlock>0 );
+
+ if( pFS->pCompress ){
+ i64 iOff = fsFirstPageOnBlock(pFS, iBlock) - 4;
+ u8 aPrev[4]; /* 4-byte pointer read from db file */
+ rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aPrev, sizeof(aPrev));
+ if( rc==LSM_OK ){
+ Redirect *pRedir = (pSeg ? pSeg->pRedirect : 0);
+ *piPrev = fsRedirectBlock(pRedir, (int)lsmGetU32(aPrev));
+ }
+ }else{
+ assert( 0 );
+ }
+ return rc;
+}
+
+/*
+** Encode and decode routines for record size fields.
+*/
+static void putRecordSize(u8 *aBuf, int nByte, int bFree){
+ aBuf[0] = (u8)(nByte >> 14) | 0x80;
+ aBuf[1] = ((u8)(nByte >> 7) & 0x7F) | (bFree ? 0x00 : 0x80);
+ aBuf[2] = (u8)nByte | 0x80;
+}
+static int getRecordSize(u8 *aBuf, int *pbFree){
+ int nByte;
+ nByte = (aBuf[0] & 0x7F) << 14;
+ nByte += (aBuf[1] & 0x7F) << 7;
+ nByte += (aBuf[2] & 0x7F);
+ *pbFree = !(aBuf[1] & 0x80);
+ return nByte;
+}
+
+/*
+** Subtract iSub from database file offset iOff and set *piRes to the
+** result. If doing so means passing the start of a block, follow the
+** block pointer stored in the first 4 bytes of the block.
+**
+** Offset iOff is an absolute offset - not subject to any block redirection.
+** However any block pointer followed is. Use pSeg->pRedirect in this case.
+**
+** Return LSM_OK if successful or an lsm error code if an error occurs.
+*/
+static int fsSubtractOffset(
+ FileSystem *pFS,
+ Segment *pSeg,
+ i64 iOff,
+ int iSub,
+ i64 *piRes
+){
+ i64 iStart;
+ int iBlk = 0;
+ int rc;
+
+ assert( pFS->pCompress );
+
+ iStart = fsFirstPageOnBlock(pFS, fsPageToBlock(pFS, iOff));
+ if( (iOff-iSub)>=iStart ){
+ *piRes = (iOff-iSub);
+ return LSM_OK;
+ }
+
+ rc = fsBlockPrev(pFS, pSeg, fsPageToBlock(pFS, iOff), &iBlk);
+ *piRes = fsLastPageOnBlock(pFS, iBlk) - iSub + (iOff - iStart + 1);
+ return rc;
+}
+
+/*
+** Add iAdd to database file offset iOff and set *piRes to the
+** result. If doing so means passing the end of a block, follow the
+** block pointer stored in the last 4 bytes of the block.
+**
+** Offset iOff is an absolute offset - not subject to any block redirection.
+** However any block pointer followed is. Use pSeg->pRedirect in this case.
+**
+** Return LSM_OK if successful or an lsm error code if an error occurs.
+*/
+static int fsAddOffset(
+ FileSystem *pFS,
+ Segment *pSeg,
+ i64 iOff,
+ int iAdd,
+ i64 *piRes
+){
+ i64 iEob;
+ int iBlk;
+ int rc;
+
+ assert( pFS->pCompress );
+
+ iEob = fsLastPageOnPagesBlock(pFS, iOff);
+ if( (iOff+iAdd)<=iEob ){
+ *piRes = (iOff+iAdd);
+ return LSM_OK;
+ }
+
+ rc = fsBlockNext(pFS, pSeg, fsPageToBlock(pFS, iOff), &iBlk);
+ *piRes = fsFirstPageOnBlock(pFS, iBlk) + iAdd - (iEob - iOff + 1);
+ return rc;
+}
+
+/*
+** If it is not already allocated, allocate either the FileSystem.aOBuffer (if
+** bWrite is true) or the FileSystem.aIBuffer (if bWrite is false). Return
+** LSM_OK if successful if the attempt to allocate memory fails.
+*/
+static int fsAllocateBuffer(FileSystem *pFS, int bWrite){
+ u8 **pp; /* Pointer to either aIBuffer or aOBuffer */
+
+ assert( pFS->pCompress );
+
+ /* If neither buffer has been allocated, figure out how large they
+ ** should be. Store this value in FileSystem.nBuffer. */
+ if( pFS->nBuffer==0 ){
+ assert( pFS->aIBuffer==0 && pFS->aOBuffer==0 );
+ pFS->nBuffer = pFS->pCompress->xBound(pFS->pCompress->pCtx, pFS->nPagesize);
+ if( pFS->nBuffer<(pFS->szSector+6) ){
+ pFS->nBuffer = pFS->szSector+6;
+ }
+ }
+
+ pp = (bWrite ? &pFS->aOBuffer : &pFS->aIBuffer);
+ if( *pp==0 ){
+ *pp = lsmMalloc(pFS->pEnv, LSM_MAX(pFS->nBuffer, pFS->nPagesize));
+ if( *pp==0 ) return LSM_NOMEM_BKPT;
+ }
+
+ return LSM_OK;
+}
+
+/*
+** This function is only called in compressed database mode. It reads and
+** uncompresses the compressed data for page pPg from the database and
+** populates the pPg->aData[] buffer and pPg->nCompress field.
+**
+** It is possible that instead of a page record, there is free space
+** at offset pPg->iPgno. In this case no data is read from the file, but
+** output variable *pnSpace is set to the total number of free bytes.
+**
+** LSM_OK is returned if successful, or an LSM error code otherwise.
+*/
+static int fsReadPagedata(
+ FileSystem *pFS, /* File-system handle */
+ Segment *pSeg, /* pPg is part of this segment */
+ Page *pPg, /* Page to read and uncompress data for */
+ int *pnSpace /* OUT: Total bytes of free space */
+){
+ lsm_compress *p = pFS->pCompress;
+ i64 iOff = pPg->iPg;
+ u8 aSz[3];
+ int rc;
+
+ assert( p && pPg->nCompress==0 );
+
+ if( fsAllocateBuffer(pFS, 0) ) return LSM_NOMEM;
+
+ rc = fsReadData(pFS, pSeg, iOff, aSz, sizeof(aSz));
+
+ if( rc==LSM_OK ){
+ int bFree;
+ if( aSz[0] & 0x80 ){
+ pPg->nCompress = (int)getRecordSize(aSz, &bFree);
+ }else{
+ pPg->nCompress = (int)aSz[0] - sizeof(aSz)*2;
+ bFree = 1;
+ }
+ if( bFree ){
+ if( pnSpace ){
+ *pnSpace = pPg->nCompress + sizeof(aSz)*2;
+ }else{
+ rc = LSM_CORRUPT_BKPT;
+ }
+ }else{
+ rc = fsAddOffset(pFS, pSeg, iOff, 3, &iOff);
+ if( rc==LSM_OK ){
+ if( pPg->nCompress>pFS->nBuffer ){
+ rc = LSM_CORRUPT_BKPT;
+ }else{
+ rc = fsReadData(pFS, pSeg, iOff, pFS->aIBuffer, pPg->nCompress);
+ }
+ if( rc==LSM_OK ){
+ int n = pFS->nPagesize;
+ rc = p->xUncompress(p->pCtx,
+ (char *)pPg->aData, &n,
+ (const char *)pFS->aIBuffer, pPg->nCompress
+ );
+ if( rc==LSM_OK && n!=pPg->pFS->nPagesize ){
+ rc = LSM_CORRUPT_BKPT;
+ }
+ }
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Return a handle for a database page.
+**
+** If this file-system object is accessing a compressed database it may be
+** that there is no page record at database file offset iPg. Instead, there
+** may be a free space record. In this case, set *ppPg to NULL and *pnSpace
+** to the total number of free bytes before returning.
+**
+** If no error occurs, LSM_OK is returned. Otherwise, an lsm error code.
+*/
+static int fsPageGet(
+ FileSystem *pFS, /* File-system handle */
+ Segment *pSeg, /* Block redirection to use (or NULL) */
+ Pgno iPg, /* Page id */
+ int noContent, /* True to not load content from disk */
+ Page **ppPg, /* OUT: New page handle */
+ int *pnSpace /* OUT: Bytes of free space */
+){
+ Page *p;
+ int iHash;
+ int rc = LSM_OK;
+
+ /* In most cases iReal is the same as iPg. Except, if pSeg->pRedirect is
+ ** not NULL, and the block containing iPg has been redirected, then iReal
+ ** is the page number after redirection. */
+ Pgno iReal = lsmFsRedirectPage(pFS, (pSeg ? pSeg->pRedirect : 0), iPg);
+
+ assert_lists_are_ok(pFS);
+ assert( iPg>=fsFirstPageOnBlock(pFS, 1) );
+ assert( iReal>=fsFirstPageOnBlock(pFS, 1) );
+ *ppPg = 0;
+
+ /* Search the hash-table for the page */
+ p = fsPageFindInHash(pFS, iReal, &iHash);
+
+ if( p ){
+ assert( p->flags & PAGE_FREE );
+ if( p->nRef==0 ) fsPageRemoveFromLru(pFS, p);
+ }else{
+
+ if( fsMmapPage(pFS, iReal) ){
+ i64 iEnd = (i64)iReal * pFS->nPagesize;
+ fsGrowMapping(pFS, iEnd, &rc);
+ if( rc!=LSM_OK ) return rc;
+
+ if( pFS->pFree ){
+ p = pFS->pFree;
+ pFS->pFree = p->pFreeNext;
+ assert( p->nRef==0 );
+ }else{
+ p = lsmMallocZeroRc(pFS->pEnv, sizeof(Page), &rc);
+ if( rc ) return rc;
+ p->pFS = pFS;
+ }
+ p->aData = &((u8 *)pFS->pMap)[pFS->nPagesize * (iReal-1)];
+ p->iPg = iReal;
+
+ /* This page now carries a pointer to the mapping. Link it in to
+ ** the FileSystem.pMapped list. */
+ assert( p->pMappedNext==0 );
+ p->pMappedNext = pFS->pMapped;
+ pFS->pMapped = p;
+
+ assert( pFS->pCompress==0 );
+ assert( (p->flags & PAGE_FREE)==0 );
+ }else{
+ rc = fsPageBuffer(pFS, &p);
+ if( rc==LSM_OK ){
+ int nSpace = 0;
+ p->iPg = iReal;
+ p->nRef = 0;
+ p->pFS = pFS;
+ assert( p->flags==0 || p->flags==PAGE_FREE );
+
+#ifdef LSM_DEBUG
+ memset(p->aData, 0x56, pFS->nPagesize);
+#endif
+ assert( p->pLruNext==0 && p->pLruPrev==0 );
+ if( noContent==0 ){
+ if( pFS->pCompress ){
+ rc = fsReadPagedata(pFS, pSeg, p, &nSpace);
+ }else{
+ int nByte = pFS->nPagesize;
+ i64 iOff = (i64)(iReal-1) * pFS->nPagesize;
+ rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, p->aData, nByte);
+ }
+ pFS->nRead++;
+ }
+
+ /* If the xRead() call was successful (or not attempted), link the
+ ** page into the page-cache hash-table. Otherwise, if it failed,
+ ** free the buffer. */
+ if( rc==LSM_OK && nSpace==0 ){
+ p->pHashNext = pFS->apHash[iHash];
+ pFS->apHash[iHash] = p;
+ }else{
+ fsPageBufferFree(p);
+ p = 0;
+ if( pnSpace ) *pnSpace = nSpace;
+ }
+ }
+ }
+
+ assert( (rc==LSM_OK && (p || (pnSpace && *pnSpace)))
+ || (rc!=LSM_OK && p==0)
+ );
+ }
+
+ if( rc==LSM_OK && p ){
+ if( pFS->pCompress==0 && (fsIsLast(pFS, iReal) || fsIsFirst(pFS, iReal)) ){
+ p->nData = pFS->nPagesize - 4;
+ if( fsIsFirst(pFS, iReal) && p->nRef==0 ){
+ p->aData += 4;
+ p->flags |= PAGE_HASPREV;
+ }
+ }else{
+ p->nData = pFS->nPagesize;
+ }
+ pFS->nOut += (p->nRef==0);
+ p->nRef++;
+ }
+ *ppPg = p;
+ return rc;
+}
+
+/*
+** Read the 64-bit checkpoint id of the checkpoint currently stored on meta
+** page iMeta of the database file. If no error occurs, store the id value
+** in *piVal and return LSM_OK. Otherwise, return an LSM error code and leave
+** *piVal unmodified.
+**
+** If a checkpointer connection is currently updating meta-page iMeta, or an
+** earlier checkpointer crashed while doing so, the value read into *piVal
+** may be garbage. It is the callers responsibility to deal with this.
+*/
+int lsmFsReadSyncedId(lsm_db *db, int iMeta, i64 *piVal){
+ FileSystem *pFS = db->pFS;
+ int rc = LSM_OK;
+
+ assert( iMeta==1 || iMeta==2 );
+ if( pFS->nMapLimit>0 ){
+ fsGrowMapping(pFS, iMeta*LSM_META_PAGE_SIZE, &rc);
+ if( rc==LSM_OK ){
+ *piVal = (i64)lsmGetU64(&((u8 *)pFS->pMap)[(iMeta-1)*LSM_META_PAGE_SIZE]);
+ }
+ }else{
+ MetaPage *pMeta = 0;
+ rc = lsmFsMetaPageGet(pFS, 0, iMeta, &pMeta);
+ if( rc==LSM_OK ){
+ *piVal = (i64)lsmGetU64(pMeta->aData);
+ lsmFsMetaPageRelease(pMeta);
+ }
+ }
+
+ return rc;
+}
+
+
+/*
+** Return true if the first or last page of segment pRun falls between iFirst
+** and iLast, inclusive, and pRun is not equal to pIgnore.
+*/
+static int fsRunEndsBetween(
+ Segment *pRun,
+ Segment *pIgnore,
+ Pgno iFirst,
+ Pgno iLast
+){
+ return (pRun!=pIgnore && (
+ (pRun->iFirst>=iFirst && pRun->iFirst<=iLast)
+ || (pRun->iLastPg>=iFirst && pRun->iLastPg<=iLast)
+ ));
+}
+
+/*
+** Return true if level pLevel contains a segment other than pIgnore for
+** which the first or last page is between iFirst and iLast, inclusive.
+*/
+static int fsLevelEndsBetween(
+ Level *pLevel,
+ Segment *pIgnore,
+ Pgno iFirst,
+ Pgno iLast
+){
+ int i;
+
+ if( fsRunEndsBetween(&pLevel->lhs, pIgnore, iFirst, iLast) ){
+ return 1;
+ }
+ for(i=0; i<pLevel->nRight; i++){
+ if( fsRunEndsBetween(&pLevel->aRhs[i], pIgnore, iFirst, iLast) ){
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+/*
+** Block iBlk is no longer in use by segment pIgnore. If it is not in use
+** by any other segment, move it to the free block list.
+*/
+static int fsFreeBlock(
+ FileSystem *pFS, /* File system object */
+ Snapshot *pSnapshot, /* Worker snapshot */
+ Segment *pIgnore, /* Ignore this run when searching */
+ int iBlk /* Block number of block to free */
+){
+ int rc = LSM_OK; /* Return code */
+ int iFirst; /* First page on block iBlk */
+ int iLast; /* Last page on block iBlk */
+ Level *pLevel; /* Used to iterate through levels */
+
+ int iIn; /* Used to iterate through append points */
+ int iOut = 0; /* Used to output append points */
+ Pgno *aApp = pSnapshot->aiAppend;
+
+ iFirst = fsFirstPageOnBlock(pFS, iBlk);
+ iLast = fsLastPageOnBlock(pFS, iBlk);
+
+ /* Check if any other run in the snapshot has a start or end page
+ ** within this block. If there is such a run, return early. */
+ for(pLevel=lsmDbSnapshotLevel(pSnapshot); pLevel; pLevel=pLevel->pNext){
+ if( fsLevelEndsBetween(pLevel, pIgnore, iFirst, iLast) ){
+ return LSM_OK;
+ }
+ }
+
+ /* Remove any entries that lie on this block from the append-list. */
+ for(iIn=0; iIn<LSM_APPLIST_SZ; iIn++){
+ if( aApp[iIn]<iFirst || aApp[iIn]>iLast ){
+ aApp[iOut++] = aApp[iIn];
+ }
+ }
+ while( iOut<LSM_APPLIST_SZ ) aApp[iOut++] = 0;
+
+ if( rc==LSM_OK ){
+ rc = lsmBlockFree(pFS->pDb, iBlk);
+ }
+ return rc;
+}
+
+/*
+** Delete or otherwise recycle the blocks currently occupied by run pDel.
+*/
+int lsmFsSortedDelete(
+ FileSystem *pFS,
+ Snapshot *pSnapshot,
+ int bZero, /* True to zero the Segment structure */
+ Segment *pDel
+){
+ if( pDel->iFirst ){
+ int rc = LSM_OK;
+
+ int iBlk;
+ int iLastBlk;
+
+ iBlk = fsPageToBlock(pFS, pDel->iFirst);
+ iLastBlk = fsPageToBlock(pFS, pDel->iLastPg);
+
+ /* Mark all blocks currently used by this sorted run as free */
+ while( iBlk && rc==LSM_OK ){
+ int iNext = 0;
+ if( iBlk!=iLastBlk ){
+ rc = fsBlockNext(pFS, pDel, iBlk, &iNext);
+ }else if( bZero==0 && pDel->iLastPg!=fsLastPageOnBlock(pFS, iLastBlk) ){
+ break;
+ }
+ rc = fsFreeBlock(pFS, pSnapshot, pDel, iBlk);
+ iBlk = iNext;
+ }
+
+ if( pDel->pRedirect ){
+ assert( pDel->pRedirect==&pSnapshot->redirect );
+ pSnapshot->redirect.n = 0;
+ }
+
+ if( bZero ) memset(pDel, 0, sizeof(Segment));
+ }
+ return LSM_OK;
+}
+
+/*
+** aPgno is an array containing nPgno page numbers. Return the smallest page
+** number from the array that falls on block iBlk. Or, if none of the pages
+** in aPgno[] fall on block iBlk, return 0.
+*/
+static Pgno firstOnBlock(FileSystem *pFS, int iBlk, Pgno *aPgno, int nPgno){
+ Pgno iRet = 0;
+ int i;
+ for(i=0; i<nPgno; i++){
+ Pgno iPg = aPgno[i];
+ if( fsPageToBlock(pFS, iPg)==iBlk && (iRet==0 || iPg<iRet) ){
+ iRet = iPg;
+ }
+ }
+ return iRet;
+}
+
+#ifndef NDEBUG
+/*
+** Return true if page iPg, which is a part of segment p, lies on
+** a redirected block.
+*/
+static int fsPageRedirects(FileSystem *pFS, Segment *p, Pgno iPg){
+ return (iPg!=0 && iPg!=lsmFsRedirectPage(pFS, p->pRedirect, iPg));
+}
+
+/*
+** Return true if the second argument is not NULL and any of the first
+** last or root pages lie on a redirected block.
+*/
+static int fsSegmentRedirects(FileSystem *pFS, Segment *p){
+ return (p && (
+ fsPageRedirects(pFS, p, p->iFirst)
+ || fsPageRedirects(pFS, p, p->iRoot)
+ || fsPageRedirects(pFS, p, p->iLastPg)
+ ));
+}
+#endif
+
+/*
+** Argument aPgno is an array of nPgno page numbers. All pages belong to
+** the segment pRun. This function gobbles from the start of the run to the
+** first page that appears in aPgno[] (i.e. so that the aPgno[] entry is
+** the new first page of the run).
+*/
+void lsmFsGobble(
+ lsm_db *pDb,
+ Segment *pRun,
+ Pgno *aPgno,
+ int nPgno
+){
+ int rc = LSM_OK;
+ FileSystem *pFS = pDb->pFS;
+ Snapshot *pSnapshot = pDb->pWorker;
+ int iBlk;
+
+ assert( pRun->nSize>0 );
+ assert( 0==fsSegmentRedirects(pFS, pRun) );
+ assert( nPgno>0 && 0==fsPageRedirects(pFS, pRun, aPgno[0]) );
+
+ iBlk = fsPageToBlock(pFS, pRun->iFirst);
+ pRun->nSize += (pRun->iFirst - fsFirstPageOnBlock(pFS, iBlk));
+
+ while( rc==LSM_OK ){
+ int iNext = 0;
+ Pgno iFirst = firstOnBlock(pFS, iBlk, aPgno, nPgno);
+ if( iFirst ){
+ pRun->iFirst = iFirst;
+ break;
+ }
+ rc = fsBlockNext(pFS, pRun, iBlk, &iNext);
+ if( rc==LSM_OK ) rc = fsFreeBlock(pFS, pSnapshot, pRun, iBlk);
+ pRun->nSize -= (
+ 1 + fsLastPageOnBlock(pFS, iBlk) - fsFirstPageOnBlock(pFS, iBlk)
+ );
+ iBlk = iNext;
+ }
+
+ pRun->nSize -= (pRun->iFirst - fsFirstPageOnBlock(pFS, iBlk));
+ assert( pRun->nSize>0 );
+}
+
+/*
+** This function is only used in compressed database mode.
+**
+** Argument iPg is the page number (byte offset) of a page within segment
+** pSeg. The page record, including all headers, is nByte bytes in size.
+** Before returning, set *piNext to the page number of the next page in
+** the segment, or to zero if iPg is the last.
+**
+** In other words, do:
+**
+** *piNext = iPg + nByte;
+**
+** But take block overflow and redirection into account.
+*/
+static int fsNextPageOffset(
+ FileSystem *pFS, /* File system object */
+ Segment *pSeg, /* Segment to move within */
+ Pgno iPg, /* Offset of current page */
+ int nByte, /* Size of current page including headers */
+ Pgno *piNext /* OUT: Offset of next page. Or zero (EOF) */
+){
+ Pgno iNext;
+ int rc;
+
+ assert( pFS->pCompress );
+
+ rc = fsAddOffset(pFS, pSeg, iPg, nByte-1, &iNext);
+ if( pSeg && iNext==pSeg->iLastPg ){
+ iNext = 0;
+ }else if( rc==LSM_OK ){
+ rc = fsAddOffset(pFS, pSeg, iNext, 1, &iNext);
+ }
+
+ *piNext = iNext;
+ return rc;
+}
+
+/*
+** This function is only used in compressed database mode.
+**
+** Argument iPg is the page number of a pagethat appears in segment pSeg.
+** This function determines the page number of the previous page in the
+** same run. *piPrev is set to the previous page number before returning.
+**
+** LSM_OK is returned if no error occurs. Otherwise, an lsm error code.
+** If any value other than LSM_OK is returned, then the final value of
+** *piPrev is undefined.
+*/
+static int fsGetPageBefore(
+ FileSystem *pFS,
+ Segment *pSeg,
+ Pgno iPg,
+ Pgno *piPrev
+){
+ u8 aSz[3];
+ int rc;
+ i64 iRead;
+
+ assert( pFS->pCompress );
+
+ rc = fsSubtractOffset(pFS, pSeg, iPg, sizeof(aSz), &iRead);
+ if( rc==LSM_OK ) rc = fsReadData(pFS, pSeg, iRead, aSz, sizeof(aSz));
+
+ if( rc==LSM_OK ){
+ int bFree;
+ int nSz;
+ if( aSz[2] & 0x80 ){
+ nSz = getRecordSize(aSz, &bFree) + sizeof(aSz)*2;
+ }else{
+ nSz = (int)(aSz[2] & 0x7F);
+ bFree = 1;
+ }
+ rc = fsSubtractOffset(pFS, pSeg, iPg, nSz, piPrev);
+ }
+
+ return rc;
+}
+
+/*
+** The first argument to this function is a valid reference to a database
+** file page that is part of a sorted run. If parameter eDir is -1, this
+** function attempts to locate and load the previous page in the same run.
+** Or, if eDir is +1, it attempts to find the next page in the same run.
+** The results of passing an eDir value other than positive or negative one
+** are undefined.
+**
+** If parameter pRun is not NULL then it must point to the run that page
+** pPg belongs to. In this case, if pPg is the first or last page of the
+** run, and the request is for the previous or next page, respectively,
+** *ppNext is set to NULL before returning LSM_OK. If pRun is NULL, then it
+** is assumed that the next or previous page, as requested, exists.
+**
+** If the previous/next page does exist and is successfully loaded, *ppNext
+** is set to point to it and LSM_OK is returned. Otherwise, if an error
+** occurs, *ppNext is set to NULL and and lsm error code returned.
+**
+** Page references returned by this function should be released by the
+** caller using lsmFsPageRelease().
+*/
+int lsmFsDbPageNext(Segment *pRun, Page *pPg, int eDir, Page **ppNext){
+ int rc = LSM_OK;
+ FileSystem *pFS = pPg->pFS;
+ Pgno iPg = pPg->iPg;
+
+ assert( 0==fsSegmentRedirects(pFS, pRun) );
+ if( pFS->pCompress ){
+ int nSpace = pPg->nCompress + 2*3;
+
+ do {
+ if( eDir>0 ){
+ rc = fsNextPageOffset(pFS, pRun, iPg, nSpace, &iPg);
+ }else{
+ if( iPg==pRun->iFirst ){
+ iPg = 0;
+ }else{
+ rc = fsGetPageBefore(pFS, pRun, iPg, &iPg);
+ }
+ }
+
+ nSpace = 0;
+ if( iPg!=0 ){
+ rc = fsPageGet(pFS, pRun, iPg, 0, ppNext, &nSpace);
+ assert( (*ppNext==0)==(rc!=LSM_OK || nSpace>0) );
+ }else{
+ *ppNext = 0;
+ }
+ }while( nSpace>0 && rc==LSM_OK );
+
+ }else{
+ Redirect *pRedir = pRun ? pRun->pRedirect : 0;
+ assert( eDir==1 || eDir==-1 );
+ if( eDir<0 ){
+ if( pRun && iPg==pRun->iFirst ){
+ *ppNext = 0;
+ return LSM_OK;
+ }else if( fsIsFirst(pFS, iPg) ){
+ assert( pPg->flags & PAGE_HASPREV );
+ iPg = fsLastPageOnBlock(pFS, lsmGetU32(&pPg->aData[-4]));
+ }else{
+ iPg--;
+ }
+ }else{
+ if( pRun ){
+ if( iPg==pRun->iLastPg ){
+ *ppNext = 0;
+ return LSM_OK;
+ }
+ }
+
+ if( fsIsLast(pFS, iPg) ){
+ int iBlk = fsRedirectBlock(
+ pRedir, lsmGetU32(&pPg->aData[pFS->nPagesize-4])
+ );
+ iPg = fsFirstPageOnBlock(pFS, iBlk);
+ }else{
+ iPg++;
+ }
+ }
+ rc = fsPageGet(pFS, pRun, iPg, 0, ppNext, 0);
+ }
+
+ return rc;
+}
+
+/*
+** This function is called when creating a new segment to determine if the
+** first part of it can be written following an existing segment on an
+** already allocated block. If it is possible, the page number of the first
+** page to use for the new segment is returned. Otherwise zero.
+**
+** If argument pLvl is not NULL, then this function will not attempt to
+** start the new segment immediately following any segment that is part
+** of the right-hand-side of pLvl.
+*/
+static Pgno findAppendPoint(FileSystem *pFS, Level *pLvl){
+ int i;
+ Pgno *aiAppend = pFS->pDb->pWorker->aiAppend;
+ Pgno iRet = 0;
+
+ for(i=LSM_APPLIST_SZ-1; iRet==0 && i>=0; i--){
+ if( (iRet = aiAppend[i]) ){
+ if( pLvl ){
+ int iBlk = fsPageToBlock(pFS, iRet);
+ int j;
+ for(j=0; iRet && j<pLvl->nRight; j++){
+ if( fsPageToBlock(pFS, pLvl->aRhs[j].iLastPg)==iBlk ){
+ iRet = 0;
+ }
+ }
+ }
+ if( iRet ) aiAppend[i] = 0;
+ }
+ }
+ return iRet;
+}
+
+/*
+** Append a page to the left-hand-side of pLvl. Set the ref-count to 1 and
+** return a pointer to it. The page is writable until either
+** lsmFsPagePersist() is called on it or the ref-count drops to zero.
+*/
+int lsmFsSortedAppend(
+ FileSystem *pFS,
+ Snapshot *pSnapshot,
+ Level *pLvl,
+ int bDefer,
+ Page **ppOut
+){
+ int rc = LSM_OK;
+ Page *pPg = 0;
+ *ppOut = 0;
+ int iApp = 0;
+ int iNext = 0;
+ Segment *p = &pLvl->lhs;
+ int iPrev = p->iLastPg;
+
+ assert( p->pRedirect==0 );
+
+ if( pFS->pCompress || bDefer ){
+ /* In compressed database mode the page is not assigned a page number
+ ** or location in the database file at this point. This will be done
+ ** by the lsmFsPagePersist() call. */
+ rc = fsPageBuffer(pFS, &pPg);
+ if( rc==LSM_OK ){
+ pPg->pFS = pFS;
+ pPg->pSeg = p;
+ pPg->iPg = 0;
+ pPg->flags |= PAGE_DIRTY;
+ pPg->nData = pFS->nPagesize;
+ assert( pPg->aData );
+ if( pFS->pCompress==0 ) pPg->nData -= 4;
+
+ pPg->nRef = 1;
+ pFS->nOut++;
+ }
+ }else{
+ if( iPrev==0 ){
+ iApp = findAppendPoint(pFS, pLvl);
+ }else if( fsIsLast(pFS, iPrev) ){
+ int iNext;
+ rc = fsBlockNext(pFS, 0, fsPageToBlock(pFS, iPrev), &iNext);
+ if( rc!=LSM_OK ) return rc;
+ iApp = fsFirstPageOnBlock(pFS, iNext);
+ }else{
+ iApp = iPrev + 1;
+ }
+
+ /* If this is the first page allocated, or if the page allocated is the
+ ** last in the block, also allocate the next block here. */
+ if( iApp==0 || fsIsLast(pFS, iApp) ){
+ int iNew; /* New block number */
+
+ rc = lsmBlockAllocate(pFS->pDb, 0, &iNew);
+ if( rc!=LSM_OK ) return rc;
+ if( iApp==0 ){
+ iApp = fsFirstPageOnBlock(pFS, iNew);
+ }else{
+ iNext = fsFirstPageOnBlock(pFS, iNew);
+ }
+ }
+
+ /* Grab the new page. */
+ pPg = 0;
+ rc = fsPageGet(pFS, 0, iApp, 1, &pPg, 0);
+ assert( rc==LSM_OK || pPg==0 );
+
+ /* If this is the first or last page of a block, fill in the pointer
+ ** value at the end of the new page. */
+ if( rc==LSM_OK ){
+ p->nSize++;
+ p->iLastPg = iApp;
+ if( p->iFirst==0 ) p->iFirst = iApp;
+ pPg->flags |= PAGE_DIRTY;
+
+ if( fsIsLast(pFS, iApp) ){
+ lsmPutU32(&pPg->aData[pFS->nPagesize-4], fsPageToBlock(pFS, iNext));
+ }else if( fsIsFirst(pFS, iApp) ){
+ lsmPutU32(&pPg->aData[-4], fsPageToBlock(pFS, iPrev));
+ }
+ }
+ }
+
+ *ppOut = pPg;
+ return rc;
+}
+
+/*
+** Mark the segment passed as the second argument as finished. Once a segment
+** is marked as finished it is not possible to append any further pages to
+** it.
+**
+** Return LSM_OK if successful or an lsm error code if an error occurs.
+*/
+int lsmFsSortedFinish(FileSystem *pFS, Segment *p){
+ int rc = LSM_OK;
+ if( p && p->iLastPg ){
+ assert( p->pRedirect==0 );
+
+ /* Check if the last page of this run happens to be the last of a block.
+ ** If it is, then an extra block has already been allocated for this run.
+ ** Shift this extra block back to the free-block list.
+ **
+ ** Otherwise, add the first free page in the last block used by the run
+ ** to the lAppend list.
+ */
+ if( fsLastPageOnPagesBlock(pFS, p->iLastPg)!=p->iLastPg ){
+ int i;
+ Pgno *aiAppend = pFS->pDb->pWorker->aiAppend;
+ for(i=0; i<LSM_APPLIST_SZ; i++){
+ if( aiAppend[i]==0 ){
+ aiAppend[i] = p->iLastPg+1;
+ break;
+ }
+ }
+ }else if( pFS->pCompress==0 ){
+ Page *pLast;
+ rc = fsPageGet(pFS, 0, p->iLastPg, 0, &pLast, 0);
+ if( rc==LSM_OK ){
+ int iBlk = (int)lsmGetU32(&pLast->aData[pFS->nPagesize-4]);
+ lsmBlockRefree(pFS->pDb, iBlk);
+ lsmFsPageRelease(pLast);
+ }
+ }else{
+ int iBlk = 0;
+ rc = fsBlockNext(pFS, p, fsPageToBlock(pFS, p->iLastPg), &iBlk);
+ if( rc==LSM_OK ){
+ lsmBlockRefree(pFS->pDb, iBlk);
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Obtain a reference to page number iPg.
+**
+** Return LSM_OK if successful, or an lsm error code if an error occurs.
+*/
+int lsmFsDbPageGet(FileSystem *pFS, Segment *pSeg, Pgno iPg, Page **ppPg){
+ return fsPageGet(pFS, pSeg, iPg, 0, ppPg, 0);
+}
+
+/*
+** Obtain a reference to the last page in the segment passed as the
+** second argument.
+**
+** Return LSM_OK if successful, or an lsm error code if an error occurs.
+*/
+int lsmFsDbPageLast(FileSystem *pFS, Segment *pSeg, Page **ppPg){
+ int rc;
+ Pgno iPg = pSeg->iLastPg;
+ if( pFS->pCompress ){
+ int nSpace;
+ iPg++;
+ do {
+ nSpace = 0;
+ rc = fsGetPageBefore(pFS, pSeg, iPg, &iPg);
+ if( rc==LSM_OK ){
+ rc = fsPageGet(pFS, pSeg, iPg, 0, ppPg, &nSpace);
+ }
+ }while( rc==LSM_OK && nSpace>0 );
+
+ }else{
+ rc = fsPageGet(pFS, pSeg, iPg, 0, ppPg, 0);
+ }
+ return rc;
+}
+
+/*
+** Return a reference to meta-page iPg. If successful, LSM_OK is returned
+** and *ppPg populated with the new page reference. The reference should
+** be released by the caller using lsmFsPageRelease().
+**
+** Otherwise, if an error occurs, *ppPg is set to NULL and an LSM error
+** code is returned.
+*/
+int lsmFsMetaPageGet(
+ FileSystem *pFS, /* File-system connection */
+ int bWrite, /* True for write access, false for read */
+ int iPg, /* Either 1 or 2 */
+ MetaPage **ppPg /* OUT: Pointer to MetaPage object */
+){
+ int rc = LSM_OK;
+ MetaPage *pPg;
+ assert( iPg==1 || iPg==2 );
+
+ pPg = lsmMallocZeroRc(pFS->pEnv, sizeof(Page), &rc);
+
+ if( pPg ){
+ i64 iOff = (iPg-1) * pFS->nMetasize;
+ if( pFS->nMapLimit>0 ){
+ fsGrowMapping(pFS, 2*pFS->nMetasize, &rc);
+ pPg->aData = (u8 *)(pFS->pMap) + iOff;
+ }else{
+ pPg->aData = lsmMallocRc(pFS->pEnv, pFS->nMetasize, &rc);
+ if( rc==LSM_OK && bWrite==0 ){
+ rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, pPg->aData, pFS->nMetasize);
+ }
+#ifndef NDEBUG
+ /* pPg->aData causes an uninitialized access via a downstreadm write().
+ After discussion on this list, this memory should not, for performance
+ reasons, be memset. However, tracking down "real" misuse is more
+ difficult with this "false" positive, so it is set when NDEBUG.
+ */
+ else if( rc==LSM_OK ){
+ memset( pPg->aData, 0x77, pFS->nMetasize );
+ }
+#endif
+ }
+
+ if( rc!=LSM_OK ){
+ if( pFS->nMapLimit==0 ) lsmFree(pFS->pEnv, pPg->aData);
+ lsmFree(pFS->pEnv, pPg);
+ pPg = 0;
+ }else{
+ pPg->iPg = iPg;
+ pPg->bWrite = bWrite;
+ pPg->pFS = pFS;
+ }
+ }
+
+ *ppPg = pPg;
+ return rc;
+}
+
+/*
+** Release a meta-page reference obtained via a call to lsmFsMetaPageGet().
+*/
+int lsmFsMetaPageRelease(MetaPage *pPg){
+ int rc = LSM_OK;
+ if( pPg ){
+ FileSystem *pFS = pPg->pFS;
+
+ if( pFS->nMapLimit==0 ){
+ if( pPg->bWrite ){
+ i64 iOff = (pPg->iPg==2 ? pFS->nMetasize : 0);
+ int nWrite = pFS->nMetasize;
+ rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iOff, pPg->aData, nWrite);
+ }
+ lsmFree(pFS->pEnv, pPg->aData);
+ }
+
+ lsmFree(pFS->pEnv, pPg);
+ }
+ return rc;
+}
+
+/*
+** Return a pointer to a buffer containing the data associated with the
+** meta-page passed as the first argument. If parameter pnData is not NULL,
+** set *pnData to the size of the meta-page in bytes before returning.
+*/
+u8 *lsmFsMetaPageData(MetaPage *pPg, int *pnData){
+ if( pnData ) *pnData = pPg->pFS->nMetasize;
+ return pPg->aData;
+}
+
+/*
+** Return true if page is currently writable. This is used in assert()
+** statements only.
+*/
+#ifndef NDEBUG
+int lsmFsPageWritable(Page *pPg){
+ return (pPg->flags & PAGE_DIRTY) ? 1 : 0;
+}
+#endif
+
+/*
+** This is called when block iFrom is being redirected to iTo. If page
+** number (*piPg) lies on block iFrom, then calculate the equivalent
+** page on block iTo and set *piPg to this value before returning.
+*/
+static void fsMovePage(
+ FileSystem *pFS, /* File system object */
+ int iTo, /* Destination block */
+ int iFrom, /* Source block */
+ Pgno *piPg /* IN/OUT: Page number */
+){
+ Pgno iPg = *piPg;
+ if( iFrom==fsPageToBlock(pFS, iPg) ){
+ const int nPagePerBlock = (
+ pFS->pCompress ? pFS ->nBlocksize : (pFS->nBlocksize / pFS->nPagesize)
+ );
+ *piPg = iPg - (Pgno)(iFrom - iTo) * nPagePerBlock;
+ }
+}
+
+/*
+** Copy the contents of block iFrom to block iTo.
+**
+** It is safe to assume that there are no outstanding references to pages
+** on block iTo. And that block iFrom is not currently being written. In
+** other words, the data can be read and written directly.
+*/
+int lsmFsMoveBlock(FileSystem *pFS, Segment *pSeg, int iTo, int iFrom){
+ Snapshot *p = pFS->pDb->pWorker;
+ int rc = LSM_OK;
+ int i;
+ i64 nMap;
+
+ i64 iFromOff = (i64)(iFrom-1) * pFS->nBlocksize;
+ i64 iToOff = (i64)(iTo-1) * pFS->nBlocksize;
+
+ assert( iTo!=1 );
+ assert( iFrom>iTo );
+
+ /* Grow the mapping as required. */
+ nMap = LSM_MIN(pFS->nMapLimit, (i64)iFrom * pFS->nBlocksize);
+ fsGrowMapping(pFS, nMap, &rc);
+
+ if( rc==LSM_OK ){
+ const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
+ int nSz = pFS->nPagesize;
+ u8 *aBuf = 0;
+ u8 *aData = 0;
+
+ for(i=0; rc==LSM_OK && i<nPagePerBlock; i++){
+ i64 iOff = iFromOff + i*nSz;
+
+ /* Set aData to point to a buffer containing the from page */
+ if( (iOff+nSz)<=pFS->nMapLimit ){
+ u8 *aMap = (u8 *)(pFS->pMap);
+ aData = &aMap[iOff];
+ }else{
+ if( aBuf==0 ){
+ aBuf = (u8 *)lsmMallocRc(pFS->pEnv, nSz, &rc);
+ if( aBuf==0 ) break;
+ }
+ aData = aBuf;
+ rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aData, nSz);
+ }
+
+ /* Copy aData to the to page */
+ if( rc==LSM_OK ){
+ iOff = iToOff + i*nSz;
+ if( (iOff+nSz)<=pFS->nMapLimit ){
+ u8 *aMap = (u8 *)(pFS->pMap);
+ memcpy(&aMap[iOff], aData, nSz);
+ }else{
+ rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iOff, aData, nSz);
+ }
+ }
+ }
+ lsmFree(pFS->pEnv, aBuf);
+ lsmFsPurgeCache(pFS);
+ }
+
+ /* Update append-point list if necessary */
+ for(i=0; i<LSM_APPLIST_SZ; i++){
+ fsMovePage(pFS, iTo, iFrom, &p->aiAppend[i]);
+ }
+
+ /* Update the Segment structure itself */
+ fsMovePage(pFS, iTo, iFrom, &pSeg->iFirst);
+ fsMovePage(pFS, iTo, iFrom, &pSeg->iLastPg);
+ fsMovePage(pFS, iTo, iFrom, &pSeg->iRoot);
+
+ return rc;
+}
+
+/*
+** Append raw data to a segment. Return the database file offset that the
+** data is written to (this may be used as the page number if the data
+** being appended is a new page record).
+**
+** This function is only used in compressed database mode.
+*/
+static Pgno fsAppendData(
+ FileSystem *pFS, /* File-system handle */
+ Segment *pSeg, /* Segment to append to */
+ const u8 *aData, /* Buffer containing data to write */
+ int nData, /* Size of buffer aData[] in bytes */
+ int *pRc /* IN/OUT: Error code */
+){
+ Pgno iRet = 0;
+ int rc = *pRc;
+ assert( pFS->pCompress );
+ if( rc==LSM_OK ){
+ int nRem;
+ int nWrite;
+ Pgno iLastOnBlock;
+ Pgno iApp = pSeg->iLastPg+1;
+
+ /* If this is the first data written into the segment, find an append-point
+ ** or allocate a new block. */
+ if( iApp==1 ){
+ pSeg->iFirst = iApp = findAppendPoint(pFS, 0);
+ if( iApp==0 ){
+ int iBlk;
+ rc = lsmBlockAllocate(pFS->pDb, 0, &iBlk);
+ pSeg->iFirst = iApp = fsFirstPageOnBlock(pFS, iBlk);
+ }
+ }
+ iRet = iApp;
+
+ /* Write as much data as is possible at iApp (usually all of it). */
+ iLastOnBlock = fsLastPageOnPagesBlock(pFS, iApp);
+ if( rc==LSM_OK ){
+ int nSpace = iLastOnBlock - iApp + 1;
+ nWrite = LSM_MIN(nData, nSpace);
+ nRem = nData - nWrite;
+ assert( nWrite>=0 );
+ if( nWrite!=0 ){
+ rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iApp, aData, nWrite);
+ }
+ iApp += nWrite;
+ }
+
+ /* If required, allocate a new block and write the rest of the data
+ ** into it. Set the next and previous block pointers to link the new
+ ** block to the old. */
+ assert( nRem<=0 || (iApp-1)==iLastOnBlock );
+ if( rc==LSM_OK && (iApp-1)==iLastOnBlock ){
+ u8 aPtr[4]; /* Space to serialize a u32 */
+ int iBlk; /* New block number */
+
+ if( nWrite>0 ){
+ /* Allocate a new block. */
+ rc = lsmBlockAllocate(pFS->pDb, 0, &iBlk);
+
+ /* Set the "next" pointer on the old block */
+ if( rc==LSM_OK ){
+ assert( iApp==(fsPageToBlock(pFS, iApp)*pFS->nBlocksize)-4 );
+ lsmPutU32(aPtr, iBlk);
+ rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iApp, aPtr, sizeof(aPtr));
+ }
+
+ /* Set the "prev" pointer on the new block */
+ if( rc==LSM_OK ){
+ Pgno iWrite;
+ lsmPutU32(aPtr, fsPageToBlock(pFS, iApp));
+ iWrite = fsFirstPageOnBlock(pFS, iBlk);
+ rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iWrite-4, aPtr, sizeof(aPtr));
+ if( nRem>0 ) iApp = iWrite;
+ }
+ }else{
+ /* The next block is already allocated. */
+ assert( nRem>0 );
+ assert( pSeg->pRedirect==0 );
+ rc = fsBlockNext(pFS, 0, fsPageToBlock(pFS, iApp), &iBlk);
+ iRet = iApp = fsFirstPageOnBlock(pFS, iBlk);
+ }
+
+ /* Write the remaining data into the new block */
+ if( rc==LSM_OK && nRem>0 ){
+ rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iApp, &aData[nWrite], nRem);
+ iApp += nRem;
+ }
+ }
+
+ pSeg->iLastPg = iApp-1;
+ *pRc = rc;
+ }
+
+ return iRet;
+}
+
+/*
+** This function is only called in compressed database mode. It
+** compresses the contents of page pPg and writes the result to the
+** buffer at pFS->aOBuffer. The size of the compressed data is stored in
+** pPg->nCompress.
+**
+** If buffer pFS->aOBuffer[] has not been allocated then this function
+** allocates it. If this fails, LSM_NOMEM is returned. Otherwise, LSM_OK.
+*/
+static int fsCompressIntoBuffer(FileSystem *pFS, Page *pPg){
+ lsm_compress *p = pFS->pCompress;
+
+ if( fsAllocateBuffer(pFS, 1) ) return LSM_NOMEM;
+ assert( pPg->nData==pFS->nPagesize );
+
+ pPg->nCompress = pFS->nBuffer;
+ return p->xCompress(p->pCtx,
+ (char *)pFS->aOBuffer, &pPg->nCompress,
+ (const char *)pPg->aData, pPg->nData
+ );
+}
+
+/*
+** Append a new page to segment pSeg. Set output variable *piNew to the
+** page number of the new page before returning.
+**
+** If the new page is the last on its block, then the 'next' block that
+** will be used by the segment is allocated here too. In this case output
+** variable *piNext is set to the block number of the next block.
+**
+** If the new page is the first on its block but not the first in the
+** entire segment, set output variable *piPrev to the block number of
+** the previous block in the segment.
+**
+** LSM_OK is returned if successful, or an lsm error code otherwise. If
+** any value other than LSM_OK is returned, then the final value of all
+** output variables is undefined.
+*/
+static int fsAppendPage(
+ FileSystem *pFS,
+ Segment *pSeg,
+ Pgno *piNew,
+ int *piPrev,
+ int *piNext
+){
+ Pgno iPrev = pSeg->iLastPg;
+ int rc;
+ assert( iPrev!=0 );
+
+ *piPrev = 0;
+ *piNext = 0;
+
+ if( fsIsLast(pFS, iPrev) ){
+ /* Grab the first page on the next block (which has already be
+ ** allocated). In this case set *piPrev to tell the caller to set
+ ** the "previous block" pointer in the first 4 bytes of the page.
+ */
+ int iNext;
+ int iBlk = fsPageToBlock(pFS, iPrev);
+ assert( pSeg->pRedirect==0 );
+ rc = fsBlockNext(pFS, 0, iBlk, &iNext);
+ if( rc!=LSM_OK ) return rc;
+ *piNew = fsFirstPageOnBlock(pFS, iNext);
+ *piPrev = iBlk;
+ }else{
+ *piNew = iPrev+1;
+ if( fsIsLast(pFS, *piNew) ){
+ /* Allocate the next block here. */
+ int iBlk;
+ rc = lsmBlockAllocate(pFS->pDb, 0, &iBlk);
+ if( rc!=LSM_OK ) return rc;
+ *piNext = iBlk;
+ }
+ }
+
+ pSeg->nSize++;
+ pSeg->iLastPg = *piNew;
+ return LSM_OK;
+}
+
+/*
+** Flush all pages in the FileSystem.pWaiting list to disk.
+*/
+void lsmFsFlushWaiting(FileSystem *pFS, int *pRc){
+ int rc = *pRc;
+ Page *pPg;
+
+ pPg = pFS->pWaiting;
+ pFS->pWaiting = 0;
+
+ while( pPg ){
+ Page *pNext = pPg->pWaitingNext;
+ if( rc==LSM_OK ) rc = lsmFsPagePersist(pPg);
+ assert( pPg->nRef==1 );
+ lsmFsPageRelease(pPg);
+ pPg = pNext;
+ }
+ *pRc = rc;
+}
+
+/*
+** If there exists a hash-table entry associated with page iPg, remove it.
+*/
+static void fsRemoveHashEntry(FileSystem *pFS, Pgno iPg){
+ Page *p;
+ int iHash = fsHashKey(pFS->nHash, iPg);
+
+ for(p=pFS->apHash[iHash]; p && p->iPg!=iPg; p=p->pHashNext);
+
+ if( p ){
+ assert( p->nRef==0 || (p->flags & PAGE_FREE)==0 );
+ fsPageRemoveFromHash(pFS, p);
+ p->iPg = 0;
+ iHash = fsHashKey(pFS->nHash, 0);
+ p->pHashNext = pFS->apHash[iHash];
+ pFS->apHash[iHash] = p;
+ }
+}
+
+/*
+** If the page passed as an argument is dirty, update the database file
+** (or mapping of the database file) with its current contents and mark
+** the page as clean.
+**
+** Return LSM_OK if the operation is a success, or an LSM error code
+** otherwise.
+*/
+int lsmFsPagePersist(Page *pPg){
+ int rc = LSM_OK;
+ if( pPg && (pPg->flags & PAGE_DIRTY) ){
+ FileSystem *pFS = pPg->pFS;
+
+ if( pFS->pCompress ){
+ int iHash; /* Hash key of assigned page number */
+ u8 aSz[3]; /* pPg->nCompress as a 24-bit big-endian */
+ assert( pPg->pSeg && pPg->iPg==0 && pPg->nCompress==0 );
+
+ /* Compress the page image. */
+ rc = fsCompressIntoBuffer(pFS, pPg);
+
+ /* Serialize the compressed size into buffer aSz[] */
+ putRecordSize(aSz, pPg->nCompress, 0);
+
+ /* Write the serialized page record into the database file. */
+ pPg->iPg = fsAppendData(pFS, pPg->pSeg, aSz, sizeof(aSz), &rc);
+ fsAppendData(pFS, pPg->pSeg, pFS->aOBuffer, pPg->nCompress, &rc);
+ fsAppendData(pFS, pPg->pSeg, aSz, sizeof(aSz), &rc);
+
+ /* Now that it has a page number, insert the page into the hash table */
+ iHash = fsHashKey(pFS->nHash, pPg->iPg);
+ pPg->pHashNext = pFS->apHash[iHash];
+ pFS->apHash[iHash] = pPg;
+
+ pPg->pSeg->nSize += (sizeof(aSz) * 2) + pPg->nCompress;
+
+ pPg->flags &= ~PAGE_DIRTY;
+ pFS->nWrite++;
+ }else{
+
+ if( pPg->iPg==0 ){
+ /* No page number has been assigned yet. This occurs with pages used
+ ** in the b-tree hierarchy. They were not assigned page numbers when
+ ** they were created as doing so would cause this call to
+ ** lsmFsPagePersist() to write an out-of-order page. Instead a page
+ ** number is assigned here so that the page data will be appended
+ ** to the current segment.
+ */
+ Page **pp;
+ int iPrev = 0;
+ int iNext = 0;
+ int iHash;
+
+ assert( pPg->pSeg->iFirst );
+ assert( pPg->flags & PAGE_FREE );
+ assert( (pPg->flags & PAGE_HASPREV)==0 );
+ assert( pPg->nData==pFS->nPagesize-4 );
+
+ rc = fsAppendPage(pFS, pPg->pSeg, &pPg->iPg, &iPrev, &iNext);
+ if( rc!=LSM_OK ) return rc;
+
+ assert( pPg->flags & PAGE_FREE );
+ iHash = fsHashKey(pFS->nHash, pPg->iPg);
+ fsRemoveHashEntry(pFS, pPg->iPg);
+ pPg->pHashNext = pFS->apHash[iHash];
+ pFS->apHash[iHash] = pPg;
+ assert( pPg->pHashNext==0 || pPg->pHashNext->iPg!=pPg->iPg );
+
+ if( iPrev ){
+ assert( iNext==0 );
+ memmove(&pPg->aData[4], pPg->aData, pPg->nData);
+ lsmPutU32(pPg->aData, iPrev);
+ pPg->flags |= PAGE_HASPREV;
+ pPg->aData += 4;
+ }else if( iNext ){
+ assert( iPrev==0 );
+ lsmPutU32(&pPg->aData[pPg->nData], iNext);
+ }else{
+ int nData = pPg->nData;
+ pPg->nData += 4;
+ lsmSortedExpandBtreePage(pPg, nData);
+ }
+
+ pPg->nRef++;
+ for(pp=&pFS->pWaiting; *pp; pp=&(*pp)->pWaitingNext);
+ *pp = pPg;
+ assert( pPg->pWaitingNext==0 );
+
+ }else{
+ i64 iOff; /* Offset to write within database file */
+
+ iOff = (i64)pFS->nPagesize * (i64)(pPg->iPg-1);
+ if( fsMmapPage(pFS, pPg->iPg)==0 ){
+ u8 *aData = pPg->aData - (pPg->flags & PAGE_HASPREV);
+ rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iOff, aData, pFS->nPagesize);
+ }else if( pPg->flags & PAGE_FREE ){
+ fsGrowMapping(pFS, iOff + pFS->nPagesize, &rc);
+ if( rc==LSM_OK ){
+ u8 *aTo = &((u8 *)(pFS->pMap))[iOff];
+ u8 *aFrom = pPg->aData - (pPg->flags & PAGE_HASPREV);
+ memcpy(aTo, aFrom, pFS->nPagesize);
+ lsmFree(pFS->pEnv, aFrom);
+ pFS->nCacheAlloc--;
+ pPg->aData = aTo + (pPg->flags & PAGE_HASPREV);
+ pPg->flags &= ~PAGE_FREE;
+ fsPageRemoveFromHash(pFS, pPg);
+ pPg->pMappedNext = pFS->pMapped;
+ pFS->pMapped = pPg;
+ }
+ }
+
+ lsmFsFlushWaiting(pFS, &rc);
+ pPg->flags &= ~PAGE_DIRTY;
+ pFS->nWrite++;
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** For non-compressed databases, this function is a no-op. For compressed
+** databases, it adds a padding record to the segment passed as the third
+** argument.
+**
+** The size of the padding records is selected so that the last byte
+** written is the last byte of a disk sector. This means that if a
+** snapshot is taken and checkpointed, subsequent worker processes will
+** not write to any sector that contains checkpointed data.
+*/
+int lsmFsSortedPadding(
+ FileSystem *pFS,
+ Snapshot *pSnapshot,
+ Segment *pSeg
+){
+ int rc = LSM_OK;
+ if( pFS->pCompress ){
+ Pgno iLast2;
+ Pgno iLast = pSeg->iLastPg; /* Current last page of segment */
+ int nPad; /* Bytes of padding required */
+ u8 aSz[3];
+
+ iLast2 = (1 + iLast/pFS->szSector) * pFS->szSector - 1;
+ assert( fsPageToBlock(pFS, iLast)==fsPageToBlock(pFS, iLast2) );
+ nPad = iLast2 - iLast;
+
+ if( iLast2>fsLastPageOnPagesBlock(pFS, iLast) ){
+ nPad -= 4;
+ }
+ assert( nPad>=0 );
+
+ if( nPad>=6 ){
+ pSeg->nSize += nPad;
+ nPad -= 6;
+ putRecordSize(aSz, nPad, 1);
+ fsAppendData(pFS, pSeg, aSz, sizeof(aSz), &rc);
+ memset(pFS->aOBuffer, 0, nPad);
+ fsAppendData(pFS, pSeg, pFS->aOBuffer, nPad, &rc);
+ fsAppendData(pFS, pSeg, aSz, sizeof(aSz), &rc);
+ }else if( nPad>0 ){
+ u8 aBuf[5] = {0,0,0,0,0};
+ aBuf[0] = (u8)nPad;
+ aBuf[nPad-1] = (u8)nPad;
+ fsAppendData(pFS, pSeg, aBuf, nPad, &rc);
+ }
+
+ assert( rc!=LSM_OK
+ || pSeg->iLastPg==fsLastPageOnPagesBlock(pFS, pSeg->iLastPg)
+ || ((pSeg->iLastPg + 1) % pFS->szSector)==0
+ );
+ }
+
+ return rc;
+}
+
+
+/*
+** Increment the reference count on the page object passed as the first
+** argument.
+*/
+void lsmFsPageRef(Page *pPg){
+ if( pPg ){
+ pPg->nRef++;
+ }
+}
+
+/*
+** Release a page-reference obtained using fsPageGet().
+*/
+int lsmFsPageRelease(Page *pPg){
+ int rc = LSM_OK;
+ if( pPg ){
+ assert( pPg->nRef>0 );
+ pPg->nRef--;
+ if( pPg->nRef==0 ){
+ FileSystem *pFS = pPg->pFS;
+ rc = lsmFsPagePersist(pPg);
+ pFS->nOut--;
+
+ assert( pPg->pFS->pCompress
+ || fsIsFirst(pPg->pFS, pPg->iPg)==0
+ || (pPg->flags & PAGE_HASPREV)
+ );
+ pPg->aData -= (pPg->flags & PAGE_HASPREV);
+ pPg->flags &= ~PAGE_HASPREV;
+
+ if( (pPg->flags & PAGE_FREE)==0 ){
+ /* Removed from mapped list */
+ Page **pp;
+ for(pp=&pFS->pMapped; (*pp)!=pPg; pp=&(*pp)->pMappedNext);
+ *pp = pPg->pMappedNext;
+ pPg->pMappedNext = 0;
+
+ /* Add to free list */
+ pPg->pFreeNext = pFS->pFree;
+ pFS->pFree = pPg;
+ }else{
+ fsPageAddToLru(pFS, pPg);
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Return the total number of pages read from the database file.
+*/
+int lsmFsNRead(FileSystem *pFS){ return pFS->nRead; }
+
+/*
+** Return the total number of pages written to the database file.
+*/
+int lsmFsNWrite(FileSystem *pFS){ return pFS->nWrite; }
+
+/*
+** Return a copy of the environment pointer used by the file-system object.
+*/
+lsm_env *lsmFsEnv(FileSystem *pFS){
+ return pFS->pEnv;
+}
+
+/*
+** Return a copy of the environment pointer used by the file-system object
+** to which this page belongs.
+*/
+lsm_env *lsmPageEnv(Page *pPg) {
+ return pPg->pFS->pEnv;
+}
+
+/*
+** Return a pointer to the file-system object associated with the Page
+** passed as the only argument.
+*/
+FileSystem *lsmPageFS(Page *pPg){
+ return pPg->pFS;
+}
+
+/*
+** Return the sector-size as reported by the log file handle.
+*/
+int lsmFsSectorSize(FileSystem *pFS){
+ return pFS->szSector;
+}
+
+/*
+** Helper function for lsmInfoArrayStructure().
+*/
+static Segment *startsWith(Segment *pRun, Pgno iFirst){
+ return (iFirst==pRun->iFirst) ? pRun : 0;
+}
+
+/*
+** Return the segment that starts with page iFirst, if any. If no such segment
+** can be found, return NULL.
+*/
+static Segment *findSegment(Snapshot *pWorker, Pgno iFirst){
+ Level *pLvl; /* Used to iterate through db levels */
+ Segment *pSeg = 0; /* Pointer to segment to return */
+
+ for(pLvl=lsmDbSnapshotLevel(pWorker); pLvl && pSeg==0; pLvl=pLvl->pNext){
+ if( 0==(pSeg = startsWith(&pLvl->lhs, iFirst)) ){
+ int i;
+ for(i=0; i<pLvl->nRight; i++){
+ if( (pSeg = startsWith(&pLvl->aRhs[i], iFirst)) ) break;
+ }
+ }
+ }
+
+ return pSeg;
+}
+
+/*
+** This function implements the lsm_info(LSM_INFO_ARRAY_STRUCTURE) request.
+** If successful, *pzOut is set to point to a nul-terminated string
+** containing the array structure and LSM_OK is returned. The caller should
+** eventually free the string using lsmFree().
+**
+** If an error occurs, *pzOut is set to NULL and an LSM error code returned.
+*/
+int lsmInfoArrayStructure(
+ lsm_db *pDb,
+ int bBlock, /* True for block numbers only */
+ Pgno iFirst,
+ char **pzOut
+){
+ int rc = LSM_OK;
+ Snapshot *pWorker; /* Worker snapshot */
+ Segment *pArray = 0; /* Array to report on */
+ int bUnlock = 0;
+
+ *pzOut = 0;
+ if( iFirst==0 ) return LSM_ERROR;
+
+ /* Obtain the worker snapshot */
+ pWorker = pDb->pWorker;
+ if( !pWorker ){
+ rc = lsmBeginWork(pDb);
+ if( rc!=LSM_OK ) return rc;
+ pWorker = pDb->pWorker;
+ bUnlock = 1;
+ }
+
+ /* Search for the array that starts on page iFirst */
+ pArray = findSegment(pWorker, iFirst);
+
+ if( pArray==0 ){
+ /* Could not find the requested array. This is an error. */
+ rc = LSM_ERROR;
+ }else{
+ FileSystem *pFS = pDb->pFS;
+ LsmString str;
+ int iBlk;
+ int iLastBlk;
+
+ iBlk = fsPageToBlock(pFS, pArray->iFirst);
+ iLastBlk = fsPageToBlock(pFS, pArray->iLastPg);
+
+ lsmStringInit(&str, pDb->pEnv);
+ if( bBlock ){
+ lsmStringAppendf(&str, "%d", iBlk);
+ while( iBlk!=iLastBlk ){
+ fsBlockNext(pFS, pArray, iBlk, &iBlk);
+ lsmStringAppendf(&str, " %d", iBlk);
+ }
+ }else{
+ lsmStringAppendf(&str, "%d", pArray->iFirst);
+ while( iBlk!=iLastBlk ){
+ lsmStringAppendf(&str, " %d", fsLastPageOnBlock(pFS, iBlk));
+ fsBlockNext(pFS, pArray, iBlk, &iBlk);
+ lsmStringAppendf(&str, " %d", fsFirstPageOnBlock(pFS, iBlk));
+ }
+ lsmStringAppendf(&str, " %d", pArray->iLastPg);
+ }
+
+ *pzOut = str.z;
+ }
+
+ if( bUnlock ){
+ int rcwork = LSM_BUSY;
+ lsmFinishWork(pDb, 0, &rcwork);
+ }
+ return rc;
+}
+
+int lsmFsSegmentContainsPg(
+ FileSystem *pFS,
+ Segment *pSeg,
+ Pgno iPg,
+ int *pbRes
+){
+ Redirect *pRedir = pSeg->pRedirect;
+ int rc = LSM_OK;
+ int iBlk;
+ int iLastBlk;
+ int iPgBlock; /* Block containing page iPg */
+
+ iPgBlock = fsPageToBlock(pFS, pSeg->iFirst);
+ iBlk = fsRedirectBlock(pRedir, fsPageToBlock(pFS, pSeg->iFirst));
+ iLastBlk = fsRedirectBlock(pRedir, fsPageToBlock(pFS, pSeg->iLastPg));
+
+ while( iBlk!=iLastBlk && iBlk!=iPgBlock && rc==LSM_OK ){
+ rc = fsBlockNext(pFS, pSeg, iBlk, &iBlk);
+ }
+
+ *pbRes = (iBlk==iPgBlock);
+ return rc;
+}
+
+/*
+** This function implements the lsm_info(LSM_INFO_ARRAY_PAGES) request.
+** If successful, *pzOut is set to point to a nul-terminated string
+** containing the array structure and LSM_OK is returned. The caller should
+** eventually free the string using lsmFree().
+**
+** If an error occurs, *pzOut is set to NULL and an LSM error code returned.
+*/
+int lsmInfoArrayPages(lsm_db *pDb, Pgno iFirst, char **pzOut){
+ int rc = LSM_OK;
+ Snapshot *pWorker; /* Worker snapshot */
+ Segment *pSeg = 0; /* Array to report on */
+ int bUnlock = 0;
+
+ *pzOut = 0;
+ if( iFirst==0 ) return LSM_ERROR;
+
+ /* Obtain the worker snapshot */
+ pWorker = pDb->pWorker;
+ if( !pWorker ){
+ rc = lsmBeginWork(pDb);
+ if( rc!=LSM_OK ) return rc;
+ pWorker = pDb->pWorker;
+ bUnlock = 1;
+ }
+
+ /* Search for the array that starts on page iFirst */
+ pSeg = findSegment(pWorker, iFirst);
+
+ if( pSeg==0 ){
+ /* Could not find the requested array. This is an error. */
+ rc = LSM_ERROR;
+ }else{
+ Page *pPg = 0;
+ FileSystem *pFS = pDb->pFS;
+ LsmString str;
+
+ lsmStringInit(&str, pDb->pEnv);
+ rc = lsmFsDbPageGet(pFS, pSeg, iFirst, &pPg);
+ while( rc==LSM_OK && pPg ){
+ Page *pNext = 0;
+ lsmStringAppendf(&str, " %lld", lsmFsPageNumber(pPg));
+ rc = lsmFsDbPageNext(pSeg, pPg, 1, &pNext);
+ lsmFsPageRelease(pPg);
+ pPg = pNext;
+ }
+
+ if( rc!=LSM_OK ){
+ lsmFree(pDb->pEnv, str.z);
+ }else{
+ *pzOut = str.z;
+ }
+ }
+
+ if( bUnlock ){
+ int rcwork = LSM_BUSY;
+ lsmFinishWork(pDb, 0, &rcwork);
+ }
+ return rc;
+}
+
+/*
+** The following macros are used by the integrity-check code. Associated with
+** each block in the database is an 8-bit bit mask (the entry in the aUsed[]
+** array). As the integrity-check meanders through the database, it sets the
+** following bits to indicate how each block is used.
+**
+** INTEGRITY_CHECK_FIRST_PG:
+** First page of block is in use by sorted run.
+**
+** INTEGRITY_CHECK_LAST_PG:
+** Last page of block is in use by sorted run.
+**
+** INTEGRITY_CHECK_USED:
+** At least one page of the block is in use by a sorted run.
+**
+** INTEGRITY_CHECK_FREE:
+** The free block list contains an entry corresponding to this block.
+*/
+#define INTEGRITY_CHECK_FIRST_PG 0x01
+#define INTEGRITY_CHECK_LAST_PG 0x02
+#define INTEGRITY_CHECK_USED 0x04
+#define INTEGRITY_CHECK_FREE 0x08
+
+/*
+** Helper function for lsmFsIntegrityCheck()
+*/
+static void checkBlocks(
+ FileSystem *pFS,
+ Segment *pSeg,
+ int bExtra, /* If true, count the "next" block if any */
+ int nUsed,
+ u8 *aUsed
+){
+ if( pSeg ){
+ if( pSeg && pSeg->nSize>0 ){
+ int rc;
+ int iBlk; /* Current block (during iteration) */
+ int iLastBlk; /* Last block of segment */
+ int iFirstBlk; /* First block of segment */
+ int bLastIsLastOnBlock; /* True iLast is the last on its block */
+
+ assert( 0==fsSegmentRedirects(pFS, pSeg) );
+ iBlk = iFirstBlk = fsPageToBlock(pFS, pSeg->iFirst);
+ iLastBlk = fsPageToBlock(pFS, pSeg->iLastPg);
+
+ bLastIsLastOnBlock = (fsLastPageOnBlock(pFS, iLastBlk)==pSeg->iLastPg);
+ assert( iBlk>0 );
+
+ do {
+ /* iBlk is a part of this sorted run. */
+ aUsed[iBlk-1] |= INTEGRITY_CHECK_USED;
+
+ /* If the first page of this block is also part of the segment,
+ ** set the flag to indicate that the first page of iBlk is in use.
+ */
+ if( fsFirstPageOnBlock(pFS, iBlk)==pSeg->iFirst || iBlk!=iFirstBlk ){
+ assert( (aUsed[iBlk-1] & INTEGRITY_CHECK_FIRST_PG)==0 );
+ aUsed[iBlk-1] |= INTEGRITY_CHECK_FIRST_PG;
+ }
+
+ /* Unless the sorted run finishes before the last page on this block,
+ ** the last page of this block is also in use. */
+ if( iBlk!=iLastBlk || bLastIsLastOnBlock ){
+ assert( (aUsed[iBlk-1] & INTEGRITY_CHECK_LAST_PG)==0 );
+ aUsed[iBlk-1] |= INTEGRITY_CHECK_LAST_PG;
+ }
+
+ /* Special case. The sorted run being scanned is the output run of
+ ** a level currently undergoing an incremental merge. The sorted
+ ** run ends on the last page of iBlk, but the next block has already
+ ** been allocated. So mark it as in use as well. */
+ if( iBlk==iLastBlk && bLastIsLastOnBlock && bExtra ){
+ int iExtra = 0;
+ rc = fsBlockNext(pFS, pSeg, iBlk, &iExtra);
+ assert( rc==LSM_OK );
+
+ assert( aUsed[iExtra-1]==0 );
+ aUsed[iExtra-1] |= INTEGRITY_CHECK_USED;
+ aUsed[iExtra-1] |= INTEGRITY_CHECK_FIRST_PG;
+ aUsed[iExtra-1] |= INTEGRITY_CHECK_LAST_PG;
+ }
+
+ /* Move on to the next block in the sorted run. Or set iBlk to zero
+ ** in order to break out of the loop if this was the last block in
+ ** the run. */
+ if( iBlk==iLastBlk ){
+ iBlk = 0;
+ }else{
+ rc = fsBlockNext(pFS, pSeg, iBlk, &iBlk);
+ assert( rc==LSM_OK );
+ }
+ }while( iBlk );
+ }
+ }
+}
+
+typedef struct CheckFreelistCtx CheckFreelistCtx;
+struct CheckFreelistCtx {
+ u8 *aUsed;
+ int nBlock;
+};
+static int checkFreelistCb(void *pCtx, int iBlk, i64 iSnapshot){
+ CheckFreelistCtx *p = (CheckFreelistCtx *)pCtx;
+
+ assert( iBlk>=1 );
+ assert( iBlk<=p->nBlock );
+ assert( p->aUsed[iBlk-1]==0 );
+ p->aUsed[iBlk-1] = INTEGRITY_CHECK_FREE;
+ return 0;
+}
+
+/*
+** This function checks that all blocks in the database file are accounted
+** for. For each block, exactly one of the following must be true:
+**
+** + the block is part of a sorted run, or
+** + the block is on the free-block list
+**
+** This function also checks that there are no references to blocks with
+** out-of-range block numbers.
+**
+** If no errors are found, non-zero is returned. If an error is found, an
+** assert() fails.
+*/
+int lsmFsIntegrityCheck(lsm_db *pDb){
+ CheckFreelistCtx ctx;
+ FileSystem *pFS = pDb->pFS;
+ int i;
+ int rc;
+ Freelist freelist = {0, 0, 0};
+ u8 *aUsed;
+ Level *pLevel;
+ Snapshot *pWorker = pDb->pWorker;
+ int nBlock = pWorker->nBlock;
+
+#if 0
+ static int nCall = 0;
+ nCall++;
+ printf("%d calls\n", nCall);
+#endif
+
+ aUsed = lsmMallocZero(pDb->pEnv, nBlock);
+ if( aUsed==0 ){
+ /* Malloc has failed. Since this function is only called within debug
+ ** builds, this probably means the user is running an OOM injection test.
+ ** Regardless, it will not be possible to run the integrity-check at this
+ ** time, so assume the database is Ok and return non-zero. */
+ return 1;
+ }
+
+ for(pLevel=pWorker->pLevel; pLevel; pLevel=pLevel->pNext){
+ int i;
+ checkBlocks(pFS, &pLevel->lhs, (pLevel->nRight!=0), nBlock, aUsed);
+ for(i=0; i<pLevel->nRight; i++){
+ checkBlocks(pFS, &pLevel->aRhs[i], 0, nBlock, aUsed);
+ }
+ }
+
+ /* Mark all blocks in the free-list as used */
+ ctx.aUsed = aUsed;
+ ctx.nBlock = nBlock;
+ rc = lsmWalkFreelist(pDb, 0, checkFreelistCb, (void *)&ctx);
+
+ if( rc==LSM_OK ){
+ for(i=0; i<nBlock; i++) assert( aUsed[i]!=0 );
+ }
+
+ lsmFree(pDb->pEnv, aUsed);
+ lsmFree(pDb->pEnv, freelist.aEntry);
+
+ return 1;
+}
+
+#ifndef NDEBUG
+/*
+** Return true if pPg happens to be the last page in segment pSeg. Or false
+** otherwise. This function is only invoked as part of assert() conditions.
+*/
+int lsmFsDbPageIsLast(Segment *pSeg, Page *pPg){
+ if( pPg->pFS->pCompress ){
+ Pgno iNext = 0;
+ int rc;
+ rc = fsNextPageOffset(pPg->pFS, pSeg, pPg->iPg, pPg->nCompress+6, &iNext);
+ return (rc!=LSM_OK || iNext==0);
+ }
+ return (pPg->iPg==pSeg->iLastPg);
+}
+#endif
--- /dev/null
+/*
+** 2011-08-13
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains the implementation of LSM database logging. Logging
+** has one purpose in LSM - to make transactions durable.
+**
+** When data is written to an LSM database, it is initially stored in an
+** in-memory tree structure. Since this structure is in volatile memory,
+** if a power failure or application crash occurs it may be lost. To
+** prevent loss of data in this case, each time a record is written to the
+** in-memory tree an equivalent record is appended to the log on disk.
+** If a power failure or application crash does occur, data can be recovered
+** by reading the log.
+**
+** A log file consists of the following types of records representing data
+** written into the database:
+**
+** LOG_WRITE: A key-value pair written to the database.
+** LOG_DELETE: A delete key issued to the database.
+** LOG_COMMIT: A transaction commit.
+**
+** And the following types of records for ancillary purposes..
+**
+** LOG_EOF: A record indicating the end of a log file.
+** LOG_PAD1: A single byte padding record.
+** LOG_PAD2: An N byte padding record (N>1).
+** LOG_JUMP: A pointer to another offset within the log file.
+**
+** Each transaction written to the log contains one or more LOG_WRITE and/or
+** LOG_DELETE records, followed by a LOG_COMMIT record. The LOG_COMMIT record
+** contains an 8-byte checksum based on all previous data written to the
+** log file.
+**
+** LOG CHECKSUMS & RECOVERY
+**
+** Checksums are found in two types of log records: LOG_COMMIT and
+** LOG_CKSUM records. In order to recover content from a log, a client
+** reads each record from the start of the log, calculating a checksum as
+** it does. Each time a LOG_COMMIT or LOG_CKSUM is encountered, the
+** recovery process verifies that the checksum stored in the log
+** matches the calculated checksum. If it does not, the recovery process
+** can stop reading the log.
+**
+** If a recovery process reads records (other than COMMIT or CKSUM)
+** consisting of at least LSM_CKSUM_MAXDATA bytes, then the next record in
+** the log must be either a LOG_CKSUM or LOG_COMMIT record. If it is
+** not, the recovery process also stops reading the log.
+**
+** To recover the log file, it must be read twice. The first time to
+** determine the location of the last valid commit record. And the second
+** time to load data into the in-memory tree.
+**
+** Todo: Surely there is a better way...
+**
+** LOG WRAPPING
+**
+** If the log file were never deleted or wrapped, it would be possible to
+** read it from start to end each time is required recovery (i.e each time
+** the number of database clients changes from 0 to 1). Effectively reading
+** the entire history of the database each time. This would quickly become
+** inefficient. Additionally, since the log file would grow without bound,
+** it wastes storage space.
+**
+** Instead, part of each checkpoint written into the database file contains
+** a log offset (and other information required to read the log starting at
+** at this offset) at which to begin recovery. Offset $O.
+**
+** Once a checkpoint has been written and synced into the database file, it
+** is guaranteed that no recovery process will need to read any data before
+** offset $O of the log file. It is therefore safe to begin overwriting
+** any data that occurs before offset $O.
+**
+** This implementation separates the log into three regions mapped into
+** the log file - regions 0, 1 and 2. During recovery, regions are read
+** in ascending order (i.e. 0, then 1, then 2). Each region is zero or
+** more bytes in size.
+**
+** |---1---|..|--0--|.|--2--|....
+**
+** New records are always appended to the end of region 2.
+**
+** Initially (when it is empty), all three regions are zero bytes in size.
+** Each of them are located at the beginning of the file. As records are
+** added to the log, region 2 grows, so that the log consists of a zero
+** byte region 1, followed by a zero byte region 0, followed by an N byte
+** region 2. After one or more checkpoints have been written to disk,
+** the start point of region 2 is moved to $O. For example:
+**
+** A) ||.........|--2--|....
+**
+** (both regions 0 and 1 are 0 bytes in size at offset 0).
+**
+** Eventually, the log wraps around to write new records into the start.
+** At this point, region 2 is renamed to region 0. Region 0 is renamed
+** to region 2. After appending a few records to the new region 2, the
+** log file looks like this:
+**
+** B) ||--2--|...|--0--|....
+**
+** (region 1 is still 0 bytes in size, located at offset 0).
+**
+** Any checkpoints made at this point may reduce the size of region 0.
+** However, if they do not, and region 2 expands so that it is about to
+** overwrite the start of region 0, then region 2 is renamed to region 1,
+** and a new region 2 created at the end of the file following the existing
+** region 0.
+**
+** C) |---1---|..|--0--|.|-2-|
+**
+** In this state records are appended to region 2 until checkpoints have
+** contracted regions 0 AND 1 UNTil they are both zero bytes in size. They
+** are then shifted to the start of the log file, leaving the system in
+** the equivalent of state A above.
+**
+** Alternatively, state B may transition directly to state A if the size
+** of region 0 is reduced to zero bytes before region 2 threatens to
+** encroach upon it.
+**
+** LOG_PAD1 & LOG_PAD2 RECORDS
+**
+** PAD1 and PAD2 records may appear in a log file at any point. They allow
+** a process writing the log file align the beginning of transactions with
+** the beginning of disk sectors, which increases robustness.
+**
+** RECORD FORMATS:
+**
+** LOG_EOF: * A single 0x00 byte.
+**
+** LOG_PAD1: * A single 0x01 byte.
+**
+** LOG_PAD2: * A single 0x02 byte, followed by
+** * The number of unused bytes (N) as a varint,
+** * An N byte block of unused space.
+**
+** LOG_COMMIT: * A single 0x03 byte.
+** * An 8-byte checksum.
+**
+** LOG_JUMP: * A single 0x04 byte.
+** * Absolute file offset to jump to, encoded as a varint.
+**
+** LOG_WRITE: * A single 0x06 or 0x07 byte,
+** * The number of bytes in the key, encoded as a varint,
+** * The number of bytes in the value, encoded as a varint,
+** * If the first byte was 0x07, an 8 byte checksum.
+** * The key data,
+** * The value data.
+**
+** LOG_DELETE: * A single 0x08 or 0x09 byte,
+** * The number of bytes in the key, encoded as a varint,
+** * If the first byte was 0x09, an 8 byte checksum.
+** * The key data.
+**
+** Varints are as described in lsm_varint.c (SQLite 4 format).
+**
+** CHECKSUMS:
+**
+** The checksum is calculated using two 32-bit unsigned integers, s0 and
+** s1. The initial value for both is 42. It is updated each time a record
+** is written into the log file by treating the encoded (binary) record as
+** an array of 32-bit little-endian integers. Then, if x[] is the integer
+** array, updating the checksum accumulators as follows:
+**
+** for i from 0 to n-1 step 2:
+** s0 += x[i] + s1;
+** s1 += x[i+1] + s0;
+** endfor
+**
+** If the record is not an even multiple of 8-bytes in size it is padded
+** with zeroes to make it so before the checksum is updated.
+**
+** The checksum stored in a COMMIT, WRITE or DELETE is based on all bytes
+** up to the start of the 8-byte checksum itself, including the COMMIT,
+** WRITE or DELETE fields that appear before the checksum in the record.
+**
+** VARINT FORMAT
+**
+** See lsm_varint.c.
+*/
+
+#ifndef _LSM_INT_H
+# include "lsmInt.h"
+#endif
+
+/* Log record types */
+#define LSM_LOG_EOF 0x00
+#define LSM_LOG_PAD1 0x01
+#define LSM_LOG_PAD2 0x02
+#define LSM_LOG_COMMIT 0x03
+#define LSM_LOG_JUMP 0x04
+
+#define LSM_LOG_WRITE 0x06
+#define LSM_LOG_WRITE_CKSUM 0x07
+#define LSM_LOG_DELETE 0x08
+#define LSM_LOG_DELETE_CKSUM 0x09
+
+/* Require a checksum every 32KB. */
+#define LSM_CKSUM_MAXDATA (32*1024)
+
+/* Do not wrap a log file smaller than this in bytes. */
+#define LSM_MIN_LOGWRAP (128*1024)
+
+/*
+** szSector:
+** Commit records must be aligned to end on szSector boundaries. If
+** the safety-mode is set to NORMAL or OFF, this value is 1. Otherwise,
+** if the safety-mode is set to FULL, it is the size of the file-system
+** sectors as reported by lsmFsSectorSize().
+*/
+struct LogWriter {
+ u32 cksum0; /* Checksum 0 at offset iOff */
+ u32 cksum1; /* Checksum 1 at offset iOff */
+ int iCksumBuf; /* Bytes of buf that have been checksummed */
+ i64 iOff; /* Offset at start of buffer buf */
+ int szSector; /* Sector size for this transaction */
+ LogRegion jump; /* Avoid writing to this region */
+ i64 iRegion1End; /* End of first region written by trans */
+ i64 iRegion2Start; /* Start of second regions written by trans */
+ LsmString buf; /* Buffer containing data not yet written */
+};
+
+/*
+** Return the result of interpreting the first 4 bytes in buffer aIn as
+** a 32-bit unsigned little-endian integer.
+*/
+static u32 getU32le(u8 *aIn){
+ return ((u32)aIn[3] << 24)
+ + ((u32)aIn[2] << 16)
+ + ((u32)aIn[1] << 8)
+ + ((u32)aIn[0]);
+}
+
+
+/*
+** This function is the same as logCksum(), except that pointer "a" need
+** not be aligned to an 8-byte boundary or padded with zero bytes. This
+** version is slower, but sometimes more convenient to use.
+*/
+static void logCksumUnaligned(
+ char *z, /* Input buffer */
+ int n, /* Size of input buffer in bytes */
+ u32 *pCksum0, /* IN/OUT: Checksum value 1 */
+ u32 *pCksum1 /* IN/OUT: Checksum value 2 */
+){
+ u8 *a = (u8 *)z;
+ u32 cksum0 = *pCksum0;
+ u32 cksum1 = *pCksum1;
+ int nIn = (n/8) * 8;
+ int i;
+
+ assert( n>0 );
+ for(i=0; i<nIn; i+=8){
+ cksum0 += getU32le(&a[i]) + cksum1;
+ cksum1 += getU32le(&a[i+4]) + cksum0;
+ }
+
+ if( nIn!=n ){
+ u8 aBuf[8] = {0, 0, 0, 0, 0, 0, 0, 0};
+ assert( (n-nIn)<8 && n>nIn );
+ memcpy(aBuf, &a[nIn], n-nIn);
+ cksum0 += getU32le(aBuf) + cksum1;
+ cksum1 += getU32le(&aBuf[4]) + cksum0;
+ }
+
+ *pCksum0 = cksum0;
+ *pCksum1 = cksum1;
+}
+
+/*
+** Update pLog->cksum0 and pLog->cksum1 so that the first nBuf bytes in the
+** write buffer (pLog->buf) are included in the checksum.
+*/
+static void logUpdateCksum(LogWriter *pLog, int nBuf){
+ assert( (pLog->iCksumBuf % 8)==0 );
+ assert( pLog->iCksumBuf<=nBuf );
+ assert( (nBuf % 8)==0 || nBuf==pLog->buf.n );
+ if( nBuf>pLog->iCksumBuf ){
+ logCksumUnaligned(
+ &pLog->buf.z[pLog->iCksumBuf], nBuf-pLog->iCksumBuf,
+ &pLog->cksum0, &pLog->cksum1
+ );
+ }
+ pLog->iCksumBuf = nBuf;
+}
+
+static i64 firstByteOnSector(LogWriter *pLog, i64 iOff){
+ return (iOff / pLog->szSector) * pLog->szSector;
+}
+static i64 lastByteOnSector(LogWriter *pLog, i64 iOff){
+ return firstByteOnSector(pLog, iOff) + pLog->szSector - 1;
+}
+
+/*
+** If possible, reclaim log file space. Log file space is reclaimed after
+** a snapshot that points to the same data in the database file is synced
+** into the db header.
+*/
+static int logReclaimSpace(lsm_db *pDb){
+ int rc;
+ int iMeta;
+ int bRotrans; /* True if there exists some ro-trans */
+
+ /* Test if there exists some other connection with a read-only transaction
+ ** open. If there does, then log file space may not be reclaimed. */
+ rc = lsmDetectRoTrans(pDb, &bRotrans);
+ if( rc!=LSM_OK || bRotrans ) return rc;
+
+ iMeta = (int)pDb->pShmhdr->iMetaPage;
+ if( iMeta==1 || iMeta==2 ){
+ DbLog *pLog = &pDb->treehdr.log;
+ i64 iSyncedId;
+
+ /* Read the snapshot-id of the snapshot stored on meta-page iMeta. Note
+ ** that in theory, the value read is untrustworthy (due to a race
+ ** condition - see comments above lsmFsReadSyncedId()). So it is only
+ ** ever used to conclude that no log space can be reclaimed. If it seems
+ ** to indicate that it may be possible to reclaim log space, a
+ ** second call to lsmCheckpointSynced() (which does return trustworthy
+ ** values) is made below to confirm. */
+ rc = lsmFsReadSyncedId(pDb, iMeta, &iSyncedId);
+
+ if( rc==LSM_OK && pLog->iSnapshotId!=iSyncedId ){
+ i64 iSnapshotId = 0;
+ i64 iOff = 0;
+ rc = lsmCheckpointSynced(pDb, &iSnapshotId, &iOff, 0);
+ if( rc==LSM_OK && pLog->iSnapshotId<iSnapshotId ){
+ int iRegion;
+ for(iRegion=0; iRegion<3; iRegion++){
+ LogRegion *p = &pLog->aRegion[iRegion];
+ if( iOff>=p->iStart && iOff<=p->iEnd ) break;
+ p->iStart = 0;
+ p->iEnd = 0;
+ }
+ assert( iRegion<3 );
+ pLog->aRegion[iRegion].iStart = iOff;
+ pLog->iSnapshotId = iSnapshotId;
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** This function is called when a write-transaction is first opened. It
+** is assumed that the caller is holding the client-mutex when it is
+** called.
+**
+** Before returning, this function allocates the LogWriter object that
+** will be used to write to the log file during the write transaction.
+** LSM_OK is returned if no error occurs, otherwise an LSM error code.
+*/
+int lsmLogBegin(lsm_db *pDb){
+ int rc = LSM_OK;
+ LogWriter *pNew;
+ LogRegion *aReg;
+
+ if( pDb->bUseLog==0 ) return LSM_OK;
+
+ /* If the log file has not yet been opened, open it now. Also allocate
+ ** the LogWriter structure, if it has not already been allocated. */
+ rc = lsmFsOpenLog(pDb, 0);
+ if( pDb->pLogWriter==0 ){
+ pNew = lsmMallocZeroRc(pDb->pEnv, sizeof(LogWriter), &rc);
+ if( pNew ){
+ lsmStringInit(&pNew->buf, pDb->pEnv);
+ rc = lsmStringExtend(&pNew->buf, 2);
+ }
+ }else{
+ pNew = pDb->pLogWriter;
+ assert( (u8 *)(&pNew[1])==(u8 *)(&((&pNew->buf)[1])) );
+ memset(pNew, 0, ((u8 *)&pNew->buf) - (u8 *)pNew);
+ pNew->buf.n = 0;
+ }
+
+ if( rc==LSM_OK ){
+ /* The following call detects whether or not a new snapshot has been
+ ** synced into the database file. If so, it updates the contents of
+ ** the pDb->treehdr.log structure to reclaim any space in the log
+ ** file that is no longer required.
+ **
+ ** TODO: Calling this every transaction is overkill. And since the
+ ** call has to read and checksum a snapshot from the database file,
+ ** it is expensive. It would be better to figure out a way so that
+ ** this is only called occasionally - say for every 32KB written to
+ ** the log file.
+ */
+ rc = logReclaimSpace(pDb);
+ }
+ if( rc!=LSM_OK ){
+ lsmLogClose(pDb);
+ return rc;
+ }
+
+ /* Set the effective sector-size for this transaction. Sectors are assumed
+ ** to be one byte in size if the safety-mode is OFF or NORMAL, or as
+ ** reported by lsmFsSectorSize if it is FULL. */
+ if( pDb->eSafety==LSM_SAFETY_FULL ){
+ pNew->szSector = lsmFsSectorSize(pDb->pFS);
+ assert( pNew->szSector>0 );
+ }else{
+ pNew->szSector = 1;
+ }
+
+ /* There are now three scenarios:
+ **
+ ** 1) Regions 0 and 1 are both zero bytes in size and region 2 begins
+ ** at a file offset greater than LSM_MIN_LOGWRAP. In this case, wrap
+ ** around to the start and write data into the start of the log file.
+ **
+ ** 2) Region 1 is zero bytes in size and region 2 occurs earlier in the
+ ** file than region 0. In this case, append data to region 2, but
+ ** remember to jump over region 1 if required.
+ **
+ ** 3) Region 2 is the last in the file. Append to it.
+ */
+ aReg = &pDb->treehdr.log.aRegion[0];
+
+ assert( aReg[0].iEnd==0 || aReg[0].iEnd>aReg[0].iStart );
+ assert( aReg[1].iEnd==0 || aReg[1].iEnd>aReg[1].iStart );
+
+ pNew->cksum0 = pDb->treehdr.log.cksum0;
+ pNew->cksum1 = pDb->treehdr.log.cksum1;
+
+ if( aReg[0].iEnd==0 && aReg[1].iEnd==0 && aReg[2].iStart>=LSM_MIN_LOGWRAP ){
+ /* Case 1. Wrap around to the start of the file. Write an LSM_LOG_JUMP
+ ** into the log file in this case. Pad it out to 8 bytes using a PAD2
+ ** record so that the checksums can be updated immediately. */
+ u8 aJump[] = {
+ LSM_LOG_PAD2, 0x04, 0x00, 0x00, 0x00, 0x00, LSM_LOG_JUMP, 0x00
+ };
+
+ lsmStringBinAppend(&pNew->buf, aJump, sizeof(aJump));
+ logUpdateCksum(pNew, pNew->buf.n);
+ rc = lsmFsWriteLog(pDb->pFS, aReg[2].iEnd, &pNew->buf);
+ pNew->iCksumBuf = pNew->buf.n = 0;
+
+ aReg[2].iEnd += 8;
+ pNew->jump = aReg[0] = aReg[2];
+ aReg[2].iStart = aReg[2].iEnd = 0;
+ }else if( aReg[1].iEnd==0 && aReg[2].iEnd<aReg[0].iEnd ){
+ /* Case 2. */
+ pNew->iOff = aReg[2].iEnd;
+ pNew->jump = aReg[0];
+ }else{
+ /* Case 3. */
+ assert( aReg[2].iStart>=aReg[0].iEnd && aReg[2].iStart>=aReg[1].iEnd );
+ pNew->iOff = aReg[2].iEnd;
+ }
+
+ if( pNew->jump.iStart ){
+ i64 iRound;
+ assert( pNew->jump.iStart>pNew->iOff );
+
+ iRound = firstByteOnSector(pNew, pNew->jump.iStart);
+ if( iRound>pNew->iOff ) pNew->jump.iStart = iRound;
+ pNew->jump.iEnd = lastByteOnSector(pNew, pNew->jump.iEnd);
+ }
+
+ pDb->pLogWriter = pNew;
+ return rc;
+}
+
+/*
+** This function is called when a write-transaction is being closed.
+** Parameter bCommit is true if the transaction is being committed,
+** or false otherwise. The caller must hold the client-mutex to call
+** this function.
+**
+** A call to this function deletes the LogWriter object allocated by
+** lsmLogBegin(). If the transaction is being committed, the shared state
+** in *pLog is updated before returning.
+*/
+void lsmLogEnd(lsm_db *pDb, int bCommit){
+ DbLog *pLog;
+ LogWriter *p;
+ p = pDb->pLogWriter;
+
+ if( p==0 ) return;
+ pLog = &pDb->treehdr.log;
+
+ if( bCommit ){
+ pLog->aRegion[2].iEnd = p->iOff;
+ pLog->cksum0 = p->cksum0;
+ pLog->cksum1 = p->cksum1;
+ if( p->iRegion1End ){
+ /* This happens when the transaction had to jump over some other
+ ** part of the log. */
+ assert( pLog->aRegion[1].iEnd==0 );
+ assert( pLog->aRegion[2].iStart<p->iRegion1End );
+ pLog->aRegion[1].iStart = pLog->aRegion[2].iStart;
+ pLog->aRegion[1].iEnd = p->iRegion1End;
+ pLog->aRegion[2].iStart = p->iRegion2Start;
+ }
+ }
+}
+
+static int jumpIfRequired(
+ lsm_db *pDb,
+ LogWriter *pLog,
+ int nReq,
+ int *pbJump
+){
+ /* Determine if it is necessary to add an LSM_LOG_JUMP to jump over the
+ ** jump region before writing the LSM_LOG_WRITE or DELETE record. This
+ ** is necessary if there is insufficient room between the current offset
+ ** and the jump region to fit the new WRITE/DELETE record and the largest
+ ** possible JUMP record with up to 7 bytes of padding (a total of 17
+ ** bytes). */
+ if( (pLog->jump.iStart > (pLog->iOff + pLog->buf.n))
+ && (pLog->jump.iStart < (pLog->iOff + pLog->buf.n + (nReq + 17)))
+ ){
+ int rc; /* Return code */
+ i64 iJump; /* Offset to jump to */
+ u8 aJump[10]; /* Encoded jump record */
+ int nJump; /* Valid bytes in aJump[] */
+ int nPad; /* Bytes of padding required */
+
+ /* Serialize the JUMP record */
+ iJump = pLog->jump.iEnd+1;
+ aJump[0] = LSM_LOG_JUMP;
+ nJump = 1 + lsmVarintPut64(&aJump[1], iJump);
+
+ /* Adding padding to the contents of the buffer so that it will be a
+ ** multiple of 8 bytes in size after the JUMP record is appended. This
+ ** is not strictly required, it just makes the keeping the running
+ ** checksum up to date in this file a little simpler. */
+ nPad = (pLog->buf.n + nJump) % 8;
+ if( nPad ){
+ u8 aPad[7] = {0,0,0,0,0,0,0};
+ nPad = 8-nPad;
+ if( nPad==1 ){
+ aPad[0] = LSM_LOG_PAD1;
+ }else{
+ aPad[0] = LSM_LOG_PAD2;
+ aPad[1] = (nPad-2);
+ }
+ rc = lsmStringBinAppend(&pLog->buf, aPad, nPad);
+ if( rc!=LSM_OK ) return rc;
+ }
+
+ /* Append the JUMP record to the buffer. Then flush the buffer to disk
+ ** and update the checksums. The next write to the log file (assuming
+ ** there is no transaction rollback) will be to offset iJump (just past
+ ** the jump region). */
+ rc = lsmStringBinAppend(&pLog->buf, aJump, nJump);
+ if( rc!=LSM_OK ) return rc;
+ assert( (pLog->buf.n % 8)==0 );
+ rc = lsmFsWriteLog(pDb->pFS, pLog->iOff, &pLog->buf);
+ if( rc!=LSM_OK ) return rc;
+ logUpdateCksum(pLog, pLog->buf.n);
+ pLog->iRegion1End = (pLog->iOff + pLog->buf.n);
+ pLog->iRegion2Start = iJump;
+ pLog->iOff = iJump;
+ pLog->iCksumBuf = pLog->buf.n = 0;
+ if( pbJump ) *pbJump = 1;
+ }
+
+ return LSM_OK;
+}
+
+static int logCksumAndFlush(lsm_db *pDb){
+ int rc; /* Return code */
+ LogWriter *pLog = pDb->pLogWriter;
+
+ /* Calculate the checksum value. Append it to the buffer. */
+ logUpdateCksum(pLog, pLog->buf.n);
+ lsmPutU32((u8 *)&pLog->buf.z[pLog->buf.n], pLog->cksum0);
+ pLog->buf.n += 4;
+ lsmPutU32((u8 *)&pLog->buf.z[pLog->buf.n], pLog->cksum1);
+ pLog->buf.n += 4;
+
+ /* Write the contents of the buffer to disk. */
+ rc = lsmFsWriteLog(pDb->pFS, pLog->iOff, &pLog->buf);
+ pLog->iOff += pLog->buf.n;
+ pLog->iCksumBuf = pLog->buf.n = 0;
+
+ return rc;
+}
+
+/*
+** Write the contents of the log-buffer to disk. Then write either a CKSUM
+** or COMMIT record, depending on the value of parameter eType.
+*/
+static int logFlush(lsm_db *pDb, int eType){
+ int rc;
+ int nReq;
+ LogWriter *pLog = pDb->pLogWriter;
+
+ assert( eType==LSM_LOG_COMMIT );
+ assert( pLog );
+
+ /* Commit record is always 9 bytes in size. */
+ nReq = 9;
+ if( eType==LSM_LOG_COMMIT && pLog->szSector>1 ) nReq += pLog->szSector + 17;
+ rc = jumpIfRequired(pDb, pLog, nReq, 0);
+
+ /* If this is a COMMIT, add padding to the log so that the COMMIT record
+ ** is aligned against the end of a disk sector. In other words, add padding
+ ** so that the first byte following the COMMIT record lies on a different
+ ** sector. */
+ if( eType==LSM_LOG_COMMIT && pLog->szSector>1 ){
+ int nPad; /* Bytes of padding to add */
+
+ /* Determine the value of nPad. */
+ nPad = ((pLog->iOff + pLog->buf.n + 9) % pLog->szSector);
+ if( nPad ) nPad = pLog->szSector - nPad;
+ rc = lsmStringExtend(&pLog->buf, nPad);
+ if( rc!=LSM_OK ) return rc;
+
+ while( nPad ){
+ if( nPad==1 ){
+ pLog->buf.z[pLog->buf.n++] = LSM_LOG_PAD1;
+ nPad = 0;
+ }else{
+ int n = LSM_MIN(200, nPad-2);
+ pLog->buf.z[pLog->buf.n++] = LSM_LOG_PAD2;
+ pLog->buf.z[pLog->buf.n++] = n;
+ nPad -= 2;
+ memset(&pLog->buf.z[pLog->buf.n], 0x2B, n);
+ pLog->buf.n += n;
+ nPad -= n;
+ }
+ }
+ }
+
+ /* Make sure there is room in the log-buffer to add the CKSUM or COMMIT
+ ** record. Then add the first byte of it. */
+ rc = lsmStringExtend(&pLog->buf, 9);
+ if( rc!=LSM_OK ) return rc;
+ pLog->buf.z[pLog->buf.n++] = eType;
+ memset(&pLog->buf.z[pLog->buf.n], 0, 8);
+
+ rc = logCksumAndFlush(pDb);
+
+ /* If this is a commit and synchronous=full, sync the log to disk. */
+ if( rc==LSM_OK && eType==LSM_LOG_COMMIT && pDb->eSafety==LSM_SAFETY_FULL ){
+ rc = lsmFsSyncLog(pDb->pFS);
+ }
+ return rc;
+}
+
+/*
+** Append an LSM_LOG_WRITE (if nVal>=0) or LSM_LOG_DELETE (if nVal<0)
+** record to the database log.
+*/
+int lsmLogWrite(
+ lsm_db *pDb, /* Database handle */
+ void *pKey, int nKey, /* Database key to write to log */
+ void *pVal, int nVal /* Database value (or nVal<0) to write */
+){
+ int rc = LSM_OK;
+ LogWriter *pLog; /* Log object to write to */
+ int nReq; /* Bytes of space required in log */
+ int bCksum = 0; /* True to embed a checksum in this record */
+
+ if( pDb->bUseLog==0 ) return LSM_OK;
+ pLog = pDb->pLogWriter;
+
+ /* Determine how many bytes of space are required, assuming that a checksum
+ ** will be embedded in this record (even though it may not be). */
+ nReq = 1 + lsmVarintLen32(nKey) + 8 + nKey;
+ if( nVal>=0 ) nReq += lsmVarintLen32(nVal) + nVal;
+
+ /* Jump over the jump region if required. Set bCksum to true to tell the
+ ** code below to include a checksum in the record if either (a) writing
+ ** this record would mean that more than LSM_CKSUM_MAXDATA bytes of data
+ ** have been written to the log since the last checksum, or (b) the jump
+ ** is taken. */
+ rc = jumpIfRequired(pDb, pLog, nReq, &bCksum);
+ if( (pLog->buf.n+nReq) > LSM_CKSUM_MAXDATA ) bCksum = 1;
+
+ if( rc==LSM_OK ){
+ rc = lsmStringExtend(&pLog->buf, nReq);
+ }
+ if( rc==LSM_OK ){
+ u8 *a = (u8 *)&pLog->buf.z[pLog->buf.n];
+
+ /* Write the record header - the type byte followed by either 1 (for
+ ** DELETE) or 2 (for WRITE) varints. */
+ assert( LSM_LOG_WRITE_CKSUM == (LSM_LOG_WRITE | 0x0001) );
+ assert( LSM_LOG_DELETE_CKSUM == (LSM_LOG_DELETE | 0x0001) );
+ *(a++) = (nVal>=0 ? LSM_LOG_WRITE : LSM_LOG_DELETE) | (u8)bCksum;
+ a += lsmVarintPut32(a, nKey);
+ if( nVal>=0 ) a += lsmVarintPut32(a, nVal);
+
+ if( bCksum ){
+ pLog->buf.n = (a - (u8 *)pLog->buf.z);
+ rc = logCksumAndFlush(pDb);
+ a = (u8 *)&pLog->buf.z[pLog->buf.n];
+ }
+
+ memcpy(a, pKey, nKey);
+ a += nKey;
+ if( nVal>=0 ){
+ memcpy(a, pVal, nVal);
+ a += nVal;
+ }
+ pLog->buf.n = a - (u8 *)pLog->buf.z;
+ assert( pLog->buf.n<=pLog->buf.nAlloc );
+ }
+
+ return rc;
+}
+
+/*
+** Append an LSM_LOG_COMMIT record to the database log.
+*/
+int lsmLogCommit(lsm_db *pDb){
+ if( pDb->bUseLog==0 ) return LSM_OK;
+ return logFlush(pDb, LSM_LOG_COMMIT);
+}
+
+/*
+** Store the current offset and other checksum related information in the
+** structure *pMark. Later, *pMark can be passed to lsmLogSeek() to "rewind"
+** the LogWriter object to the current log file offset. This is used when
+** rolling back savepoint transactions.
+*/
+void lsmLogTell(
+ lsm_db *pDb, /* Database handle */
+ LogMark *pMark /* Populate this object with current offset */
+){
+ LogWriter *pLog;
+ int nCksum;
+
+ if( pDb->bUseLog==0 ) return;
+ pLog = pDb->pLogWriter;
+ nCksum = pLog->buf.n & 0xFFFFFFF8;
+ logUpdateCksum(pLog, nCksum);
+ assert( pLog->iCksumBuf==nCksum );
+ pMark->nBuf = pLog->buf.n - nCksum;
+ memcpy(pMark->aBuf, &pLog->buf.z[nCksum], pMark->nBuf);
+
+ pMark->iOff = pLog->iOff + pLog->buf.n;
+ pMark->cksum0 = pLog->cksum0;
+ pMark->cksum1 = pLog->cksum1;
+}
+
+/*
+** Seek (rewind) back to the log file offset stored by an ealier call to
+** lsmLogTell() in *pMark.
+*/
+void lsmLogSeek(
+ lsm_db *pDb, /* Database handle */
+ LogMark *pMark /* Object containing log offset to seek to */
+){
+ LogWriter *pLog;
+
+ if( pDb->bUseLog==0 ) return;
+ pLog = pDb->pLogWriter;
+
+ assert( pMark->iOff<=pLog->iOff+pLog->buf.n );
+ if( (pMark->iOff & 0xFFFFFFF8)>=pLog->iOff ){
+ pLog->buf.n = pMark->iOff - pLog->iOff;
+ pLog->iCksumBuf = (pLog->buf.n & 0xFFFFFFF8);
+ }else{
+ pLog->buf.n = pMark->nBuf;
+ memcpy(pLog->buf.z, pMark->aBuf, pMark->nBuf);
+ pLog->iCksumBuf = 0;
+ pLog->iOff = pMark->iOff - pMark->nBuf;
+ }
+ pLog->cksum0 = pMark->cksum0;
+ pLog->cksum1 = pMark->cksum1;
+
+ if( pMark->iOff > pLog->iRegion1End ) pLog->iRegion1End = 0;
+ if( pMark->iOff > pLog->iRegion2Start ) pLog->iRegion2Start = 0;
+}
+
+/*
+** This function does the work for an lsm_info(LOG_STRUCTURE) request.
+*/
+int lsmInfoLogStructure(lsm_db *pDb, char **pzVal){
+ int rc = LSM_OK;
+ char *zVal = 0;
+
+ /* If there is no read or write transaction open, read the latest
+ ** tree-header from shared-memory to report on. If necessary, update
+ ** it based on the contents of the database header.
+ **
+ ** No locks are taken here - these are passive read operations only.
+ */
+ if( pDb->pCsr==0 && pDb->nTransOpen==0 ){
+ rc = lsmTreeLoadHeader(pDb, 0);
+ if( rc==LSM_OK ) rc = logReclaimSpace(pDb);
+ }
+
+ if( rc==LSM_OK ){
+ DbLog *pLog = &pDb->treehdr.log;
+ zVal = lsmMallocPrintf(pDb->pEnv,
+ "%d %d %d %d %d %d",
+ (int)pLog->aRegion[0].iStart, (int)pLog->aRegion[0].iEnd,
+ (int)pLog->aRegion[1].iStart, (int)pLog->aRegion[1].iEnd,
+ (int)pLog->aRegion[2].iStart, (int)pLog->aRegion[2].iEnd
+ );
+ if( !zVal ) rc = LSM_NOMEM_BKPT;
+ }
+
+ *pzVal = zVal;
+ return rc;
+}
+
+/*************************************************************************
+** Begin code for log recovery.
+*/
+
+typedef struct LogReader LogReader;
+struct LogReader {
+ FileSystem *pFS; /* File system to read from */
+ i64 iOff; /* File offset at end of buf content */
+ int iBuf; /* Current read offset in buf */
+ LsmString buf; /* Buffer containing file content */
+
+ int iCksumBuf; /* Offset in buf corresponding to cksum[01] */
+ u32 cksum0; /* Checksum 0 at offset iCksumBuf */
+ u32 cksum1; /* Checksum 1 at offset iCksumBuf */
+};
+
+static void logReaderBlob(
+ LogReader *p, /* Log reader object */
+ LsmString *pBuf, /* Dynamic storage, if required */
+ int nBlob, /* Number of bytes to read */
+ u8 **ppBlob, /* OUT: Pointer to blob read */
+ int *pRc /* IN/OUT: Error code */
+){
+ static const int LOG_READ_SIZE = 512;
+ int rc = *pRc; /* Return code */
+ int nReq = nBlob; /* Bytes required */
+
+ while( rc==LSM_OK && nReq>0 ){
+ int nAvail; /* Bytes of data available in p->buf */
+ if( p->buf.n==p->iBuf ){
+ int nCksum; /* Total bytes requiring checksum */
+ int nCarry = 0; /* Total bytes requiring checksum */
+
+ nCksum = p->iBuf - p->iCksumBuf;
+ if( nCksum>0 ){
+ nCarry = nCksum % 8;
+ nCksum = ((nCksum / 8) * 8);
+ if( nCksum>0 ){
+ logCksumUnaligned(
+ &p->buf.z[p->iCksumBuf], nCksum, &p->cksum0, &p->cksum1
+ );
+ }
+ }
+ if( nCarry>0 ) memcpy(p->buf.z, &p->buf.z[p->iBuf-nCarry], nCarry);
+ p->buf.n = nCarry;
+ p->iBuf = nCarry;
+
+ rc = lsmFsReadLog(p->pFS, p->iOff, LOG_READ_SIZE, &p->buf);
+ if( rc!=LSM_OK ) break;
+ p->iCksumBuf = 0;
+ p->iOff += LOG_READ_SIZE;
+ }
+
+ nAvail = p->buf.n - p->iBuf;
+ if( ppBlob && nReq==nBlob && nBlob<=nAvail ){
+ *ppBlob = (u8 *)&p->buf.z[p->iBuf];
+ p->iBuf += nBlob;
+ nReq = 0;
+ }else{
+ int nCopy = LSM_MIN(nAvail, nReq);
+ if( nBlob==nReq ){
+ if( ppBlob ) *ppBlob = (u8 *)pBuf->z;
+ pBuf->n = 0;
+ }
+ rc = lsmStringBinAppend(pBuf, (u8 *)&p->buf.z[p->iBuf], nCopy);
+ nReq -= nCopy;
+ p->iBuf += nCopy;
+ }
+ }
+
+ *pRc = rc;
+}
+
+static void logReaderVarint(
+ LogReader *p,
+ LsmString *pBuf,
+ int *piVal, /* OUT: Value read from log */
+ int *pRc /* IN/OUT: Error code */
+){
+ if( *pRc==LSM_OK ){
+ u8 *aVarint;
+ if( p->buf.n==p->iBuf ){
+ logReaderBlob(p, 0, 10, &aVarint, pRc);
+ if( LSM_OK==*pRc ) p->iBuf -= (10 - lsmVarintGet32(aVarint, piVal));
+ }else{
+ logReaderBlob(p, pBuf, lsmVarintSize(p->buf.z[p->iBuf]), &aVarint, pRc);
+ if( LSM_OK==*pRc ) lsmVarintGet32(aVarint, piVal);
+ }
+ }
+}
+
+static void logReaderByte(LogReader *p, u8 *pByte, int *pRc){
+ u8 *pPtr = 0;
+ logReaderBlob(p, 0, 1, &pPtr, pRc);
+ if( pPtr ) *pByte = *pPtr;
+}
+
+static void logReaderCksum(LogReader *p, LsmString *pBuf, int *pbEof, int *pRc){
+ if( *pRc==LSM_OK ){
+ u8 *pPtr = 0;
+ u32 cksum0, cksum1;
+ int nCksum = p->iBuf - p->iCksumBuf;
+
+ /* Update in-memory (expected) checksums */
+ assert( nCksum>=0 );
+ logCksumUnaligned(&p->buf.z[p->iCksumBuf], nCksum, &p->cksum0, &p->cksum1);
+ p->iCksumBuf = p->iBuf + 8;
+ logReaderBlob(p, pBuf, 8, &pPtr, pRc);
+
+ /* Read the checksums from the log file. Set *pbEof if they do not match. */
+ if( pPtr ){
+ cksum0 = lsmGetU32(pPtr);
+ cksum1 = lsmGetU32(&pPtr[4]);
+ *pbEof = (cksum0!=p->cksum0 || cksum1!=p->cksum1);
+ p->iCksumBuf = p->iBuf;
+ }
+ }
+}
+
+static void logReaderInit(
+ lsm_db *pDb, /* Database handle */
+ DbLog *pLog, /* Log object associated with pDb */
+ int bInitBuf, /* True if p->buf is uninitialized */
+ LogReader *p /* Initialize this LogReader object */
+){
+ p->pFS = pDb->pFS;
+ p->iOff = pLog->aRegion[2].iStart;
+ p->cksum0 = pLog->cksum0;
+ p->cksum1 = pLog->cksum1;
+ if( bInitBuf ){ lsmStringInit(&p->buf, pDb->pEnv); }
+ p->buf.n = 0;
+ p->iCksumBuf = 0;
+ p->iBuf = 0;
+}
+
+/*
+** This function is called after reading the header of a LOG_DELETE or
+** LOG_WRITE record. Parameter nByte is the total size of the key and
+** value that follow the header just read. Return true if the size and
+** position of the record indicate that it should contain a checksum.
+*/
+static int logRequireCksum(LogReader *p, int nByte){
+ return ((p->iBuf + nByte - p->iCksumBuf) > LSM_CKSUM_MAXDATA);
+}
+
+/*
+** Recover the contents of the log file.
+*/
+int lsmLogRecover(lsm_db *pDb){
+ LsmString buf1; /* Key buffer */
+ LsmString buf2; /* Value buffer */
+ LogReader reader; /* Log reader object */
+ int rc = LSM_OK; /* Return code */
+ int nCommit = 0; /* Number of transactions to recover */
+ int iPass;
+ int nJump = 0; /* Number of LSM_LOG_JUMP records in pass 0 */
+ DbLog *pLog;
+ int bOpen;
+
+ rc = lsmFsOpenLog(pDb, &bOpen);
+ if( rc!=LSM_OK ) return rc;
+
+ rc = lsmTreeInit(pDb);
+ if( rc!=LSM_OK ) return rc;
+
+ pLog = &pDb->treehdr.log;
+ lsmCheckpointLogoffset(pDb->pShmhdr->aSnap2, pLog);
+
+ logReaderInit(pDb, pLog, 1, &reader);
+ lsmStringInit(&buf1, pDb->pEnv);
+ lsmStringInit(&buf2, pDb->pEnv);
+
+ /* The outer for() loop runs at most twice. The first iteration is to
+ ** count the number of committed transactions in the log. The second
+ ** iterates through those transactions and updates the in-memory tree
+ ** structure with their contents. */
+ if( bOpen ){
+ for(iPass=0; iPass<2 && rc==LSM_OK; iPass++){
+ int bEof = 0;
+
+ while( rc==LSM_OK && !bEof ){
+ u8 eType = 0;
+ logReaderByte(&reader, &eType, &rc);
+
+ switch( eType ){
+ case LSM_LOG_PAD1:
+ break;
+
+ case LSM_LOG_PAD2: {
+ int nPad;
+ logReaderVarint(&reader, &buf1, &nPad, &rc);
+ logReaderBlob(&reader, &buf1, nPad, 0, &rc);
+ break;
+ }
+
+ case LSM_LOG_WRITE:
+ case LSM_LOG_WRITE_CKSUM: {
+ int nKey;
+ int nVal;
+ u8 *aVal;
+ logReaderVarint(&reader, &buf1, &nKey, &rc);
+ logReaderVarint(&reader, &buf2, &nVal, &rc);
+
+ if( eType==LSM_LOG_WRITE_CKSUM ){
+ logReaderCksum(&reader, &buf1, &bEof, &rc);
+ }else{
+ bEof = logRequireCksum(&reader, nKey+nVal);
+ }
+ if( bEof ) break;
+
+ logReaderBlob(&reader, &buf1, nKey, 0, &rc);
+ logReaderBlob(&reader, &buf2, nVal, &aVal, &rc);
+ if( iPass==1 && rc==LSM_OK ){
+ rc = lsmTreeInsert(pDb, (u8 *)buf1.z, nKey, aVal, nVal);
+ }
+ break;
+ }
+
+ case LSM_LOG_DELETE:
+ case LSM_LOG_DELETE_CKSUM: {
+ int nKey; u8 *aKey;
+ logReaderVarint(&reader, &buf1, &nKey, &rc);
+
+ if( eType==LSM_LOG_DELETE_CKSUM ){
+ logReaderCksum(&reader, &buf1, &bEof, &rc);
+ }else{
+ bEof = logRequireCksum(&reader, nKey);
+ }
+ if( bEof ) break;
+
+ logReaderBlob(&reader, &buf1, nKey, &aKey, &rc);
+ if( iPass==1 && rc==LSM_OK ){
+ rc = lsmTreeInsert(pDb, aKey, nKey, NULL, -1);
+ }
+ break;
+ }
+
+ case LSM_LOG_COMMIT:
+ logReaderCksum(&reader, &buf1, &bEof, &rc);
+ if( bEof==0 ){
+ nCommit++;
+ assert( nCommit>0 || iPass==1 );
+ if( nCommit==0 ) bEof = 1;
+ }
+ break;
+
+ case LSM_LOG_JUMP: {
+ int iOff = 0;
+ logReaderVarint(&reader, &buf1, &iOff, &rc);
+ if( rc==LSM_OK ){
+ if( iPass==1 ){
+ if( pLog->aRegion[2].iStart==0 ){
+ assert( pLog->aRegion[1].iStart==0 );
+ pLog->aRegion[1].iEnd = reader.iOff;
+ }else{
+ assert( pLog->aRegion[0].iStart==0 );
+ pLog->aRegion[0].iStart = pLog->aRegion[2].iStart;
+ pLog->aRegion[0].iEnd = reader.iOff-reader.buf.n+reader.iBuf;
+ }
+ pLog->aRegion[2].iStart = iOff;
+ }else{
+ if( (nJump++)==2 ){
+ bEof = 1;
+ }
+ }
+
+ reader.iOff = iOff;
+ reader.buf.n = reader.iBuf;
+ }
+ break;
+ }
+
+ default:
+ /* Including LSM_LOG_EOF */
+ bEof = 1;
+ break;
+ }
+ }
+
+ if( rc==LSM_OK && iPass==0 ){
+ if( nCommit==0 ){
+ if( pLog->aRegion[2].iStart==0 ){
+ iPass = 1;
+ }else{
+ pLog->aRegion[2].iStart = 0;
+ iPass = -1;
+ lsmCheckpointZeroLogoffset(pDb);
+ }
+ }
+ logReaderInit(pDb, pLog, 0, &reader);
+ nCommit = nCommit * -1;
+ }
+ }
+ }
+
+ /* Initialize DbLog object */
+ if( rc==LSM_OK ){
+ pLog->aRegion[2].iEnd = reader.iOff - reader.buf.n + reader.iBuf;
+ pLog->cksum0 = reader.cksum0;
+ pLog->cksum1 = reader.cksum1;
+ }
+
+ if( rc==LSM_OK ){
+ rc = lsmFinishRecovery(pDb);
+ }else{
+ lsmFinishRecovery(pDb);
+ }
+
+ if( pDb->bRoTrans ){
+ lsmFsCloseLog(pDb);
+ }
+
+ lsmStringClear(&buf1);
+ lsmStringClear(&buf2);
+ lsmStringClear(&reader.buf);
+ return rc;
+}
+
+void lsmLogClose(lsm_db *db){
+ if( db->pLogWriter ){
+ lsmFree(db->pEnv, db->pLogWriter->buf.z);
+ lsmFree(db->pEnv, db->pLogWriter);
+ db->pLogWriter = 0;
+ }
+}
--- /dev/null
+/*
+** 2011-08-18
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** The main interface to the LSM module.
+*/
+#include "lsmInt.h"
+
+
+#ifdef LSM_DEBUG
+/*
+** This function returns a copy of its only argument.
+**
+** When the library is built with LSM_DEBUG defined, this function is called
+** whenever an error code is generated (not propagated - generated). So
+** if the library is mysteriously returning (say) LSM_IOERR, a breakpoint
+** may be set in this function to determine why.
+*/
+int lsmErrorBkpt(int rc){
+ /* Set breakpoint here! */
+ return rc;
+}
+
+/*
+** This function contains various assert() statements that test that the
+** lsm_db structure passed as an argument is internally consistent.
+*/
+static void assert_db_state(lsm_db *pDb){
+
+ /* If there is at least one cursor or a write transaction open, the database
+ ** handle must be holding a pointer to a client snapshot. And the reverse
+ ** - if there are no open cursors and no write transactions then there must
+ ** not be a client snapshot. */
+
+ assert( (pDb->pCsr!=0||pDb->nTransOpen>0)==(pDb->iReader>=0||pDb->bRoTrans) );
+
+ assert( (pDb->iReader<0 && pDb->bRoTrans==0) || pDb->pClient!=0 );
+
+ assert( pDb->nTransOpen>=0 );
+}
+#else
+# define assert_db_state(x)
+#endif
+
+/*
+** The default key-compare function.
+*/
+static int xCmp(void *p1, int n1, void *p2, int n2){
+ int res;
+ res = memcmp(p1, p2, LSM_MIN(n1, n2));
+ if( res==0 ) res = (n1-n2);
+ return res;
+}
+
+static void xLog(void *pCtx, int rc, const char *z){
+ (void)(rc);
+ (void)(pCtx);
+ fprintf(stderr, "%s\n", z);
+ fflush(stderr);
+}
+
+/*
+** Allocate a new db handle.
+*/
+int lsm_new(lsm_env *pEnv, lsm_db **ppDb){
+ lsm_db *pDb;
+
+ /* If the user did not provide an environment, use the default. */
+ if( pEnv==0 ) pEnv = lsm_default_env();
+ assert( pEnv );
+
+ /* Allocate the new database handle */
+ *ppDb = pDb = (lsm_db *)lsmMallocZero(pEnv, sizeof(lsm_db));
+ if( pDb==0 ) return LSM_NOMEM_BKPT;
+
+ /* Initialize the new object */
+ pDb->pEnv = pEnv;
+ pDb->nTreeLimit = LSM_DFLT_AUTOFLUSH;
+ pDb->nAutockpt = LSM_DFLT_AUTOCHECKPOINT;
+ pDb->bAutowork = LSM_DFLT_AUTOWORK;
+ pDb->eSafety = LSM_DFLT_SAFETY;
+ pDb->xCmp = xCmp;
+ pDb->nDfltPgsz = LSM_DFLT_PAGE_SIZE;
+ pDb->nDfltBlksz = LSM_DFLT_BLOCK_SIZE;
+ pDb->nMerge = LSM_DFLT_AUTOMERGE;
+ pDb->nMaxFreelist = LSM_MAX_FREELIST_ENTRIES;
+ pDb->bUseLog = LSM_DFLT_USE_LOG;
+ pDb->iReader = -1;
+ pDb->iRwclient = -1;
+ pDb->bMultiProc = LSM_DFLT_MULTIPLE_PROCESSES;
+ pDb->iMmap = LSM_DFLT_MMAP;
+ pDb->xLog = xLog;
+ pDb->compress.iId = LSM_COMPRESSION_NONE;
+ return LSM_OK;
+}
+
+lsm_env *lsm_get_env(lsm_db *pDb){
+ assert( pDb->pEnv );
+ return pDb->pEnv;
+}
+
+/*
+** If database handle pDb is currently holding a client snapshot, but does
+** not have any open cursors or write transactions, release it.
+*/
+static void dbReleaseClientSnapshot(lsm_db *pDb){
+ if( pDb->nTransOpen==0 && pDb->pCsr==0 ){
+ lsmFinishReadTrans(pDb);
+ }
+}
+
+static int getFullpathname(
+ lsm_env *pEnv,
+ const char *zRel,
+ char **pzAbs
+){
+ int nAlloc = 0;
+ char *zAlloc = 0;
+ int nReq = 0;
+ int rc;
+
+ do{
+ nAlloc = nReq;
+ rc = pEnv->xFullpath(pEnv, zRel, zAlloc, &nReq);
+ if( nReq>nAlloc ){
+ zAlloc = lsmReallocOrFreeRc(pEnv, zAlloc, nReq, &rc);
+ }
+ }while( nReq>nAlloc && rc==LSM_OK );
+
+ if( rc!=LSM_OK ){
+ lsmFree(pEnv, zAlloc);
+ zAlloc = 0;
+ }
+ *pzAbs = zAlloc;
+ return rc;
+}
+
+/*
+** Check that the bits in the db->mLock mask are consistent with the
+** value stored in db->iRwclient. An assert shall fail otherwise.
+*/
+static void assertRwclientLockValue(lsm_db *db){
+#ifndef NDEBUG
+ u64 msk; /* Mask of mLock bits for RWCLIENT locks */
+ u64 rwclient = 0; /* Bit corresponding to db->iRwclient */
+
+ if( db->iRwclient>=0 ){
+ rwclient = ((u64)1 << (LSM_LOCK_RWCLIENT(db->iRwclient)-1));
+ }
+ msk = ((u64)1 << (LSM_LOCK_RWCLIENT(LSM_LOCK_NRWCLIENT)-1)) - 1;
+ msk -= (((u64)1 << (LSM_LOCK_RWCLIENT(0)-1)) - 1);
+
+ assert( (db->mLock & msk)==rwclient );
+#endif
+}
+
+/*
+** Open a new connection to database zFilename.
+*/
+int lsm_open(lsm_db *pDb, const char *zFilename){
+ int rc;
+
+ if( pDb->pDatabase ){
+ rc = LSM_MISUSE;
+ }else{
+ char *zFull;
+
+ /* Translate the possibly relative pathname supplied by the user into
+ ** an absolute pathname. This is required because the supplied path
+ ** is used (either directly or with "-log" appended to it) for more
+ ** than one purpose - to open both the database and log files, and
+ ** perhaps to unlink the log file during disconnection. An absolute
+ ** path is required to ensure that the correct files are operated
+ ** on even if the application changes the cwd. */
+ rc = getFullpathname(pDb->pEnv, zFilename, &zFull);
+ assert( rc==LSM_OK || zFull==0 );
+
+ /* Connect to the database. */
+ if( rc==LSM_OK ){
+ rc = lsmDbDatabaseConnect(pDb, zFull);
+ }
+
+ if( pDb->bReadonly==0 ){
+ /* Configure the file-system connection with the page-size and block-size
+ ** of this database. Even if the database file is zero bytes in size
+ ** on disk, these values have been set in shared-memory by now, and so
+ ** are guaranteed not to change during the lifetime of this connection.
+ */
+ if( rc==LSM_OK && LSM_OK==(rc = lsmCheckpointLoad(pDb, 0)) ){
+ lsmFsSetPageSize(pDb->pFS, lsmCheckpointPgsz(pDb->aSnapshot));
+ lsmFsSetBlockSize(pDb->pFS, lsmCheckpointBlksz(pDb->aSnapshot));
+ }
+ }
+
+ lsmFree(pDb->pEnv, zFull);
+ assertRwclientLockValue(pDb);
+ }
+
+ assert( pDb->bReadonly==0 || pDb->bReadonly==1 );
+ assert( rc!=LSM_OK || (pDb->pShmhdr==0)==(pDb->bReadonly==1) );
+
+ return rc;
+}
+
+int lsm_close(lsm_db *pDb){
+ int rc = LSM_OK;
+ if( pDb ){
+ assert_db_state(pDb);
+ if( pDb->pCsr || pDb->nTransOpen ){
+ rc = LSM_MISUSE_BKPT;
+ }else{
+ lsmMCursorFreeCache(pDb);
+ lsmFreeSnapshot(pDb->pEnv, pDb->pClient);
+ pDb->pClient = 0;
+
+ assertRwclientLockValue(pDb);
+
+ lsmDbDatabaseRelease(pDb);
+ lsmLogClose(pDb);
+ lsmFsClose(pDb->pFS);
+ assert( pDb->mLock==0 );
+
+ /* Invoke any destructors registered for the compression or
+ ** compression factory callbacks. */
+ if( pDb->factory.xFree ) pDb->factory.xFree(pDb->factory.pCtx);
+ if( pDb->compress.xFree ) pDb->compress.xFree(pDb->compress.pCtx);
+
+ lsmFree(pDb->pEnv, pDb->rollback.aArray);
+ lsmFree(pDb->pEnv, pDb->aTrans);
+ lsmFree(pDb->pEnv, pDb->apShm);
+ lsmFree(pDb->pEnv, pDb);
+ }
+ }
+ return rc;
+}
+
+int lsm_config(lsm_db *pDb, int eParam, ...){
+ int rc = LSM_OK;
+ va_list ap;
+ va_start(ap, eParam);
+
+ switch( eParam ){
+ case LSM_CONFIG_AUTOFLUSH: {
+ /* This parameter is read and written in KB. But all internal
+ ** processing is done in bytes. */
+ int *piVal = va_arg(ap, int *);
+ int iVal = *piVal;
+ if( iVal>=0 && iVal<=(1024*1024) ){
+ pDb->nTreeLimit = iVal*1024;
+ }
+ *piVal = (pDb->nTreeLimit / 1024);
+ break;
+ }
+
+ case LSM_CONFIG_AUTOWORK: {
+ int *piVal = va_arg(ap, int *);
+ if( *piVal>=0 ){
+ pDb->bAutowork = *piVal;
+ }
+ *piVal = pDb->bAutowork;
+ break;
+ }
+
+ case LSM_CONFIG_AUTOCHECKPOINT: {
+ /* This parameter is read and written in KB. But all internal processing
+ ** (including the lsm_db.nAutockpt variable) is done in bytes. */
+ int *piVal = va_arg(ap, int *);
+ if( *piVal>=0 ){
+ int iVal = *piVal;
+ pDb->nAutockpt = (i64)iVal * 1024;
+ }
+ *piVal = (int)(pDb->nAutockpt / 1024);
+ break;
+ }
+
+ case LSM_CONFIG_PAGE_SIZE: {
+ int *piVal = va_arg(ap, int *);
+ if( pDb->pDatabase ){
+ /* If lsm_open() has been called, this is a read-only parameter.
+ ** Set the output variable to the page-size according to the
+ ** FileSystem object. */
+ *piVal = lsmFsPageSize(pDb->pFS);
+ }else{
+ if( *piVal>=256 && *piVal<=65536 && ((*piVal-1) & *piVal)==0 ){
+ pDb->nDfltPgsz = *piVal;
+ }else{
+ *piVal = pDb->nDfltPgsz;
+ }
+ }
+ break;
+ }
+
+ case LSM_CONFIG_BLOCK_SIZE: {
+ /* This parameter is read and written in KB. But all internal
+ ** processing is done in bytes. */
+ int *piVal = va_arg(ap, int *);
+ if( pDb->pDatabase ){
+ /* If lsm_open() has been called, this is a read-only parameter.
+ ** Set the output variable to the block-size in KB according to the
+ ** FileSystem object. */
+ *piVal = lsmFsBlockSize(pDb->pFS) / 1024;
+ }else{
+ int iVal = *piVal;
+ if( iVal>=64 && iVal<=65536 && ((iVal-1) & iVal)==0 ){
+ pDb->nDfltBlksz = iVal * 1024;
+ }else{
+ *piVal = pDb->nDfltBlksz / 1024;
+ }
+ }
+ break;
+ }
+
+ case LSM_CONFIG_SAFETY: {
+ int *piVal = va_arg(ap, int *);
+ if( *piVal>=0 && *piVal<=2 ){
+ pDb->eSafety = *piVal;
+ }
+ *piVal = pDb->eSafety;
+ break;
+ }
+
+ case LSM_CONFIG_MMAP: {
+ int *piVal = va_arg(ap, int *);
+ if( pDb->iReader<0 && *piVal>=0 ){
+ pDb->iMmap = *piVal;
+ rc = lsmFsConfigure(pDb);
+ }
+ *piVal = pDb->iMmap;
+ break;
+ }
+
+ case LSM_CONFIG_USE_LOG: {
+ int *piVal = va_arg(ap, int *);
+ if( pDb->nTransOpen==0 && (*piVal==0 || *piVal==1) ){
+ pDb->bUseLog = *piVal;
+ }
+ *piVal = pDb->bUseLog;
+ break;
+ }
+
+ case LSM_CONFIG_AUTOMERGE: {
+ int *piVal = va_arg(ap, int *);
+ if( *piVal>1 ) pDb->nMerge = *piVal;
+ *piVal = pDb->nMerge;
+ break;
+ }
+
+ case LSM_CONFIG_MAX_FREELIST: {
+ int *piVal = va_arg(ap, int *);
+ if( *piVal>=2 && *piVal<=LSM_MAX_FREELIST_ENTRIES ){
+ pDb->nMaxFreelist = *piVal;
+ }
+ *piVal = pDb->nMaxFreelist;
+ break;
+ }
+
+ case LSM_CONFIG_MULTIPLE_PROCESSES: {
+ int *piVal = va_arg(ap, int *);
+ if( pDb->pDatabase ){
+ /* If lsm_open() has been called, this is a read-only parameter.
+ ** Set the output variable to true if this connection is currently
+ ** in multi-process mode. */
+ *piVal = lsmDbMultiProc(pDb);
+ }else{
+ pDb->bMultiProc = *piVal = (*piVal!=0);
+ }
+ break;
+ }
+
+ case LSM_CONFIG_READONLY: {
+ int *piVal = va_arg(ap, int *);
+ /* If lsm_open() has been called, this is a read-only parameter. */
+ if( pDb->pDatabase==0 && *piVal>=0 ){
+ pDb->bReadonly = *piVal = (*piVal!=0);
+ }
+ *piVal = pDb->bReadonly;
+ break;
+ }
+
+ case LSM_CONFIG_SET_COMPRESSION: {
+ lsm_compress *p = va_arg(ap, lsm_compress *);
+ if( pDb->iReader>=0 && pDb->bInFactory==0 ){
+ /* May not change compression schemes with an open transaction */
+ rc = LSM_MISUSE_BKPT;
+ }else{
+ if( pDb->compress.xFree ){
+ /* Invoke any destructor belonging to the current compression. */
+ pDb->compress.xFree(pDb->compress.pCtx);
+ }
+ if( p->xBound==0 ){
+ memset(&pDb->compress, 0, sizeof(lsm_compress));
+ pDb->compress.iId = LSM_COMPRESSION_NONE;
+ }else{
+ memcpy(&pDb->compress, p, sizeof(lsm_compress));
+ }
+ rc = lsmFsConfigure(pDb);
+ }
+ break;
+ }
+
+ case LSM_CONFIG_SET_COMPRESSION_FACTORY: {
+ lsm_compress_factory *p = va_arg(ap, lsm_compress_factory *);
+ if( pDb->factory.xFree ){
+ /* Invoke any destructor belonging to the current factory. */
+ pDb->factory.xFree(pDb->factory.pCtx);
+ }
+ memcpy(&pDb->factory, p, sizeof(lsm_compress_factory));
+ break;
+ }
+
+ case LSM_CONFIG_GET_COMPRESSION: {
+ lsm_compress *p = va_arg(ap, lsm_compress *);
+ memcpy(p, &pDb->compress, sizeof(lsm_compress));
+ break;
+ }
+
+ default:
+ rc = LSM_MISUSE;
+ break;
+ }
+
+ va_end(ap);
+ return rc;
+}
+
+void lsmAppendSegmentList(LsmString *pStr, char *zPre, Segment *pSeg){
+ lsmStringAppendf(pStr, "%s{%d %d %d %d}", zPre,
+ pSeg->iFirst, pSeg->iLastPg, pSeg->iRoot, pSeg->nSize
+ );
+}
+
+static int infoGetWorker(lsm_db *pDb, Snapshot **pp, int *pbUnlock){
+ int rc = LSM_OK;
+
+ assert( *pbUnlock==0 );
+ if( !pDb->pWorker ){
+ rc = lsmBeginWork(pDb);
+ if( rc!=LSM_OK ) return rc;
+ *pbUnlock = 1;
+ }
+ if( pp ) *pp = pDb->pWorker;
+ return rc;
+}
+
+static void infoFreeWorker(lsm_db *pDb, int bUnlock){
+ if( bUnlock ){
+ int rcdummy = LSM_BUSY;
+ lsmFinishWork(pDb, 0, &rcdummy);
+ }
+}
+
+int lsmStructList(
+ lsm_db *pDb, /* Database handle */
+ char **pzOut /* OUT: Nul-terminated string (tcl list) */
+){
+ Level *pTopLevel = 0; /* Top level of snapshot to report on */
+ int rc = LSM_OK;
+ Level *p;
+ LsmString s;
+ Snapshot *pWorker; /* Worker snapshot */
+ int bUnlock = 0;
+
+ /* Obtain the worker snapshot */
+ rc = infoGetWorker(pDb, &pWorker, &bUnlock);
+ if( rc!=LSM_OK ) return rc;
+
+ /* Format the contents of the snapshot as text */
+ pTopLevel = lsmDbSnapshotLevel(pWorker);
+ lsmStringInit(&s, pDb->pEnv);
+ for(p=pTopLevel; rc==LSM_OK && p; p=p->pNext){
+ int i;
+ lsmStringAppendf(&s, "%s{%d", (s.n ? " " : ""), (int)p->iAge);
+ lsmAppendSegmentList(&s, " ", &p->lhs);
+ for(i=0; rc==LSM_OK && i<p->nRight; i++){
+ lsmAppendSegmentList(&s, " ", &p->aRhs[i]);
+ }
+ lsmStringAppend(&s, "}", 1);
+ }
+ rc = s.n>=0 ? LSM_OK : LSM_NOMEM;
+
+ /* Release the snapshot and return */
+ infoFreeWorker(pDb, bUnlock);
+ *pzOut = s.z;
+ return rc;
+}
+
+static int infoFreelistCb(void *pCtx, int iBlk, i64 iSnapshot){
+ LsmString *pStr = (LsmString *)pCtx;
+ lsmStringAppendf(pStr, "%s{%d %lld}", (pStr->n?" ":""), iBlk, iSnapshot);
+ return 0;
+}
+
+int lsmInfoFreelist(lsm_db *pDb, char **pzOut){
+ Snapshot *pWorker; /* Worker snapshot */
+ int bUnlock = 0;
+ LsmString s;
+ int rc;
+
+ /* Obtain the worker snapshot */
+ rc = infoGetWorker(pDb, &pWorker, &bUnlock);
+ if( rc!=LSM_OK ) return rc;
+
+ lsmStringInit(&s, pDb->pEnv);
+ rc = lsmWalkFreelist(pDb, 0, infoFreelistCb, &s);
+ if( rc!=LSM_OK ){
+ lsmFree(pDb->pEnv, s.z);
+ }else{
+ *pzOut = s.z;
+ }
+
+ /* Release the snapshot and return */
+ infoFreeWorker(pDb, bUnlock);
+ return rc;
+}
+
+static int infoTreeSize(lsm_db *db, int *pnOldKB, int *pnNewKB){
+ ShmHeader *pShm = db->pShmhdr;
+ TreeHeader *p = &pShm->hdr1;
+
+ /* The following code suffers from two race conditions, as it accesses and
+ ** trusts the contents of shared memory without verifying checksums:
+ **
+ ** * The two values read - TreeHeader.root.nByte and oldroot.nByte - are
+ ** 32-bit fields. It is assumed that reading from one of these
+ ** is atomic - that it is not possible to read a partially written
+ ** garbage value. However the two values may be mutually inconsistent.
+ **
+ ** * TreeHeader.iLogOff is a 64-bit value. And lsmCheckpointLogOffset()
+ ** reads a 64-bit value from a snapshot stored in shared memory. It
+ ** is assumed that in each case it is possible to read a partially
+ ** written garbage value. If this occurs, then the value returned
+ ** for the size of the "old" tree may reflect the size of an "old"
+ ** tree that was recently flushed to disk.
+ **
+ ** Given the context in which this function is called (as a result of an
+ ** lsm_info(LSM_INFO_TREE_SIZE) request), neither of these are considered to
+ ** be problems.
+ */
+ *pnNewKB = ((int)p->root.nByte + 1023) / 1024;
+ if( p->iOldShmid ){
+ if( p->iOldLog==lsmCheckpointLogOffset(pShm->aSnap1) ){
+ *pnOldKB = 0;
+ }else{
+ *pnOldKB = ((int)p->oldroot.nByte + 1023) / 1024;
+ }
+ }else{
+ *pnOldKB = 0;
+ }
+
+ return LSM_OK;
+}
+
+int lsm_info(lsm_db *pDb, int eParam, ...){
+ int rc = LSM_OK;
+ va_list ap;
+ va_start(ap, eParam);
+
+ switch( eParam ){
+ case LSM_INFO_NWRITE: {
+ int *piVal = va_arg(ap, int *);
+ *piVal = lsmFsNWrite(pDb->pFS);
+ break;
+ }
+
+ case LSM_INFO_NREAD: {
+ int *piVal = va_arg(ap, int *);
+ *piVal = lsmFsNRead(pDb->pFS);
+ break;
+ }
+
+ case LSM_INFO_DB_STRUCTURE: {
+ char **pzVal = va_arg(ap, char **);
+ rc = lsmStructList(pDb, pzVal);
+ break;
+ }
+
+ case LSM_INFO_ARRAY_STRUCTURE: {
+ Pgno pgno = va_arg(ap, Pgno);
+ char **pzVal = va_arg(ap, char **);
+ rc = lsmInfoArrayStructure(pDb, 0, pgno, pzVal);
+ break;
+ }
+
+ case LSM_INFO_ARRAY_PAGES: {
+ Pgno pgno = va_arg(ap, Pgno);
+ char **pzVal = va_arg(ap, char **);
+ rc = lsmInfoArrayPages(pDb, pgno, pzVal);
+ break;
+ }
+
+ case LSM_INFO_PAGE_HEX_DUMP:
+ case LSM_INFO_PAGE_ASCII_DUMP: {
+ Pgno pgno = va_arg(ap, Pgno);
+ char **pzVal = va_arg(ap, char **);
+ int bUnlock = 0;
+ rc = infoGetWorker(pDb, 0, &bUnlock);
+ if( rc==LSM_OK ){
+ int bHex = (eParam==LSM_INFO_PAGE_HEX_DUMP);
+ rc = lsmInfoPageDump(pDb, pgno, bHex, pzVal);
+ }
+ infoFreeWorker(pDb, bUnlock);
+ break;
+ }
+
+ case LSM_INFO_LOG_STRUCTURE: {
+ char **pzVal = va_arg(ap, char **);
+ rc = lsmInfoLogStructure(pDb, pzVal);
+ break;
+ }
+
+ case LSM_INFO_FREELIST: {
+ char **pzVal = va_arg(ap, char **);
+ rc = lsmInfoFreelist(pDb, pzVal);
+ break;
+ }
+
+ case LSM_INFO_CHECKPOINT_SIZE: {
+ int *pnKB = va_arg(ap, int *);
+ rc = lsmCheckpointSize(pDb, pnKB);
+ break;
+ }
+
+ case LSM_INFO_TREE_SIZE: {
+ int *pnOld = va_arg(ap, int *);
+ int *pnNew = va_arg(ap, int *);
+ rc = infoTreeSize(pDb, pnOld, pnNew);
+ break;
+ }
+
+ case LSM_INFO_COMPRESSION_ID: {
+ unsigned int *piOut = va_arg(ap, unsigned int *);
+ if( pDb->pClient ){
+ *piOut = pDb->pClient->iCmpId;
+ }else{
+ rc = lsmInfoCompressionId(pDb, piOut);
+ }
+ break;
+ }
+
+ default:
+ rc = LSM_MISUSE;
+ break;
+ }
+
+ va_end(ap);
+ return rc;
+}
+
+static int doWriteOp(
+ lsm_db *pDb,
+ int bDeleteRange,
+ const void *pKey, int nKey, /* Key to write or delete */
+ const void *pVal, int nVal /* Value to write. Or nVal==-1 for a delete */
+){
+ int rc = LSM_OK; /* Return code */
+ int bCommit = 0; /* True to commit before returning */
+
+ if( pDb->nTransOpen==0 ){
+ bCommit = 1;
+ rc = lsm_begin(pDb, 1);
+ }
+
+ if( rc==LSM_OK ){
+ if( bDeleteRange==0 ){
+ rc = lsmLogWrite(pDb, (void *)pKey, nKey, (void *)pVal, nVal);
+ }else{
+ /* TODO */
+ }
+ }
+
+ lsmSortedSaveTreeCursors(pDb);
+
+ if( rc==LSM_OK ){
+ int pgsz = lsmFsPageSize(pDb->pFS);
+ int nQuant = LSM_AUTOWORK_QUANT * pgsz;
+ int nBefore;
+ int nAfter;
+ int nDiff;
+
+ if( nQuant>pDb->nTreeLimit ){
+ nQuant = pDb->nTreeLimit;
+ }
+
+ nBefore = lsmTreeSize(pDb);
+ if( bDeleteRange ){
+ rc = lsmTreeDelete(pDb, (void *)pKey, nKey, (void *)pVal, nVal);
+ }else{
+ rc = lsmTreeInsert(pDb, (void *)pKey, nKey, (void *)pVal, nVal);
+ }
+
+ nAfter = lsmTreeSize(pDb);
+ nDiff = (nAfter/nQuant) - (nBefore/nQuant);
+ if( rc==LSM_OK && pDb->bAutowork && nDiff!=0 ){
+ rc = lsmSortedAutoWork(pDb, nDiff * LSM_AUTOWORK_QUANT);
+ }
+ }
+
+ /* If a transaction was opened at the start of this function, commit it.
+ ** Or, if an error has occurred, roll it back. */
+ if( bCommit ){
+ if( rc==LSM_OK ){
+ rc = lsm_commit(pDb, 0);
+ }else{
+ lsm_rollback(pDb, 0);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Write a new value into the database.
+*/
+int lsm_insert(
+ lsm_db *db, /* Database connection */
+ const void *pKey, int nKey, /* Key to write or delete */
+ const void *pVal, int nVal /* Value to write. Or nVal==-1 for a delete */
+){
+ return doWriteOp(db, 0, pKey, nKey, pVal, nVal);
+}
+
+/*
+** Delete a value from the database.
+*/
+int lsm_delete(lsm_db *db, const void *pKey, int nKey){
+ return doWriteOp(db, 0, pKey, nKey, 0, -1);
+}
+
+/*
+** Delete a range of database keys.
+*/
+int lsm_delete_range(
+ lsm_db *db, /* Database handle */
+ const void *pKey1, int nKey1, /* Lower bound of range to delete */
+ const void *pKey2, int nKey2 /* Upper bound of range to delete */
+){
+ int rc = LSM_OK;
+ if( db->xCmp((void *)pKey1, nKey1, (void *)pKey2, nKey2)<0 ){
+ rc = doWriteOp(db, 1, pKey1, nKey1, pKey2, nKey2);
+ }
+ return rc;
+}
+
+/*
+** Open a new cursor handle.
+**
+** If there are currently no other open cursor handles, and no open write
+** transaction, open a read transaction here.
+*/
+int lsm_csr_open(lsm_db *pDb, lsm_cursor **ppCsr){
+ int rc = LSM_OK; /* Return code */
+ MultiCursor *pCsr = 0; /* New cursor object */
+
+ /* Open a read transaction if one is not already open. */
+ assert_db_state(pDb);
+
+ if( pDb->pShmhdr==0 ){
+ assert( pDb->bReadonly );
+ rc = lsmBeginRoTrans(pDb);
+ }else if( pDb->iReader<0 ){
+ rc = lsmBeginReadTrans(pDb);
+ }
+
+ /* Allocate the multi-cursor. */
+ if( rc==LSM_OK ){
+ rc = lsmMCursorNew(pDb, &pCsr);
+ }
+
+ /* If an error has occured, set the output to NULL and delete any partially
+ ** allocated cursor. If this means there are no open cursors, release the
+ ** client snapshot. */
+ if( rc!=LSM_OK ){
+ lsmMCursorClose(pCsr, 0);
+ dbReleaseClientSnapshot(pDb);
+ }
+
+ assert_db_state(pDb);
+ *ppCsr = (lsm_cursor *)pCsr;
+ return rc;
+}
+
+/*
+** Close a cursor opened using lsm_csr_open().
+*/
+int lsm_csr_close(lsm_cursor *p){
+ if( p ){
+ lsm_db *pDb = lsmMCursorDb((MultiCursor *)p);
+ assert_db_state(pDb);
+ lsmMCursorClose((MultiCursor *)p, 1);
+ dbReleaseClientSnapshot(pDb);
+ assert_db_state(pDb);
+ }
+ return LSM_OK;
+}
+
+/*
+** Attempt to seek the cursor to the database entry specified by pKey/nKey.
+** If an error occurs (e.g. an OOM or IO error), return an LSM error code.
+** Otherwise, return LSM_OK.
+*/
+int lsm_csr_seek(lsm_cursor *pCsr, const void *pKey, int nKey, int eSeek){
+ return lsmMCursorSeek((MultiCursor *)pCsr, 0, (void *)pKey, nKey, eSeek);
+}
+
+int lsm_csr_next(lsm_cursor *pCsr){
+ return lsmMCursorNext((MultiCursor *)pCsr);
+}
+
+int lsm_csr_prev(lsm_cursor *pCsr){
+ return lsmMCursorPrev((MultiCursor *)pCsr);
+}
+
+int lsm_csr_first(lsm_cursor *pCsr){
+ return lsmMCursorFirst((MultiCursor *)pCsr);
+}
+
+int lsm_csr_last(lsm_cursor *pCsr){
+ return lsmMCursorLast((MultiCursor *)pCsr);
+}
+
+int lsm_csr_valid(lsm_cursor *pCsr){
+ return lsmMCursorValid((MultiCursor *)pCsr);
+}
+
+int lsm_csr_key(lsm_cursor *pCsr, const void **ppKey, int *pnKey){
+ return lsmMCursorKey((MultiCursor *)pCsr, (void **)ppKey, pnKey);
+}
+
+int lsm_csr_value(lsm_cursor *pCsr, const void **ppVal, int *pnVal){
+ return lsmMCursorValue((MultiCursor *)pCsr, (void **)ppVal, pnVal);
+}
+
+void lsm_config_log(
+ lsm_db *pDb,
+ void (*xLog)(void *, int, const char *),
+ void *pCtx
+){
+ pDb->xLog = xLog;
+ pDb->pLogCtx = pCtx;
+}
+
+void lsm_config_work_hook(
+ lsm_db *pDb,
+ void (*xWork)(lsm_db *, void *),
+ void *pCtx
+){
+ pDb->xWork = xWork;
+ pDb->pWorkCtx = pCtx;
+}
+
+void lsmLogMessage(lsm_db *pDb, int rc, const char *zFormat, ...){
+ if( pDb->xLog ){
+ LsmString s;
+ va_list ap, ap2;
+ lsmStringInit(&s, pDb->pEnv);
+ va_start(ap, zFormat);
+ va_start(ap2, zFormat);
+ lsmStringVAppendf(&s, zFormat, ap, ap2);
+ va_end(ap);
+ va_end(ap2);
+ pDb->xLog(pDb->pLogCtx, rc, s.z);
+ lsmStringClear(&s);
+ }
+}
+
+int lsm_begin(lsm_db *pDb, int iLevel){
+ int rc;
+
+ assert_db_state( pDb );
+ rc = (pDb->bReadonly ? LSM_READONLY : LSM_OK);
+
+ /* A value less than zero means open one more transaction. */
+ if( iLevel<0 ) iLevel = pDb->nTransOpen + 1;
+ if( iLevel>pDb->nTransOpen ){
+ int i;
+
+ /* Extend the pDb->aTrans[] array if required. */
+ if( rc==LSM_OK && pDb->nTransAlloc<iLevel ){
+ TransMark *aNew; /* New allocation */
+ int nByte = sizeof(TransMark) * (iLevel+1);
+ aNew = (TransMark *)lsmRealloc(pDb->pEnv, pDb->aTrans, nByte);
+ if( !aNew ){
+ rc = LSM_NOMEM;
+ }else{
+ nByte = sizeof(TransMark) * (iLevel+1 - pDb->nTransAlloc);
+ memset(&aNew[pDb->nTransAlloc], 0, nByte);
+ pDb->nTransAlloc = iLevel+1;
+ pDb->aTrans = aNew;
+ }
+ }
+
+ if( rc==LSM_OK && pDb->nTransOpen==0 ){
+ rc = lsmBeginWriteTrans(pDb);
+ }
+
+ if( rc==LSM_OK ){
+ for(i=pDb->nTransOpen; i<iLevel; i++){
+ lsmTreeMark(pDb, &pDb->aTrans[i].tree);
+ lsmLogTell(pDb, &pDb->aTrans[i].log);
+ }
+ pDb->nTransOpen = iLevel;
+ }
+ }
+
+ return rc;
+}
+
+int lsm_commit(lsm_db *pDb, int iLevel){
+ int rc = LSM_OK;
+
+ assert_db_state( pDb );
+
+ /* A value less than zero means close the innermost nested transaction. */
+ if( iLevel<0 ) iLevel = LSM_MAX(0, pDb->nTransOpen - 1);
+
+ if( iLevel<pDb->nTransOpen ){
+ if( iLevel==0 ){
+ /* Commit the transaction to disk. */
+ if( rc==LSM_OK ) rc = lsmLogCommit(pDb);
+ if( rc==LSM_OK && pDb->eSafety==LSM_SAFETY_FULL ){
+ rc = lsmFsSyncLog(pDb->pFS);
+ }
+ lsmFinishWriteTrans(pDb, (rc==LSM_OK));
+ }
+ pDb->nTransOpen = iLevel;
+ }
+ dbReleaseClientSnapshot(pDb);
+ return rc;
+}
+
+int lsm_rollback(lsm_db *pDb, int iLevel){
+ int rc = LSM_OK;
+ assert_db_state( pDb );
+
+ if( pDb->nTransOpen ){
+ /* A value less than zero means close the innermost nested transaction. */
+ if( iLevel<0 ) iLevel = LSM_MAX(0, pDb->nTransOpen - 1);
+
+ if( iLevel<=pDb->nTransOpen ){
+ TransMark *pMark = &pDb->aTrans[(iLevel==0 ? 0 : iLevel-1)];
+ lsmTreeRollback(pDb, &pMark->tree);
+ if( iLevel ) lsmLogSeek(pDb, &pMark->log);
+ pDb->nTransOpen = iLevel;
+ }
+
+ if( pDb->nTransOpen==0 ){
+ lsmFinishWriteTrans(pDb, 0);
+ }
+ dbReleaseClientSnapshot(pDb);
+ }
+
+ return rc;
+}
+
+int lsm_get_user_version(lsm_db *pDb, unsigned int *piUsr){
+ int rc = LSM_OK; /* Return code */
+
+ /* Open a read transaction if one is not already open. */
+ assert_db_state(pDb);
+ if( pDb->pShmhdr==0 ){
+ assert( pDb->bReadonly );
+ rc = lsmBeginRoTrans(pDb);
+ }else if( pDb->iReader<0 ){
+ rc = lsmBeginReadTrans(pDb);
+ }
+
+ /* Allocate the multi-cursor. */
+ if( rc==LSM_OK ){
+ *piUsr = pDb->treehdr.iUsrVersion;
+ }
+
+ dbReleaseClientSnapshot(pDb);
+ assert_db_state(pDb);
+ return rc;
+}
+
+int lsm_set_user_version(lsm_db *pDb, unsigned int iUsr){
+ int rc = LSM_OK; /* Return code */
+ int bCommit = 0; /* True to commit before returning */
+
+ if( pDb->nTransOpen==0 ){
+ bCommit = 1;
+ rc = lsm_begin(pDb, 1);
+ }
+
+ if( rc==LSM_OK ){
+ pDb->treehdr.iUsrVersion = iUsr;
+ }
+
+ /* If a transaction was opened at the start of this function, commit it.
+ ** Or, if an error has occurred, roll it back. */
+ if( bCommit ){
+ if( rc==LSM_OK ){
+ rc = lsm_commit(pDb, 0);
+ }else{
+ lsm_rollback(pDb, 0);
+ }
+ }
+
+ return rc;
+}
--- /dev/null
+/*
+** 2011-08-18
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** Helper routines for memory allocation.
+*/
+#include "lsmInt.h"
+
+/*
+** The following routines are called internally by LSM sub-routines. In
+** this case a valid environment pointer must be supplied.
+*/
+void *lsmMalloc(lsm_env *pEnv, size_t N){
+ assert( pEnv );
+ return pEnv->xMalloc(pEnv, N);
+}
+void lsmFree(lsm_env *pEnv, void *p){
+ assert( pEnv );
+ pEnv->xFree(pEnv, p);
+}
+void *lsmRealloc(lsm_env *pEnv, void *p, size_t N){
+ assert( pEnv );
+ return pEnv->xRealloc(pEnv, p, N);
+}
+
+/*
+** Core memory allocation routines for LSM.
+*/
+void *lsm_malloc(lsm_env *pEnv, size_t N){
+ return lsmMalloc(pEnv ? pEnv : lsm_default_env(), N);
+}
+void lsm_free(lsm_env *pEnv, void *p){
+ lsmFree(pEnv ? pEnv : lsm_default_env(), p);
+}
+void *lsm_realloc(lsm_env *pEnv, void *p, size_t N){
+ return lsmRealloc(pEnv ? pEnv : lsm_default_env(), p, N);
+}
+
+void *lsmMallocZero(lsm_env *pEnv, size_t N){
+ void *pRet;
+ assert( pEnv );
+ pRet = lsmMalloc(pEnv, N);
+ if( pRet ) memset(pRet, 0, N);
+ return pRet;
+}
+
+void *lsmMallocRc(lsm_env *pEnv, size_t N, int *pRc){
+ void *pRet = 0;
+ if( *pRc==LSM_OK ){
+ pRet = lsmMalloc(pEnv, N);
+ if( pRet==0 ){
+ *pRc = LSM_NOMEM_BKPT;
+ }
+ }
+ return pRet;
+}
+
+void *lsmMallocZeroRc(lsm_env *pEnv, size_t N, int *pRc){
+ void *pRet = 0;
+ if( *pRc==LSM_OK ){
+ pRet = lsmMallocZero(pEnv, N);
+ if( pRet==0 ){
+ *pRc = LSM_NOMEM_BKPT;
+ }
+ }
+ return pRet;
+}
+
+void *lsmReallocOrFree(lsm_env *pEnv, void *p, size_t N){
+ void *pNew;
+ pNew = lsm_realloc(pEnv, p, N);
+ if( !pNew ) lsm_free(pEnv, p);
+ return pNew;
+}
+
+void *lsmReallocOrFreeRc(lsm_env *pEnv, void *p, size_t N, int *pRc){
+ void *pRet = 0;
+ if( *pRc ){
+ lsmFree(pEnv, p);
+ }else{
+ pRet = lsmReallocOrFree(pEnv, p, N);
+ if( !pRet ) *pRc = LSM_NOMEM_BKPT;
+ }
+ return pRet;
+}
+
+char *lsmMallocStrdup(lsm_env *pEnv, const char *zIn){
+ int nByte;
+ char *zRet;
+ nByte = strlen(zIn);
+ zRet = lsmMalloc(pEnv, nByte+1);
+ if( zRet ){
+ memcpy(zRet, zIn, nByte+1);
+ }
+ return zRet;
+}
--- /dev/null
+/*
+** 2012-01-30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** Mutex functions for LSM.
+*/
+#include "lsmInt.h"
+
+/*
+** Allocate a new mutex.
+*/
+int lsmMutexNew(lsm_env *pEnv, lsm_mutex **ppNew){
+ return pEnv->xMutexNew(pEnv, ppNew);
+}
+
+/*
+** Return a handle for one of the static mutexes.
+*/
+int lsmMutexStatic(lsm_env *pEnv, int iMutex, lsm_mutex **ppStatic){
+ return pEnv->xMutexStatic(pEnv, iMutex, ppStatic);
+}
+
+/*
+** Free a mutex allocated by lsmMutexNew().
+*/
+void lsmMutexDel(lsm_env *pEnv, lsm_mutex *pMutex){
+ if( pMutex ) pEnv->xMutexDel(pMutex);
+}
+
+/*
+** Enter a mutex.
+*/
+void lsmMutexEnter(lsm_env *pEnv, lsm_mutex *pMutex){
+ pEnv->xMutexEnter(pMutex);
+}
+
+/*
+** Attempt to enter a mutex, but do not block. If successful, return zero.
+** Otherwise, if the mutex is already held by some other thread and is not
+** entered, return non zero.
+**
+** Each successful call to this function must be matched by a call to
+** lsmMutexLeave().
+*/
+int lsmMutexTry(lsm_env *pEnv, lsm_mutex *pMutex){
+ return pEnv->xMutexTry(pMutex);
+}
+
+/*
+** Leave a mutex.
+*/
+void lsmMutexLeave(lsm_env *pEnv, lsm_mutex *pMutex){
+ pEnv->xMutexLeave(pMutex);
+}
+
+#ifndef NDEBUG
+/*
+** Return non-zero if the mutex passed as the second argument is held
+** by the calling thread, or zero otherwise. If the implementation is not
+** able to tell if the mutex is held by the caller, it should return
+** non-zero.
+**
+** This function is only used as part of assert() statements.
+*/
+int lsmMutexHeld(lsm_env *pEnv, lsm_mutex *pMutex){
+ return pEnv->xMutexHeld ? pEnv->xMutexHeld(pMutex) : 1;
+}
+
+/*
+** Return non-zero if the mutex passed as the second argument is not
+** held by the calling thread, or zero otherwise. If the implementation
+** is not able to tell if the mutex is held by the caller, it should
+** return non-zero.
+**
+** This function is only used as part of assert() statements.
+*/
+int lsmMutexNotHeld(lsm_env *pEnv, lsm_mutex *pMutex){
+ return pEnv->xMutexNotHeld ? pEnv->xMutexNotHeld(pMutex) : 1;
+}
+#endif
--- /dev/null
+/*
+** 2012-01-23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** Utilities used to help multiple LSM clients to coexist within the
+** same process space.
+*/
+#include "lsmInt.h"
+
+/*
+** Global data. All global variables used by code in this file are grouped
+** into the following structure instance.
+**
+** pDatabase:
+** Linked list of all Database objects allocated within this process.
+** This list may not be traversed without holding the global mutex (see
+** functions enterGlobalMutex() and leaveGlobalMutex()).
+*/
+static struct SharedData {
+ Database *pDatabase; /* Linked list of all Database objects */
+} gShared;
+
+/*
+** Database structure. There is one such structure for each distinct
+** database accessed by this process. They are stored in the singly linked
+** list starting at global variable gShared.pDatabase. Database objects are
+** reference counted. Once the number of connections to the associated
+** database drops to zero, they are removed from the linked list and deleted.
+**
+** pFile:
+** In multi-process mode, this file descriptor is used to obtain locks
+** and to access shared-memory. In single process mode, its only job is
+** to hold the exclusive lock on the file.
+**
+*/
+struct Database {
+ /* Protected by the global mutex (enterGlobalMutex/leaveGlobalMutex): */
+ char *zName; /* Canonical path to database file */
+ int nName; /* strlen(zName) */
+ int nDbRef; /* Number of associated lsm_db handles */
+ Database *pDbNext; /* Next Database structure in global list */
+
+ /* Protected by the local mutex (pClientMutex) */
+ int bReadonly; /* True if Database.pFile is read-only */
+ int bMultiProc; /* True if running in multi-process mode */
+ lsm_file *pFile; /* Used for locks/shm in multi-proc mode */
+ LsmFile *pLsmFile; /* List of deferred closes */
+ lsm_mutex *pClientMutex; /* Protects the apShmChunk[] and pConn */
+ int nShmChunk; /* Number of entries in apShmChunk[] array */
+ void **apShmChunk; /* Array of "shared" memory regions */
+ lsm_db *pConn; /* List of connections to this db. */
+};
+
+/*
+** Functions to enter and leave the global mutex. This mutex is used
+** to protect the global linked-list headed at gShared.pDatabase.
+*/
+static int enterGlobalMutex(lsm_env *pEnv){
+ lsm_mutex *p;
+ int rc = lsmMutexStatic(pEnv, LSM_MUTEX_GLOBAL, &p);
+ if( rc==LSM_OK ) lsmMutexEnter(pEnv, p);
+ return rc;
+}
+static void leaveGlobalMutex(lsm_env *pEnv){
+ lsm_mutex *p;
+ lsmMutexStatic(pEnv, LSM_MUTEX_GLOBAL, &p);
+ lsmMutexLeave(pEnv, p);
+}
+
+#ifdef LSM_DEBUG
+static int holdingGlobalMutex(lsm_env *pEnv){
+ lsm_mutex *p;
+ lsmMutexStatic(pEnv, LSM_MUTEX_GLOBAL, &p);
+ return lsmMutexHeld(pEnv, p);
+}
+#endif
+
+#if 0
+static void assertNotInFreelist(Freelist *p, int iBlk){
+ int i;
+ for(i=0; i<p->nEntry; i++){
+ assert( p->aEntry[i].iBlk!=iBlk );
+ }
+}
+#else
+# define assertNotInFreelist(x,y)
+#endif
+
+/*
+** Append an entry to the free-list. If (iId==-1), this is a delete.
+*/
+int freelistAppend(lsm_db *db, int iBlk, i64 iId){
+ lsm_env *pEnv = db->pEnv;
+ Freelist *p;
+ int i;
+
+ assert( iId==-1 || iId>=0 );
+ p = db->bUseFreelist ? db->pFreelist : &db->pWorker->freelist;
+
+ /* Extend the space allocated for the freelist, if required */
+ assert( p->nAlloc>=p->nEntry );
+ if( p->nAlloc==p->nEntry ){
+ int nNew;
+ int nByte;
+ FreelistEntry *aNew;
+
+ nNew = (p->nAlloc==0 ? 4 : p->nAlloc*2);
+ nByte = sizeof(FreelistEntry) * nNew;
+ aNew = (FreelistEntry *)lsmRealloc(pEnv, p->aEntry, nByte);
+ if( !aNew ) return LSM_NOMEM_BKPT;
+ p->nAlloc = nNew;
+ p->aEntry = aNew;
+ }
+
+ for(i=0; i<p->nEntry; i++){
+ assert( i==0 || p->aEntry[i].iBlk > p->aEntry[i-1].iBlk );
+ if( p->aEntry[i].iBlk>=iBlk ) break;
+ }
+
+ if( i<p->nEntry && p->aEntry[i].iBlk==iBlk ){
+ /* Clobber an existing entry */
+ p->aEntry[i].iId = iId;
+ }else{
+ /* Insert a new entry into the list */
+ int nByte = sizeof(FreelistEntry)*(p->nEntry-i);
+ memmove(&p->aEntry[i+1], &p->aEntry[i], nByte);
+ p->aEntry[i].iBlk = iBlk;
+ p->aEntry[i].iId = iId;
+ p->nEntry++;
+ }
+
+ return LSM_OK;
+}
+
+/*
+** This function frees all resources held by the Database structure passed
+** as the only argument.
+*/
+static void freeDatabase(lsm_env *pEnv, Database *p){
+ assert( holdingGlobalMutex(pEnv) );
+ if( p ){
+ /* Free the mutexes */
+ lsmMutexDel(pEnv, p->pClientMutex);
+
+ if( p->pFile ){
+ lsmEnvClose(pEnv, p->pFile);
+ }
+
+ /* Free the array of shm pointers */
+ lsmFree(pEnv, p->apShmChunk);
+
+ /* Free the memory allocated for the Database struct itself */
+ lsmFree(pEnv, p);
+ }
+}
+
+typedef struct DbTruncateCtx DbTruncateCtx;
+struct DbTruncateCtx {
+ int nBlock;
+ i64 iInUse;
+};
+
+static int dbTruncateCb(void *pCtx, int iBlk, i64 iSnapshot){
+ DbTruncateCtx *p = (DbTruncateCtx *)pCtx;
+ if( iBlk!=p->nBlock || (p->iInUse>=0 && iSnapshot>=p->iInUse) ) return 1;
+ p->nBlock--;
+ return 0;
+}
+
+static int dbTruncate(lsm_db *pDb, i64 iInUse){
+ int rc = LSM_OK;
+#if 0
+ int i;
+ DbTruncateCtx ctx;
+
+ assert( pDb->pWorker );
+ ctx.nBlock = pDb->pWorker->nBlock;
+ ctx.iInUse = iInUse;
+
+ rc = lsmWalkFreelist(pDb, 1, dbTruncateCb, (void *)&ctx);
+ for(i=ctx.nBlock+1; rc==LSM_OK && i<=pDb->pWorker->nBlock; i++){
+ rc = freelistAppend(pDb, i, -1);
+ }
+
+ if( rc==LSM_OK ){
+#ifdef LSM_LOG_FREELIST
+ if( ctx.nBlock!=pDb->pWorker->nBlock ){
+ lsmLogMessage(pDb, 0,
+ "dbTruncate(): truncated db to %d blocks",ctx.nBlock
+ );
+ }
+#endif
+ pDb->pWorker->nBlock = ctx.nBlock;
+ }
+#endif
+ return rc;
+}
+
+
+/*
+** This function is called during database shutdown (when the number of
+** connections drops from one to zero). It truncates the database file
+** to as small a size as possible without truncating away any blocks that
+** contain data.
+*/
+static int dbTruncateFile(lsm_db *pDb){
+ int rc;
+
+ assert( pDb->pWorker==0 );
+ assert( lsmShmAssertLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_EXCL) );
+ rc = lsmCheckpointLoadWorker(pDb);
+
+ if( rc==LSM_OK ){
+ DbTruncateCtx ctx;
+
+ /* Walk the database free-block-list in reverse order. Set ctx.nBlock
+ ** to the block number of the last block in the database that actually
+ ** contains data. */
+ ctx.nBlock = pDb->pWorker->nBlock;
+ ctx.iInUse = -1;
+ rc = lsmWalkFreelist(pDb, 1, dbTruncateCb, (void *)&ctx);
+
+ /* If the last block that contains data is not already the last block in
+ ** the database file, truncate the database file so that it is. */
+ if( rc==LSM_OK && ctx.nBlock!=pDb->pWorker->nBlock ){
+ rc = lsmFsTruncateDb(
+ pDb->pFS, (i64)ctx.nBlock*lsmFsBlockSize(pDb->pFS)
+ );
+ }
+ }
+
+ lsmFreeSnapshot(pDb->pEnv, pDb->pWorker);
+ pDb->pWorker = 0;
+ return rc;
+}
+
+static void doDbDisconnect(lsm_db *pDb){
+ int rc;
+
+ if( pDb->bReadonly ){
+ lsmShmLock(pDb, LSM_LOCK_DMS3, LSM_LOCK_UNLOCK, 0);
+ }else{
+ /* Block for an exclusive lock on DMS1. This lock serializes all calls
+ ** to doDbConnect() and doDbDisconnect() across all processes. */
+ rc = lsmShmLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_EXCL, 1);
+ if( rc==LSM_OK ){
+
+ /* Try an exclusive lock on DMS2. If successful, this is the last
+ ** connection to the database. In this case flush the contents of the
+ ** in-memory tree to disk and write a checkpoint. */
+ rc = lsmShmTestLock(pDb, LSM_LOCK_DMS2, 1, LSM_LOCK_EXCL);
+ if( rc==LSM_OK ){
+ rc = lsmShmTestLock(pDb, LSM_LOCK_CHECKPOINTER, 1, LSM_LOCK_EXCL);
+ }
+ if( rc==LSM_OK ){
+ int bReadonly = 0; /* True if there exist read-only conns. */
+
+ /* Flush the in-memory tree, if required. If there is data to flush,
+ ** this will create a new client snapshot in Database.pClient. The
+ ** checkpoint (serialization) of this snapshot may be written to disk
+ ** by the following block.
+ **
+ ** There is no need to take a WRITER lock here. That there are no
+ ** other locks on DMS2 guarantees that there are no other read-write
+ ** connections at this time (and the lock on DMS1 guarantees that
+ ** no new ones may appear).
+ */
+ rc = lsmTreeLoadHeader(pDb, 0);
+ if( rc==LSM_OK && (lsmTreeHasOld(pDb) || lsmTreeSize(pDb)>0) ){
+ rc = lsmFlushTreeToDisk(pDb);
+ }
+
+ /* Now check if there are any read-only connections. If there are,
+ ** then do not truncate the db file or unlink the shared-memory
+ ** region. */
+ if( rc==LSM_OK ){
+ rc = lsmShmTestLock(pDb, LSM_LOCK_DMS3, 1, LSM_LOCK_EXCL);
+ if( rc==LSM_BUSY ){
+ bReadonly = 1;
+ rc = LSM_OK;
+ }
+ }
+
+ /* Write a checkpoint to disk. */
+ if( rc==LSM_OK ){
+ rc = lsmCheckpointWrite(pDb, (bReadonly==0), 0);
+ }
+
+ /* If the checkpoint was written successfully, delete the log file
+ ** and, if possible, truncate the database file. */
+ if( rc==LSM_OK ){
+ int bRotrans = 0;
+ Database *p = pDb->pDatabase;
+
+ /* The log file may only be deleted if there are no clients
+ ** read-only clients running rotrans transactions. */
+ rc = lsmDetectRoTrans(pDb, &bRotrans);
+ if( rc==LSM_OK && bRotrans==0 ){
+ lsmFsCloseAndDeleteLog(pDb->pFS);
+ }
+
+ /* The database may only be truncated if there exist no read-only
+ ** clients - either connected or running rotrans transactions. */
+ if( bReadonly==0 && bRotrans==0 ){
+ dbTruncateFile(pDb);
+ if( p->pFile && p->bMultiProc ){
+ lsmEnvShmUnmap(pDb->pEnv, p->pFile, 1);
+ }
+ }
+ }
+ }
+ }
+
+ if( pDb->iRwclient>=0 ){
+ lsmShmLock(pDb, LSM_LOCK_RWCLIENT(pDb->iRwclient), LSM_LOCK_UNLOCK, 0);
+ pDb->iRwclient = -1;
+ }
+
+ lsmShmLock(pDb, LSM_LOCK_DMS2, LSM_LOCK_UNLOCK, 0);
+ lsmShmLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK, 0);
+ }
+ pDb->pShmhdr = 0;
+}
+
+static int doDbConnect(lsm_db *pDb){
+ const int nUsMax = 100000; /* Max value for nUs */
+ int nUs = 1000; /* us to wait between DMS1 attempts */
+ int rc;
+
+ /* Obtain a pointer to the shared-memory header */
+ assert( pDb->pShmhdr==0 );
+ assert( pDb->bReadonly==0 );
+ rc = lsmShmCacheChunks(pDb, 1);
+ if( rc!=LSM_OK ) return rc;
+ pDb->pShmhdr = (ShmHeader *)pDb->apShm[0];
+
+ /* Block for an exclusive lock on DMS1. This lock serializes all calls
+ ** to doDbConnect() and doDbDisconnect() across all processes. */
+ while( 1 ){
+ rc = lsmShmLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_EXCL, 1);
+ if( rc!=LSM_BUSY ) break;
+ lsmEnvSleep(pDb->pEnv, nUs);
+ nUs = nUs * 2;
+ if( nUs>nUsMax ) nUs = nUsMax;
+ }
+ if( rc!=LSM_OK ){
+ pDb->pShmhdr = 0;
+ return rc;
+ }
+
+ /* Try an exclusive lock on DMS2/DMS3. If successful, this is the first
+ ** and only connection to the database. In this case initialize the
+ ** shared-memory and run log file recovery. */
+ assert( LSM_LOCK_DMS3==1+LSM_LOCK_DMS2 );
+ rc = lsmShmTestLock(pDb, LSM_LOCK_DMS2, 2, LSM_LOCK_EXCL);
+ if( rc==LSM_OK ){
+ memset(pDb->pShmhdr, 0, sizeof(ShmHeader));
+ rc = lsmCheckpointRecover(pDb);
+ if( rc==LSM_OK ){
+ rc = lsmLogRecover(pDb);
+ }
+ if( rc==LSM_OK ){
+ ShmHeader *pShm = pDb->pShmhdr;
+ pShm->aReader[0].iLsmId = lsmCheckpointId(pShm->aSnap1, 0);
+ pShm->aReader[0].iTreeId = pDb->treehdr.iUsedShmid;
+ }
+ }else if( rc==LSM_BUSY ){
+ rc = LSM_OK;
+ }
+
+ /* Take a shared lock on DMS2. In multi-process mode this lock "cannot"
+ ** fail, as connections may only hold an exclusive lock on DMS2 if they
+ ** first hold an exclusive lock on DMS1. And this connection is currently
+ ** holding the exclusive lock on DSM1.
+ **
+ ** However, if some other connection has the database open in single-process
+ ** mode, this operation will fail. In this case, return the error to the
+ ** caller - the attempt to connect to the db has failed.
+ */
+ if( rc==LSM_OK ){
+ rc = lsmShmLock(pDb, LSM_LOCK_DMS2, LSM_LOCK_SHARED, 0);
+ }
+
+ /* If anything went wrong, unlock DMS2. Otherwise, try to take an exclusive
+ ** lock on one of the LSM_LOCK_RWCLIENT() locks. Unlock DMS1 in any case. */
+ if( rc!=LSM_OK ){
+ pDb->pShmhdr = 0;
+ }else{
+ int i;
+ for(i=0; i<LSM_LOCK_NRWCLIENT; i++){
+ int rc2 = lsmShmLock(pDb, LSM_LOCK_RWCLIENT(i), LSM_LOCK_EXCL, 0);
+ if( rc2==LSM_OK ) pDb->iRwclient = i;
+ if( rc2!=LSM_BUSY ){
+ rc = rc2;
+ break;
+ }
+ }
+ }
+ lsmShmLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK, 0);
+
+ return rc;
+}
+
+static int dbOpenSharedFd(lsm_env *pEnv, Database *p, int bRoOk){
+ int rc;
+
+ rc = lsmEnvOpen(pEnv, p->zName, 0, &p->pFile);
+ if( rc==LSM_IOERR && bRoOk ){
+ rc = lsmEnvOpen(pEnv, p->zName, LSM_OPEN_READONLY, &p->pFile);
+ p->bReadonly = 1;
+ }
+
+ return rc;
+}
+
+/*
+** Return a reference to the shared Database handle for the database
+** identified by canonical path zName. If this is the first connection to
+** the named database, a new Database object is allocated. Otherwise, a
+** pointer to an existing object is returned.
+**
+** If successful, *ppDatabase is set to point to the shared Database
+** structure and LSM_OK returned. Otherwise, *ppDatabase is set to NULL
+** and and LSM error code returned.
+**
+** Each successful call to this function should be (eventually) matched
+** by a call to lsmDbDatabaseRelease().
+*/
+int lsmDbDatabaseConnect(
+ lsm_db *pDb, /* Database handle */
+ const char *zName /* Full-path to db file */
+){
+ lsm_env *pEnv = pDb->pEnv;
+ int rc; /* Return code */
+ Database *p = 0; /* Pointer returned via *ppDatabase */
+ int nName = lsmStrlen(zName);
+
+ assert( pDb->pDatabase==0 );
+ rc = enterGlobalMutex(pEnv);
+ if( rc==LSM_OK ){
+
+ /* Search the global list for an existing object. TODO: Need something
+ ** better than the memcmp() below to figure out if a given Database
+ ** object represents the requested file. */
+ for(p=gShared.pDatabase; p; p=p->pDbNext){
+ if( nName==p->nName && 0==memcmp(zName, p->zName, nName) ) break;
+ }
+
+ /* If no suitable Database object was found, allocate a new one. */
+ if( p==0 ){
+ p = (Database *)lsmMallocZeroRc(pEnv, sizeof(Database)+nName+1, &rc);
+
+ /* If the allocation was successful, fill in other fields and
+ ** allocate the client mutex. */
+ if( rc==LSM_OK ){
+ p->bMultiProc = pDb->bMultiProc;
+ p->zName = (char *)&p[1];
+ p->nName = nName;
+ memcpy((void *)p->zName, zName, nName+1);
+ rc = lsmMutexNew(pEnv, &p->pClientMutex);
+ }
+
+ /* If nothing has gone wrong so far, open the shared fd. And if that
+ ** succeeds and this connection requested single-process mode,
+ ** attempt to take the exclusive lock on DMS2. */
+ if( rc==LSM_OK ){
+ int bReadonly = (pDb->bReadonly && pDb->bMultiProc);
+ rc = dbOpenSharedFd(pDb->pEnv, p, bReadonly);
+ }
+
+ if( rc==LSM_OK && p->bMultiProc==0 ){
+ assert( p->bReadonly==0 );
+ rc = lsmEnvLock(pDb->pEnv, p->pFile, LSM_LOCK_DMS2, LSM_LOCK_EXCL);
+ }
+
+ if( rc==LSM_OK ){
+ p->pDbNext = gShared.pDatabase;
+ gShared.pDatabase = p;
+ }else{
+ freeDatabase(pEnv, p);
+ p = 0;
+ }
+ }
+
+ if( p ){
+ p->nDbRef++;
+ }
+ leaveGlobalMutex(pEnv);
+
+ if( p ){
+ lsmMutexEnter(pDb->pEnv, p->pClientMutex);
+ pDb->pNext = p->pConn;
+ p->pConn = pDb;
+ lsmMutexLeave(pDb->pEnv, p->pClientMutex);
+ }
+ }
+
+ pDb->pDatabase = p;
+ if( rc==LSM_OK ){
+ assert( p );
+ rc = lsmFsOpen(pDb, zName, p->bReadonly);
+ }
+
+ /* If the db handle is read-write, then connect to the system now. Run
+ ** recovery as necessary. Or, if this is a read-only database handle,
+ ** defer attempting to connect to the system until a read-transaction
+ ** is opened. */
+ if( pDb->bReadonly==0 ){
+ if( rc==LSM_OK ){
+ rc = lsmFsConfigure(pDb);
+ }
+ if( rc==LSM_OK ){
+ rc = doDbConnect(pDb);
+ }
+ }
+
+ return rc;
+}
+
+static void dbDeferClose(lsm_db *pDb){
+ if( pDb->pFS ){
+ LsmFile *pLsmFile;
+ Database *p = pDb->pDatabase;
+ pLsmFile = lsmFsDeferClose(pDb->pFS);
+ pLsmFile->pNext = p->pLsmFile;
+ p->pLsmFile = pLsmFile;
+ }
+}
+
+LsmFile *lsmDbRecycleFd(lsm_db *db){
+ LsmFile *pRet;
+ Database *p = db->pDatabase;
+ lsmMutexEnter(db->pEnv, p->pClientMutex);
+ if( (pRet = p->pLsmFile)!=0 ){
+ p->pLsmFile = pRet->pNext;
+ }
+ lsmMutexLeave(db->pEnv, p->pClientMutex);
+ return pRet;
+}
+
+/*
+** Release a reference to a Database object obtained from
+** lsmDbDatabaseConnect(). There should be exactly one call to this function
+** for each successful call to Find().
+*/
+void lsmDbDatabaseRelease(lsm_db *pDb){
+ Database *p = pDb->pDatabase;
+ if( p ){
+ lsm_db **ppDb;
+
+ if( pDb->pShmhdr ){
+ doDbDisconnect(pDb);
+ }
+
+ lsmMutexEnter(pDb->pEnv, p->pClientMutex);
+ for(ppDb=&p->pConn; *ppDb!=pDb; ppDb=&((*ppDb)->pNext));
+ *ppDb = pDb->pNext;
+ dbDeferClose(pDb);
+ lsmMutexLeave(pDb->pEnv, p->pClientMutex);
+
+ enterGlobalMutex(pDb->pEnv);
+ p->nDbRef--;
+ if( p->nDbRef==0 ){
+ LsmFile *pIter;
+ LsmFile *pNext;
+ Database **pp;
+
+ /* Remove the Database structure from the linked list. */
+ for(pp=&gShared.pDatabase; *pp!=p; pp=&((*pp)->pDbNext));
+ *pp = p->pDbNext;
+
+ /* If they were allocated from the heap, free the shared memory chunks */
+ if( p->bMultiProc==0 ){
+ int i;
+ for(i=0; i<p->nShmChunk; i++){
+ lsmFree(pDb->pEnv, p->apShmChunk[i]);
+ }
+ }
+
+ /* Close any outstanding file descriptors */
+ for(pIter=p->pLsmFile; pIter; pIter=pNext){
+ pNext = pIter->pNext;
+ lsmEnvClose(pDb->pEnv, pIter->pFile);
+ lsmFree(pDb->pEnv, pIter);
+ }
+ freeDatabase(pDb->pEnv, p);
+ }
+ leaveGlobalMutex(pDb->pEnv);
+ }
+}
+
+Level *lsmDbSnapshotLevel(Snapshot *pSnapshot){
+ return pSnapshot->pLevel;
+}
+
+void lsmDbSnapshotSetLevel(Snapshot *pSnap, Level *pLevel){
+ pSnap->pLevel = pLevel;
+}
+
+/* TODO: Shuffle things around to get rid of this */
+static int firstSnapshotInUse(lsm_db *, i64 *);
+
+/*
+** Context object used by the lsmWalkFreelist() utility.
+*/
+typedef struct WalkFreelistCtx WalkFreelistCtx;
+struct WalkFreelistCtx {
+ lsm_db *pDb;
+ int bReverse;
+ Freelist *pFreelist;
+ int iFree;
+ int (*xUsr)(void *, int, i64); /* User callback function */
+ void *pUsrctx; /* User callback context */
+ int bDone; /* Set to true after xUsr() returns true */
+};
+
+/*
+** Callback used by lsmWalkFreelist().
+*/
+static int walkFreelistCb(void *pCtx, int iBlk, i64 iSnapshot){
+ WalkFreelistCtx *p = (WalkFreelistCtx *)pCtx;
+ const int iDir = (p->bReverse ? -1 : 1);
+ Freelist *pFree = p->pFreelist;
+
+ assert( p->bDone==0 );
+ if( pFree ){
+ while( (p->iFree < pFree->nEntry) && p->iFree>=0 ){
+ FreelistEntry *pEntry = &pFree->aEntry[p->iFree];
+ if( (p->bReverse==0 && pEntry->iBlk>iBlk)
+ || (p->bReverse!=0 && pEntry->iBlk<iBlk)
+ ){
+ break;
+ }else{
+ p->iFree += iDir;
+ if( pEntry->iId>=0
+ && p->xUsr(p->pUsrctx, pEntry->iBlk, pEntry->iId)
+ ){
+ p->bDone = 1;
+ return 1;
+ }
+ if( pEntry->iBlk==iBlk ) return 0;
+ }
+ }
+ }
+
+ if( p->xUsr(p->pUsrctx, iBlk, iSnapshot) ){
+ p->bDone = 1;
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** The database handle passed as the first argument must be the worker
+** connection. This function iterates through the contents of the current
+** free block list, invoking the supplied callback once for each list
+** element.
+**
+** The difference between this function and lsmSortedWalkFreelist() is
+** that lsmSortedWalkFreelist() only considers those free-list elements
+** stored within the LSM. This function also merges in any in-memory
+** elements.
+*/
+int lsmWalkFreelist(
+ lsm_db *pDb, /* Database handle (must be worker) */
+ int bReverse, /* True to iterate from largest to smallest */
+ int (*x)(void *, int, i64), /* Callback function */
+ void *pCtx /* First argument to pass to callback */
+){
+ const int iDir = (bReverse ? -1 : 1);
+ int rc;
+ int iCtx;
+
+ WalkFreelistCtx ctx[2];
+
+ ctx[0].pDb = pDb;
+ ctx[0].bReverse = bReverse;
+ ctx[0].pFreelist = &pDb->pWorker->freelist;
+ if( ctx[0].pFreelist && bReverse ){
+ ctx[0].iFree = ctx[0].pFreelist->nEntry-1;
+ }else{
+ ctx[0].iFree = 0;
+ }
+ ctx[0].xUsr = walkFreelistCb;
+ ctx[0].pUsrctx = (void *)&ctx[1];
+ ctx[0].bDone = 0;
+
+ ctx[1].pDb = pDb;
+ ctx[1].bReverse = bReverse;
+ ctx[1].pFreelist = pDb->pFreelist;
+ if( ctx[1].pFreelist && bReverse ){
+ ctx[1].iFree = ctx[1].pFreelist->nEntry-1;
+ }else{
+ ctx[1].iFree = 0;
+ }
+ ctx[1].xUsr = x;
+ ctx[1].pUsrctx = pCtx;
+ ctx[1].bDone = 0;
+
+ rc = lsmSortedWalkFreelist(pDb, bReverse, walkFreelistCb, (void *)&ctx[0]);
+
+ if( ctx[0].bDone==0 ){
+ for(iCtx=0; iCtx<2; iCtx++){
+ int i;
+ WalkFreelistCtx *p = &ctx[iCtx];
+ for(i=p->iFree;
+ p->pFreelist && rc==LSM_OK && i<p->pFreelist->nEntry && i>=0;
+ i += iDir
+ ){
+ FreelistEntry *pEntry = &p->pFreelist->aEntry[i];
+ if( pEntry->iId>=0 && p->xUsr(p->pUsrctx, pEntry->iBlk, pEntry->iId) ){
+ return LSM_OK;
+ }
+ }
+ }
+ }
+
+ return rc;
+}
+
+
+typedef struct FindFreeblockCtx FindFreeblockCtx;
+struct FindFreeblockCtx {
+ i64 iInUse;
+ int iRet;
+ int bNotOne;
+};
+
+static int findFreeblockCb(void *pCtx, int iBlk, i64 iSnapshot){
+ FindFreeblockCtx *p = (FindFreeblockCtx *)pCtx;
+ if( iSnapshot<p->iInUse && (iBlk!=1 || p->bNotOne==0) ){
+ p->iRet = iBlk;
+ return 1;
+ }
+ return 0;
+}
+
+static int findFreeblock(lsm_db *pDb, i64 iInUse, int bNotOne, int *piRet){
+ int rc; /* Return code */
+ FindFreeblockCtx ctx; /* Context object */
+
+ ctx.iInUse = iInUse;
+ ctx.iRet = 0;
+ ctx.bNotOne = bNotOne;
+ rc = lsmWalkFreelist(pDb, 0, findFreeblockCb, (void *)&ctx);
+ *piRet = ctx.iRet;
+
+ return rc;
+}
+
+/*
+** Allocate a new database file block to write data to, either by extending
+** the database file or by recycling a free-list entry. The worker snapshot
+** must be held in order to call this function.
+**
+** If successful, *piBlk is set to the block number allocated and LSM_OK is
+** returned. Otherwise, *piBlk is zeroed and an lsm error code returned.
+*/
+int lsmBlockAllocate(lsm_db *pDb, int iBefore, int *piBlk){
+ Snapshot *p = pDb->pWorker;
+ int iRet = 0; /* Block number of allocated block */
+ int rc = LSM_OK;
+ i64 iInUse = 0; /* Snapshot id still in use */
+ i64 iSynced = 0; /* Snapshot id synced to disk */
+
+ assert( p );
+
+#ifdef LSM_LOG_FREELIST
+ {
+ static int nCall = 0;
+ char *zFree = 0;
+ nCall++;
+ rc = lsmInfoFreelist(pDb, &zFree);
+ if( rc!=LSM_OK ) return rc;
+ lsmLogMessage(pDb, 0, "lsmBlockAllocate(): %d freelist: %s", nCall, zFree);
+ lsmFree(pDb->pEnv, zFree);
+ }
+#endif
+
+ /* Set iInUse to the smallest snapshot id that is either:
+ **
+ ** * Currently in use by a database client,
+ ** * May be used by a database client in the future, or
+ ** * Is the most recently checkpointed snapshot (i.e. the one that will
+ ** be used following recovery if a failure occurs at this point).
+ */
+ rc = lsmCheckpointSynced(pDb, &iSynced, 0, 0);
+ if( rc==LSM_OK && iSynced==0 ) iSynced = p->iId;
+ iInUse = iSynced;
+ if( rc==LSM_OK && pDb->iReader>=0 ){
+ assert( pDb->pClient );
+ iInUse = LSM_MIN(iInUse, pDb->pClient->iId);
+ }
+ if( rc==LSM_OK ) rc = firstSnapshotInUse(pDb, &iInUse);
+
+#ifdef LSM_LOG_FREELIST
+ {
+ lsmLogMessage(pDb, 0, "lsmBlockAllocate(): "
+ "snapshot-in-use: %lld (iSynced=%lld) (client-id=%lld)",
+ iInUse, iSynced, (pDb->iReader>=0 ? pDb->pClient->iId : 0)
+ );
+ }
+#endif
+
+
+ /* Unless there exists a read-only transaction (which prevents us from
+ ** recycling any blocks regardless, query the free block list for a
+ ** suitable block to reuse.
+ **
+ ** It might seem more natural to check for a read-only transaction at
+ ** the start of this function. However, it is better do wait until after
+ ** the call to lsmCheckpointSynced() to do so.
+ */
+ if( rc==LSM_OK ){
+ int bRotrans;
+ rc = lsmDetectRoTrans(pDb, &bRotrans);
+
+ if( rc==LSM_OK && bRotrans==0 ){
+ rc = findFreeblock(pDb, iInUse, (iBefore>0), &iRet);
+ }
+ }
+
+ if( iBefore>0 && (iRet<=0 || iRet>=iBefore) ){
+ iRet = 0;
+
+ }else if( rc==LSM_OK ){
+ /* If a block was found in the free block list, use it and remove it from
+ ** the list. Otherwise, if no suitable block was found, allocate one from
+ ** the end of the file. */
+ if( iRet>0 ){
+#ifdef LSM_LOG_FREELIST
+ lsmLogMessage(pDb, 0,
+ "reusing block %d (snapshot-in-use=%lld)", iRet, iInUse);
+#endif
+ rc = freelistAppend(pDb, iRet, -1);
+ if( rc==LSM_OK ){
+ rc = dbTruncate(pDb, iInUse);
+ }
+ }else{
+ iRet = ++(p->nBlock);
+#ifdef LSM_LOG_FREELIST
+ lsmLogMessage(pDb, 0, "extending file to %d blocks", iRet);
+#endif
+ }
+ }
+
+ assert( iBefore>0 || iRet>0 || rc!=LSM_OK );
+ *piBlk = iRet;
+ return rc;
+}
+
+/*
+** Free a database block. The worker snapshot must be held in order to call
+** this function.
+**
+** If successful, LSM_OK is returned. Otherwise, an lsm error code (e.g.
+** LSM_NOMEM).
+*/
+int lsmBlockFree(lsm_db *pDb, int iBlk){
+ Snapshot *p = pDb->pWorker;
+ assert( lsmShmAssertWorker(pDb) );
+
+#ifdef LSM_LOG_FREELIST
+ lsmLogMessage(pDb, LSM_OK, "lsmBlockFree(): Free block %d", iBlk);
+#endif
+
+ return freelistAppend(pDb, iBlk, p->iId);
+}
+
+/*
+** Refree a database block. The worker snapshot must be held in order to call
+** this function.
+**
+** Refreeing is required when a block is allocated using lsmBlockAllocate()
+** but then not used. This function is used to push the block back onto
+** the freelist. Refreeing a block is different from freeing is, as a refreed
+** block may be reused immediately. Whereas a freed block can not be reused
+** until (at least) after the next checkpoint.
+*/
+int lsmBlockRefree(lsm_db *pDb, int iBlk){
+ int rc = LSM_OK; /* Return code */
+
+#ifdef LSM_LOG_FREELIST
+ lsmLogMessage(pDb, LSM_OK, "lsmBlockRefree(): Refree block %d", iBlk);
+#endif
+
+ rc = freelistAppend(pDb, iBlk, 0);
+ return rc;
+}
+
+/*
+** If required, copy a database checkpoint from shared memory into the
+** database itself.
+**
+** The WORKER lock must not be held when this is called. This is because
+** this function may indirectly call fsync(). And the WORKER lock should
+** not be held that long (in case it is required by a client flushing an
+** in-memory tree to disk).
+*/
+int lsmCheckpointWrite(lsm_db *pDb, int bTruncate, u32 *pnWrite){
+ int rc; /* Return Code */
+ u32 nWrite = 0;
+
+ assert( pDb->pWorker==0 );
+ assert( 1 || pDb->pClient==0 );
+ assert( lsmShmAssertLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_UNLOCK) );
+
+ rc = lsmShmLock(pDb, LSM_LOCK_CHECKPOINTER, LSM_LOCK_EXCL, 0);
+ if( rc!=LSM_OK ) return rc;
+
+ rc = lsmCheckpointLoad(pDb, 0);
+ if( rc==LSM_OK ){
+ int nBlock = lsmCheckpointNBlock(pDb->aSnapshot);
+ ShmHeader *pShm = pDb->pShmhdr;
+ int bDone = 0; /* True if checkpoint is already stored */
+
+ /* Check if this checkpoint has already been written to the database
+ ** file. If so, set variable bDone to true. */
+ if( pShm->iMetaPage ){
+ MetaPage *pPg; /* Meta page */
+ u8 *aData; /* Meta-page data buffer */
+ int nData; /* Size of aData[] in bytes */
+ i64 iCkpt; /* Id of checkpoint just loaded */
+ i64 iDisk; /* Id of checkpoint already stored in db */
+ iCkpt = lsmCheckpointId(pDb->aSnapshot, 0);
+ rc = lsmFsMetaPageGet(pDb->pFS, 0, pShm->iMetaPage, &pPg);
+ if( rc==LSM_OK ){
+ aData = lsmFsMetaPageData(pPg, &nData);
+ iDisk = lsmCheckpointId((u32 *)aData, 1);
+ nWrite = lsmCheckpointNWrite((u32 *)aData, 1);
+ lsmFsMetaPageRelease(pPg);
+ }
+ bDone = (iDisk>=iCkpt);
+ }
+
+ if( rc==LSM_OK && bDone==0 ){
+ int iMeta = (pShm->iMetaPage % 2) + 1;
+ if( pDb->eSafety!=LSM_SAFETY_OFF ){
+ rc = lsmFsSyncDb(pDb->pFS, nBlock);
+ }
+ if( rc==LSM_OK ) rc = lsmCheckpointStore(pDb, iMeta);
+ if( rc==LSM_OK && pDb->eSafety!=LSM_SAFETY_OFF){
+ rc = lsmFsSyncDb(pDb->pFS, 0);
+ }
+ if( rc==LSM_OK ){
+ pShm->iMetaPage = iMeta;
+ nWrite = lsmCheckpointNWrite(pDb->aSnapshot, 0) - nWrite;
+ }
+#ifdef LSM_LOG_WORK
+ lsmLogMessage(pDb, 0, "finish checkpoint %d",
+ (int)lsmCheckpointId(pDb->aSnapshot, 0)
+ );
+#endif
+ }
+
+ if( rc==LSM_OK && bTruncate && nBlock>0 ){
+ rc = lsmFsTruncateDb(pDb->pFS, (i64)nBlock*lsmFsBlockSize(pDb->pFS));
+ }
+ }
+
+ lsmShmLock(pDb, LSM_LOCK_CHECKPOINTER, LSM_LOCK_UNLOCK, 0);
+ if( pnWrite && rc==LSM_OK ) *pnWrite = nWrite;
+ return rc;
+}
+
+int lsmBeginWork(lsm_db *pDb){
+ int rc;
+
+ /* Attempt to take the WORKER lock */
+ rc = lsmShmLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_EXCL, 0);
+
+ /* Deserialize the current worker snapshot */
+ if( rc==LSM_OK ){
+ rc = lsmCheckpointLoadWorker(pDb);
+ }
+ return rc;
+}
+
+void lsmFreeSnapshot(lsm_env *pEnv, Snapshot *p){
+ if( p ){
+ lsmSortedFreeLevel(pEnv, p->pLevel);
+ lsmFree(pEnv, p->freelist.aEntry);
+ lsmFree(pEnv, p->redirect.a);
+ lsmFree(pEnv, p);
+ }
+}
+
+/*
+** Attempt to populate one of the read-lock slots to contain lock values
+** iLsm/iShm. Or, if such a slot exists already, this function is a no-op.
+**
+** It is not an error if no slot can be populated because the write-lock
+** cannot be obtained. If any other error occurs, return an LSM error code.
+** Otherwise, LSM_OK.
+**
+** This function is called at various points to try to ensure that there
+** always exists at least one read-lock slot that can be used by a read-only
+** client. And so that, in the usual case, there is an "exact match" available
+** whenever a read transaction is opened by any client. At present this
+** function is called when:
+**
+** * A write transaction that called lsmTreeDiscardOld() is committed, and
+** * Whenever the working snapshot is updated (i.e. lsmFinishWork()).
+*/
+static int dbSetReadLock(lsm_db *db, i64 iLsm, u32 iShm){
+ int rc = LSM_OK;
+ ShmHeader *pShm = db->pShmhdr;
+ int i;
+
+ /* Check if there is already a slot containing the required values. */
+ for(i=0; i<LSM_LOCK_NREADER; i++){
+ ShmReader *p = &pShm->aReader[i];
+ if( p->iLsmId==iLsm && p->iTreeId==iShm ) return LSM_OK;
+ }
+
+ /* Iterate through all read-lock slots, attempting to take a write-lock
+ ** on each of them. If a write-lock succeeds, populate the locked slot
+ ** with the required values and break out of the loop. */
+ for(i=0; rc==LSM_OK && i<LSM_LOCK_NREADER; i++){
+ rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_EXCL, 0);
+ if( rc==LSM_BUSY ){
+ rc = LSM_OK;
+ }else{
+ ShmReader *p = &pShm->aReader[i];
+ p->iLsmId = iLsm;
+ p->iTreeId = iShm;
+ lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_UNLOCK, 0);
+ break;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Release the read-lock currently held by connection db.
+*/
+int dbReleaseReadlock(lsm_db *db){
+ int rc = LSM_OK;
+ if( db->iReader>=0 ){
+ rc = lsmShmLock(db, LSM_LOCK_READER(db->iReader), LSM_LOCK_UNLOCK, 0);
+ db->iReader = -1;
+ }
+ db->bRoTrans = 0;
+ return rc;
+}
+
+
+/*
+** Argument bFlush is true if the contents of the in-memory tree has just
+** been flushed to disk. The significance of this is that once the snapshot
+** created to hold the updated state of the database is synced to disk, log
+** file space can be recycled.
+*/
+void lsmFinishWork(lsm_db *pDb, int bFlush, int *pRc){
+ int rc = *pRc;
+ assert( rc!=0 || pDb->pWorker );
+ if( pDb->pWorker ){
+ /* If no error has occurred, serialize the worker snapshot and write
+ ** it to shared memory. */
+ if( rc==LSM_OK ){
+ rc = lsmSaveWorker(pDb, bFlush);
+ }
+
+ /* Assuming no error has occurred, update a read lock slot with the
+ ** new snapshot id (see comments above function dbSetReadLock()). */
+ if( rc==LSM_OK ){
+ if( pDb->iReader<0 ){
+ rc = lsmTreeLoadHeader(pDb, 0);
+ }
+ if( rc==LSM_OK ){
+ rc = dbSetReadLock(pDb, pDb->pWorker->iId, pDb->treehdr.iUsedShmid);
+ }
+ }
+
+ /* Free the snapshot object. */
+ lsmFreeSnapshot(pDb->pEnv, pDb->pWorker);
+ pDb->pWorker = 0;
+ }
+
+ lsmShmLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_UNLOCK, 0);
+ *pRc = rc;
+}
+
+/*
+** Called when recovery is finished.
+*/
+int lsmFinishRecovery(lsm_db *pDb){
+ lsmTreeEndTransaction(pDb, 1);
+ return LSM_OK;
+}
+
+/*
+** Check if the currently configured compression functions
+** (LSM_CONFIG_SET_COMPRESSION) are compatible with a database that has its
+** compression id set to iReq. Compression routines are compatible if iReq
+** is zero (indicating the database is empty), or if it is equal to the
+** compression id of the configured compression routines.
+**
+** If the check shows that the current compression are incompatible and there
+** is a compression factory registered, give it a chance to install new
+** compression routines.
+**
+** If, after any registered factory is invoked, the compression functions
+** are still incompatible, return LSM_MISMATCH. Otherwise, LSM_OK.
+*/
+int lsmCheckCompressionId(lsm_db *pDb, u32 iReq){
+ if( iReq!=LSM_COMPRESSION_EMPTY && pDb->compress.iId!=iReq ){
+ if( pDb->factory.xFactory ){
+ pDb->bInFactory = 1;
+ pDb->factory.xFactory(pDb->factory.pCtx, pDb, iReq);
+ pDb->bInFactory = 0;
+ }
+ if( pDb->compress.iId!=iReq ){
+ /* Incompatible */
+ return LSM_MISMATCH;
+ }
+ }
+ /* Compatible */
+ return LSM_OK;
+}
+
+/*
+** Begin a read transaction. This function is a no-op if the connection
+** passed as the only argument already has an open read transaction.
+*/
+int lsmBeginReadTrans(lsm_db *pDb){
+ const int MAX_READLOCK_ATTEMPTS = 10;
+ const int nMaxAttempt = (pDb->bRoTrans ? 1 : MAX_READLOCK_ATTEMPTS);
+
+ int rc = LSM_OK; /* Return code */
+ int iAttempt = 0;
+
+ assert( pDb->pWorker==0 );
+
+ while( rc==LSM_OK && pDb->iReader<0 && (iAttempt++)<nMaxAttempt ){
+ int iTreehdr = 0;
+ int iSnap = 0;
+ assert( pDb->pCsr==0 && pDb->nTransOpen==0 );
+
+ /* Load the in-memory tree header. */
+ rc = lsmTreeLoadHeader(pDb, &iTreehdr);
+
+ /* Load the database snapshot */
+ if( rc==LSM_OK ){
+ if( lsmCheckpointClientCacheOk(pDb)==0 ){
+ lsmFreeSnapshot(pDb->pEnv, pDb->pClient);
+ pDb->pClient = 0;
+ lsmMCursorFreeCache(pDb);
+ lsmFsPurgeCache(pDb->pFS);
+ rc = lsmCheckpointLoad(pDb, &iSnap);
+ }else{
+ iSnap = 1;
+ }
+ }
+
+ /* Take a read-lock on the tree and snapshot just loaded. Then check
+ ** that the shared-memory still contains the same values. If so, proceed.
+ ** Otherwise, relinquish the read-lock and retry the whole procedure
+ ** (starting with loading the in-memory tree header). */
+ if( rc==LSM_OK ){
+ u32 iShmMax = pDb->treehdr.iUsedShmid;
+ u32 iShmMin = pDb->treehdr.iNextShmid+1-LSM_MAX_SHMCHUNKS;
+ rc = lsmReadlock(
+ pDb, lsmCheckpointId(pDb->aSnapshot, 0), iShmMin, iShmMax
+ );
+ if( rc==LSM_OK ){
+ if( lsmTreeLoadHeaderOk(pDb, iTreehdr)
+ && lsmCheckpointLoadOk(pDb, iSnap)
+ ){
+ /* Read lock has been successfully obtained. Deserialize the
+ ** checkpoint just loaded. TODO: This will be removed after
+ ** lsm_sorted.c is changed to work directly from the serialized
+ ** version of the snapshot. */
+ if( pDb->pClient==0 ){
+ rc = lsmCheckpointDeserialize(pDb, 0, pDb->aSnapshot,&pDb->pClient);
+ }
+ assert( (rc==LSM_OK)==(pDb->pClient!=0) );
+ assert( pDb->iReader>=0 );
+
+ /* Check that the client has the right compression hooks loaded.
+ ** If not, set rc to LSM_MISMATCH. */
+ if( rc==LSM_OK ){
+ rc = lsmCheckCompressionId(pDb, pDb->pClient->iCmpId);
+ }
+ }else{
+ rc = dbReleaseReadlock(pDb);
+ }
+ }
+
+ if( rc==LSM_BUSY ){
+ rc = LSM_OK;
+ }
+ }
+#if 0
+if( rc==LSM_OK && pDb->pClient ){
+ fprintf(stderr,
+ "reading %p: snapshot:%d used-shmid:%d trans-id:%d iOldShmid=%d\n",
+ (void *)pDb,
+ (int)pDb->pClient->iId, (int)pDb->treehdr.iUsedShmid,
+ (int)pDb->treehdr.root.iTransId,
+ (int)pDb->treehdr.iOldShmid
+ );
+}
+#endif
+ }
+
+ if( rc==LSM_OK ){
+ rc = lsmShmCacheChunks(pDb, pDb->treehdr.nChunk);
+ }
+ if( rc!=LSM_OK ){
+ dbReleaseReadlock(pDb);
+ }
+ if( pDb->pClient==0 && rc==LSM_OK ) rc = LSM_BUSY;
+ return rc;
+}
+
+/*
+** This function is used by a read-write connection to determine if there
+** are currently one or more read-only transactions open on the database
+** (in this context a read-only transaction is one opened by a read-only
+** connection on a non-live database).
+**
+** If no error occurs, LSM_OK is returned and *pbExists is set to true if
+** some other connection has a read-only transaction open, or false
+** otherwise. If an error occurs an LSM error code is returned and the final
+** value of *pbExist is undefined.
+*/
+int lsmDetectRoTrans(lsm_db *db, int *pbExist){
+ int rc;
+
+ /* Only a read-write connection may use this function. */
+ assert( db->bReadonly==0 );
+
+ rc = lsmShmTestLock(db, LSM_LOCK_ROTRANS, 1, LSM_LOCK_EXCL);
+ if( rc==LSM_BUSY ){
+ *pbExist = 1;
+ rc = LSM_OK;
+ }else{
+ *pbExist = 0;
+ }
+
+ return rc;
+}
+
+/*
+** db is a read-only database handle in the disconnected state. This function
+** attempts to open a read-transaction on the database. This may involve
+** connecting to the database system (opening shared memory etc.).
+*/
+int lsmBeginRoTrans(lsm_db *db){
+ int rc = LSM_OK;
+
+ assert( db->bReadonly && db->pShmhdr==0 );
+ assert( db->iReader<0 );
+
+ if( db->bRoTrans==0 ){
+
+ /* Attempt a shared-lock on DMS1. */
+ rc = lsmShmLock(db, LSM_LOCK_DMS1, LSM_LOCK_SHARED, 0);
+ if( rc!=LSM_OK ) return rc;
+
+ rc = lsmShmTestLock(
+ db, LSM_LOCK_RWCLIENT(0), LSM_LOCK_NREADER, LSM_LOCK_SHARED
+ );
+ if( rc==LSM_OK ){
+ /* System is not live. Take a SHARED lock on the ROTRANS byte and
+ ** release DMS1. Locking ROTRANS tells all read-write clients that they
+ ** may not recycle any disk space from within the database or log files,
+ ** as a read-only client may be using it. */
+ rc = lsmShmLock(db, LSM_LOCK_ROTRANS, LSM_LOCK_SHARED, 0);
+ lsmShmLock(db, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK, 0);
+
+ if( rc==LSM_OK ){
+ db->bRoTrans = 1;
+ rc = lsmShmCacheChunks(db, 1);
+ if( rc==LSM_OK ){
+ db->pShmhdr = (ShmHeader *)db->apShm[0];
+ memset(db->pShmhdr, 0, sizeof(ShmHeader));
+ rc = lsmCheckpointRecover(db);
+ if( rc==LSM_OK ){
+ rc = lsmLogRecover(db);
+ }
+ }
+ }
+ }else if( rc==LSM_BUSY ){
+ /* System is live! */
+ rc = lsmShmLock(db, LSM_LOCK_DMS3, LSM_LOCK_SHARED, 0);
+ lsmShmLock(db, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK, 0);
+ if( rc==LSM_OK ){
+ rc = lsmShmCacheChunks(db, 1);
+ if( rc==LSM_OK ){
+ db->pShmhdr = (ShmHeader *)db->apShm[0];
+ }
+ }
+ }
+
+ if( rc==LSM_OK ){
+ rc = lsmBeginReadTrans(db);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Close the currently open read transaction.
+*/
+void lsmFinishReadTrans(lsm_db *pDb){
+
+ /* Worker connections should not be closing read transactions. And
+ ** read transactions should only be closed after all cursors and write
+ ** transactions have been closed. Finally pClient should be non-NULL
+ ** only iff pDb->iReader>=0. */
+ assert( pDb->pWorker==0 );
+ assert( pDb->pCsr==0 && pDb->nTransOpen==0 );
+
+ if( pDb->bRoTrans ){
+ int i;
+ for(i=0; i<pDb->nShm; i++){
+ lsmFree(pDb->pEnv, pDb->apShm[i]);
+ }
+ lsmFree(pDb->pEnv, pDb->apShm);
+ pDb->apShm = 0;
+ pDb->nShm = 0;
+ pDb->pShmhdr = 0;
+
+ lsmShmLock(pDb, LSM_LOCK_ROTRANS, LSM_LOCK_UNLOCK, 0);
+ }
+ dbReleaseReadlock(pDb);
+}
+
+/*
+** Open a write transaction.
+*/
+int lsmBeginWriteTrans(lsm_db *pDb){
+ int rc = LSM_OK; /* Return code */
+ ShmHeader *pShm = pDb->pShmhdr; /* Shared memory header */
+
+ assert( pDb->nTransOpen==0 );
+ assert( pDb->bDiscardOld==0 );
+ assert( pDb->bReadonly==0 );
+
+ /* If there is no read-transaction open, open one now. */
+ if( pDb->iReader<0 ){
+ rc = lsmBeginReadTrans(pDb);
+ }
+
+ /* Attempt to take the WRITER lock */
+ if( rc==LSM_OK ){
+ rc = lsmShmLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_EXCL, 0);
+ }
+
+ /* If the previous writer failed mid-transaction, run emergency rollback. */
+ if( rc==LSM_OK && pShm->bWriter ){
+ rc = lsmTreeRepair(pDb);
+ if( rc==LSM_OK ) pShm->bWriter = 0;
+ }
+
+ /* Check that this connection is currently reading from the most recent
+ ** version of the database. If not, return LSM_BUSY. */
+ if( rc==LSM_OK && memcmp(&pShm->hdr1, &pDb->treehdr, sizeof(TreeHeader)) ){
+ rc = LSM_BUSY;
+ }
+
+ if( rc==LSM_OK ){
+ rc = lsmLogBegin(pDb);
+ }
+
+ /* If everything was successful, set the "transaction-in-progress" flag
+ ** and return LSM_OK. Otherwise, if some error occurred, relinquish the
+ ** WRITER lock and return an error code. */
+ if( rc==LSM_OK ){
+ TreeHeader *p = &pDb->treehdr;
+ pShm->bWriter = 1;
+ p->root.iTransId++;
+ if( lsmTreeHasOld(pDb) && p->iOldLog==pDb->pClient->iLogOff ){
+ lsmTreeDiscardOld(pDb);
+ pDb->bDiscardOld = 1;
+ }
+ }else{
+ lsmShmLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_UNLOCK, 0);
+ if( pDb->pCsr==0 ) lsmFinishReadTrans(pDb);
+ }
+ return rc;
+}
+
+/*
+** End the current write transaction. The connection is left with an open
+** read transaction. It is an error to call this if there is no open write
+** transaction.
+**
+** If the transaction was committed, then a commit record has already been
+** written into the log file when this function is called. Or, if the
+** transaction was rolled back, both the log file and in-memory tree
+** structure have already been restored. In either case, this function
+** merely releases locks and other resources held by the write-transaction.
+**
+** LSM_OK is returned if successful, or an LSM error code otherwise.
+*/
+int lsmFinishWriteTrans(lsm_db *pDb, int bCommit){
+ int rc = LSM_OK;
+ int bFlush = 0;
+
+ lsmLogEnd(pDb, bCommit);
+ if( rc==LSM_OK && bCommit && lsmTreeSize(pDb)>pDb->nTreeLimit ){
+ bFlush = 1;
+ lsmTreeMakeOld(pDb);
+ }
+ lsmTreeEndTransaction(pDb, bCommit);
+
+ if( rc==LSM_OK ){
+ if( bFlush && pDb->bAutowork ){
+ rc = lsmSortedAutoWork(pDb, 1);
+ }else if( bCommit && pDb->bDiscardOld ){
+ rc = dbSetReadLock(pDb, pDb->pClient->iId, pDb->treehdr.iUsedShmid);
+ }
+ }
+ pDb->bDiscardOld = 0;
+ lsmShmLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_UNLOCK, 0);
+
+ if( bFlush && pDb->bAutowork==0 && pDb->xWork ){
+ pDb->xWork(pDb, pDb->pWorkCtx);
+ }
+ return rc;
+}
+
+
+/*
+** Return non-zero if the caller is holding the client mutex.
+*/
+#ifdef LSM_DEBUG
+int lsmHoldingClientMutex(lsm_db *pDb){
+ return lsmMutexHeld(pDb->pEnv, pDb->pDatabase->pClientMutex);
+}
+#endif
+
+static int slotIsUsable(ShmReader *p, i64 iLsm, u32 iShmMin, u32 iShmMax){
+ return(
+ p->iLsmId && p->iLsmId<=iLsm
+ && shm_sequence_ge(iShmMax, p->iTreeId)
+ && shm_sequence_ge(p->iTreeId, iShmMin)
+ );
+}
+
+/*
+** Obtain a read-lock on database version identified by the combination
+** of snapshot iLsm and tree iTree. Return LSM_OK if successful, or
+** an LSM error code otherwise.
+*/
+int lsmReadlock(lsm_db *db, i64 iLsm, u32 iShmMin, u32 iShmMax){
+ int rc = LSM_OK;
+ ShmHeader *pShm = db->pShmhdr;
+ int i;
+
+ assert( db->iReader<0 );
+ assert( shm_sequence_ge(iShmMax, iShmMin) );
+
+ /* This is a no-op if the read-only transaction flag is set. */
+ if( db->bRoTrans ){
+ db->iReader = 0;
+ return LSM_OK;
+ }
+
+ /* Search for an exact match. */
+ for(i=0; db->iReader<0 && rc==LSM_OK && i<LSM_LOCK_NREADER; i++){
+ ShmReader *p = &pShm->aReader[i];
+ if( p->iLsmId==iLsm && p->iTreeId==iShmMax ){
+ rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_SHARED, 0);
+ if( rc==LSM_OK && p->iLsmId==iLsm && p->iTreeId==iShmMax ){
+ db->iReader = i;
+ }else if( rc==LSM_BUSY ){
+ rc = LSM_OK;
+ }
+ }
+ }
+
+ /* Try to obtain a write-lock on each slot, in order. If successful, set
+ ** the slot values to iLsm/iTree. */
+ for(i=0; db->iReader<0 && rc==LSM_OK && i<LSM_LOCK_NREADER; i++){
+ rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_EXCL, 0);
+ if( rc==LSM_BUSY ){
+ rc = LSM_OK;
+ }else{
+ ShmReader *p = &pShm->aReader[i];
+ p->iLsmId = iLsm;
+ p->iTreeId = iShmMax;
+ rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_SHARED, 0);
+ assert( rc!=LSM_BUSY );
+ if( rc==LSM_OK ) db->iReader = i;
+ }
+ }
+
+ /* Search for any usable slot */
+ for(i=0; db->iReader<0 && rc==LSM_OK && i<LSM_LOCK_NREADER; i++){
+ ShmReader *p = &pShm->aReader[i];
+ if( slotIsUsable(p, iLsm, iShmMin, iShmMax) ){
+ rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_SHARED, 0);
+ if( rc==LSM_OK && slotIsUsable(p, iLsm, iShmMin, iShmMax) ){
+ db->iReader = i;
+ }else if( rc==LSM_BUSY ){
+ rc = LSM_OK;
+ }
+ }
+ }
+
+ if( rc==LSM_OK && db->iReader<0 ){
+ rc = LSM_BUSY;
+ }
+ return rc;
+}
+
+/*
+** This is used to check if there exists a read-lock locking a particular
+** version of either the in-memory tree or database file.
+**
+** If iLsmId is non-zero, then it is a snapshot id. If there exists a
+** read-lock using this snapshot or newer, set *pbInUse to true. Or,
+** if there is no such read-lock, set it to false.
+**
+** Or, if iLsmId is zero, then iShmid is a shared-memory sequence id.
+** Search for a read-lock using this sequence id or newer. etc.
+*/
+static int isInUse(lsm_db *db, i64 iLsmId, u32 iShmid, int *pbInUse){
+ ShmHeader *pShm = db->pShmhdr;
+ int i;
+ int rc = LSM_OK;
+
+ for(i=0; rc==LSM_OK && i<LSM_LOCK_NREADER; i++){
+ ShmReader *p = &pShm->aReader[i];
+ if( p->iLsmId ){
+ if( (iLsmId!=0 && p->iLsmId!=0 && iLsmId>=p->iLsmId)
+ || (iLsmId==0 && shm_sequence_ge(p->iTreeId, iShmid))
+ ){
+ rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_EXCL, 0);
+ if( rc==LSM_OK ){
+ p->iLsmId = 0;
+ lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_UNLOCK, 0);
+ }
+ }
+ }
+ }
+
+ if( rc==LSM_BUSY ){
+ *pbInUse = 1;
+ return LSM_OK;
+ }
+ *pbInUse = 0;
+ return rc;
+}
+
+/*
+** This function is called by worker connections to determine the smallest
+** snapshot id that is currently in use by a database client. The worker
+** connection uses this result to determine whether or not it is safe to
+** recycle a database block.
+*/
+static int firstSnapshotInUse(
+ lsm_db *db, /* Database handle */
+ i64 *piInUse /* IN/OUT: Smallest snapshot id in use */
+){
+ ShmHeader *pShm = db->pShmhdr;
+ i64 iInUse = *piInUse;
+ int i;
+
+ assert( iInUse>0 );
+ for(i=0; i<LSM_LOCK_NREADER; i++){
+ ShmReader *p = &pShm->aReader[i];
+ if( p->iLsmId ){
+ i64 iThis = p->iLsmId;
+ if( iThis!=0 && iInUse>iThis ){
+ int rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_EXCL, 0);
+ if( rc==LSM_OK ){
+ p->iLsmId = 0;
+ lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_UNLOCK, 0);
+ }else if( rc==LSM_BUSY ){
+ iInUse = iThis;
+ }else{
+ /* Some error other than LSM_BUSY. Return the error code to
+ ** the caller in this case. */
+ return rc;
+ }
+ }
+ }
+ }
+
+ *piInUse = iInUse;
+ return LSM_OK;
+}
+
+int lsmTreeInUse(lsm_db *db, u32 iShmid, int *pbInUse){
+ if( db->treehdr.iUsedShmid==iShmid ){
+ *pbInUse = 1;
+ return LSM_OK;
+ }
+ return isInUse(db, 0, iShmid, pbInUse);
+}
+
+int lsmLsmInUse(lsm_db *db, i64 iLsmId, int *pbInUse){
+ if( db->pClient && db->pClient->iId<=iLsmId ){
+ *pbInUse = 1;
+ return LSM_OK;
+ }
+ return isInUse(db, iLsmId, 0, pbInUse);
+}
+
+/*
+** This function may only be called after a successful call to
+** lsmDbDatabaseConnect(). It returns true if the connection is in
+** multi-process mode, or false otherwise.
+*/
+int lsmDbMultiProc(lsm_db *pDb){
+ return pDb->pDatabase && pDb->pDatabase->bMultiProc;
+}
+
+
+/*************************************************************************
+**************************************************************************
+**************************************************************************
+**************************************************************************
+**************************************************************************
+*************************************************************************/
+
+/*
+** Ensure that database connection db has cached pointers to at least the
+** first nChunk chunks of shared memory.
+*/
+int lsmShmCacheChunks(lsm_db *db, int nChunk){
+ int rc = LSM_OK;
+ if( nChunk>db->nShm ){
+ static const int NINCR = 16;
+ Database *p = db->pDatabase;
+ lsm_env *pEnv = db->pEnv;
+ int nAlloc;
+ int i;
+
+ /* Ensure that the db->apShm[] array is large enough. If an attempt to
+ ** allocate memory fails, return LSM_NOMEM immediately. The apShm[] array
+ ** is always extended in multiples of 16 entries - so the actual allocated
+ ** size can be inferred from nShm. */
+ nAlloc = ((db->nShm + NINCR - 1) / NINCR) * NINCR;
+ while( nChunk>=nAlloc ){
+ void **apShm;
+ nAlloc += NINCR;
+ apShm = lsmRealloc(pEnv, db->apShm, sizeof(void*)*nAlloc);
+ if( !apShm ) return LSM_NOMEM_BKPT;
+ db->apShm = apShm;
+ }
+
+ if( db->bRoTrans ){
+ for(i=db->nShm; rc==LSM_OK && i<nChunk; i++){
+ db->apShm[i] = lsmMallocZeroRc(pEnv, LSM_SHM_CHUNK_SIZE, &rc);
+ db->nShm++;
+ }
+
+ }else{
+
+ /* Enter the client mutex */
+ lsmMutexEnter(pEnv, p->pClientMutex);
+
+ /* Extend the Database objects apShmChunk[] array if necessary. Using the
+ ** same pattern as for the lsm_db.apShm[] array above. */
+ nAlloc = ((p->nShmChunk + NINCR - 1) / NINCR) * NINCR;
+ while( nChunk>=nAlloc ){
+ void **apShm;
+ nAlloc += NINCR;
+ apShm = lsmRealloc(pEnv, p->apShmChunk, sizeof(void*)*nAlloc);
+ if( !apShm ){
+ rc = LSM_NOMEM_BKPT;
+ break;
+ }
+ p->apShmChunk = apShm;
+ }
+
+ for(i=db->nShm; rc==LSM_OK && i<nChunk; i++){
+ if( i>=p->nShmChunk ){
+ void *pChunk = 0;
+ if( p->bMultiProc==0 ){
+ /* Single process mode */
+ pChunk = lsmMallocZeroRc(pEnv, LSM_SHM_CHUNK_SIZE, &rc);
+ }else{
+ /* Multi-process mode */
+ rc = lsmEnvShmMap(pEnv, p->pFile, i, LSM_SHM_CHUNK_SIZE, &pChunk);
+ }
+ if( rc==LSM_OK ){
+ p->apShmChunk[i] = pChunk;
+ p->nShmChunk++;
+ }
+ }
+ if( rc==LSM_OK ){
+ db->apShm[i] = p->apShmChunk[i];
+ db->nShm++;
+ }
+ }
+
+ /* Release the client mutex */
+ lsmMutexLeave(pEnv, p->pClientMutex);
+ }
+ }
+
+ return rc;
+}
+
+static int lockSharedFile(lsm_env *pEnv, Database *p, int iLock, int eOp){
+ int rc = LSM_OK;
+ if( p->bMultiProc ){
+ rc = lsmEnvLock(pEnv, p->pFile, iLock, eOp);
+ }
+ return rc;
+}
+
+/*
+** Test if it would be possible for connection db to obtain a lock of type
+** eType on the nLock locks starting at iLock. If so, return LSM_OK. If it
+** would not be possible to obtain the lock due to a lock held by another
+** connection, return LSM_BUSY. If an IO or other error occurs (i.e. in the
+** lsm_env.xTestLock function), return some other LSM error code.
+**
+** Note that this function never actually locks the database - it merely
+** queries the system to see if there exists a lock that would prevent
+** it from doing so.
+*/
+int lsmShmTestLock(
+ lsm_db *db,
+ int iLock,
+ int nLock,
+ int eOp
+){
+ int rc = LSM_OK;
+ lsm_db *pIter;
+ Database *p = db->pDatabase;
+ int i;
+ u64 mask = 0;
+
+ for(i=iLock; i<(iLock+nLock); i++){
+ mask |= ((u64)1 << (iLock-1));
+ if( eOp==LSM_LOCK_EXCL ) mask |= ((u64)1 << (iLock+32-1));
+ }
+
+ lsmMutexEnter(db->pEnv, p->pClientMutex);
+ for(pIter=p->pConn; pIter; pIter=pIter->pNext){
+ if( pIter!=db && (pIter->mLock & mask) ) break;
+ }
+
+ if( pIter ){
+ rc = LSM_BUSY;
+ }else if( p->bMultiProc ){
+ rc = lsmEnvTestLock(db->pEnv, p->pFile, iLock, nLock, eOp);
+ }
+
+ lsmMutexLeave(db->pEnv, p->pClientMutex);
+ return rc;
+}
+
+/*
+** Attempt to obtain the lock identified by the iLock and bExcl parameters.
+** If successful, return LSM_OK. If the lock cannot be obtained because
+** there exists some other conflicting lock, return LSM_BUSY. If some other
+** error occurs, return an LSM error code.
+**
+** Parameter iLock must be one of LSM_LOCK_WRITER, WORKER or CHECKPOINTER,
+** or else a value returned by the LSM_LOCK_READER macro.
+*/
+int lsmShmLock(
+ lsm_db *db,
+ int iLock,
+ int eOp, /* One of LSM_LOCK_UNLOCK, SHARED or EXCL */
+ int bBlock /* True for a blocking lock */
+){
+ lsm_db *pIter;
+ const u64 me = ((u64)1 << (iLock-1));
+ const u64 ms = ((u64)1 << (iLock+32-1));
+ int rc = LSM_OK;
+ Database *p = db->pDatabase;
+
+ assert( eOp!=LSM_LOCK_EXCL || p->bReadonly==0 );
+ assert( iLock>=1 && iLock<=LSM_LOCK_RWCLIENT(LSM_LOCK_NRWCLIENT-1) );
+ assert( LSM_LOCK_RWCLIENT(LSM_LOCK_NRWCLIENT-1)<=32 );
+ assert( eOp==LSM_LOCK_UNLOCK || eOp==LSM_LOCK_SHARED || eOp==LSM_LOCK_EXCL );
+
+ /* Check for a no-op. Proceed only if this is not one of those. */
+ if( (eOp==LSM_LOCK_UNLOCK && (db->mLock & (me|ms))!=0)
+ || (eOp==LSM_LOCK_SHARED && (db->mLock & (me|ms))!=ms)
+ || (eOp==LSM_LOCK_EXCL && (db->mLock & me)==0)
+ ){
+ int nExcl = 0; /* Number of connections holding EXCLUSIVE */
+ int nShared = 0; /* Number of connections holding SHARED */
+ lsmMutexEnter(db->pEnv, p->pClientMutex);
+
+ /* Figure out the locks currently held by this process on iLock, not
+ ** including any held by connection db. */
+ for(pIter=p->pConn; pIter; pIter=pIter->pNext){
+ assert( (pIter->mLock & me)==0 || (pIter->mLock & ms)!=0 );
+ if( pIter!=db ){
+ if( pIter->mLock & me ){
+ nExcl++;
+ }else if( pIter->mLock & ms ){
+ nShared++;
+ }
+ }
+ }
+ assert( nExcl==0 || nExcl==1 );
+ assert( nExcl==0 || nShared==0 );
+ assert( nExcl==0 || (db->mLock & (me|ms))==0 );
+
+ switch( eOp ){
+ case LSM_LOCK_UNLOCK:
+ if( nShared==0 ){
+ lockSharedFile(db->pEnv, p, iLock, LSM_LOCK_UNLOCK);
+ }
+ db->mLock &= ~(me|ms);
+ break;
+
+ case LSM_LOCK_SHARED:
+ if( nExcl ){
+ rc = LSM_BUSY;
+ }else{
+ if( nShared==0 ){
+ rc = lockSharedFile(db->pEnv, p, iLock, LSM_LOCK_SHARED);
+ }
+ if( rc==LSM_OK ){
+ db->mLock |= ms;
+ db->mLock &= ~me;
+ }
+ }
+ break;
+
+ default:
+ assert( eOp==LSM_LOCK_EXCL );
+ if( nExcl || nShared ){
+ rc = LSM_BUSY;
+ }else{
+ rc = lockSharedFile(db->pEnv, p, iLock, LSM_LOCK_EXCL);
+ if( rc==LSM_OK ){
+ db->mLock |= (me|ms);
+ }
+ }
+ break;
+ }
+
+ lsmMutexLeave(db->pEnv, p->pClientMutex);
+ }
+
+ return rc;
+}
+
+#ifdef LSM_DEBUG
+
+int shmLockType(lsm_db *db, int iLock){
+ const u64 me = ((u64)1 << (iLock-1));
+ const u64 ms = ((u64)1 << (iLock+32-1));
+
+ if( db->mLock & me ) return LSM_LOCK_EXCL;
+ if( db->mLock & ms ) return LSM_LOCK_SHARED;
+ return LSM_LOCK_UNLOCK;
+}
+
+/*
+** The arguments passed to this function are similar to those passed to
+** the lsmShmLock() function. However, instead of obtaining a new lock
+** this function returns true if the specified connection already holds
+** (or does not hold) such a lock, depending on the value of eOp. As
+** follows:
+**
+** (eOp==LSM_LOCK_UNLOCK) -> true if db has no lock on iLock
+** (eOp==LSM_LOCK_SHARED) -> true if db has at least a SHARED lock on iLock.
+** (eOp==LSM_LOCK_EXCL) -> true if db has an EXCLUSIVE lock on iLock.
+*/
+int lsmShmAssertLock(lsm_db *db, int iLock, int eOp){
+ int ret;
+ int eHave;
+
+ assert( iLock>=1 && iLock<=LSM_LOCK_READER(LSM_LOCK_NREADER-1) );
+ assert( iLock<=16 );
+ assert( eOp==LSM_LOCK_UNLOCK || eOp==LSM_LOCK_SHARED || eOp==LSM_LOCK_EXCL );
+
+ eHave = shmLockType(db, iLock);
+
+ switch( eOp ){
+ case LSM_LOCK_UNLOCK:
+ ret = (eHave==LSM_LOCK_UNLOCK);
+ break;
+ case LSM_LOCK_SHARED:
+ ret = (eHave!=LSM_LOCK_UNLOCK);
+ break;
+ case LSM_LOCK_EXCL:
+ ret = (eHave==LSM_LOCK_EXCL);
+ break;
+ default:
+ assert( !"bad eOp value passed to lsmShmAssertLock()" );
+ break;
+ }
+
+ return ret;
+}
+
+int lsmShmAssertWorker(lsm_db *db){
+ return lsmShmAssertLock(db, LSM_LOCK_WORKER, LSM_LOCK_EXCL) && db->pWorker;
+}
+
+/*
+** This function does not contribute to library functionality, and is not
+** included in release builds. It is intended to be called from within
+** an interactive debugger.
+**
+** When called, this function prints a single line of human readable output
+** to stdout describing the locks currently held by the connection. For
+** example:
+**
+** (gdb) call print_db_locks(pDb)
+** (shared on dms2) (exclusive on writer)
+*/
+void print_db_locks(lsm_db *db){
+ int iLock;
+ for(iLock=0; iLock<16; iLock++){
+ int bOne = 0;
+ const char *azLock[] = {0, "shared", "exclusive"};
+ const char *azName[] = {
+ 0, "dms1", "dms2", "writer", "worker", "checkpointer",
+ "reader0", "reader1", "reader2", "reader3", "reader4", "reader5"
+ };
+ int eHave = shmLockType(db, iLock);
+ if( azLock[eHave] ){
+ printf("%s(%s on %s)", (bOne?" ":""), azLock[eHave], azName[iLock]);
+ bOne = 1;
+ }
+ }
+ printf("\n");
+}
+void print_all_db_locks(lsm_db *db){
+ lsm_db *p;
+ for(p=db->pDatabase->pConn; p; p=p->pNext){
+ printf("%s connection %p ", ((p==db)?"*":""), p);
+ print_db_locks(p);
+ }
+}
+#endif
+
+void lsmShmBarrier(lsm_db *db){
+ lsmEnvShmBarrier(db->pEnv);
+}
+
+int lsm_checkpoint(lsm_db *pDb, int *pnKB){
+ int rc; /* Return code */
+ u32 nWrite = 0; /* Number of pages checkpointed */
+
+ /* Attempt the checkpoint. If successful, nWrite is set to the number of
+ ** pages written between this and the previous checkpoint. */
+ rc = lsmCheckpointWrite(pDb, 0, &nWrite);
+
+ /* If required, calculate the output variable (KB of data checkpointed).
+ ** Set it to zero if an error occured. */
+ if( pnKB ){
+ int nKB = 0;
+ if( rc==LSM_OK && nWrite ){
+ nKB = (((i64)nWrite * lsmFsPageSize(pDb->pFS)) + 1023) / 1024;
+ }
+ *pnKB = nKB;
+ }
+
+ return rc;
+}
--- /dev/null
+/*
+** 2011-08-14
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** PAGE FORMAT:
+**
+** The maximum page size is 65536 bytes.
+**
+** Since all records are equal to or larger than 2 bytes in size, and
+** some space within the page is consumed by the page footer, there must
+** be less than 2^15 records on each page.
+**
+** Each page ends with a footer that describes the pages contents. This
+** footer serves as similar purpose to the page header in an SQLite database.
+** A footer is used instead of a header because it makes it easier to
+** populate a new page based on a sorted list of key/value pairs.
+**
+** The footer consists of the following values (starting at the end of
+** the page and continuing backwards towards the start). All values are
+** stored as unsigned big-endian integers.
+**
+** * Number of records on page (2 bytes).
+** * Flags field (2 bytes).
+** * Left-hand pointer value (8 bytes).
+** * The starting offset of each record (2 bytes per record).
+**
+** Records may span pages. Unless it happens to be an exact fit, the part
+** of the final record that starts on page X that does not fit on page X
+** is stored at the start of page (X+1). This means there may be pages where
+** (N==0). And on most pages the first record that starts on the page will
+** not start at byte offset 0. For example:
+**
+** aaaaa bbbbb ccc <footer> cc eeeee fffff g <footer> gggg....
+**
+** RECORD FORMAT:
+**
+** The first byte of the record is a flags byte. It is a combination
+** of the following flags (defined in lsmInt.h):
+**
+** LSM_START_DELETE
+** LSM_END_DELETE
+** LSM_POINT_DELETE
+** LSM_INSERT
+** LSM_SEPARATOR
+** LSM_SYSTEMKEY
+**
+** Immediately following the type byte is a pointer to the smallest key
+** in the next file that is larger than the key in the current record. The
+** pointer is encoded as a varint. When added to the 32-bit page number
+** stored in the footer, it is the page number of the page that contains the
+** smallest key in the next sorted file that is larger than this key.
+**
+** Next is the number of bytes in the key, encoded as a varint.
+**
+** If the LSM_INSERT flag is set, the number of bytes in the value, as
+** a varint, is next.
+**
+** Finally, the blob of data containing the key, and for LSM_INSERT
+** records, the value as well.
+*/
+
+#ifndef _LSM_INT_H
+# include "lsmInt.h"
+#endif
+#include "sqlite3.h" /* only for sqlite3_snprintf() */
+
+#define LSM_LOG_STRUCTURE 0
+#define LSM_LOG_DATA 0
+
+/*
+** Macros to help decode record types.
+*/
+#define rtTopic(eType) ((eType) & LSM_SYSTEMKEY)
+#define rtIsDelete(eType) (((eType) & 0x0F)==LSM_POINT_DELETE)
+
+#define rtIsSeparator(eType) (((eType) & LSM_SEPARATOR)!=0)
+#define rtIsWrite(eType) (((eType) & LSM_INSERT)!=0)
+#define rtIsSystem(eType) (((eType) & LSM_SYSTEMKEY)!=0)
+
+/*
+** The following macros are used to access a page footer.
+*/
+#define SEGMENT_NRECORD_OFFSET(pgsz) ((pgsz) - 2)
+#define SEGMENT_FLAGS_OFFSET(pgsz) ((pgsz) - 2 - 2)
+#define SEGMENT_POINTER_OFFSET(pgsz) ((pgsz) - 2 - 2 - 8)
+#define SEGMENT_CELLPTR_OFFSET(pgsz, iCell) ((pgsz) - 2 - 2 - 8 - 2 - (iCell)*2)
+
+#define SEGMENT_EOF(pgsz, nEntry) SEGMENT_CELLPTR_OFFSET(pgsz, nEntry)
+
+#define SEGMENT_BTREE_FLAG 0x0001
+#define PGFTR_SKIP_NEXT_FLAG 0x0002
+#define PGFTR_SKIP_THIS_FLAG 0x0004
+
+typedef struct SegmentPtr SegmentPtr;
+typedef struct Blob Blob;
+
+struct Blob {
+ lsm_env *pEnv;
+ void *pData;
+ int nData;
+ int nAlloc;
+};
+
+/*
+** A SegmentPtr object may be used for one of two purposes:
+**
+** * To iterate and/or seek within a single Segment (the combination of a
+** main run and an optional sorted run).
+**
+** * To iterate through the separators array of a segment.
+*/
+struct SegmentPtr {
+ Level *pLevel; /* Level object segment is part of */
+ Segment *pSeg; /* Segment to access */
+
+ /* Current page. See segmentPtrLoadPage(). */
+ Page *pPg; /* Current page */
+ u16 flags; /* Copy of page flags field */
+ int nCell; /* Number of cells on pPg */
+ Pgno iPtr; /* Base cascade pointer */
+
+ /* Current cell. See segmentPtrLoadCell() */
+ int iCell; /* Current record within page pPg */
+ int eType; /* Type of current record */
+ Pgno iPgPtr; /* Cascade pointer offset */
+ void *pKey; int nKey; /* Key associated with current record */
+ void *pVal; int nVal; /* Current record value (eType==WRITE only) */
+
+ /* Blobs used to allocate buffers for pKey and pVal as required */
+ Blob blob1;
+ Blob blob2;
+};
+
+/*
+** Used to iterate through the keys stored in a b-tree hierarchy from start
+** to finish. Only First() and Next() operations are required.
+**
+** btreeCursorNew()
+** btreeCursorFirst()
+** btreeCursorNext()
+** btreeCursorFree()
+** btreeCursorPosition()
+** btreeCursorRestore()
+*/
+typedef struct BtreePg BtreePg;
+typedef struct BtreeCursor BtreeCursor;
+struct BtreePg {
+ Page *pPage;
+ int iCell;
+};
+struct BtreeCursor {
+ Segment *pSeg; /* Iterate through this segments btree */
+ FileSystem *pFS; /* File system to read pages from */
+ int nDepth; /* Allocated size of aPg[] */
+ int iPg; /* Current entry in aPg[]. -1 -> EOF. */
+ BtreePg *aPg; /* Pages from root to current location */
+
+ /* Cache of current entry. pKey==0 for EOF. */
+ void *pKey;
+ int nKey;
+ int eType;
+ Pgno iPtr;
+
+ /* Storage for key, if not local */
+ Blob blob;
+};
+
+
+/*
+** A cursor used for merged searches or iterations through up to one
+** Tree structure and any number of sorted files.
+**
+** lsmMCursorNew()
+** lsmMCursorSeek()
+** lsmMCursorNext()
+** lsmMCursorPrev()
+** lsmMCursorFirst()
+** lsmMCursorLast()
+** lsmMCursorKey()
+** lsmMCursorValue()
+** lsmMCursorValid()
+**
+** iFree:
+** This variable is only used by cursors providing input data for a
+** new top-level segment. Such cursors only ever iterate forwards, not
+** backwards.
+*/
+struct MultiCursor {
+ lsm_db *pDb; /* Connection that owns this cursor */
+ MultiCursor *pNext; /* Next cursor owned by connection pDb */
+ int flags; /* Mask of CURSOR_XXX flags */
+
+ int eType; /* Cache of current key type */
+ Blob key; /* Cache of current key (or NULL) */
+ Blob val; /* Cache of current value */
+
+ /* All the component cursors: */
+ TreeCursor *apTreeCsr[2]; /* Up to two tree cursors */
+ int iFree; /* Next element of free-list (-ve for eof) */
+ SegmentPtr *aPtr; /* Array of segment pointers */
+ int nPtr; /* Size of array aPtr[] */
+ BtreeCursor *pBtCsr; /* b-tree cursor (db writes only) */
+
+ /* Comparison results */
+ int nTree; /* Size of aTree[] array */
+ int *aTree; /* Array of comparison results */
+
+ /* Used by cursors flushing the in-memory tree only */
+ void *pSystemVal; /* Pointer to buffer to free */
+
+ /* Used by worker cursors only */
+ Pgno *pPrevMergePtr;
+};
+
+/*
+** The following constants are used to assign integers to each component
+** cursor of a multi-cursor.
+*/
+#define CURSOR_DATA_TREE0 0 /* Current tree cursor (apTreeCsr[0]) */
+#define CURSOR_DATA_TREE1 1 /* The "old" tree, if any (apTreeCsr[1]) */
+#define CURSOR_DATA_SYSTEM 2 /* Free-list entries (new-toplevel only) */
+#define CURSOR_DATA_SEGMENT 3 /* First segment pointer (aPtr[0]) */
+
+/*
+** CURSOR_IGNORE_DELETE
+** If set, this cursor will not visit SORTED_DELETE keys.
+**
+** CURSOR_FLUSH_FREELIST
+** This cursor is being used to create a new toplevel. It should also
+** iterate through the contents of the in-memory free block list.
+**
+** CURSOR_IGNORE_SYSTEM
+** If set, this cursor ignores system keys.
+**
+** CURSOR_NEXT_OK
+** Set if it is Ok to call lsm_csr_next().
+**
+** CURSOR_PREV_OK
+** Set if it is Ok to call lsm_csr_prev().
+**
+** CURSOR_READ_SEPARATORS
+** Set if this cursor should visit the separator keys in segment
+** aPtr[nPtr-1].
+**
+** CURSOR_SEEK_EQ
+** Cursor has undergone a successful lsm_csr_seek(LSM_SEEK_EQ) operation.
+** The key and value are stored in MultiCursor.key and MultiCursor.val
+** respectively.
+*/
+#define CURSOR_IGNORE_DELETE 0x00000001
+#define CURSOR_FLUSH_FREELIST 0x00000002
+#define CURSOR_IGNORE_SYSTEM 0x00000010
+#define CURSOR_NEXT_OK 0x00000020
+#define CURSOR_PREV_OK 0x00000040
+#define CURSOR_READ_SEPARATORS 0x00000080
+#define CURSOR_SEEK_EQ 0x00000100
+
+typedef struct MergeWorker MergeWorker;
+typedef struct Hierarchy Hierarchy;
+
+struct Hierarchy {
+ Page **apHier;
+ int nHier;
+};
+
+/*
+** aSave:
+** When mergeWorkerNextPage() is called to advance to the next page in
+** the output segment, if the bStore flag for an element of aSave[] is
+** true, it is cleared and the corresponding iPgno value is set to the
+** page number of the page just completed.
+**
+** aSave[0] is used to record the pointer value to be pushed into the
+** b-tree hierarchy. aSave[1] is used to save the page number of the
+** page containing the indirect key most recently written to the b-tree.
+** see mergeWorkerPushHierarchy() for details.
+*/
+struct MergeWorker {
+ lsm_db *pDb; /* Database handle */
+ Level *pLevel; /* Worker snapshot Level being merged */
+ MultiCursor *pCsr; /* Cursor to read new segment contents from */
+ int bFlush; /* True if this is an in-memory tree flush */
+ Hierarchy hier; /* B-tree hierarchy under construction */
+ Page *pPage; /* Current output page */
+ int nWork; /* Number of calls to mergeWorkerNextPage() */
+ Pgno *aGobble; /* Gobble point for each input segment */
+
+ Pgno iIndirect;
+ struct SavedPgno {
+ Pgno iPgno;
+ int bStore;
+ } aSave[2];
+};
+
+#ifdef LSM_DEBUG_EXPENSIVE
+static int assertPointersOk(lsm_db *, Segment *, Segment *, int);
+static int assertBtreeOk(lsm_db *, Segment *);
+static void assertRunInOrder(lsm_db *pDb, Segment *pSeg);
+#else
+#define assertRunInOrder(x,y)
+#define assertBtreeOk(x,y)
+#endif
+
+
+struct FilePage { u8 *aData; int nData; };
+static u8 *fsPageData(Page *pPg, int *pnData){
+ *pnData = ((struct FilePage *)(pPg))->nData;
+ return ((struct FilePage *)(pPg))->aData;
+}
+/*UNUSED static u8 *fsPageDataPtr(Page *pPg){
+ return ((struct FilePage *)(pPg))->aData;
+}*/
+
+/*
+** Write nVal as a 16-bit unsigned big-endian integer into buffer aOut.
+*/
+void lsmPutU16(u8 *aOut, u16 nVal){
+ aOut[0] = (u8)((nVal>>8) & 0xFF);
+ aOut[1] = (u8)(nVal & 0xFF);
+}
+
+void lsmPutU32(u8 *aOut, u32 nVal){
+ aOut[0] = (u8)((nVal>>24) & 0xFF);
+ aOut[1] = (u8)((nVal>>16) & 0xFF);
+ aOut[2] = (u8)((nVal>> 8) & 0xFF);
+ aOut[3] = (u8)((nVal ) & 0xFF);
+}
+
+int lsmGetU16(u8 *aOut){
+ return (aOut[0] << 8) + aOut[1];
+}
+
+u32 lsmGetU32(u8 *aOut){
+ return ((u32)aOut[0] << 24)
+ + ((u32)aOut[1] << 16)
+ + ((u32)aOut[2] << 8)
+ + ((u32)aOut[3]);
+}
+
+u64 lsmGetU64(u8 *aOut){
+ return ((u64)aOut[0] << 56)
+ + ((u64)aOut[1] << 48)
+ + ((u64)aOut[2] << 40)
+ + ((u64)aOut[3] << 32)
+ + ((u64)aOut[4] << 24)
+ + ((u32)aOut[5] << 16)
+ + ((u32)aOut[6] << 8)
+ + ((u32)aOut[7]);
+}
+
+void lsmPutU64(u8 *aOut, u64 nVal){
+ aOut[0] = (u8)((nVal>>56) & 0xFF);
+ aOut[1] = (u8)((nVal>>48) & 0xFF);
+ aOut[2] = (u8)((nVal>>40) & 0xFF);
+ aOut[3] = (u8)((nVal>>32) & 0xFF);
+ aOut[4] = (u8)((nVal>>24) & 0xFF);
+ aOut[5] = (u8)((nVal>>16) & 0xFF);
+ aOut[6] = (u8)((nVal>> 8) & 0xFF);
+ aOut[7] = (u8)((nVal ) & 0xFF);
+}
+
+static int sortedBlobGrow(lsm_env *pEnv, Blob *pBlob, int nData){
+ assert( pBlob->pEnv==pEnv || (pBlob->pEnv==0 && pBlob->pData==0) );
+ if( pBlob->nAlloc<nData ){
+ pBlob->pData = lsmReallocOrFree(pEnv, pBlob->pData, nData);
+ if( !pBlob->pData ) return LSM_NOMEM_BKPT;
+ pBlob->nAlloc = nData;
+ pBlob->pEnv = pEnv;
+ }
+ return LSM_OK;
+}
+
+static int sortedBlobSet(lsm_env *pEnv, Blob *pBlob, void *pData, int nData){
+ if( sortedBlobGrow(pEnv, pBlob, nData) ) return LSM_NOMEM;
+ memcpy(pBlob->pData, pData, nData);
+ pBlob->nData = nData;
+ return LSM_OK;
+}
+
+#if 0
+static int sortedBlobCopy(Blob *pDest, Blob *pSrc){
+ return sortedBlobSet(pDest, pSrc->pData, pSrc->nData);
+}
+#endif
+
+static void sortedBlobFree(Blob *pBlob){
+ assert( pBlob->pEnv || pBlob->pData==0 );
+ if( pBlob->pData ) lsmFree(pBlob->pEnv, pBlob->pData);
+ memset(pBlob, 0, sizeof(Blob));
+}
+
+static int sortedReadData(
+ Segment *pSeg,
+ Page *pPg,
+ int iOff,
+ int nByte,
+ void **ppData,
+ Blob *pBlob
+){
+ int rc = LSM_OK;
+ int iEnd;
+ int nData;
+ int nCell;
+ u8 *aData;
+
+ aData = fsPageData(pPg, &nData);
+ nCell = lsmGetU16(&aData[SEGMENT_NRECORD_OFFSET(nData)]);
+ iEnd = SEGMENT_EOF(nData, nCell);
+ assert( iEnd>0 && iEnd<nData );
+
+ if( iOff+nByte<=iEnd ){
+ *ppData = (void *)&aData[iOff];
+ }else{
+ int nRem = nByte;
+ int i = iOff;
+ u8 *aDest;
+
+ /* Make sure the blob is big enough to store the value being loaded. */
+ rc = sortedBlobGrow(lsmPageEnv(pPg), pBlob, nByte);
+ if( rc!=LSM_OK ) return rc;
+ pBlob->nData = nByte;
+ aDest = (u8 *)pBlob->pData;
+ *ppData = pBlob->pData;
+
+ /* Increment the pointer pages ref-count. */
+ lsmFsPageRef(pPg);
+
+ while( rc==LSM_OK ){
+ Page *pNext;
+ int flags;
+
+ /* Copy data from pPg into the output buffer. */
+ int nCopy = LSM_MIN(nRem, iEnd-i);
+ if( nCopy>0 ){
+ memcpy(&aDest[nByte-nRem], &aData[i], nCopy);
+ nRem -= nCopy;
+ i += nCopy;
+ assert( nRem==0 || i==iEnd );
+ }
+ assert( nRem>=0 );
+ if( nRem==0 ) break;
+ i -= iEnd;
+
+ /* Grab the next page in the segment */
+
+ do {
+ rc = lsmFsDbPageNext(pSeg, pPg, 1, &pNext);
+ if( rc==LSM_OK && pNext==0 ){
+ rc = LSM_CORRUPT_BKPT;
+ }
+ if( rc ) break;
+ lsmFsPageRelease(pPg);
+ pPg = pNext;
+ aData = fsPageData(pPg, &nData);
+ flags = lsmGetU16(&aData[SEGMENT_FLAGS_OFFSET(nData)]);
+ }while( flags&SEGMENT_BTREE_FLAG );
+
+ iEnd = SEGMENT_EOF(nData, lsmGetU16(&aData[nData-2]));
+ assert( iEnd>0 && iEnd<nData );
+ }
+
+ lsmFsPageRelease(pPg);
+ }
+
+ return rc;
+}
+
+static int pageGetNRec(u8 *aData, int nData){
+ return (int)lsmGetU16(&aData[SEGMENT_NRECORD_OFFSET(nData)]);
+}
+
+static Pgno pageGetPtr(u8 *aData, int nData){
+ return (Pgno)lsmGetU64(&aData[SEGMENT_POINTER_OFFSET(nData)]);
+}
+
+static int pageGetFlags(u8 *aData, int nData){
+ return (int)lsmGetU16(&aData[SEGMENT_FLAGS_OFFSET(nData)]);
+}
+
+static u8 *pageGetCell(u8 *aData, int nData, int iCell){
+ return &aData[lsmGetU16(&aData[SEGMENT_CELLPTR_OFFSET(nData, iCell)])];
+}
+
+/*
+** Return the number of cells on page pPg.
+*/
+static int pageObjGetNRec(Page *pPg){
+ int nData;
+ u8 *aData = lsmFsPageData(pPg, &nData);
+ return pageGetNRec(aData, nData);
+}
+
+/*
+** Return the decoded (possibly relative) pointer value stored in cell
+** iCell from page aData/nData.
+*/
+static Pgno pageGetRecordPtr(u8 *aData, int nData, int iCell){
+ Pgno iRet; /* Return value */
+ u8 *aCell; /* Pointer to cell iCell */
+
+ assert( iCell<pageGetNRec(aData, nData) && iCell>=0 );
+ aCell = pageGetCell(aData, nData, iCell);
+ lsmVarintGet64(&aCell[1], &iRet);
+ return iRet;
+}
+
+static u8 *pageGetKey(
+ Segment *pSeg, /* Segment pPg belongs to */
+ Page *pPg, /* Page to read from */
+ int iCell, /* Index of cell on page to read */
+ int *piTopic, /* OUT: Topic associated with this key */
+ int *pnKey, /* OUT: Size of key in bytes */
+ Blob *pBlob /* If required, use this for dynamic memory */
+){
+ u8 *pKey;
+ int nDummy;
+ int eType;
+ u8 *aData;
+ int nData;
+
+ aData = fsPageData(pPg, &nData);
+
+ assert( !(pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG) );
+ assert( iCell<pageGetNRec(aData, nData) );
+
+ pKey = pageGetCell(aData, nData, iCell);
+ eType = *pKey++;
+ pKey += lsmVarintGet32(pKey, &nDummy);
+ pKey += lsmVarintGet32(pKey, pnKey);
+ if( rtIsWrite(eType) ){
+ pKey += lsmVarintGet32(pKey, &nDummy);
+ }
+ *piTopic = rtTopic(eType);
+
+ sortedReadData(pSeg, pPg, pKey-aData, *pnKey, (void **)&pKey, pBlob);
+ return pKey;
+}
+
+static int pageGetKeyCopy(
+ lsm_env *pEnv, /* Environment handle */
+ Segment *pSeg, /* Segment pPg belongs to */
+ Page *pPg, /* Page to read from */
+ int iCell, /* Index of cell on page to read */
+ int *piTopic, /* OUT: Topic associated with this key */
+ Blob *pBlob /* If required, use this for dynamic memory */
+){
+ int rc = LSM_OK;
+ int nKey;
+ u8 *aKey;
+
+ aKey = pageGetKey(pSeg, pPg, iCell, piTopic, &nKey, pBlob);
+ assert( (void *)aKey!=pBlob->pData || nKey==pBlob->nData );
+ if( (void *)aKey!=pBlob->pData ){
+ rc = sortedBlobSet(pEnv, pBlob, aKey, nKey);
+ }
+
+ return rc;
+}
+
+static Pgno pageGetBtreeRef(Page *pPg, int iKey){
+ Pgno iRef;
+ u8 *aData;
+ int nData;
+ u8 *aCell;
+
+ aData = fsPageData(pPg, &nData);
+ aCell = pageGetCell(aData, nData, iKey);
+ assert( aCell[0]==0 );
+ aCell++;
+ aCell += lsmVarintGet64(aCell, &iRef);
+ lsmVarintGet64(aCell, &iRef);
+ assert( iRef>0 );
+ return iRef;
+}
+
+#define GETVARINT64(a, i) (((i)=((u8*)(a))[0])<=240?1:lsmVarintGet64((a), &(i)))
+#define GETVARINT32(a, i) (((i)=((u8*)(a))[0])<=240?1:lsmVarintGet32((a), &(i)))
+
+static int pageGetBtreeKey(
+ Segment *pSeg, /* Segment page pPg belongs to */
+ Page *pPg,
+ int iKey,
+ Pgno *piPtr,
+ int *piTopic,
+ void **ppKey,
+ int *pnKey,
+ Blob *pBlob
+){
+ u8 *aData;
+ int nData;
+ u8 *aCell;
+ int eType;
+
+ aData = fsPageData(pPg, &nData);
+ assert( SEGMENT_BTREE_FLAG & pageGetFlags(aData, nData) );
+ assert( iKey>=0 && iKey<pageGetNRec(aData, nData) );
+
+ aCell = pageGetCell(aData, nData, iKey);
+ eType = *aCell++;
+ aCell += GETVARINT64(aCell, *piPtr);
+
+ if( eType==0 ){
+ int rc;
+ Pgno iRef; /* Page number of referenced page */
+ Page *pRef;
+ aCell += GETVARINT64(aCell, iRef);
+ rc = lsmFsDbPageGet(lsmPageFS(pPg), pSeg, iRef, &pRef);
+ if( rc!=LSM_OK ) return rc;
+ pageGetKeyCopy(lsmPageEnv(pPg), pSeg, pRef, 0, &eType, pBlob);
+ lsmFsPageRelease(pRef);
+ *ppKey = pBlob->pData;
+ *pnKey = pBlob->nData;
+ }else{
+ aCell += GETVARINT32(aCell, *pnKey);
+ *ppKey = aCell;
+ }
+ if( piTopic ) *piTopic = rtTopic(eType);
+
+ return LSM_OK;
+}
+
+static int btreeCursorLoadKey(BtreeCursor *pCsr){
+ int rc = LSM_OK;
+ if( pCsr->iPg<0 ){
+ pCsr->pKey = 0;
+ pCsr->nKey = 0;
+ pCsr->eType = 0;
+ }else{
+ Pgno dummy;
+ int iPg = pCsr->iPg;
+ int iCell = pCsr->aPg[iPg].iCell;
+ while( iCell<0 && (--iPg)>=0 ){
+ iCell = pCsr->aPg[iPg].iCell-1;
+ }
+ if( iPg<0 || iCell<0 ) return LSM_CORRUPT_BKPT;
+
+ rc = pageGetBtreeKey(
+ pCsr->pSeg,
+ pCsr->aPg[iPg].pPage, iCell,
+ &dummy, &pCsr->eType, &pCsr->pKey, &pCsr->nKey, &pCsr->blob
+ );
+ pCsr->eType |= LSM_SEPARATOR;
+ }
+
+ return rc;
+}
+
+static int btreeCursorPtr(u8 *aData, int nData, int iCell){
+ int nCell;
+
+ nCell = pageGetNRec(aData, nData);
+ if( iCell>=nCell ){
+ return pageGetPtr(aData, nData);
+ }
+ return pageGetRecordPtr(aData, nData, iCell);
+}
+
+static int btreeCursorNext(BtreeCursor *pCsr){
+ int rc = LSM_OK;
+
+ BtreePg *pPg = &pCsr->aPg[pCsr->iPg];
+ int nCell;
+ u8 *aData;
+ int nData;
+
+ assert( pCsr->iPg>=0 );
+ assert( pCsr->iPg==pCsr->nDepth-1 );
+
+ aData = fsPageData(pPg->pPage, &nData);
+ nCell = pageGetNRec(aData, nData);
+ assert( pPg->iCell<=nCell );
+ pPg->iCell++;
+ if( pPg->iCell==nCell ){
+ Pgno iLoad;
+
+ /* Up to parent. */
+ lsmFsPageRelease(pPg->pPage);
+ pPg->pPage = 0;
+ pCsr->iPg--;
+ while( pCsr->iPg>=0 ){
+ pPg = &pCsr->aPg[pCsr->iPg];
+ aData = fsPageData(pPg->pPage, &nData);
+ if( pPg->iCell<pageGetNRec(aData, nData) ) break;
+ lsmFsPageRelease(pPg->pPage);
+ pCsr->iPg--;
+ }
+
+ /* Read the key */
+ rc = btreeCursorLoadKey(pCsr);
+
+ /* Unless the cursor is at EOF, descend to cell -1 (yes, negative one) of
+ ** the left-most most descendent. */
+ if( pCsr->iPg>=0 ){
+ pCsr->aPg[pCsr->iPg].iCell++;
+
+ iLoad = btreeCursorPtr(aData, nData, pPg->iCell);
+ do {
+ Page *pLoad;
+ pCsr->iPg++;
+ rc = lsmFsDbPageGet(pCsr->pFS, pCsr->pSeg, iLoad, &pLoad);
+ pCsr->aPg[pCsr->iPg].pPage = pLoad;
+ pCsr->aPg[pCsr->iPg].iCell = 0;
+ if( rc==LSM_OK ){
+ if( pCsr->iPg==(pCsr->nDepth-1) ) break;
+ aData = fsPageData(pLoad, &nData);
+ iLoad = btreeCursorPtr(aData, nData, 0);
+ }
+ }while( rc==LSM_OK && pCsr->iPg<(pCsr->nDepth-1) );
+ pCsr->aPg[pCsr->iPg].iCell = -1;
+ }
+
+ }else{
+ rc = btreeCursorLoadKey(pCsr);
+ }
+
+ if( rc==LSM_OK && pCsr->iPg>=0 ){
+ aData = fsPageData(pCsr->aPg[pCsr->iPg].pPage, &nData);
+ pCsr->iPtr = btreeCursorPtr(aData, nData, pCsr->aPg[pCsr->iPg].iCell+1);
+ }
+
+ return rc;
+}
+
+static void btreeCursorFree(BtreeCursor *pCsr){
+ if( pCsr ){
+ int i;
+ lsm_env *pEnv = lsmFsEnv(pCsr->pFS);
+ for(i=0; i<=pCsr->iPg; i++){
+ lsmFsPageRelease(pCsr->aPg[i].pPage);
+ }
+ sortedBlobFree(&pCsr->blob);
+ lsmFree(pEnv, pCsr->aPg);
+ lsmFree(pEnv, pCsr);
+ }
+}
+
+static int btreeCursorFirst(BtreeCursor *pCsr){
+ int rc;
+
+ Page *pPg = 0;
+ FileSystem *pFS = pCsr->pFS;
+ int iPg = pCsr->pSeg->iRoot;
+
+ do {
+ rc = lsmFsDbPageGet(pFS, pCsr->pSeg, iPg, &pPg);
+ assert( (rc==LSM_OK)==(pPg!=0) );
+ if( rc==LSM_OK ){
+ u8 *aData;
+ int nData;
+ int flags;
+
+ aData = fsPageData(pPg, &nData);
+ flags = pageGetFlags(aData, nData);
+ if( (flags & SEGMENT_BTREE_FLAG)==0 ) break;
+
+ if( (pCsr->nDepth % 8)==0 ){
+ int nNew = pCsr->nDepth + 8;
+ pCsr->aPg = (BtreePg *)lsmReallocOrFreeRc(
+ lsmFsEnv(pFS), pCsr->aPg, sizeof(BtreePg) * nNew, &rc
+ );
+ if( rc==LSM_OK ){
+ memset(&pCsr->aPg[pCsr->nDepth], 0, sizeof(BtreePg) * 8);
+ }
+ }
+
+ if( rc==LSM_OK ){
+ assert( pCsr->aPg[pCsr->nDepth].iCell==0 );
+ pCsr->aPg[pCsr->nDepth].pPage = pPg;
+ pCsr->nDepth++;
+ iPg = pageGetRecordPtr(aData, nData, 0);
+ }
+ }
+ }while( rc==LSM_OK );
+ lsmFsPageRelease(pPg);
+ pCsr->iPg = pCsr->nDepth-1;
+
+ if( rc==LSM_OK && pCsr->nDepth ){
+ pCsr->aPg[pCsr->iPg].iCell = -1;
+ rc = btreeCursorNext(pCsr);
+ }
+
+ return rc;
+}
+
+static void btreeCursorPosition(BtreeCursor *pCsr, MergeInput *p){
+ if( pCsr->iPg>=0 ){
+ p->iPg = lsmFsPageNumber(pCsr->aPg[pCsr->iPg].pPage);
+ p->iCell = ((pCsr->aPg[pCsr->iPg].iCell + 1) << 8) + pCsr->nDepth;
+ }else{
+ p->iPg = 0;
+ p->iCell = 0;
+ }
+}
+
+static void btreeCursorSplitkey(BtreeCursor *pCsr, MergeInput *p){
+ int iCell = pCsr->aPg[pCsr->iPg].iCell;
+ if( iCell>=0 ){
+ p->iCell = iCell;
+ p->iPg = lsmFsPageNumber(pCsr->aPg[pCsr->iPg].pPage);
+ }else{
+ int i;
+ for(i=pCsr->iPg-1; i>=0; i--){
+ if( pCsr->aPg[i].iCell>0 ) break;
+ }
+ assert( i>=0 );
+ p->iCell = pCsr->aPg[i].iCell-1;
+ p->iPg = lsmFsPageNumber(pCsr->aPg[i].pPage);
+ }
+}
+
+static int sortedKeyCompare(
+ int (*xCmp)(void *, int, void *, int),
+ int iLhsTopic, void *pLhsKey, int nLhsKey,
+ int iRhsTopic, void *pRhsKey, int nRhsKey
+){
+ int res = iLhsTopic - iRhsTopic;
+ if( res==0 ){
+ res = xCmp(pLhsKey, nLhsKey, pRhsKey, nRhsKey);
+ }
+ return res;
+}
+
+static int btreeCursorRestore(
+ BtreeCursor *pCsr,
+ int (*xCmp)(void *, int, void *, int),
+ MergeInput *p
+){
+ int rc = LSM_OK;
+
+ if( p->iPg ){
+ lsm_env *pEnv = lsmFsEnv(pCsr->pFS);
+ int iCell; /* Current cell number on leaf page */
+ Pgno iLeaf; /* Page number of current leaf page */
+ int nDepth; /* Depth of b-tree structure */
+ Segment *pSeg = pCsr->pSeg;
+
+ /* Decode the MergeInput structure */
+ iLeaf = p->iPg;
+ nDepth = (p->iCell & 0x00FF);
+ iCell = (p->iCell >> 8) - 1;
+
+ /* Allocate the BtreeCursor.aPg[] array */
+ assert( pCsr->aPg==0 );
+ pCsr->aPg = (BtreePg *)lsmMallocZeroRc(pEnv, sizeof(BtreePg) * nDepth, &rc);
+
+ /* Populate the last entry of the aPg[] array */
+ if( rc==LSM_OK ){
+ Page **pp = &pCsr->aPg[nDepth-1].pPage;
+ pCsr->iPg = nDepth-1;
+ pCsr->nDepth = nDepth;
+ pCsr->aPg[pCsr->iPg].iCell = iCell;
+ rc = lsmFsDbPageGet(pCsr->pFS, pSeg, iLeaf, pp);
+ }
+
+ /* Populate any other aPg[] array entries */
+ if( rc==LSM_OK && nDepth>1 ){
+ Blob blob = {0,0,0};
+ void *pSeek;
+ int nSeek;
+ int iTopicSeek;
+ int iPg = 0;
+ int iLoad = pSeg->iRoot;
+ Page *pPg = pCsr->aPg[nDepth-1].pPage;
+
+ if( pageObjGetNRec(pPg)==0 ){
+ /* This can happen when pPg is the right-most leaf in the b-tree.
+ ** In this case, set the iTopicSeek/pSeek/nSeek key to a value
+ ** greater than any real key. */
+ assert( iCell==-1 );
+ iTopicSeek = 1000;
+ pSeek = 0;
+ nSeek = 0;
+ }else{
+ Pgno dummy;
+ rc = pageGetBtreeKey(pSeg, pPg,
+ 0, &dummy, &iTopicSeek, &pSeek, &nSeek, &pCsr->blob
+ );
+ }
+
+ do {
+ Page *pPg;
+ rc = lsmFsDbPageGet(pCsr->pFS, pSeg, iLoad, &pPg);
+ assert( rc==LSM_OK || pPg==0 );
+ if( rc==LSM_OK ){
+ u8 *aData; /* Buffer containing page data */
+ int nData; /* Size of aData[] in bytes */
+ int iMin;
+ int iMax;
+ int iCell;
+
+ aData = fsPageData(pPg, &nData);
+ assert( (pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG) );
+
+ iLoad = pageGetPtr(aData, nData);
+ iCell = pageGetNRec(aData, nData);
+ iMax = iCell-1;
+ iMin = 0;
+
+ while( iMax>=iMin ){
+ int iTry = (iMin+iMax)/2;
+ void *pKey; int nKey; /* Key for cell iTry */
+ int iTopic; /* Topic for key pKeyT/nKeyT */
+ Pgno iPtr; /* Pointer for cell iTry */
+ int res; /* (pSeek - pKeyT) */
+
+ rc = pageGetBtreeKey(
+ pSeg, pPg, iTry, &iPtr, &iTopic, &pKey, &nKey, &blob
+ );
+ if( rc!=LSM_OK ) break;
+
+ res = sortedKeyCompare(
+ xCmp, iTopicSeek, pSeek, nSeek, iTopic, pKey, nKey
+ );
+ assert( res!=0 );
+
+ if( res<0 ){
+ iLoad = iPtr;
+ iCell = iTry;
+ iMax = iTry-1;
+ }else{
+ iMin = iTry+1;
+ }
+ }
+
+ pCsr->aPg[iPg].pPage = pPg;
+ pCsr->aPg[iPg].iCell = iCell;
+ iPg++;
+ assert( iPg!=nDepth-1
+ || lsmFsRedirectPage(pCsr->pFS, pSeg->pRedirect, iLoad)==iLeaf
+ );
+ }
+ }while( rc==LSM_OK && iPg<(nDepth-1) );
+ sortedBlobFree(&blob);
+ }
+
+ /* Load the current key and pointer */
+ if( rc==LSM_OK ){
+ BtreePg *pBtreePg;
+ u8 *aData;
+ int nData;
+
+ pBtreePg = &pCsr->aPg[pCsr->iPg];
+ aData = fsPageData(pBtreePg->pPage, &nData);
+ pCsr->iPtr = btreeCursorPtr(aData, nData, pBtreePg->iCell+1);
+ if( pBtreePg->iCell<0 ){
+ Pgno dummy;
+ int i;
+ for(i=pCsr->iPg-1; i>=0; i--){
+ if( pCsr->aPg[i].iCell>0 ) break;
+ }
+ assert( i>=0 );
+ rc = pageGetBtreeKey(pSeg,
+ pCsr->aPg[i].pPage, pCsr->aPg[i].iCell-1,
+ &dummy, &pCsr->eType, &pCsr->pKey, &pCsr->nKey, &pCsr->blob
+ );
+ pCsr->eType |= LSM_SEPARATOR;
+
+ }else{
+ rc = btreeCursorLoadKey(pCsr);
+ }
+ }
+ }
+ return rc;
+}
+
+static int btreeCursorNew(
+ lsm_db *pDb,
+ Segment *pSeg,
+ BtreeCursor **ppCsr
+){
+ int rc = LSM_OK;
+ BtreeCursor *pCsr;
+
+ assert( pSeg->iRoot );
+ pCsr = lsmMallocZeroRc(pDb->pEnv, sizeof(BtreeCursor), &rc);
+ if( pCsr ){
+ pCsr->pFS = pDb->pFS;
+ pCsr->pSeg = pSeg;
+ pCsr->iPg = -1;
+ }
+
+ *ppCsr = pCsr;
+ return rc;
+}
+
+static void segmentPtrSetPage(SegmentPtr *pPtr, Page *pNext){
+ lsmFsPageRelease(pPtr->pPg);
+ if( pNext ){
+ int nData;
+ u8 *aData = fsPageData(pNext, &nData);
+ pPtr->nCell = pageGetNRec(aData, nData);
+ pPtr->flags = pageGetFlags(aData, nData);
+ pPtr->iPtr = pageGetPtr(aData, nData);
+ }
+ pPtr->pPg = pNext;
+}
+
+/*
+** Load a new page into the SegmentPtr object pPtr.
+*/
+static int segmentPtrLoadPage(
+ FileSystem *pFS,
+ SegmentPtr *pPtr, /* Load page into this SegmentPtr object */
+ int iNew /* Page number of new page */
+){
+ Page *pPg = 0; /* The new page */
+ int rc; /* Return Code */
+
+ rc = lsmFsDbPageGet(pFS, pPtr->pSeg, iNew, &pPg);
+ assert( rc==LSM_OK || pPg==0 );
+ segmentPtrSetPage(pPtr, pPg);
+
+ return rc;
+}
+
+static int segmentPtrReadData(
+ SegmentPtr *pPtr,
+ int iOff,
+ int nByte,
+ void **ppData,
+ Blob *pBlob
+){
+ return sortedReadData(pPtr->pSeg, pPtr->pPg, iOff, nByte, ppData, pBlob);
+}
+
+static int segmentPtrNextPage(
+ SegmentPtr *pPtr, /* Load page into this SegmentPtr object */
+ int eDir /* +1 for next(), -1 for prev() */
+){
+ Page *pNext; /* New page to load */
+ int rc; /* Return code */
+
+ assert( eDir==1 || eDir==-1 );
+ assert( pPtr->pPg );
+ assert( pPtr->pSeg || eDir>0 );
+
+ rc = lsmFsDbPageNext(pPtr->pSeg, pPtr->pPg, eDir, &pNext);
+ assert( rc==LSM_OK || pNext==0 );
+ segmentPtrSetPage(pPtr, pNext);
+ return rc;
+}
+
+static int segmentPtrLoadCell(
+ SegmentPtr *pPtr, /* Load page into this SegmentPtr object */
+ int iNew /* Cell number of new cell */
+){
+ int rc = LSM_OK;
+ if( pPtr->pPg ){
+ u8 *aData; /* Pointer to page data buffer */
+ int iOff; /* Offset in aData[] to read from */
+ int nPgsz; /* Size of page (aData[]) in bytes */
+
+ assert( iNew<pPtr->nCell );
+ pPtr->iCell = iNew;
+ aData = fsPageData(pPtr->pPg, &nPgsz);
+ iOff = lsmGetU16(&aData[SEGMENT_CELLPTR_OFFSET(nPgsz, pPtr->iCell)]);
+ pPtr->eType = aData[iOff];
+ iOff++;
+ iOff += GETVARINT64(&aData[iOff], pPtr->iPgPtr);
+ iOff += GETVARINT32(&aData[iOff], pPtr->nKey);
+ if( rtIsWrite(pPtr->eType) ){
+ iOff += GETVARINT32(&aData[iOff], pPtr->nVal);
+ }
+ assert( pPtr->nKey>=0 );
+
+ rc = segmentPtrReadData(
+ pPtr, iOff, pPtr->nKey, &pPtr->pKey, &pPtr->blob1
+ );
+ if( rc==LSM_OK && rtIsWrite(pPtr->eType) ){
+ rc = segmentPtrReadData(
+ pPtr, iOff+pPtr->nKey, pPtr->nVal, &pPtr->pVal, &pPtr->blob2
+ );
+ }else{
+ pPtr->nVal = 0;
+ pPtr->pVal = 0;
+ }
+ }
+
+ return rc;
+}
+
+
+static Segment *sortedSplitkeySegment(Level *pLevel){
+ Merge *pMerge = pLevel->pMerge;
+ MergeInput *p = &pMerge->splitkey;
+ Segment *pSeg;
+ int i;
+
+ for(i=0; i<pMerge->nInput; i++){
+ if( p->iPg==pMerge->aInput[i].iPg ) break;
+ }
+ if( pMerge->nInput==(pLevel->nRight+1) && i>=(pMerge->nInput-1) ){
+ pSeg = &pLevel->pNext->lhs;
+ }else{
+ pSeg = &pLevel->aRhs[i];
+ }
+
+ return pSeg;
+}
+
+static void sortedSplitkey(lsm_db *pDb, Level *pLevel, int *pRc){
+ Segment *pSeg;
+ Page *pPg = 0;
+ lsm_env *pEnv = pDb->pEnv; /* Environment handle */
+ int rc = *pRc;
+ Merge *pMerge = pLevel->pMerge;
+
+ pSeg = sortedSplitkeySegment(pLevel);
+ if( rc==LSM_OK ){
+ rc = lsmFsDbPageGet(pDb->pFS, pSeg, pMerge->splitkey.iPg, &pPg);
+ }
+ if( rc==LSM_OK ){
+ int iTopic;
+ Blob blob = {0, 0, 0, 0};
+ u8 *aData;
+ int nData;
+
+ aData = lsmFsPageData(pPg, &nData);
+ if( pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG ){
+ void *pKey;
+ int nKey;
+ Pgno dummy;
+ rc = pageGetBtreeKey(pSeg,
+ pPg, pMerge->splitkey.iCell, &dummy, &iTopic, &pKey, &nKey, &blob
+ );
+ if( rc==LSM_OK && blob.pData!=pKey ){
+ rc = sortedBlobSet(pEnv, &blob, pKey, nKey);
+ }
+ }else{
+ rc = pageGetKeyCopy(
+ pEnv, pSeg, pPg, pMerge->splitkey.iCell, &iTopic, &blob
+ );
+ }
+
+ pLevel->iSplitTopic = iTopic;
+ pLevel->pSplitKey = blob.pData;
+ pLevel->nSplitKey = blob.nData;
+ lsmFsPageRelease(pPg);
+ }
+
+ *pRc = rc;
+}
+
+static void segmentPtrReset(SegmentPtr *pPtr){
+ lsmFsPageRelease(pPtr->pPg);
+ pPtr->pPg = 0;
+ pPtr->nCell = 0;
+ pPtr->pKey = 0;
+ pPtr->nKey = 0;
+ pPtr->pVal = 0;
+ pPtr->nVal = 0;
+ pPtr->eType = 0;
+ pPtr->iCell = 0;
+ sortedBlobFree(&pPtr->blob1);
+ sortedBlobFree(&pPtr->blob2);
+}
+
+static int segmentPtrIgnoreSeparators(MultiCursor *pCsr, SegmentPtr *pPtr){
+ return (pCsr->flags & CURSOR_READ_SEPARATORS)==0
+ || (pPtr!=&pCsr->aPtr[pCsr->nPtr-1]);
+}
+
+static int segmentPtrAdvance(
+ MultiCursor *pCsr,
+ SegmentPtr *pPtr,
+ int bReverse
+){
+ int eDir = (bReverse ? -1 : 1);
+ Level *pLvl = pPtr->pLevel;
+ do {
+ int rc;
+ int iCell; /* Number of new cell in page */
+ int svFlags = 0; /* SegmentPtr.eType before advance */
+
+ iCell = pPtr->iCell + eDir;
+ assert( pPtr->pPg );
+ assert( iCell<=pPtr->nCell && iCell>=-1 );
+
+ if( bReverse && pPtr->pSeg!=&pPtr->pLevel->lhs ){
+ svFlags = pPtr->eType;
+ assert( svFlags );
+ }
+
+ if( iCell>=pPtr->nCell || iCell<0 ){
+ do {
+ rc = segmentPtrNextPage(pPtr, eDir);
+ }while( rc==LSM_OK
+ && pPtr->pPg
+ && (pPtr->nCell==0 || (pPtr->flags & SEGMENT_BTREE_FLAG) )
+ );
+ if( rc!=LSM_OK ) return rc;
+ iCell = bReverse ? (pPtr->nCell-1) : 0;
+ }
+ rc = segmentPtrLoadCell(pPtr, iCell);
+ if( rc!=LSM_OK ) return rc;
+
+ if( svFlags && pPtr->pPg ){
+ int res = sortedKeyCompare(pCsr->pDb->xCmp,
+ rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey,
+ pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey
+ );
+ if( res<0 ) segmentPtrReset(pPtr);
+ }
+
+ if( pPtr->pPg==0 && (svFlags & LSM_END_DELETE) ){
+ Segment *pSeg = pPtr->pSeg;
+ rc = lsmFsDbPageGet(pCsr->pDb->pFS, pSeg, pSeg->iFirst, &pPtr->pPg);
+ if( rc!=LSM_OK ) return rc;
+ pPtr->eType = LSM_START_DELETE | LSM_POINT_DELETE;
+ pPtr->eType |= (pLvl->iSplitTopic ? LSM_SYSTEMKEY : 0);
+ pPtr->pKey = pLvl->pSplitKey;
+ pPtr->nKey = pLvl->nSplitKey;
+ }
+
+ }while( pCsr
+ && pPtr->pPg
+ && segmentPtrIgnoreSeparators(pCsr, pPtr)
+ && rtIsSeparator(pPtr->eType)
+ );
+
+ return LSM_OK;
+}
+
+static void segmentPtrEndPage(
+ FileSystem *pFS,
+ SegmentPtr *pPtr,
+ int bLast,
+ int *pRc
+){
+ if( *pRc==LSM_OK ){
+ Segment *pSeg = pPtr->pSeg;
+ Page *pNew = 0;
+ if( bLast ){
+ *pRc = lsmFsDbPageLast(pFS, pSeg, &pNew);
+ }else{
+ *pRc = lsmFsDbPageGet(pFS, pSeg, pSeg->iFirst, &pNew);
+ }
+ segmentPtrSetPage(pPtr, pNew);
+ }
+}
+
+
+/*
+** Try to move the segment pointer passed as the second argument so that it
+** points at either the first (bLast==0) or last (bLast==1) cell in the valid
+** region of the segment defined by pPtr->iFirst and pPtr->iLast.
+**
+** Return LSM_OK if successful or an lsm error code if something goes
+** wrong (IO error, OOM etc.).
+*/
+static int segmentPtrEnd(MultiCursor *pCsr, SegmentPtr *pPtr, int bLast){
+ Level *pLvl = pPtr->pLevel;
+ int rc = LSM_OK;
+ FileSystem *pFS = pCsr->pDb->pFS;
+ int bIgnore;
+
+ segmentPtrEndPage(pFS, pPtr, bLast, &rc);
+ while( rc==LSM_OK && pPtr->pPg
+ && (pPtr->nCell==0 || (pPtr->flags & SEGMENT_BTREE_FLAG))
+ ){
+ rc = segmentPtrNextPage(pPtr, (bLast ? -1 : 1));
+ }
+
+ if( rc==LSM_OK && pPtr->pPg ){
+ rc = segmentPtrLoadCell(pPtr, bLast ? (pPtr->nCell-1) : 0);
+ if( rc==LSM_OK && bLast && pPtr->pSeg!=&pLvl->lhs ){
+ int res = sortedKeyCompare(pCsr->pDb->xCmp,
+ rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey,
+ pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey
+ );
+ if( res<0 ) segmentPtrReset(pPtr);
+ }
+ }
+
+ bIgnore = segmentPtrIgnoreSeparators(pCsr, pPtr);
+ if( rc==LSM_OK && pPtr->pPg && bIgnore && rtIsSeparator(pPtr->eType) ){
+ rc = segmentPtrAdvance(pCsr, pPtr, bLast);
+ }
+
+#if 0
+ if( bLast && rc==LSM_OK && pPtr->pPg
+ && pPtr->pSeg==&pLvl->lhs
+ && pLvl->nRight && (pPtr->eType & LSM_START_DELETE)
+ ){
+ pPtr->iCell++;
+ pPtr->eType = LSM_END_DELETE | (pLvl->iSplitTopic);
+ pPtr->pKey = pLvl->pSplitKey;
+ pPtr->nKey = pLvl->nSplitKey;
+ pPtr->pVal = 0;
+ pPtr->nVal = 0;
+ }
+#endif
+
+ return rc;
+}
+
+static void segmentPtrKey(SegmentPtr *pPtr, void **ppKey, int *pnKey){
+ assert( pPtr->pPg );
+ *ppKey = pPtr->pKey;
+ *pnKey = pPtr->nKey;
+}
+
+#if 0 /* NOT USED */
+static char *keyToString(lsm_env *pEnv, void *pKey, int nKey){
+ int i;
+ u8 *aKey = (u8 *)pKey;
+ char *zRet = (char *)lsmMalloc(pEnv, nKey+1);
+
+ for(i=0; i<nKey; i++){
+ zRet[i] = (char)(isalnum(aKey[i]) ? aKey[i] : '.');
+ }
+ zRet[nKey] = '\0';
+ return zRet;
+}
+#endif
+
+#if 0 /* NOT USED */
+/*
+** Check that the page that pPtr currently has loaded is the correct page
+** to search for key (pKey/nKey). If it is, return 1. Otherwise, an assert
+** fails and this function does not return.
+*/
+static int assertKeyLocation(
+ MultiCursor *pCsr,
+ SegmentPtr *pPtr,
+ void *pKey, int nKey
+){
+ lsm_env *pEnv = lsmFsEnv(pCsr->pDb->pFS);
+ Blob blob = {0, 0, 0};
+ int eDir;
+ int iTopic = 0; /* TODO: Fix me */
+
+ for(eDir=-1; eDir<=1; eDir+=2){
+ Page *pTest = pPtr->pPg;
+
+ lsmFsPageRef(pTest);
+ while( pTest ){
+ Segment *pSeg = pPtr->pSeg;
+ Page *pNext;
+
+ int rc = lsmFsDbPageNext(pSeg, pTest, eDir, &pNext);
+ lsmFsPageRelease(pTest);
+ if( rc ) return 1;
+ pTest = pNext;
+
+ if( pTest ){
+ int nData;
+ u8 *aData = fsPageData(pTest, &nData);
+ int nCell = pageGetNRec(aData, nData);
+ int flags = pageGetFlags(aData, nData);
+ if( nCell && 0==(flags&SEGMENT_BTREE_FLAG) ){
+ int nPgKey;
+ int iPgTopic;
+ u8 *pPgKey;
+ int res;
+ int iCell;
+
+ iCell = ((eDir < 0) ? (nCell-1) : 0);
+ pPgKey = pageGetKey(pSeg, pTest, iCell, &iPgTopic, &nPgKey, &blob);
+ res = iTopic - iPgTopic;
+ if( res==0 ) res = pCsr->pDb->xCmp(pKey, nKey, pPgKey, nPgKey);
+ if( (eDir==1 && res>0) || (eDir==-1 && res<0) ){
+ /* Taking this branch means something has gone wrong. */
+ char *zMsg = lsmMallocPrintf(pEnv, "Key \"%s\" is not on page %d",
+ keyToString(pEnv, pKey, nKey), lsmFsPageNumber(pPtr->pPg)
+ );
+ fprintf(stderr, "%s\n", zMsg);
+ assert( !"assertKeyLocation() failed" );
+ }
+ lsmFsPageRelease(pTest);
+ pTest = 0;
+ }
+ }
+ }
+ }
+
+ sortedBlobFree(&blob);
+ return 1;
+}
+#endif
+
+#ifndef NDEBUG
+static int assertSeekResult(
+ MultiCursor *pCsr,
+ SegmentPtr *pPtr,
+ int iTopic,
+ void *pKey,
+ int nKey,
+ int eSeek
+){
+ if( pPtr->pPg ){
+ int res;
+ res = sortedKeyCompare(pCsr->pDb->xCmp, iTopic, pKey, nKey,
+ rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey
+ );
+
+ if( eSeek==LSM_SEEK_EQ ) return (res==0);
+ if( eSeek==LSM_SEEK_LE ) return (res>=0);
+ if( eSeek==LSM_SEEK_GE ) return (res<=0);
+ }
+
+ return 1;
+}
+#endif
+
+static int segmentPtrSearchOversized(
+ MultiCursor *pCsr, /* Cursor context */
+ SegmentPtr *pPtr, /* Pointer to seek */
+ int iTopic, /* Topic of key to search for */
+ void *pKey, int nKey /* Key to seek to */
+){
+ int (*xCmp)(void *, int, void *, int) = pCsr->pDb->xCmp;
+ int rc = LSM_OK;
+
+ /* If the OVERSIZED flag is set, then there is no pointer in the
+ ** upper level to the next page in the segment that contains at least
+ ** one key. So compare the largest key on the current page with the
+ ** key being sought (pKey/nKey). If (pKey/nKey) is larger, advance
+ ** to the next page in the segment that contains at least one key.
+ */
+ while( rc==LSM_OK && (pPtr->flags & PGFTR_SKIP_NEXT_FLAG) ){
+ u8 *pLastKey;
+ int nLastKey;
+ int iLastTopic;
+ int res; /* Result of comparison */
+ Page *pNext;
+
+ /* Load the last key on the current page. */
+ pLastKey = pageGetKey(pPtr->pSeg,
+ pPtr->pPg, pPtr->nCell-1, &iLastTopic, &nLastKey, &pPtr->blob1
+ );
+
+ /* If the loaded key is >= than (pKey/nKey), break out of the loop.
+ ** If (pKey/nKey) is present in this array, it must be on the current
+ ** page. */
+ res = sortedKeyCompare(
+ xCmp, iLastTopic, pLastKey, nLastKey, iTopic, pKey, nKey
+ );
+ if( res>=0 ) break;
+
+ /* Advance to the next page that contains at least one key. */
+ pNext = pPtr->pPg;
+ lsmFsPageRef(pNext);
+ while( 1 ){
+ Page *pLoad;
+ u8 *aData; int nData;
+
+ rc = lsmFsDbPageNext(pPtr->pSeg, pNext, 1, &pLoad);
+ lsmFsPageRelease(pNext);
+ pNext = pLoad;
+ if( pNext==0 ) break;
+
+ assert( rc==LSM_OK );
+ aData = lsmFsPageData(pNext, &nData);
+ if( (pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG)==0
+ && pageGetNRec(aData, nData)>0
+ ){
+ break;
+ }
+ }
+ if( pNext==0 ) break;
+ segmentPtrSetPage(pPtr, pNext);
+
+ /* This should probably be an LSM_CORRUPT error. */
+ assert( rc!=LSM_OK || (pPtr->flags & PGFTR_SKIP_THIS_FLAG) );
+ }
+
+ return rc;
+}
+
+static int ptrFwdPointer(
+ Page *pPage,
+ int iCell,
+ Segment *pSeg,
+ Pgno *piPtr,
+ int *pbFound
+){
+ Page *pPg = pPage;
+ int iFirst = iCell;
+ int rc = LSM_OK;
+
+ do {
+ Page *pNext = 0;
+ u8 *aData;
+ int nData;
+
+ aData = lsmFsPageData(pPg, &nData);
+ if( (pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG)==0 ){
+ int i;
+ int nCell = pageGetNRec(aData, nData);
+ for(i=iFirst; i<nCell; i++){
+ u8 eType = *pageGetCell(aData, nData, i);
+ if( (eType & LSM_START_DELETE)==0 ){
+ *pbFound = 1;
+ *piPtr = pageGetRecordPtr(aData, nData, i) + pageGetPtr(aData, nData);
+ lsmFsPageRelease(pPg);
+ return LSM_OK;
+ }
+ }
+ }
+
+ rc = lsmFsDbPageNext(pSeg, pPg, 1, &pNext);
+ lsmFsPageRelease(pPg);
+ pPg = pNext;
+ iFirst = 0;
+ }while( pPg && rc==LSM_OK );
+ lsmFsPageRelease(pPg);
+
+ *pbFound = 0;
+ return rc;
+}
+
+static int sortedRhsFirst(MultiCursor *pCsr, Level *pLvl, SegmentPtr *pPtr){
+ int rc;
+ rc = segmentPtrEnd(pCsr, pPtr, 0);
+ while( pPtr->pPg && rc==LSM_OK ){
+ int res = sortedKeyCompare(pCsr->pDb->xCmp,
+ pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey,
+ rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey
+ );
+ if( res<=0 ) break;
+ rc = segmentPtrAdvance(pCsr, pPtr, 0);
+ }
+ return rc;
+}
+
+
+/*
+** This function is called as part of a SEEK_GE op on a multi-cursor if the
+** FC pointer read from segment *pPtr comes from an entry with the
+** LSM_START_DELETE flag set. In this case the pointer value cannot be
+** trusted. Instead, the pointer that should be followed is that associated
+** with the next entry in *pPtr that does not have LSM_START_DELETE set.
+**
+** Why the pointers can't be trusted:
+**
+**
+**
+** TODO: This is a stop-gap solution:
+**
+** At the moment, this function is called from within segmentPtrSeek(),
+** as part of the initial lsmMCursorSeek() call. However, consider a
+** database where the following has occurred:
+**
+** 1. A range delete removes keys 1..9999 using a range delete.
+** 2. Keys 1 through 9999 are reinserted.
+** 3. The levels containing the ops in 1. and 2. above are merged. Call
+** this level N. Level N contains FC pointers to level N+1.
+**
+** Then, if the user attempts to query for (key>=2 LIMIT 10), the
+** lsmMCursorSeek() call will iterate through 9998 entries searching for a
+** pointer down to the level N+1 that is never actually used. It would be
+** much better if the multi-cursor could do this lazily - only seek to the
+** level (N+1) page after the user has moved the cursor on level N passed
+** the big range-delete.
+*/
+static int segmentPtrFwdPointer(
+ MultiCursor *pCsr, /* Multi-cursor pPtr belongs to */
+ SegmentPtr *pPtr, /* Segment-pointer to extract FC ptr from */
+ Pgno *piPtr /* OUT: FC pointer value */
+){
+ Level *pLvl = pPtr->pLevel;
+ Level *pNext = pLvl->pNext;
+ Page *pPg = pPtr->pPg;
+ int rc;
+ int bFound;
+ Pgno iOut = 0;
+
+ if( pPtr->pSeg==&pLvl->lhs || pPtr->pSeg==&pLvl->aRhs[pLvl->nRight-1] ){
+ if( pNext==0
+ || (pNext->nRight==0 && pNext->lhs.iRoot)
+ || (pNext->nRight!=0 && pNext->aRhs[0].iRoot)
+ ){
+ /* Do nothing. The pointer will not be used anyway. */
+ return LSM_OK;
+ }
+ }else{
+ if( pPtr[1].pSeg->iRoot ){
+ return LSM_OK;
+ }
+ }
+
+ /* Search for a pointer within the current segment. */
+ lsmFsPageRef(pPg);
+ rc = ptrFwdPointer(pPg, pPtr->iCell, pPtr->pSeg, &iOut, &bFound);
+
+ if( rc==LSM_OK && bFound==0 ){
+ /* This case happens when pPtr points to the left-hand-side of a segment
+ ** currently undergoing an incremental merge. In this case, jump to the
+ ** oldest segment in the right-hand-side of the same level and continue
+ ** searching. But - do not consider any keys smaller than the levels
+ ** split-key. */
+ SegmentPtr ptr;
+
+ if( pPtr->pLevel->nRight==0 || pPtr->pSeg!=&pPtr->pLevel->lhs ){
+ return LSM_CORRUPT_BKPT;
+ }
+
+ memset(&ptr, 0, sizeof(SegmentPtr));
+ ptr.pLevel = pPtr->pLevel;
+ ptr.pSeg = &ptr.pLevel->aRhs[ptr.pLevel->nRight-1];
+ rc = sortedRhsFirst(pCsr, ptr.pLevel, &ptr);
+ if( rc==LSM_OK ){
+ rc = ptrFwdPointer(ptr.pPg, ptr.iCell, ptr.pSeg, &iOut, &bFound);
+ ptr.pPg = 0;
+ }
+ segmentPtrReset(&ptr);
+ }
+
+ *piPtr = iOut;
+ return rc;
+}
+
+static int segmentPtrSeek(
+ MultiCursor *pCsr, /* Cursor context */
+ SegmentPtr *pPtr, /* Pointer to seek */
+ int iTopic, /* Key topic to seek to */
+ void *pKey, int nKey, /* Key to seek to */
+ int eSeek, /* Search bias - see above */
+ int *piPtr, /* OUT: FC pointer */
+ int *pbStop
+){
+ int (*xCmp)(void *, int, void *, int) = pCsr->pDb->xCmp;
+ int res; /* Result of comparison operation */
+ int rc = LSM_OK;
+ int iMin;
+ int iMax;
+ Pgno iPtrOut = 0;
+
+ /* If the current page contains an oversized entry, then there are no
+ ** pointers to one or more of the subsequent pages in the sorted run.
+ ** The following call ensures that the segment-ptr points to the correct
+ ** page in this case. */
+ rc = segmentPtrSearchOversized(pCsr, pPtr, iTopic, pKey, nKey);
+ iPtrOut = pPtr->iPtr;
+
+ /* Assert that this page is the right page of this segment for the key
+ ** that we are searching for. Do this by loading page (iPg-1) and testing
+ ** that pKey/nKey is greater than all keys on that page, and then by
+ ** loading (iPg+1) and testing that pKey/nKey is smaller than all
+ ** the keys it houses.
+ **
+ ** TODO: With range-deletes in the tree, the test described above may fail.
+ */
+#if 0
+ assert( assertKeyLocation(pCsr, pPtr, pKey, nKey) );
+#endif
+
+ assert( pPtr->nCell>0
+ || pPtr->pSeg->nSize==1
+ || lsmFsDbPageIsLast(pPtr->pSeg, pPtr->pPg)
+ );
+ if( pPtr->nCell==0 ){
+ segmentPtrReset(pPtr);
+ }else{
+ iMin = 0;
+ iMax = pPtr->nCell-1;
+
+ while( 1 ){
+ int iTry = (iMin+iMax)/2;
+ void *pKeyT; int nKeyT; /* Key for cell iTry */
+ int iTopicT;
+
+ assert( iTry<iMax || iMin==iMax );
+
+ rc = segmentPtrLoadCell(pPtr, iTry);
+ if( rc!=LSM_OK ) break;
+
+ segmentPtrKey(pPtr, &pKeyT, &nKeyT);
+ iTopicT = rtTopic(pPtr->eType);
+
+ res = sortedKeyCompare(xCmp, iTopicT, pKeyT, nKeyT, iTopic, pKey, nKey);
+ if( res<=0 ){
+ iPtrOut = pPtr->iPtr + pPtr->iPgPtr;
+ }
+
+ if( res==0 || iMin==iMax ){
+ break;
+ }else if( res>0 ){
+ iMax = LSM_MAX(iTry-1, iMin);
+ }else{
+ iMin = iTry+1;
+ }
+ }
+
+ if( rc==LSM_OK ){
+ assert( res==0 || (iMin==iMax && iMin>=0 && iMin<pPtr->nCell) );
+ if( res ){
+ rc = segmentPtrLoadCell(pPtr, iMin);
+ }
+ assert( rc!=LSM_OK || res>0 || iPtrOut==(pPtr->iPtr + pPtr->iPgPtr) );
+
+ if( rc==LSM_OK ){
+ switch( eSeek ){
+ case LSM_SEEK_EQ: {
+ int eType = pPtr->eType;
+ if( (res<0 && (eType & LSM_START_DELETE))
+ || (res>0 && (eType & LSM_END_DELETE))
+ || (res==0 && (eType & LSM_POINT_DELETE))
+ ){
+ *pbStop = 1;
+ }else if( res==0 && (eType & LSM_INSERT) ){
+ lsm_env *pEnv = pCsr->pDb->pEnv;
+ *pbStop = 1;
+ pCsr->eType = pPtr->eType;
+ rc = sortedBlobSet(pEnv, &pCsr->key, pPtr->pKey, pPtr->nKey);
+ if( rc==LSM_OK ){
+ rc = sortedBlobSet(pEnv, &pCsr->val, pPtr->pVal, pPtr->nVal);
+ }
+ pCsr->flags |= CURSOR_SEEK_EQ;
+ }
+ segmentPtrReset(pPtr);
+ break;
+ }
+ case LSM_SEEK_LE:
+ if( res>0 ) rc = segmentPtrAdvance(pCsr, pPtr, 1);
+ break;
+ case LSM_SEEK_GE: {
+ /* Figure out if we need to 'skip' the pointer forward or not */
+ if( (res<=0 && (pPtr->eType & LSM_START_DELETE))
+ || (res>0 && (pPtr->eType & LSM_END_DELETE))
+ ){
+ rc = segmentPtrFwdPointer(pCsr, pPtr, &iPtrOut);
+ }
+ if( res<0 && rc==LSM_OK ){
+ rc = segmentPtrAdvance(pCsr, pPtr, 0);
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ /* If the cursor seek has found a separator key, and this cursor is
+ ** supposed to ignore separators keys, advance to the next entry. */
+ if( rc==LSM_OK && pPtr->pPg
+ && segmentPtrIgnoreSeparators(pCsr, pPtr)
+ && rtIsSeparator(pPtr->eType)
+ ){
+ assert( eSeek!=LSM_SEEK_EQ );
+ rc = segmentPtrAdvance(pCsr, pPtr, eSeek==LSM_SEEK_LE);
+ }
+ }
+
+ assert( rc!=LSM_OK || assertSeekResult(pCsr,pPtr,iTopic,pKey,nKey,eSeek) );
+ *piPtr = iPtrOut;
+ return rc;
+}
+
+static int seekInBtree(
+ MultiCursor *pCsr, /* Multi-cursor object */
+ Segment *pSeg, /* Seek within this segment */
+ int iTopic,
+ void *pKey, int nKey, /* Key to seek to */
+ Pgno *aPg, /* OUT: Page numbers */
+ Page **ppPg /* OUT: Leaf (sorted-run) page reference */
+){
+ int i = 0;
+ int rc;
+ int iPg;
+ Page *pPg = 0;
+ Blob blob = {0, 0, 0};
+
+ iPg = pSeg->iRoot;
+ do {
+ Pgno *piFirst = 0;
+ if( aPg ){
+ aPg[i++] = iPg;
+ piFirst = &aPg[i];
+ }
+
+ rc = lsmFsDbPageGet(pCsr->pDb->pFS, pSeg, iPg, &pPg);
+ assert( rc==LSM_OK || pPg==0 );
+ if( rc==LSM_OK ){
+ u8 *aData; /* Buffer containing page data */
+ int nData; /* Size of aData[] in bytes */
+ int iMin;
+ int iMax;
+ int nRec;
+ int flags;
+
+ aData = fsPageData(pPg, &nData);
+ flags = pageGetFlags(aData, nData);
+ if( (flags & SEGMENT_BTREE_FLAG)==0 ) break;
+
+ iPg = pageGetPtr(aData, nData);
+ nRec = pageGetNRec(aData, nData);
+
+ iMin = 0;
+ iMax = nRec-1;
+ while( iMax>=iMin ){
+ int iTry = (iMin+iMax)/2;
+ void *pKeyT; int nKeyT; /* Key for cell iTry */
+ int iTopicT; /* Topic for key pKeyT/nKeyT */
+ Pgno iPtr; /* Pointer associated with cell iTry */
+ int res; /* (pKey - pKeyT) */
+
+ rc = pageGetBtreeKey(
+ pSeg, pPg, iTry, &iPtr, &iTopicT, &pKeyT, &nKeyT, &blob
+ );
+ if( rc!=LSM_OK ) break;
+ if( piFirst && pKeyT==blob.pData ){
+ *piFirst = pageGetBtreeRef(pPg, iTry);
+ piFirst = 0;
+ i++;
+ }
+
+ res = sortedKeyCompare(
+ pCsr->pDb->xCmp, iTopic, pKey, nKey, iTopicT, pKeyT, nKeyT
+ );
+ if( res<0 ){
+ iPg = iPtr;
+ iMax = iTry-1;
+ }else{
+ iMin = iTry+1;
+ }
+ }
+ lsmFsPageRelease(pPg);
+ pPg = 0;
+ }
+ }while( rc==LSM_OK );
+
+ sortedBlobFree(&blob);
+ assert( (rc==LSM_OK)==(pPg!=0) );
+ if( ppPg ){
+ *ppPg = pPg;
+ }else{
+ lsmFsPageRelease(pPg);
+ }
+ return rc;
+}
+
+static int seekInSegment(
+ MultiCursor *pCsr,
+ SegmentPtr *pPtr,
+ int iTopic,
+ void *pKey, int nKey,
+ int iPg, /* Page to search */
+ int eSeek, /* Search bias - see above */
+ int *piPtr, /* OUT: FC pointer */
+ int *pbStop /* OUT: Stop search flag */
+){
+ int iPtr = iPg;
+ int rc = LSM_OK;
+
+ if( pPtr->pSeg->iRoot ){
+ Page *pPg;
+ assert( pPtr->pSeg->iRoot!=0 );
+ rc = seekInBtree(pCsr, pPtr->pSeg, iTopic, pKey, nKey, 0, &pPg);
+ if( rc==LSM_OK ) segmentPtrSetPage(pPtr, pPg);
+ }else{
+ if( iPtr==0 ){
+ iPtr = pPtr->pSeg->iFirst;
+ }
+ if( rc==LSM_OK ){
+ rc = segmentPtrLoadPage(pCsr->pDb->pFS, pPtr, iPtr);
+ }
+ }
+
+ if( rc==LSM_OK ){
+ rc = segmentPtrSeek(pCsr, pPtr, iTopic, pKey, nKey, eSeek, piPtr, pbStop);
+ }
+ return rc;
+}
+
+/*
+** Seek each segment pointer in the array of (pLvl->nRight+1) at aPtr[].
+**
+** pbStop:
+** This parameter is only significant if parameter eSeek is set to
+** LSM_SEEK_EQ. In this case, it is set to true before returning if
+** the seek operation is finished. This can happen in two ways:
+**
+** a) A key matching (pKey/nKey) is found, or
+** b) A point-delete or range-delete deleting the key is found.
+**
+** In case (a), the multi-cursor CURSOR_SEEK_EQ flag is set and the pCsr->key
+** and pCsr->val blobs populated before returning.
+*/
+static int seekInLevel(
+ MultiCursor *pCsr, /* Sorted cursor object to seek */
+ SegmentPtr *aPtr, /* Pointer to array of (nRhs+1) SPs */
+ int eSeek, /* Search bias - see above */
+ int iTopic, /* Key topic to search for */
+ void *pKey, int nKey, /* Key to search for */
+ Pgno *piPgno, /* IN/OUT: fraction cascade pointer (or 0) */
+ int *pbStop /* OUT: See above */
+){
+ Level *pLvl = aPtr[0].pLevel; /* Level to seek within */
+ int rc = LSM_OK; /* Return code */
+ int iOut = 0; /* Pointer to return to caller */
+ int res = -1; /* Result of xCmp(pKey, split) */
+ int nRhs = pLvl->nRight; /* Number of right-hand-side segments */
+ int bStop = 0;
+
+ /* If this is a composite level (one currently undergoing an incremental
+ ** merge), figure out if the search key is larger or smaller than the
+ ** levels split-key. */
+ if( nRhs ){
+ res = sortedKeyCompare(pCsr->pDb->xCmp, iTopic, pKey, nKey,
+ pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey
+ );
+ }
+
+ /* If (res<0), then key pKey/nKey is smaller than the split-key (or this
+ ** is not a composite level and there is no split-key). Search the
+ ** left-hand-side of the level in this case. */
+ if( res<0 ){
+ int iPtr = 0;
+ if( nRhs==0 ) iPtr = *piPgno;
+
+ rc = seekInSegment(
+ pCsr, &aPtr[0], iTopic, pKey, nKey, iPtr, eSeek, &iOut, &bStop
+ );
+ if( rc==LSM_OK && nRhs>0 && eSeek==LSM_SEEK_GE && aPtr[0].pPg==0 ){
+ res = 0;
+ }
+ }
+
+ if( res>=0 ){
+ int bHit = 0; /* True if at least one rhs is not EOF */
+ int iPtr = *piPgno;
+ int i;
+ for(i=1; rc==LSM_OK && i<=nRhs && bStop==0; i++){
+ SegmentPtr *pPtr = &aPtr[i];
+ iOut = 0;
+ rc = seekInSegment(
+ pCsr, pPtr, iTopic, pKey, nKey, iPtr, eSeek, &iOut, &bStop
+ );
+ iPtr = iOut;
+
+ /* If the segment-pointer has settled on a key that is smaller than
+ ** the splitkey, invalidate the segment-pointer. */
+ if( pPtr->pPg ){
+ res = sortedKeyCompare(pCsr->pDb->xCmp,
+ rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey,
+ pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey
+ );
+ if( res<0 ) segmentPtrReset(pPtr);
+ }
+
+ if( aPtr[i].pKey ) bHit = 1;
+ }
+
+ if( rc==LSM_OK && eSeek==LSM_SEEK_LE && bHit==0 ){
+ rc = segmentPtrEnd(pCsr, &aPtr[0], 1);
+ }
+ }
+
+ assert( eSeek==LSM_SEEK_EQ || bStop==0 );
+ *piPgno = iOut;
+ *pbStop = bStop;
+ return rc;
+}
+
+static void multiCursorGetKey(
+ MultiCursor *pCsr,
+ int iKey,
+ int *peType, /* OUT: Key type (SORTED_WRITE etc.) */
+ void **ppKey, /* OUT: Pointer to buffer containing key */
+ int *pnKey /* OUT: Size of *ppKey in bytes */
+){
+ int nKey = 0;
+ void *pKey = 0;
+ int eType = 0;
+
+ switch( iKey ){
+ case CURSOR_DATA_TREE0:
+ case CURSOR_DATA_TREE1: {
+ TreeCursor *pTreeCsr = pCsr->apTreeCsr[iKey-CURSOR_DATA_TREE0];
+ if( lsmTreeCursorValid(pTreeCsr) ){
+ lsmTreeCursorKey(pTreeCsr, &eType, &pKey, &nKey);
+ }
+ break;
+ }
+
+ case CURSOR_DATA_SYSTEM: {
+ Snapshot *pWorker = pCsr->pDb->pWorker;
+ if( pWorker && (pCsr->flags & CURSOR_FLUSH_FREELIST) ){
+ int nEntry = pWorker->freelist.nEntry;
+ if( pCsr->iFree < (nEntry*2) ){
+ FreelistEntry *aEntry = pWorker->freelist.aEntry;
+ int i = nEntry - 1 - (pCsr->iFree / 2);
+ u32 iKey = 0;
+
+ if( (pCsr->iFree % 2) ){
+ eType = LSM_END_DELETE|LSM_SYSTEMKEY;
+ iKey = aEntry[i].iBlk-1;
+ }else if( aEntry[i].iId>=0 ){
+ eType = LSM_INSERT|LSM_SYSTEMKEY;
+ iKey = aEntry[i].iBlk;
+
+ /* If the in-memory entry immediately before this one was a
+ ** DELETE, and the block number is one greater than the current
+ ** block number, mark this entry as an "end-delete-range". */
+ if( i<(nEntry-1) && aEntry[i+1].iBlk==iKey+1 && aEntry[i+1].iId<0 ){
+ eType |= LSM_END_DELETE;
+ }
+
+ }else{
+ eType = LSM_START_DELETE|LSM_SYSTEMKEY;
+ iKey = aEntry[i].iBlk + 1;
+ }
+
+ /* If the in-memory entry immediately after this one is a
+ ** DELETE, and the block number is one less than the current
+ ** key, mark this entry as an "start-delete-range". */
+ if( i>0 && aEntry[i-1].iBlk==iKey-1 && aEntry[i-1].iId<0 ){
+ eType |= LSM_START_DELETE;
+ }
+
+ pKey = pCsr->pSystemVal;
+ nKey = 4;
+ lsmPutU32(pKey, ~iKey);
+ }
+ }
+ break;
+ }
+
+ default: {
+ int iPtr = iKey - CURSOR_DATA_SEGMENT;
+ assert( iPtr>=0 );
+ if( iPtr==pCsr->nPtr ){
+ if( pCsr->pBtCsr ){
+ pKey = pCsr->pBtCsr->pKey;
+ nKey = pCsr->pBtCsr->nKey;
+ eType = pCsr->pBtCsr->eType;
+ }
+ }else if( iPtr<pCsr->nPtr ){
+ SegmentPtr *pPtr = &pCsr->aPtr[iPtr];
+ if( pPtr->pPg ){
+ pKey = pPtr->pKey;
+ nKey = pPtr->nKey;
+ eType = pPtr->eType;
+ }
+ }
+ break;
+ }
+ }
+
+ if( peType ) *peType = eType;
+ if( pnKey ) *pnKey = nKey;
+ if( ppKey ) *ppKey = pKey;
+}
+
+static int sortedDbKeyCompare(
+ MultiCursor *pCsr,
+ int iLhsFlags, void *pLhsKey, int nLhsKey,
+ int iRhsFlags, void *pRhsKey, int nRhsKey
+){
+ int (*xCmp)(void *, int, void *, int) = pCsr->pDb->xCmp;
+ int res;
+
+ /* Compare the keys, including the system flag. */
+ res = sortedKeyCompare(xCmp,
+ rtTopic(iLhsFlags), pLhsKey, nLhsKey,
+ rtTopic(iRhsFlags), pRhsKey, nRhsKey
+ );
+
+ /* If a key has the LSM_START_DELETE flag set, but not the LSM_INSERT or
+ ** LSM_POINT_DELETE flags, it is considered a delta larger. This prevents
+ ** the beginning of an open-ended set from masking a database entry or
+ ** delete at a lower level. */
+ if( res==0 && (pCsr->flags & CURSOR_IGNORE_DELETE) ){
+ const int m = LSM_POINT_DELETE|LSM_INSERT|LSM_END_DELETE |LSM_START_DELETE;
+ int iDel1 = 0;
+ int iDel2 = 0;
+
+ if( LSM_START_DELETE==(iLhsFlags & m) ) iDel1 = +1;
+ if( LSM_END_DELETE ==(iLhsFlags & m) ) iDel1 = -1;
+ if( LSM_START_DELETE==(iRhsFlags & m) ) iDel2 = +1;
+ if( LSM_END_DELETE ==(iRhsFlags & m) ) iDel2 = -1;
+
+ res = (iDel1 - iDel2);
+ }
+
+ return res;
+}
+
+static void multiCursorDoCompare(MultiCursor *pCsr, int iOut, int bReverse){
+ int i1;
+ int i2;
+ int iRes;
+ void *pKey1; int nKey1; int eType1;
+ void *pKey2; int nKey2; int eType2;
+ const int mul = (bReverse ? -1 : 1);
+
+ assert( pCsr->aTree && iOut<pCsr->nTree );
+ if( iOut>=(pCsr->nTree/2) ){
+ i1 = (iOut - pCsr->nTree/2) * 2;
+ i2 = i1 + 1;
+ }else{
+ i1 = pCsr->aTree[iOut*2];
+ i2 = pCsr->aTree[iOut*2+1];
+ }
+
+ multiCursorGetKey(pCsr, i1, &eType1, &pKey1, &nKey1);
+ multiCursorGetKey(pCsr, i2, &eType2, &pKey2, &nKey2);
+
+ if( pKey1==0 ){
+ iRes = i2;
+ }else if( pKey2==0 ){
+ iRes = i1;
+ }else{
+ int res;
+
+ /* Compare the keys */
+ res = sortedDbKeyCompare(pCsr,
+ eType1, pKey1, nKey1, eType2, pKey2, nKey2
+ );
+
+ res = res * mul;
+ if( res==0 ){
+ /* The two keys are identical. Normally, this means that the key from
+ ** the newer run clobbers the old. However, if the newer key is a
+ ** separator key, or a range-delete-boundary only, do not allow it
+ ** to clobber an older entry. */
+ int nc1 = (eType1 & (LSM_INSERT|LSM_POINT_DELETE))==0;
+ int nc2 = (eType2 & (LSM_INSERT|LSM_POINT_DELETE))==0;
+ iRes = (nc1 > nc2) ? i2 : i1;
+ }else if( res<0 ){
+ iRes = i1;
+ }else{
+ iRes = i2;
+ }
+ }
+
+ pCsr->aTree[iOut] = iRes;
+}
+
+/*
+** This function advances segment pointer iPtr belonging to multi-cursor
+** pCsr forward (bReverse==0) or backward (bReverse!=0).
+**
+** If the segment pointer points to a segment that is part of a composite
+** level, then the following special case is handled.
+**
+** * If iPtr is the lhs of a composite level, and the cursor is being
+** advanced forwards, and segment iPtr is at EOF, move all pointers
+** that correspond to rhs segments of the same level to the first
+** key in their respective data.
+*/
+static int segmentCursorAdvance(
+ MultiCursor *pCsr,
+ int iPtr,
+ int bReverse
+){
+ int rc;
+ SegmentPtr *pPtr = &pCsr->aPtr[iPtr];
+ Level *pLvl = pPtr->pLevel;
+ int bComposite; /* True if pPtr is part of composite level */
+
+ /* Advance the segment-pointer object. */
+ rc = segmentPtrAdvance(pCsr, pPtr, bReverse);
+ if( rc!=LSM_OK ) return rc;
+
+ bComposite = (pLvl->nRight>0 && pCsr->nPtr>pLvl->nRight);
+ if( bComposite && pPtr->pPg==0 ){
+ int bFix = 0;
+ if( (bReverse==0)==(pPtr->pSeg==&pLvl->lhs) ){
+ int i;
+ if( bReverse ){
+ SegmentPtr *pLhs = &pCsr->aPtr[iPtr - 1 - (pPtr->pSeg - pLvl->aRhs)];
+ for(i=0; i<pLvl->nRight; i++){
+ if( pLhs[i+1].pPg ) break;
+ }
+ if( i==pLvl->nRight ){
+ bFix = 1;
+ rc = segmentPtrEnd(pCsr, pLhs, 1);
+ }
+ }else{
+ bFix = 1;
+ for(i=0; rc==LSM_OK && i<pLvl->nRight; i++){
+ rc = sortedRhsFirst(pCsr, pLvl, &pCsr->aPtr[iPtr+1+i]);
+ }
+ }
+ }
+
+ if( bFix ){
+ int i;
+ for(i=pCsr->nTree-1; i>0; i--){
+ multiCursorDoCompare(pCsr, i, bReverse);
+ }
+ }
+ }
+
+#if 0
+ if( bComposite && pPtr->pSeg==&pLvl->lhs /* lhs of composite level */
+ && bReverse==0 /* csr advanced forwards */
+ && pPtr->pPg==0 /* segment at EOF */
+ ){
+ int i;
+ for(i=0; rc==LSM_OK && i<pLvl->nRight; i++){
+ rc = sortedRhsFirst(pCsr, pLvl, &pCsr->aPtr[iPtr+1+i]);
+ }
+ for(i=pCsr->nTree-1; i>0; i--){
+ multiCursorDoCompare(pCsr, i, 0);
+ }
+ }
+#endif
+
+ return rc;
+}
+
+static void mcursorFreeComponents(MultiCursor *pCsr){
+ int i;
+ lsm_env *pEnv = pCsr->pDb->pEnv;
+
+ /* Close the tree cursor, if any. */
+ lsmTreeCursorDestroy(pCsr->apTreeCsr[0]);
+ lsmTreeCursorDestroy(pCsr->apTreeCsr[1]);
+
+ /* Reset the segment pointers */
+ for(i=0; i<pCsr->nPtr; i++){
+ segmentPtrReset(&pCsr->aPtr[i]);
+ }
+
+ /* And the b-tree cursor, if any */
+ btreeCursorFree(pCsr->pBtCsr);
+
+ /* Free allocations */
+ lsmFree(pEnv, pCsr->aPtr);
+ lsmFree(pEnv, pCsr->aTree);
+ lsmFree(pEnv, pCsr->pSystemVal);
+
+ /* Zero fields */
+ pCsr->nPtr = 0;
+ pCsr->aPtr = 0;
+ pCsr->nTree = 0;
+ pCsr->aTree = 0;
+ pCsr->pSystemVal = 0;
+ pCsr->apTreeCsr[0] = 0;
+ pCsr->apTreeCsr[1] = 0;
+ pCsr->pBtCsr = 0;
+}
+
+void lsmMCursorFreeCache(lsm_db *pDb){
+ MultiCursor *p;
+ MultiCursor *pNext;
+ for(p=pDb->pCsrCache; p; p=pNext){
+ pNext = p->pNext;
+ lsmMCursorClose(p, 0);
+ }
+ pDb->pCsrCache = 0;
+}
+
+/*
+** Close the cursor passed as the first argument.
+**
+** If the bCache parameter is true, then shift the cursor to the pCsrCache
+** list for possible reuse instead of actually deleting it.
+*/
+void lsmMCursorClose(MultiCursor *pCsr, int bCache){
+ if( pCsr ){
+ lsm_db *pDb = pCsr->pDb;
+ MultiCursor **pp; /* Iterator variable */
+
+ /* The cursor may or may not be currently part of the linked list
+ ** starting at lsm_db.pCsr. If it is, extract it. */
+ for(pp=&pDb->pCsr; *pp; pp=&((*pp)->pNext)){
+ if( *pp==pCsr ){
+ *pp = pCsr->pNext;
+ break;
+ }
+ }
+
+ if( bCache ){
+ int i; /* Used to iterate through segment-pointers */
+
+ /* Release any page references held by this cursor. */
+ assert( !pCsr->pBtCsr );
+ for(i=0; i<pCsr->nPtr; i++){
+ SegmentPtr *pPtr = &pCsr->aPtr[i];
+ lsmFsPageRelease(pPtr->pPg);
+ pPtr->pPg = 0;
+ }
+
+ /* Reset the tree cursors */
+ lsmTreeCursorReset(pCsr->apTreeCsr[0]);
+ lsmTreeCursorReset(pCsr->apTreeCsr[1]);
+
+ /* Add the cursor to the pCsrCache list */
+ pCsr->pNext = pDb->pCsrCache;
+ pDb->pCsrCache = pCsr;
+ }else{
+ /* Free the allocation used to cache the current key, if any. */
+ sortedBlobFree(&pCsr->key);
+ sortedBlobFree(&pCsr->val);
+
+ /* Free the component cursors */
+ mcursorFreeComponents(pCsr);
+
+ /* Free the cursor structure itself */
+ lsmFree(pDb->pEnv, pCsr);
+ }
+ }
+}
+
+#define TREE_NONE 0
+#define TREE_OLD 1
+#define TREE_BOTH 2
+
+/*
+** Parameter eTree is one of TREE_OLD or TREE_BOTH.
+*/
+static int multiCursorAddTree(MultiCursor *pCsr, Snapshot *pSnap, int eTree){
+ int rc = LSM_OK;
+ lsm_db *db = pCsr->pDb;
+
+ /* Add a tree cursor on the 'old' tree, if it exists. */
+ if( eTree!=TREE_NONE
+ && lsmTreeHasOld(db)
+ && db->treehdr.iOldLog!=pSnap->iLogOff
+ ){
+ rc = lsmTreeCursorNew(db, 1, &pCsr->apTreeCsr[1]);
+ }
+
+ /* Add a tree cursor on the 'current' tree, if required. */
+ if( rc==LSM_OK && eTree==TREE_BOTH ){
+ rc = lsmTreeCursorNew(db, 0, &pCsr->apTreeCsr[0]);
+ }
+
+ return rc;
+}
+
+static int multiCursorAddRhs(MultiCursor *pCsr, Level *pLvl){
+ int i;
+ int nRhs = pLvl->nRight;
+
+ assert( pLvl->nRight>0 );
+ assert( pCsr->aPtr==0 );
+ pCsr->aPtr = lsmMallocZero(pCsr->pDb->pEnv, sizeof(SegmentPtr) * nRhs);
+ if( !pCsr->aPtr ) return LSM_NOMEM_BKPT;
+ pCsr->nPtr = nRhs;
+
+ for(i=0; i<nRhs; i++){
+ pCsr->aPtr[i].pSeg = &pLvl->aRhs[i];
+ pCsr->aPtr[i].pLevel = pLvl;
+ }
+
+ return LSM_OK;
+}
+
+static void multiCursorAddOne(MultiCursor *pCsr, Level *pLvl, int *pRc){
+ if( *pRc==LSM_OK ){
+ int iPtr = pCsr->nPtr;
+ int i;
+ pCsr->aPtr[iPtr].pLevel = pLvl;
+ pCsr->aPtr[iPtr].pSeg = &pLvl->lhs;
+ iPtr++;
+ for(i=0; i<pLvl->nRight; i++){
+ pCsr->aPtr[iPtr].pLevel = pLvl;
+ pCsr->aPtr[iPtr].pSeg = &pLvl->aRhs[i];
+ iPtr++;
+ }
+
+ if( pLvl->nRight && pLvl->pSplitKey==0 ){
+ sortedSplitkey(pCsr->pDb, pLvl, pRc);
+ }
+ pCsr->nPtr = iPtr;
+ }
+}
+
+static int multiCursorAddAll(MultiCursor *pCsr, Snapshot *pSnap){
+ Level *pLvl;
+ int nPtr = 0;
+ int rc = LSM_OK;
+
+ for(pLvl=pSnap->pLevel; pLvl; pLvl=pLvl->pNext){
+ /* If the LEVEL_INCOMPLETE flag is set, then this function is being
+ ** called (indirectly) from within a sortedNewToplevel() call to
+ ** construct pLvl. In this case ignore pLvl - this cursor is going to
+ ** be used to retrieve a freelist entry from the LSM, and the partially
+ ** complete level may confuse it. */
+ if( pLvl->flags & LEVEL_INCOMPLETE ) continue;
+ nPtr += (1 + pLvl->nRight);
+ }
+
+ assert( pCsr->aPtr==0 );
+ pCsr->aPtr = lsmMallocZeroRc(pCsr->pDb->pEnv, sizeof(SegmentPtr) * nPtr, &rc);
+
+ for(pLvl=pSnap->pLevel; pLvl; pLvl=pLvl->pNext){
+ if( (pLvl->flags & LEVEL_INCOMPLETE)==0 ){
+ multiCursorAddOne(pCsr, pLvl, &rc);
+ }
+ }
+
+ return rc;
+}
+
+static int multiCursorInit(MultiCursor *pCsr, Snapshot *pSnap){
+ int rc;
+ rc = multiCursorAddAll(pCsr, pSnap);
+ if( rc==LSM_OK ){
+ rc = multiCursorAddTree(pCsr, pSnap, TREE_BOTH);
+ }
+ pCsr->flags |= (CURSOR_IGNORE_SYSTEM | CURSOR_IGNORE_DELETE);
+ return rc;
+}
+
+static MultiCursor *multiCursorNew(lsm_db *db, int *pRc){
+ MultiCursor *pCsr;
+ pCsr = (MultiCursor *)lsmMallocZeroRc(db->pEnv, sizeof(MultiCursor), pRc);
+ if( pCsr ){
+ pCsr->pNext = db->pCsr;
+ db->pCsr = pCsr;
+ pCsr->pDb = db;
+ }
+ return pCsr;
+}
+
+
+void lsmSortedRemap(lsm_db *pDb){
+ MultiCursor *pCsr;
+ for(pCsr=pDb->pCsr; pCsr; pCsr=pCsr->pNext){
+ int iPtr;
+ if( pCsr->pBtCsr ){
+ btreeCursorLoadKey(pCsr->pBtCsr);
+ }
+ for(iPtr=0; iPtr<pCsr->nPtr; iPtr++){
+ segmentPtrLoadCell(&pCsr->aPtr[iPtr], pCsr->aPtr[iPtr].iCell);
+ }
+ }
+}
+
+static void multiCursorReadSeparators(MultiCursor *pCsr){
+ if( pCsr->nPtr>0 ){
+ pCsr->flags |= CURSOR_READ_SEPARATORS;
+ }
+}
+
+/*
+** Have this cursor skip over SORTED_DELETE entries.
+*/
+static void multiCursorIgnoreDelete(MultiCursor *pCsr){
+ if( pCsr ) pCsr->flags |= CURSOR_IGNORE_DELETE;
+}
+
+/*
+** If the free-block list is not empty, then have this cursor visit a key
+** with (a) the system bit set, and (b) the key "FREELIST" and (c) a value
+** blob containing the serialized free-block list.
+*/
+static int multiCursorVisitFreelist(MultiCursor *pCsr){
+ int rc = LSM_OK;
+ pCsr->flags |= CURSOR_FLUSH_FREELIST;
+ pCsr->pSystemVal = lsmMallocRc(pCsr->pDb->pEnv, 4 + 8, &rc);
+ return rc;
+}
+
+/*
+** Allocate and return a new database cursor.
+**
+** This method should only be called to allocate user cursors. As it may
+** recycle a cursor from lsm_db.pCsrCache.
+*/
+int lsmMCursorNew(
+ lsm_db *pDb, /* Database handle */
+ MultiCursor **ppCsr /* OUT: Allocated cursor */
+){
+ MultiCursor *pCsr = 0;
+ int rc = LSM_OK;
+
+ if( pDb->pCsrCache ){
+ int bOld; /* True if there is an old in-memory tree */
+
+ /* Remove a cursor from the pCsrCache list and add it to the open list. */
+ pCsr = pDb->pCsrCache;
+ pDb->pCsrCache = pCsr->pNext;
+ pCsr->pNext = pDb->pCsr;
+ pDb->pCsr = pCsr;
+
+ /* The cursor can almost be used as is, except that the old in-memory
+ ** tree cursor may be present and not required, or required and not
+ ** present. Fix this if required. */
+ bOld = (lsmTreeHasOld(pDb) && pDb->treehdr.iOldLog!=pDb->pClient->iLogOff);
+ if( !bOld && pCsr->apTreeCsr[1] ){
+ lsmTreeCursorDestroy(pCsr->apTreeCsr[1]);
+ pCsr->apTreeCsr[1] = 0;
+ }else if( bOld && !pCsr->apTreeCsr[1] ){
+ rc = lsmTreeCursorNew(pDb, 1, &pCsr->apTreeCsr[1]);
+ }
+
+ pCsr->flags = (CURSOR_IGNORE_SYSTEM | CURSOR_IGNORE_DELETE);
+
+ }else{
+ pCsr = multiCursorNew(pDb, &rc);
+ if( rc==LSM_OK ) rc = multiCursorInit(pCsr, pDb->pClient);
+ }
+
+ if( rc!=LSM_OK ){
+ lsmMCursorClose(pCsr, 0);
+ pCsr = 0;
+ }
+ assert( (rc==LSM_OK)==(pCsr!=0) );
+ *ppCsr = pCsr;
+ return rc;
+}
+
+static int multiCursorGetVal(
+ MultiCursor *pCsr,
+ int iVal,
+ void **ppVal,
+ int *pnVal
+){
+ int rc = LSM_OK;
+
+ *ppVal = 0;
+ *pnVal = 0;
+
+ switch( iVal ){
+ case CURSOR_DATA_TREE0:
+ case CURSOR_DATA_TREE1: {
+ TreeCursor *pTreeCsr = pCsr->apTreeCsr[iVal-CURSOR_DATA_TREE0];
+ if( lsmTreeCursorValid(pTreeCsr) ){
+ lsmTreeCursorValue(pTreeCsr, ppVal, pnVal);
+ }else{
+ *ppVal = 0;
+ *pnVal = 0;
+ }
+ break;
+ }
+
+ case CURSOR_DATA_SYSTEM: {
+ Snapshot *pWorker = pCsr->pDb->pWorker;
+ if( pWorker
+ && (pCsr->iFree % 2)==0
+ && pCsr->iFree < (pWorker->freelist.nEntry*2)
+ ){
+ int iEntry = pWorker->freelist.nEntry - 1 - (pCsr->iFree / 2);
+ u8 *aVal = &((u8 *)(pCsr->pSystemVal))[4];
+ lsmPutU64(aVal, pWorker->freelist.aEntry[iEntry].iId);
+ *ppVal = aVal;
+ *pnVal = 8;
+ }
+ break;
+ }
+
+ default: {
+ int iPtr = iVal-CURSOR_DATA_SEGMENT;
+ if( iPtr<pCsr->nPtr ){
+ SegmentPtr *pPtr = &pCsr->aPtr[iPtr];
+ if( pPtr->pPg ){
+ *ppVal = pPtr->pVal;
+ *pnVal = pPtr->nVal;
+ }
+ }
+ }
+ }
+
+ assert( rc==LSM_OK || (*ppVal==0 && *pnVal==0) );
+ return rc;
+}
+
+static int multiCursorAdvance(MultiCursor *pCsr, int bReverse);
+
+/*
+** This function is called by worker connections to walk the part of the
+** free-list stored within the LSM data structure.
+*/
+int lsmSortedWalkFreelist(
+ lsm_db *pDb, /* Database handle */
+ int bReverse, /* True to iterate from largest to smallest */
+ int (*x)(void *, int, i64), /* Callback function */
+ void *pCtx /* First argument to pass to callback */
+){
+ MultiCursor *pCsr; /* Cursor used to read db */
+ int rc = LSM_OK; /* Return Code */
+ Snapshot *pSnap = 0;
+
+ assert( pDb->pWorker );
+ if( pDb->bIncrMerge ){
+ rc = lsmCheckpointDeserialize(pDb, 0, pDb->pShmhdr->aSnap1, &pSnap);
+ if( rc!=LSM_OK ) return rc;
+ }else{
+ pSnap = pDb->pWorker;
+ }
+
+ pCsr = multiCursorNew(pDb, &rc);
+ if( pCsr ){
+ rc = multiCursorAddAll(pCsr, pSnap);
+ pCsr->flags |= CURSOR_IGNORE_DELETE;
+ }
+
+ if( rc==LSM_OK ){
+ if( bReverse==0 ){
+ rc = lsmMCursorLast(pCsr);
+ }else{
+ rc = lsmMCursorSeek(pCsr, 1, "", 0, LSM_SEEK_GE);
+ }
+
+ while( rc==LSM_OK && lsmMCursorValid(pCsr) && rtIsSystem(pCsr->eType) ){
+ void *pKey; int nKey;
+ void *pVal; int nVal;
+
+ rc = lsmMCursorKey(pCsr, &pKey, &nKey);
+ if( rc==LSM_OK ) rc = lsmMCursorValue(pCsr, &pVal, &nVal);
+ if( rc==LSM_OK && (nKey!=4 || nVal!=8) ) rc = LSM_CORRUPT_BKPT;
+
+ if( rc==LSM_OK ){
+ int iBlk;
+ i64 iSnap;
+ iBlk = (int)(~(lsmGetU32((u8 *)pKey)));
+ iSnap = (i64)lsmGetU64((u8 *)pVal);
+ if( x(pCtx, iBlk, iSnap) ) break;
+ rc = multiCursorAdvance(pCsr, !bReverse);
+ }
+ }
+ }
+
+ lsmMCursorClose(pCsr, 0);
+ if( pSnap!=pDb->pWorker ){
+ lsmFreeSnapshot(pDb->pEnv, pSnap);
+ }
+
+ return rc;
+}
+
+int lsmSortedLoadFreelist(
+ lsm_db *pDb, /* Database handle (must be worker) */
+ void **ppVal, /* OUT: Blob containing LSM free-list */
+ int *pnVal /* OUT: Size of *ppVal blob in bytes */
+){
+ MultiCursor *pCsr; /* Cursor used to retreive free-list */
+ int rc = LSM_OK; /* Return Code */
+
+ assert( pDb->pWorker );
+ assert( *ppVal==0 && *pnVal==0 );
+
+ pCsr = multiCursorNew(pDb, &rc);
+ if( pCsr ){
+ rc = multiCursorAddAll(pCsr, pDb->pWorker);
+ pCsr->flags |= CURSOR_IGNORE_DELETE;
+ }
+
+ if( rc==LSM_OK ){
+ rc = lsmMCursorLast(pCsr);
+ if( rc==LSM_OK
+ && rtIsWrite(pCsr->eType) && rtIsSystem(pCsr->eType)
+ && pCsr->key.nData==8
+ && 0==memcmp(pCsr->key.pData, "FREELIST", 8)
+ ){
+ void *pVal; int nVal; /* Value read from database */
+ rc = lsmMCursorValue(pCsr, &pVal, &nVal);
+ if( rc==LSM_OK ){
+ *ppVal = lsmMallocRc(pDb->pEnv, nVal, &rc);
+ if( *ppVal ){
+ memcpy(*ppVal, pVal, nVal);
+ *pnVal = nVal;
+ }
+ }
+ }
+
+ lsmMCursorClose(pCsr, 0);
+ }
+
+ return rc;
+}
+
+static int multiCursorAllocTree(MultiCursor *pCsr){
+ int rc = LSM_OK;
+ if( pCsr->aTree==0 ){
+ int nByte; /* Bytes of space to allocate */
+ int nMin; /* Total number of cursors being merged */
+
+ nMin = CURSOR_DATA_SEGMENT + pCsr->nPtr + (pCsr->pBtCsr!=0);
+ pCsr->nTree = 2;
+ while( pCsr->nTree<nMin ){
+ pCsr->nTree = pCsr->nTree*2;
+ }
+
+ nByte = sizeof(int)*pCsr->nTree*2;
+ pCsr->aTree = (int *)lsmMallocZeroRc(pCsr->pDb->pEnv, nByte, &rc);
+ }
+ return rc;
+}
+
+static void multiCursorCacheKey(MultiCursor *pCsr, int *pRc){
+ if( *pRc==LSM_OK ){
+ void *pKey;
+ int nKey;
+ multiCursorGetKey(pCsr, pCsr->aTree[1], &pCsr->eType, &pKey, &nKey);
+ *pRc = sortedBlobSet(pCsr->pDb->pEnv, &pCsr->key, pKey, nKey);
+ }
+}
+
+#ifdef LSM_DEBUG_EXPENSIVE
+static void assertCursorTree(MultiCursor *pCsr){
+ int bRev = !!(pCsr->flags & CURSOR_PREV_OK);
+ int *aSave = pCsr->aTree;
+ int nSave = pCsr->nTree;
+ int rc;
+
+ pCsr->aTree = 0;
+ pCsr->nTree = 0;
+ rc = multiCursorAllocTree(pCsr);
+ if( rc==LSM_OK ){
+ int i;
+ for(i=pCsr->nTree-1; i>0; i--){
+ multiCursorDoCompare(pCsr, i, bRev);
+ }
+
+ assert( nSave==pCsr->nTree
+ && 0==memcmp(aSave, pCsr->aTree, sizeof(int)*nSave)
+ );
+
+ lsmFree(pCsr->pDb->pEnv, pCsr->aTree);
+ }
+
+ pCsr->aTree = aSave;
+ pCsr->nTree = nSave;
+}
+#else
+# define assertCursorTree(x)
+#endif
+
+static int mcursorLocationOk(MultiCursor *pCsr, int bDeleteOk){
+ int eType = pCsr->eType;
+ int iKey;
+ int i;
+ int rdmask;
+
+ assert( pCsr->flags & (CURSOR_NEXT_OK|CURSOR_PREV_OK) );
+ assertCursorTree(pCsr);
+
+ rdmask = (pCsr->flags & CURSOR_NEXT_OK) ? LSM_END_DELETE : LSM_START_DELETE;
+
+ /* If the cursor does not currently point to an actual database key (i.e.
+ ** it points to a delete key, or the start or end of a range-delete), and
+ ** the CURSOR_IGNORE_DELETE flag is set, skip past this entry. */
+ if( (pCsr->flags & CURSOR_IGNORE_DELETE) && bDeleteOk==0 ){
+ if( (eType & LSM_INSERT)==0 ) return 0;
+ }
+
+ /* If the cursor points to a system key (free-list entry), and the
+ ** CURSOR_IGNORE_SYSTEM flag is set, skip thie entry. */
+ if( (pCsr->flags & CURSOR_IGNORE_SYSTEM) && rtTopic(eType)!=0 ){
+ return 0;
+ }
+
+#ifndef NDEBUG
+ /* This block fires assert() statements to check one of the assumptions
+ ** in the comment below - that if the lhs sub-cursor of a level undergoing
+ ** a merge is valid, then all the rhs sub-cursors must be at EOF.
+ **
+ ** Also assert that all rhs sub-cursors are either at EOF or point to
+ ** a key that is not less than the level split-key. */
+ for(i=0; i<pCsr->nPtr; i++){
+ SegmentPtr *pPtr = &pCsr->aPtr[i];
+ Level *pLvl = pPtr->pLevel;
+ if( pLvl->nRight && pPtr->pPg ){
+ if( pPtr->pSeg==&pLvl->lhs ){
+ int j;
+ for(j=0; j<pLvl->nRight; j++) assert( pPtr[j+1].pPg==0 );
+ }else{
+ int res = sortedKeyCompare(pCsr->pDb->xCmp,
+ rtTopic(pPtr->eType), pPtr->pKey, pPtr->nKey,
+ pLvl->iSplitTopic, pLvl->pSplitKey, pLvl->nSplitKey
+ );
+ assert( res>=0 );
+ }
+ }
+ }
+#endif
+
+ /* Now check if this key has already been deleted by a range-delete. If
+ ** so, skip past it.
+ **
+ ** Assume, for the moment, that the tree contains no levels currently
+ ** undergoing incremental merge, and that this cursor is iterating forwards
+ ** through the database keys. The cursor currently points to a key in
+ ** level L. This key has already been deleted if any of the sub-cursors
+ ** that point to levels newer than L (or to the in-memory tree) point to
+ ** a key greater than the current key with the LSM_END_DELETE flag set.
+ **
+ ** Or, if the cursor is iterating backwards through data keys, if any
+ ** such sub-cursor points to a key smaller than the current key with the
+ ** LSM_START_DELETE flag set.
+ **
+ ** Why it works with levels undergoing a merge too:
+ **
+ ** When a cursor iterates forwards, the sub-cursors for the rhs of a
+ ** level are only activated once the lhs reaches EOF. So when iterating
+ ** forwards, the keys visited are the same as if the level was completely
+ ** merged.
+ **
+ ** If the cursor is iterating backwards, then the lhs sub-cursor is not
+ ** initialized until the last of the rhs sub-cursors has reached EOF.
+ ** Additionally, if the START_DELETE flag is set on the last entry (in
+ ** reverse order - so the entry with the smallest key) of a rhs sub-cursor,
+ ** then a pseudo-key equal to the levels split-key with the END_DELETE
+ ** flag set is visited by the sub-cursor.
+ */
+ iKey = pCsr->aTree[1];
+ for(i=0; i<iKey; i++){
+ int csrflags;
+ multiCursorGetKey(pCsr, i, &csrflags, 0, 0);
+ if( (rdmask & csrflags) ){
+ const int SD_ED = (LSM_START_DELETE|LSM_END_DELETE);
+ if( (csrflags & SD_ED)==SD_ED
+ || (pCsr->flags & CURSOR_IGNORE_DELETE)==0
+ ){
+ void *pKey; int nKey;
+ multiCursorGetKey(pCsr, i, 0, &pKey, &nKey);
+ if( 0==sortedKeyCompare(pCsr->pDb->xCmp,
+ rtTopic(eType), pCsr->key.pData, pCsr->key.nData,
+ rtTopic(csrflags), pKey, nKey
+ )){
+ continue;
+ }
+ }
+ return 0;
+ }
+ }
+
+ /* The current cursor position is one this cursor should visit. Return 1. */
+ return 1;
+}
+
+static int multiCursorSetupTree(MultiCursor *pCsr, int bRev){
+ int rc;
+
+ rc = multiCursorAllocTree(pCsr);
+ if( rc==LSM_OK ){
+ int i;
+ for(i=pCsr->nTree-1; i>0; i--){
+ multiCursorDoCompare(pCsr, i, bRev);
+ }
+ }
+
+ assertCursorTree(pCsr);
+ multiCursorCacheKey(pCsr, &rc);
+
+ if( rc==LSM_OK && mcursorLocationOk(pCsr, 0)==0 ){
+ rc = multiCursorAdvance(pCsr, bRev);
+ }
+ return rc;
+}
+
+
+static int multiCursorEnd(MultiCursor *pCsr, int bLast){
+ int rc = LSM_OK;
+ int i;
+
+ pCsr->flags &= ~(CURSOR_NEXT_OK | CURSOR_PREV_OK);
+ pCsr->flags |= (bLast ? CURSOR_PREV_OK : CURSOR_NEXT_OK);
+ pCsr->iFree = 0;
+
+ /* Position the two in-memory tree cursors */
+ for(i=0; rc==LSM_OK && i<2; i++){
+ if( pCsr->apTreeCsr[i] ){
+ rc = lsmTreeCursorEnd(pCsr->apTreeCsr[i], bLast);
+ }
+ }
+
+ for(i=0; rc==LSM_OK && i<pCsr->nPtr; i++){
+ SegmentPtr *pPtr = &pCsr->aPtr[i];
+ Level *pLvl = pPtr->pLevel;
+ int iRhs;
+ int bHit = 0;
+
+ if( bLast ){
+ for(iRhs=0; iRhs<pLvl->nRight && rc==LSM_OK; iRhs++){
+ rc = segmentPtrEnd(pCsr, &pPtr[iRhs+1], 1);
+ if( pPtr[iRhs+1].pPg ) bHit = 1;
+ }
+ if( bHit==0 && rc==LSM_OK ){
+ rc = segmentPtrEnd(pCsr, pPtr, 1);
+ }else{
+ segmentPtrReset(pPtr);
+ }
+ }else{
+ int bLhs = (pPtr->pSeg==&pLvl->lhs);
+ assert( pPtr->pSeg==&pLvl->lhs || pPtr->pSeg==&pLvl->aRhs[0] );
+
+ if( bLhs ){
+ rc = segmentPtrEnd(pCsr, pPtr, 0);
+ if( pPtr->pKey ) bHit = 1;
+ }
+ for(iRhs=0; iRhs<pLvl->nRight && rc==LSM_OK; iRhs++){
+ if( bHit ){
+ segmentPtrReset(&pPtr[iRhs+1]);
+ }else{
+ rc = sortedRhsFirst(pCsr, pLvl, &pPtr[iRhs+bLhs]);
+ }
+ }
+ }
+ i += pLvl->nRight;
+ }
+
+ /* And the b-tree cursor, if applicable */
+ if( rc==LSM_OK && pCsr->pBtCsr ){
+ assert( bLast==0 );
+ rc = btreeCursorFirst(pCsr->pBtCsr);
+ }
+
+ if( rc==LSM_OK ){
+ rc = multiCursorSetupTree(pCsr, bLast);
+ }
+
+ return rc;
+}
+
+
+int mcursorSave(MultiCursor *pCsr){
+ int rc = LSM_OK;
+ if( pCsr->aTree ){
+ int iTree = pCsr->aTree[1];
+ if( iTree==CURSOR_DATA_TREE0 || iTree==CURSOR_DATA_TREE1 ){
+ multiCursorCacheKey(pCsr, &rc);
+ }
+ }
+ mcursorFreeComponents(pCsr);
+ return rc;
+}
+
+int mcursorRestore(lsm_db *pDb, MultiCursor *pCsr){
+ int rc;
+ rc = multiCursorInit(pCsr, pDb->pClient);
+ if( rc==LSM_OK && pCsr->key.pData ){
+ rc = lsmMCursorSeek(pCsr,
+ rtTopic(pCsr->eType), pCsr->key.pData, pCsr->key.nData, +1
+ );
+ }
+ return rc;
+}
+
+int lsmSaveCursors(lsm_db *pDb){
+ int rc = LSM_OK;
+ MultiCursor *pCsr;
+
+ for(pCsr=pDb->pCsr; rc==LSM_OK && pCsr; pCsr=pCsr->pNext){
+ rc = mcursorSave(pCsr);
+ }
+ return rc;
+}
+
+int lsmRestoreCursors(lsm_db *pDb){
+ int rc = LSM_OK;
+ MultiCursor *pCsr;
+
+ for(pCsr=pDb->pCsr; rc==LSM_OK && pCsr; pCsr=pCsr->pNext){
+ rc = mcursorRestore(pDb, pCsr);
+ }
+ return rc;
+}
+
+int lsmMCursorFirst(MultiCursor *pCsr){
+ return multiCursorEnd(pCsr, 0);
+}
+
+int lsmMCursorLast(MultiCursor *pCsr){
+ return multiCursorEnd(pCsr, 1);
+}
+
+lsm_db *lsmMCursorDb(MultiCursor *pCsr){
+ return pCsr->pDb;
+}
+
+void lsmMCursorReset(MultiCursor *pCsr){
+ int i;
+ lsmTreeCursorReset(pCsr->apTreeCsr[0]);
+ lsmTreeCursorReset(pCsr->apTreeCsr[1]);
+ for(i=0; i<pCsr->nPtr; i++){
+ segmentPtrReset(&pCsr->aPtr[i]);
+ }
+ pCsr->key.nData = 0;
+}
+
+static int treeCursorSeek(
+ MultiCursor *pCsr,
+ TreeCursor *pTreeCsr,
+ void *pKey, int nKey,
+ int eSeek,
+ int *pbStop
+){
+ int rc = LSM_OK;
+ if( pTreeCsr ){
+ int res = 0;
+ lsmTreeCursorSeek(pTreeCsr, pKey, nKey, &res);
+ switch( eSeek ){
+ case LSM_SEEK_EQ: {
+ int eType = lsmTreeCursorFlags(pTreeCsr);
+ if( (res<0 && (eType & LSM_START_DELETE))
+ || (res>0 && (eType & LSM_END_DELETE))
+ || (res==0 && (eType & LSM_POINT_DELETE))
+ ){
+ *pbStop = 1;
+ }else if( res==0 && (eType & LSM_INSERT) ){
+ lsm_env *pEnv = pCsr->pDb->pEnv;
+ void *p; int n; /* Key/value from tree-cursor */
+ *pbStop = 1;
+ pCsr->flags |= CURSOR_SEEK_EQ;
+ rc = lsmTreeCursorKey(pTreeCsr, &pCsr->eType, &p, &n);
+ if( rc==LSM_OK ) rc = sortedBlobSet(pEnv, &pCsr->key, p, n);
+ if( rc==LSM_OK ) rc = lsmTreeCursorValue(pTreeCsr, &p, &n);
+ if( rc==LSM_OK ) rc = sortedBlobSet(pEnv, &pCsr->val, p, n);
+ }
+ lsmTreeCursorReset(pTreeCsr);
+ break;
+ }
+ case LSM_SEEK_GE:
+ if( res<0 && lsmTreeCursorValid(pTreeCsr) ){
+ lsmTreeCursorNext(pTreeCsr);
+ }
+ break;
+ default:
+ if( res>0 ){
+ assert( lsmTreeCursorValid(pTreeCsr) );
+ lsmTreeCursorPrev(pTreeCsr);
+ }
+ break;
+ }
+ }
+ return rc;
+}
+
+
+/*
+** Seek the cursor.
+*/
+int lsmMCursorSeek(
+ MultiCursor *pCsr,
+ int iTopic,
+ void *pKey, int nKey,
+ int eSeek
+){
+ int eESeek = eSeek; /* Effective eSeek parameter */
+ int bStop = 0; /* Set to true to halt search operation */
+ int rc = LSM_OK; /* Return code */
+ int iPtr = 0; /* Used to iterate through pCsr->aPtr[] */
+ Pgno iPgno = 0; /* FC pointer value */
+
+ assert( pCsr->apTreeCsr[0]==0 || iTopic==0 );
+ assert( pCsr->apTreeCsr[1]==0 || iTopic==0 );
+
+ if( eESeek==LSM_SEEK_LEFAST ) eESeek = LSM_SEEK_LE;
+
+ assert( eESeek==LSM_SEEK_EQ || eESeek==LSM_SEEK_LE || eESeek==LSM_SEEK_GE );
+ assert( (pCsr->flags & CURSOR_FLUSH_FREELIST)==0 );
+ assert( pCsr->nPtr==0 || pCsr->aPtr[0].pLevel );
+
+ pCsr->flags &= ~(CURSOR_NEXT_OK | CURSOR_PREV_OK | CURSOR_SEEK_EQ);
+ rc = treeCursorSeek(pCsr, pCsr->apTreeCsr[0], pKey, nKey, eESeek, &bStop);
+ if( rc==LSM_OK && bStop==0 ){
+ rc = treeCursorSeek(pCsr, pCsr->apTreeCsr[1], pKey, nKey, eESeek, &bStop);
+ }
+
+ /* Seek all segment pointers. */
+ for(iPtr=0; iPtr<pCsr->nPtr && rc==LSM_OK && bStop==0; iPtr++){
+ SegmentPtr *pPtr = &pCsr->aPtr[iPtr];
+ assert( pPtr->pSeg==&pPtr->pLevel->lhs );
+ rc = seekInLevel(pCsr, pPtr, eESeek, iTopic, pKey, nKey, &iPgno, &bStop);
+ iPtr += pPtr->pLevel->nRight;
+ }
+
+ if( eSeek!=LSM_SEEK_EQ ){
+ if( rc==LSM_OK ){
+ rc = multiCursorAllocTree(pCsr);
+ }
+ if( rc==LSM_OK ){
+ int i;
+ for(i=pCsr->nTree-1; i>0; i--){
+ multiCursorDoCompare(pCsr, i, eESeek==LSM_SEEK_LE);
+ }
+ if( eSeek==LSM_SEEK_GE ) pCsr->flags |= CURSOR_NEXT_OK;
+ if( eSeek==LSM_SEEK_LE ) pCsr->flags |= CURSOR_PREV_OK;
+ }
+
+ multiCursorCacheKey(pCsr, &rc);
+ if( rc==LSM_OK && eSeek!=LSM_SEEK_LEFAST && 0==mcursorLocationOk(pCsr, 0) ){
+ switch( eESeek ){
+ case LSM_SEEK_EQ:
+ lsmMCursorReset(pCsr);
+ break;
+ case LSM_SEEK_GE:
+ rc = lsmMCursorNext(pCsr);
+ break;
+ default:
+ rc = lsmMCursorPrev(pCsr);
+ break;
+ }
+ }
+ }
+
+ return rc;
+}
+
+int lsmMCursorValid(MultiCursor *pCsr){
+ int res = 0;
+ if( pCsr->flags & CURSOR_SEEK_EQ ){
+ res = 1;
+ }else if( pCsr->aTree ){
+ int iKey = pCsr->aTree[1];
+ if( iKey==CURSOR_DATA_TREE0 || iKey==CURSOR_DATA_TREE1 ){
+ res = lsmTreeCursorValid(pCsr->apTreeCsr[iKey-CURSOR_DATA_TREE0]);
+ }else{
+ void *pKey;
+ multiCursorGetKey(pCsr, iKey, 0, &pKey, 0);
+ res = pKey!=0;
+ }
+ }
+ return res;
+}
+
+static int mcursorAdvanceOk(
+ MultiCursor *pCsr,
+ int bReverse,
+ int *pRc
+){
+ void *pNew; /* Pointer to buffer containing new key */
+ int nNew; /* Size of buffer pNew in bytes */
+ int eNewType; /* Type of new record */
+
+ if( *pRc ) return 1;
+
+ /* Check the current key value. If it is not greater than (if bReverse==0)
+ ** or less than (if bReverse!=0) the key currently cached in pCsr->key,
+ ** then the cursor has not yet been successfully advanced.
+ */
+ multiCursorGetKey(pCsr, pCsr->aTree[1], &eNewType, &pNew, &nNew);
+ if( pNew ){
+ int typemask = (pCsr->flags & CURSOR_IGNORE_DELETE) ? ~(0) : LSM_SYSTEMKEY;
+ int res = sortedDbKeyCompare(pCsr,
+ eNewType & typemask, pNew, nNew,
+ pCsr->eType & typemask, pCsr->key.pData, pCsr->key.nData
+ );
+
+ if( (bReverse==0 && res<=0) || (bReverse!=0 && res>=0) ){
+ return 0;
+ }
+
+ multiCursorCacheKey(pCsr, pRc);
+ assert( pCsr->eType==eNewType );
+
+ /* If this cursor is configured to skip deleted keys, and the current
+ ** cursor points to a SORTED_DELETE entry, then the cursor has not been
+ ** successfully advanced.
+ **
+ ** Similarly, if the cursor is configured to skip system keys and the
+ ** current cursor points to a system key, it has not yet been advanced.
+ */
+ if( *pRc==LSM_OK && 0==mcursorLocationOk(pCsr, 0) ) return 0;
+ }
+ return 1;
+}
+
+static void flCsrAdvance(MultiCursor *pCsr){
+ assert( pCsr->flags & CURSOR_FLUSH_FREELIST );
+ if( pCsr->iFree % 2 ){
+ pCsr->iFree++;
+ }else{
+ int nEntry = pCsr->pDb->pWorker->freelist.nEntry;
+ FreelistEntry *aEntry = pCsr->pDb->pWorker->freelist.aEntry;
+
+ int i = nEntry - 1 - (pCsr->iFree / 2);
+
+ /* If the current entry is a delete and the "end-delete" key will not
+ ** be attached to the next entry, increment iFree by 1 only. */
+ if( aEntry[i].iId<0 ){
+ while( 1 ){
+ if( i==0 || aEntry[i-1].iBlk!=aEntry[i].iBlk-1 ){
+ pCsr->iFree--;
+ break;
+ }
+ if( aEntry[i-1].iId>=0 ) break;
+ pCsr->iFree += 2;
+ i--;
+ }
+ }
+ pCsr->iFree += 2;
+ }
+}
+
+static int multiCursorAdvance(MultiCursor *pCsr, int bReverse){
+ int rc = LSM_OK; /* Return Code */
+ if( lsmMCursorValid(pCsr) ){
+ do {
+ int iKey = pCsr->aTree[1];
+
+ assertCursorTree(pCsr);
+
+ /* If this multi-cursor is advancing forwards, and the sub-cursor
+ ** being advanced is the one that separator keys may be being read
+ ** from, record the current absolute pointer value. */
+ if( pCsr->pPrevMergePtr ){
+ if( iKey==(CURSOR_DATA_SEGMENT+pCsr->nPtr) ){
+ assert( pCsr->pBtCsr );
+ *pCsr->pPrevMergePtr = pCsr->pBtCsr->iPtr;
+ }else if( pCsr->pBtCsr==0 && pCsr->nPtr>0
+ && iKey==(CURSOR_DATA_SEGMENT+pCsr->nPtr-1)
+ ){
+ SegmentPtr *pPtr = &pCsr->aPtr[iKey-CURSOR_DATA_SEGMENT];
+ *pCsr->pPrevMergePtr = pPtr->iPtr+pPtr->iPgPtr;
+ }
+ }
+
+ if( iKey==CURSOR_DATA_TREE0 || iKey==CURSOR_DATA_TREE1 ){
+ TreeCursor *pTreeCsr = pCsr->apTreeCsr[iKey-CURSOR_DATA_TREE0];
+ if( bReverse ){
+ rc = lsmTreeCursorPrev(pTreeCsr);
+ }else{
+ rc = lsmTreeCursorNext(pTreeCsr);
+ }
+ }else if( iKey==CURSOR_DATA_SYSTEM ){
+ assert( pCsr->flags & CURSOR_FLUSH_FREELIST );
+ assert( bReverse==0 );
+ flCsrAdvance(pCsr);
+ }else if( iKey==(CURSOR_DATA_SEGMENT+pCsr->nPtr) ){
+ assert( bReverse==0 && pCsr->pBtCsr );
+ rc = btreeCursorNext(pCsr->pBtCsr);
+ }else{
+ rc = segmentCursorAdvance(pCsr, iKey-CURSOR_DATA_SEGMENT, bReverse);
+ }
+ if( rc==LSM_OK ){
+ int i;
+ for(i=(iKey+pCsr->nTree)/2; i>0; i=i/2){
+ multiCursorDoCompare(pCsr, i, bReverse);
+ }
+ assertCursorTree(pCsr);
+ }
+ }while( mcursorAdvanceOk(pCsr, bReverse, &rc)==0 );
+ }
+ return rc;
+}
+
+int lsmMCursorNext(MultiCursor *pCsr){
+ if( (pCsr->flags & CURSOR_NEXT_OK)==0 ) return LSM_MISUSE_BKPT;
+ return multiCursorAdvance(pCsr, 0);
+}
+
+int lsmMCursorPrev(MultiCursor *pCsr){
+ if( (pCsr->flags & CURSOR_PREV_OK)==0 ) return LSM_MISUSE_BKPT;
+ return multiCursorAdvance(pCsr, 1);
+}
+
+int lsmMCursorKey(MultiCursor *pCsr, void **ppKey, int *pnKey){
+ if( (pCsr->flags & CURSOR_SEEK_EQ) || pCsr->aTree==0 ){
+ *pnKey = pCsr->key.nData;
+ *ppKey = pCsr->key.pData;
+ }else{
+ int iKey = pCsr->aTree[1];
+
+ if( iKey==CURSOR_DATA_TREE0 || iKey==CURSOR_DATA_TREE1 ){
+ TreeCursor *pTreeCsr = pCsr->apTreeCsr[iKey-CURSOR_DATA_TREE0];
+ lsmTreeCursorKey(pTreeCsr, 0, ppKey, pnKey);
+ }else{
+ int nKey;
+
+#ifndef NDEBUG
+ void *pKey;
+ int eType;
+ multiCursorGetKey(pCsr, iKey, &eType, &pKey, &nKey);
+ assert( eType==pCsr->eType );
+ assert( nKey==pCsr->key.nData );
+ assert( memcmp(pKey, pCsr->key.pData, nKey)==0 );
+#endif
+
+ nKey = pCsr->key.nData;
+ if( nKey==0 ){
+ *ppKey = 0;
+ }else{
+ *ppKey = pCsr->key.pData;
+ }
+ *pnKey = nKey;
+ }
+ }
+ return LSM_OK;
+}
+
+/*
+** Compare the current key that cursor csr points to with pKey/nKey. Set
+** *piRes to the result and return LSM_OK.
+*/
+int lsm_csr_cmp(lsm_cursor *csr, const void *pKey, int nKey, int *piRes){
+ MultiCursor *pCsr = (MultiCursor *)csr;
+ void *pCsrkey; int nCsrkey;
+ int rc;
+ rc = lsmMCursorKey(pCsr, &pCsrkey, &nCsrkey);
+ if( rc==LSM_OK ){
+ int (*xCmp)(void *, int, void *, int) = pCsr->pDb->xCmp;
+ *piRes = sortedKeyCompare(xCmp, 0, pCsrkey, nCsrkey, 0, (void *)pKey, nKey);
+ }
+ return rc;
+}
+
+int lsmMCursorValue(MultiCursor *pCsr, void **ppVal, int *pnVal){
+ void *pVal;
+ int nVal;
+ int rc;
+ if( (pCsr->flags & CURSOR_SEEK_EQ) || pCsr->aTree==0 ){
+ rc = LSM_OK;
+ nVal = pCsr->val.nData;
+ pVal = pCsr->val.pData;
+ }else{
+
+ assert( pCsr->aTree );
+ assert( mcursorLocationOk(pCsr, (pCsr->flags & CURSOR_IGNORE_DELETE)) );
+
+ rc = multiCursorGetVal(pCsr, pCsr->aTree[1], &pVal, &nVal);
+ if( pVal && rc==LSM_OK ){
+ rc = sortedBlobSet(pCsr->pDb->pEnv, &pCsr->val, pVal, nVal);
+ pVal = pCsr->val.pData;
+ }
+
+ if( rc!=LSM_OK ){
+ pVal = 0;
+ nVal = 0;
+ }
+ }
+ *ppVal = pVal;
+ *pnVal = nVal;
+ return rc;
+}
+
+int lsmMCursorType(MultiCursor *pCsr, int *peType){
+ assert( pCsr->aTree );
+ multiCursorGetKey(pCsr, pCsr->aTree[1], peType, 0, 0);
+ return LSM_OK;
+}
+
+/*
+** Buffer aData[], size nData, is assumed to contain a valid b-tree
+** hierarchy page image. Return the offset in aData[] of the next free
+** byte in the data area (where a new cell may be written if there is
+** space).
+*/
+static int mergeWorkerPageOffset(u8 *aData, int nData){
+ int nRec;
+ int iOff;
+ int nKey;
+ int eType;
+
+ nRec = lsmGetU16(&aData[SEGMENT_NRECORD_OFFSET(nData)]);
+ iOff = lsmGetU16(&aData[SEGMENT_CELLPTR_OFFSET(nData, nRec-1)]);
+ eType = aData[iOff++];
+ assert( eType==0
+ || eType==(LSM_SYSTEMKEY|LSM_SEPARATOR)
+ || eType==(LSM_SEPARATOR)
+ );
+
+ iOff += lsmVarintGet32(&aData[iOff], &nKey);
+ iOff += lsmVarintGet32(&aData[iOff], &nKey);
+
+ return iOff + (eType ? nKey : 0);
+}
+
+/*
+** Following a checkpoint operation, database pages that are part of the
+** checkpointed state of the LSM are deemed read-only. This includes the
+** right-most page of the b-tree hierarchy of any separators array under
+** construction, and all pages between it and the b-tree root, inclusive.
+** This is a problem, as when further pages are appended to the separators
+** array, entries must be added to the indicated b-tree hierarchy pages.
+**
+** This function copies all such b-tree pages to new locations, so that
+** they can be modified as required.
+**
+** The complication is that not all database pages are the same size - due
+** to the way the file.c module works some (the first and last in each block)
+** are 4 bytes smaller than the others.
+*/
+static int mergeWorkerMoveHierarchy(
+ MergeWorker *pMW, /* Merge worker */
+ int bSep /* True for separators run */
+){
+ lsm_db *pDb = pMW->pDb; /* Database handle */
+ int rc = LSM_OK; /* Return code */
+ int i;
+ Page **apHier = pMW->hier.apHier;
+ int nHier = pMW->hier.nHier;
+
+ for(i=0; rc==LSM_OK && i<nHier; i++){
+ Page *pNew = 0;
+ rc = lsmFsSortedAppend(pDb->pFS, pDb->pWorker, pMW->pLevel, 1, &pNew);
+ assert( rc==LSM_OK );
+
+ if( rc==LSM_OK ){
+ u8 *a1; int n1;
+ u8 *a2; int n2;
+
+ a1 = fsPageData(pNew, &n1);
+ a2 = fsPageData(apHier[i], &n2);
+
+ assert( n1==n2 || n1+4==n2 );
+
+ if( n1==n2 ){
+ memcpy(a1, a2, n2);
+ }else{
+ int nEntry = pageGetNRec(a2, n2);
+ int iEof1 = SEGMENT_EOF(n1, nEntry);
+ int iEof2 = SEGMENT_EOF(n2, nEntry);
+
+ memcpy(a1, a2, iEof2 - 4);
+ memcpy(&a1[iEof1], &a2[iEof2], n2 - iEof2);
+ }
+
+ lsmFsPageRelease(apHier[i]);
+ apHier[i] = pNew;
+
+#if 0
+ assert( n1==n2 || n1+4==n2 || n2+4==n1 );
+ if( n1>=n2 ){
+ /* If n1 (size of the new page) is equal to or greater than n2 (the
+ ** size of the old page), then copy the data into the new page. If
+ ** n1==n2, this could be done with a single memcpy(). However,
+ ** since sometimes n1>n2, the page content and footer must be copied
+ ** separately. */
+ int nEntry = pageGetNRec(a2, n2);
+ int iEof1 = SEGMENT_EOF(n1, nEntry);
+ int iEof2 = SEGMENT_EOF(n2, nEntry);
+ memcpy(a1, a2, iEof2);
+ memcpy(&a1[iEof1], &a2[iEof2], n2 - iEof2);
+ lsmFsPageRelease(apHier[i]);
+ apHier[i] = pNew;
+ }else{
+ lsmPutU16(&a1[SEGMENT_FLAGS_OFFSET(n1)], SEGMENT_BTREE_FLAG);
+ lsmPutU16(&a1[SEGMENT_NRECORD_OFFSET(n1)], 0);
+ lsmPutU64(&a1[SEGMENT_POINTER_OFFSET(n1)], 0);
+ i = i - 1;
+ lsmFsPageRelease(pNew);
+ }
+#endif
+ }
+ }
+
+#ifdef LSM_DEBUG
+ if( rc==LSM_OK ){
+ for(i=0; i<nHier; i++) assert( lsmFsPageWritable(apHier[i]) );
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** Allocate and populate the MergeWorker.apHier[] array.
+*/
+static int mergeWorkerLoadHierarchy(MergeWorker *pMW){
+ int rc = LSM_OK;
+ Segment *pSeg;
+ Hierarchy *p;
+
+ pSeg = &pMW->pLevel->lhs;
+ p = &pMW->hier;
+
+ if( p->apHier==0 && pSeg->iRoot!=0 ){
+ FileSystem *pFS = pMW->pDb->pFS;
+ lsm_env *pEnv = pMW->pDb->pEnv;
+ Page **apHier = 0;
+ int nHier = 0;
+ int iPg = pSeg->iRoot;
+
+ do {
+ Page *pPg = 0;
+ u8 *aData;
+ int nData;
+ int flags;
+
+ rc = lsmFsDbPageGet(pFS, pSeg, iPg, &pPg);
+ if( rc!=LSM_OK ) break;
+
+ aData = fsPageData(pPg, &nData);
+ flags = pageGetFlags(aData, nData);
+ if( flags&SEGMENT_BTREE_FLAG ){
+ Page **apNew = (Page **)lsmRealloc(
+ pEnv, apHier, sizeof(Page *)*(nHier+1)
+ );
+ if( apNew==0 ){
+ rc = LSM_NOMEM_BKPT;
+ break;
+ }
+ apHier = apNew;
+ memmove(&apHier[1], &apHier[0], sizeof(Page *) * nHier);
+ nHier++;
+
+ apHier[0] = pPg;
+ iPg = pageGetPtr(aData, nData);
+ }else{
+ lsmFsPageRelease(pPg);
+ break;
+ }
+ }while( 1 );
+
+ if( rc==LSM_OK ){
+ u8 *aData;
+ int nData;
+ aData = fsPageData(apHier[0], &nData);
+ pMW->aSave[0].iPgno = pageGetPtr(aData, nData);
+ p->nHier = nHier;
+ p->apHier = apHier;
+ rc = mergeWorkerMoveHierarchy(pMW, 0);
+ }else{
+ int i;
+ for(i=0; i<nHier; i++){
+ lsmFsPageRelease(apHier[i]);
+ }
+ lsmFree(pEnv, apHier);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** B-tree pages use almost the same format as regular pages. The
+** differences are:
+**
+** 1. The record format is (usually, see below) as follows:
+**
+** + Type byte (always SORTED_SEPARATOR or SORTED_SYSTEM_SEPARATOR),
+** + Absolute pointer value (varint),
+** + Number of bytes in key (varint),
+** + Blob containing key data.
+**
+** 2. All pointer values are stored as absolute values (not offsets
+** relative to the footer pointer value).
+**
+** 3. Each pointer that is part of a record points to a page that
+** contains keys smaller than the records key (note: not "equal to or
+** smaller than - smaller than").
+**
+** 4. The pointer in the page footer of a b-tree page points to a page
+** that contains keys equal to or larger than the largest key on the
+** b-tree page.
+**
+** The reason for having the page footer pointer point to the right-child
+** (instead of the left) is that doing things this way makes the
+** mergeWorkerMoveHierarchy() operation less complicated (since the pointers
+** that need to be updated are all stored as fixed-size integers within the
+** page footer, not varints in page records).
+**
+** Records may not span b-tree pages. If this function is called to add a
+** record larger than (page-size / 4) bytes, then a pointer to the indexed
+** array page that contains the main record is added to the b-tree instead.
+** In this case the record format is:
+**
+** + 0x00 byte (1 byte)
+** + Absolute pointer value (varint),
+** + Absolute page number of page containing key (varint).
+**
+** See function seekInBtree() for the code that traverses b-tree pages.
+*/
+
+static int mergeWorkerBtreeWrite(
+ MergeWorker *pMW,
+ u8 eType,
+ Pgno iPtr,
+ Pgno iKeyPg,
+ void *pKey,
+ int nKey
+){
+ Hierarchy *p = &pMW->hier;
+ lsm_db *pDb = pMW->pDb; /* Database handle */
+ int rc = LSM_OK; /* Return Code */
+ int iLevel; /* Level of b-tree hierachy to write to */
+ int nData; /* Size of aData[] in bytes */
+ u8 *aData; /* Page data for level iLevel */
+ int iOff; /* Offset on b-tree page to write record to */
+ int nRec; /* Initial number of records on b-tree page */
+
+ /* iKeyPg should be zero for an ordinary b-tree key, or non-zero for an
+ ** indirect key. The flags byte for an indirect key is 0x00. */
+ assert( (eType==0)==(iKeyPg!=0) );
+
+ /* The MergeWorker.apHier[] array contains the right-most leaf of the b-tree
+ ** hierarchy, the root node, and all nodes that lie on the path between.
+ ** apHier[0] is the right-most leaf and apHier[pMW->nHier-1] is the current
+ ** root page.
+ **
+ ** This loop searches for a node with enough space to store the key on,
+ ** starting with the leaf and iterating up towards the root. When the loop
+ ** exits, the key may be written to apHier[iLevel]. */
+ for(iLevel=0; iLevel<=p->nHier; iLevel++){
+ int nByte; /* Number of free bytes required */
+
+ if( iLevel==p->nHier ){
+ /* Extend the array and allocate a new root page. */
+ Page **aNew;
+ aNew = (Page **)lsmRealloc(
+ pMW->pDb->pEnv, p->apHier, sizeof(Page *)*(p->nHier+1)
+ );
+ if( !aNew ){
+ return LSM_NOMEM_BKPT;
+ }
+ p->apHier = aNew;
+ }else{
+ Page *pOld;
+ int nFree;
+
+ /* If the key will fit on this page, break out of the loop here.
+ ** The new entry will be written to page apHier[iLevel]. */
+ pOld = p->apHier[iLevel];
+ assert( lsmFsPageWritable(pOld) );
+ aData = fsPageData(pOld, &nData);
+ if( eType==0 ){
+ nByte = 2 + 1 + lsmVarintLen32(iPtr) + lsmVarintLen32(iKeyPg);
+ }else{
+ nByte = 2 + 1 + lsmVarintLen32(iPtr) + lsmVarintLen32(nKey) + nKey;
+ }
+ nRec = pageGetNRec(aData, nData);
+ nFree = SEGMENT_EOF(nData, nRec) - mergeWorkerPageOffset(aData, nData);
+ if( nByte<=nFree ) break;
+
+ /* Otherwise, this page is full. Set the right-hand-child pointer
+ ** to iPtr and release it. */
+ lsmPutU64(&aData[SEGMENT_POINTER_OFFSET(nData)], iPtr);
+ assert( lsmFsPageNumber(pOld)==0 );
+ rc = lsmFsPagePersist(pOld);
+ if( rc==LSM_OK ){
+ iPtr = lsmFsPageNumber(pOld);
+ lsmFsPageRelease(pOld);
+ }
+ }
+
+ /* Allocate a new page for apHier[iLevel]. */
+ p->apHier[iLevel] = 0;
+ if( rc==LSM_OK ){
+ rc = lsmFsSortedAppend(
+ pDb->pFS, pDb->pWorker, pMW->pLevel, 1, &p->apHier[iLevel]
+ );
+ }
+ if( rc!=LSM_OK ) return rc;
+
+ aData = fsPageData(p->apHier[iLevel], &nData);
+ memset(aData, 0, nData);
+ lsmPutU16(&aData[SEGMENT_FLAGS_OFFSET(nData)], SEGMENT_BTREE_FLAG);
+ lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], 0);
+
+ if( iLevel==p->nHier ){
+ p->nHier++;
+ break;
+ }
+ }
+
+ /* Write the key into page apHier[iLevel]. */
+ aData = fsPageData(p->apHier[iLevel], &nData);
+ iOff = mergeWorkerPageOffset(aData, nData);
+ nRec = pageGetNRec(aData, nData);
+ lsmPutU16(&aData[SEGMENT_CELLPTR_OFFSET(nData, nRec)], iOff);
+ lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], nRec+1);
+ if( eType==0 ){
+ aData[iOff++] = 0x00;
+ iOff += lsmVarintPut32(&aData[iOff], iPtr);
+ iOff += lsmVarintPut32(&aData[iOff], iKeyPg);
+ }else{
+ aData[iOff++] = eType;
+ iOff += lsmVarintPut32(&aData[iOff], iPtr);
+ iOff += lsmVarintPut32(&aData[iOff], nKey);
+ memcpy(&aData[iOff], pKey, nKey);
+ }
+
+ return rc;
+}
+
+static int mergeWorkerBtreeIndirect(MergeWorker *pMW){
+ int rc = LSM_OK;
+ if( pMW->iIndirect ){
+ Pgno iKeyPg = pMW->aSave[1].iPgno;
+ rc = mergeWorkerBtreeWrite(pMW, 0, pMW->iIndirect, iKeyPg, 0, 0);
+ pMW->iIndirect = 0;
+ }
+ return rc;
+}
+
+/*
+** Append the database key (iTopic/pKey/nKey) to the b-tree under
+** construction. This key has not yet been written to a segment page.
+** The pointer that will accompany the new key in the b-tree - that
+** points to the completed segment page that contains keys smaller than
+** (pKey/nKey) is currently stored in pMW->aSave[0].iPgno.
+*/
+static int mergeWorkerPushHierarchy(
+ MergeWorker *pMW, /* Merge worker object */
+ int iTopic, /* Topic value for this key */
+ void *pKey, /* Pointer to key buffer */
+ int nKey /* Size of pKey buffer in bytes */
+){
+ int rc = LSM_OK; /* Return Code */
+ Pgno iPtr; /* Pointer value to accompany pKey/nKey */
+
+ assert( pMW->aSave[0].bStore==0 );
+ assert( pMW->aSave[1].bStore==0 );
+ rc = mergeWorkerBtreeIndirect(pMW);
+
+ /* Obtain the absolute pointer value to store along with the key in the
+ ** page body. This pointer points to a page that contains keys that are
+ ** smaller than pKey/nKey. */
+ iPtr = pMW->aSave[0].iPgno;
+ assert( iPtr!=0 );
+
+ /* Determine if the indirect format should be used. */
+ if( (nKey*4 > lsmFsPageSize(pMW->pDb->pFS)) ){
+ pMW->iIndirect = iPtr;
+ pMW->aSave[1].bStore = 1;
+ }else{
+ rc = mergeWorkerBtreeWrite(
+ pMW, (u8)(iTopic | LSM_SEPARATOR), iPtr, 0, pKey, nKey
+ );
+ }
+
+ /* Ensure that the SortedRun.iRoot field is correct. */
+ return rc;
+}
+
+static int mergeWorkerFinishHierarchy(
+ MergeWorker *pMW /* Merge worker object */
+){
+ int i; /* Used to loop through apHier[] */
+ int rc = LSM_OK; /* Return code */
+ Pgno iPtr; /* New right-hand-child pointer value */
+
+ iPtr = pMW->aSave[0].iPgno;
+ for(i=0; i<pMW->hier.nHier && rc==LSM_OK; i++){
+ Page *pPg = pMW->hier.apHier[i];
+ int nData; /* Size of aData[] in bytes */
+ u8 *aData; /* Page data for pPg */
+
+ aData = fsPageData(pPg, &nData);
+ lsmPutU64(&aData[SEGMENT_POINTER_OFFSET(nData)], iPtr);
+
+ rc = lsmFsPagePersist(pPg);
+ iPtr = lsmFsPageNumber(pPg);
+ lsmFsPageRelease(pPg);
+ }
+
+ if( pMW->hier.nHier ){
+ pMW->pLevel->lhs.iRoot = iPtr;
+ lsmFree(pMW->pDb->pEnv, pMW->hier.apHier);
+ pMW->hier.apHier = 0;
+ pMW->hier.nHier = 0;
+ }
+
+ return rc;
+}
+
+static int mergeWorkerAddPadding(
+ MergeWorker *pMW /* Merge worker object */
+){
+ FileSystem *pFS = pMW->pDb->pFS;
+ return lsmFsSortedPadding(pFS, pMW->pDb->pWorker, &pMW->pLevel->lhs);
+}
+
+/*
+** Release all page references currently held by the merge-worker passed
+** as the only argument. Unless an error has occurred, all pages have
+** already been released.
+*/
+static void mergeWorkerReleaseAll(MergeWorker *pMW){
+ int i;
+ lsmFsPageRelease(pMW->pPage);
+ pMW->pPage = 0;
+
+ for(i=0; i<pMW->hier.nHier; i++){
+ lsmFsPageRelease(pMW->hier.apHier[i]);
+ pMW->hier.apHier[i] = 0;
+ }
+ lsmFree(pMW->pDb->pEnv, pMW->hier.apHier);
+ pMW->hier.apHier = 0;
+ pMW->hier.nHier = 0;
+}
+
+static int keyszToSkip(FileSystem *pFS, int nKey){
+ int nPgsz; /* Nominal database page size */
+ nPgsz = lsmFsPageSize(pFS);
+ return LSM_MIN(((nKey * 4) / nPgsz), 3);
+}
+
+/*
+** Release the reference to the current output page of merge-worker *pMW
+** (reference pMW->pPage). Set the page number values in aSave[] as
+** required (see comments above struct MergeWorker for details).
+*/
+static int mergeWorkerPersistAndRelease(MergeWorker *pMW){
+ int rc;
+ int i;
+
+ assert( pMW->pPage || (pMW->aSave[0].bStore==0 && pMW->aSave[1].bStore==0) );
+
+ /* Persist the page */
+ rc = lsmFsPagePersist(pMW->pPage);
+
+ /* If required, save the page number. */
+ for(i=0; i<2; i++){
+ if( pMW->aSave[i].bStore ){
+ pMW->aSave[i].iPgno = lsmFsPageNumber(pMW->pPage);
+ pMW->aSave[i].bStore = 0;
+ }
+ }
+
+ /* Release the completed output page. */
+ lsmFsPageRelease(pMW->pPage);
+ pMW->pPage = 0;
+ return rc;
+}
+
+/*
+** Advance to the next page of an output run being populated by merge-worker
+** pMW. The footer of the new page is initialized to indicate that it contains
+** zero records. The flags field is cleared. The page footer pointer field
+** is set to iFPtr.
+**
+** If successful, LSM_OK is returned. Otherwise, an error code.
+*/
+static int mergeWorkerNextPage(
+ MergeWorker *pMW, /* Merge worker object to append page to */
+ Pgno iFPtr /* Pointer value for footer of new page */
+){
+ int rc = LSM_OK; /* Return code */
+ Page *pNext = 0; /* New page appended to run */
+ lsm_db *pDb = pMW->pDb; /* Database handle */
+
+ rc = lsmFsSortedAppend(pDb->pFS, pDb->pWorker, pMW->pLevel, 0, &pNext);
+ assert( rc || pMW->pLevel->lhs.iFirst>0 || pMW->pDb->compress.xCompress );
+
+ if( rc==LSM_OK ){
+ u8 *aData; /* Data buffer belonging to page pNext */
+ int nData; /* Size of aData[] in bytes */
+
+ rc = mergeWorkerPersistAndRelease(pMW);
+
+ pMW->pPage = pNext;
+ pMW->pLevel->pMerge->iOutputOff = 0;
+ aData = fsPageData(pNext, &nData);
+ lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], 0);
+ lsmPutU16(&aData[SEGMENT_FLAGS_OFFSET(nData)], 0);
+ lsmPutU64(&aData[SEGMENT_POINTER_OFFSET(nData)], iFPtr);
+ pMW->nWork++;
+ }
+
+ return rc;
+}
+
+/*
+** Write a blob of data into an output segment being populated by a
+** merge-worker object. If argument bSep is true, write into the separators
+** array. Otherwise, the main array.
+**
+** This function is used to write the blobs of data for keys and values.
+*/
+static int mergeWorkerData(
+ MergeWorker *pMW, /* Merge worker object */
+ int bSep, /* True to write to separators run */
+ int iFPtr, /* Footer ptr for new pages */
+ u8 *aWrite, /* Write data from this buffer */
+ int nWrite /* Size of aWrite[] in bytes */
+){
+ int rc = LSM_OK; /* Return code */
+ int nRem = nWrite; /* Number of bytes still to write */
+
+ while( nRem>0 ){
+ Merge *pMerge = pMW->pLevel->pMerge;
+ int nCopy; /* Number of bytes to copy */
+ u8 *aData; /* Pointer to buffer of current output page */
+ int nData; /* Size of aData[] in bytes */
+ int nRec; /* Number of records on current output page */
+ int iOff; /* Offset in aData[] to write to */
+
+ assert( lsmFsPageWritable(pMW->pPage) );
+
+ aData = fsPageData(pMW->pPage, &nData);
+ nRec = pageGetNRec(aData, nData);
+ iOff = pMerge->iOutputOff;
+ nCopy = LSM_MIN(nRem, SEGMENT_EOF(nData, nRec) - iOff);
+
+ memcpy(&aData[iOff], &aWrite[nWrite-nRem], nCopy);
+ nRem -= nCopy;
+
+ if( nRem>0 ){
+ rc = mergeWorkerNextPage(pMW, iFPtr);
+ }else{
+ pMerge->iOutputOff = iOff + nCopy;
+ }
+ }
+
+ return rc;
+}
+
+
+/*
+** The MergeWorker passed as the only argument is working to merge two or
+** more existing segments together (not to flush an in-memory tree). It
+** has not yet written the first key to the first page of the output.
+*/
+static int mergeWorkerFirstPage(MergeWorker *pMW){
+ int rc = LSM_OK; /* Return code */
+ Page *pPg = 0; /* First page of run pSeg */
+ int iFPtr = 0; /* Pointer value read from footer of pPg */
+ MultiCursor *pCsr = pMW->pCsr;
+
+ assert( pMW->pPage==0 );
+
+ if( pCsr->pBtCsr ){
+ rc = LSM_OK;
+ iFPtr = pMW->pLevel->pNext->lhs.iFirst;
+ }else if( pCsr->nPtr>0 ){
+ Segment *pSeg;
+ pSeg = pCsr->aPtr[pCsr->nPtr-1].pSeg;
+ rc = lsmFsDbPageGet(pMW->pDb->pFS, pSeg, pSeg->iFirst, &pPg);
+ if( rc==LSM_OK ){
+ u8 *aData; /* Buffer for page pPg */
+ int nData; /* Size of aData[] in bytes */
+ aData = fsPageData(pPg, &nData);
+ iFPtr = pageGetPtr(aData, nData);
+ lsmFsPageRelease(pPg);
+ }
+ }
+
+ if( rc==LSM_OK ){
+ rc = mergeWorkerNextPage(pMW, iFPtr);
+ if( pCsr->pPrevMergePtr ) *pCsr->pPrevMergePtr = iFPtr;
+ pMW->aSave[0].bStore = 1;
+ }
+
+ return rc;
+}
+
+static int mergeWorkerWrite(
+ MergeWorker *pMW, /* Merge worker object to write into */
+ int eType, /* One of SORTED_SEPARATOR, WRITE or DELETE */
+ void *pKey, int nKey, /* Key value */
+ void *pVal, int nVal, /* Value value */
+ int iPtr /* Absolute value of page pointer, or 0 */
+){
+ int rc = LSM_OK; /* Return code */
+ Merge *pMerge; /* Persistent part of level merge state */
+ int nHdr; /* Space required for this record header */
+ Page *pPg; /* Page to write to */
+ u8 *aData; /* Data buffer for page pWriter->pPage */
+ int nData; /* Size of buffer aData[] in bytes */
+ int nRec; /* Number of records on page pPg */
+ int iFPtr; /* Value of pointer in footer of pPg */
+ int iRPtr = 0; /* Value of pointer written into record */
+ int iOff; /* Current write offset within page pPg */
+ Segment *pSeg; /* Segment being written */
+ int flags = 0; /* If != 0, flags value for page footer */
+ int bFirst = 0; /* True for first key of output run */
+
+ pMerge = pMW->pLevel->pMerge;
+ pSeg = &pMW->pLevel->lhs;
+
+ if( pSeg->iFirst==0 && pMW->pPage==0 ){
+ rc = mergeWorkerFirstPage(pMW);
+ bFirst = 1;
+ }
+ pPg = pMW->pPage;
+ if( pPg ){
+ aData = fsPageData(pPg, &nData);
+ nRec = pageGetNRec(aData, nData);
+ iFPtr = pageGetPtr(aData, nData);
+ iRPtr = iPtr - iFPtr;
+ }
+
+ /* Figure out how much space is required by the new record. The space
+ ** required is divided into two sections: the header and the body. The
+ ** header consists of the intial varint fields. The body are the blobs
+ ** of data that correspond to the key and value data. The entire header
+ ** must be stored on the page. The body may overflow onto the next and
+ ** subsequent pages.
+ **
+ ** The header space is:
+ **
+ ** 1) record type - 1 byte.
+ ** 2) Page-pointer-offset - 1 varint
+ ** 3) Key size - 1 varint
+ ** 4) Value size - 1 varint (only if LSM_INSERT flag is set)
+ */
+ if( rc==LSM_OK ){
+ nHdr = 1 + lsmVarintLen32(iRPtr) + lsmVarintLen32(nKey);
+ if( rtIsWrite(eType) ) nHdr += lsmVarintLen32(nVal);
+
+ /* If the entire header will not fit on page pPg, or if page pPg is
+ ** marked read-only, advance to the next page of the output run. */
+ iOff = pMerge->iOutputOff;
+ if( iOff<0 || pPg==0 || iOff+nHdr > SEGMENT_EOF(nData, nRec+1) ){
+ iFPtr = *pMW->pCsr->pPrevMergePtr;
+ iRPtr = iPtr - iFPtr;
+ iOff = 0;
+ nRec = 0;
+ rc = mergeWorkerNextPage(pMW, iFPtr);
+ pPg = pMW->pPage;
+ }
+ }
+
+ /* If this record header will be the first on the page, and the page is
+ ** not the very first in the entire run, add a copy of the key to the
+ ** b-tree hierarchy.
+ */
+ if( rc==LSM_OK && nRec==0 && bFirst==0 ){
+ assert( pMerge->nSkip>=0 );
+
+ if( pMerge->nSkip==0 ){
+ rc = mergeWorkerPushHierarchy(pMW, rtTopic(eType), pKey, nKey);
+ assert( pMW->aSave[0].bStore==0 );
+ pMW->aSave[0].bStore = 1;
+ pMerge->nSkip = keyszToSkip(pMW->pDb->pFS, nKey);
+ }else{
+ pMerge->nSkip--;
+ flags = PGFTR_SKIP_THIS_FLAG;
+ }
+
+ if( pMerge->nSkip ) flags |= PGFTR_SKIP_NEXT_FLAG;
+ }
+
+ /* Update the output segment */
+ if( rc==LSM_OK ){
+ aData = fsPageData(pPg, &nData);
+
+ /* Update the page footer. */
+ lsmPutU16(&aData[SEGMENT_NRECORD_OFFSET(nData)], nRec+1);
+ lsmPutU16(&aData[SEGMENT_CELLPTR_OFFSET(nData, nRec)], iOff);
+ if( flags ) lsmPutU16(&aData[SEGMENT_FLAGS_OFFSET(nData)], flags);
+
+ /* Write the entry header into the current page. */
+ aData[iOff++] = eType; /* 1 */
+ iOff += lsmVarintPut32(&aData[iOff], iRPtr); /* 2 */
+ iOff += lsmVarintPut32(&aData[iOff], nKey); /* 3 */
+ if( rtIsWrite(eType) ) iOff += lsmVarintPut32(&aData[iOff], nVal); /* 4 */
+ pMerge->iOutputOff = iOff;
+
+ /* Write the key and data into the segment. */
+ assert( iFPtr==pageGetPtr(aData, nData) );
+ rc = mergeWorkerData(pMW, 0, iFPtr+iRPtr, pKey, nKey);
+ if( rc==LSM_OK && rtIsWrite(eType) ){
+ if( rc==LSM_OK ){
+ rc = mergeWorkerData(pMW, 0, iFPtr+iRPtr, pVal, nVal);
+ }
+ }
+ }
+
+ return rc;
+}
+
+
+/*
+** Free all resources allocated by mergeWorkerInit().
+*/
+static void mergeWorkerShutdown(MergeWorker *pMW, int *pRc){
+ int i; /* Iterator variable */
+ int rc = *pRc;
+ MultiCursor *pCsr = pMW->pCsr;
+
+ /* Unless the merge has finished, save the cursor position in the
+ ** Merge.aInput[] array. See function mergeWorkerInit() for the
+ ** code to restore a cursor position based on aInput[]. */
+ if( rc==LSM_OK && pCsr && lsmMCursorValid(pCsr) ){
+ Merge *pMerge = pMW->pLevel->pMerge;
+ int bBtree = (pCsr->pBtCsr!=0);
+ int iPtr;
+
+ /* pMerge->nInput==0 indicates that this is a FlushTree() operation. */
+ assert( pMerge->nInput==0 || pMW->pLevel->nRight>0 );
+ assert( pMerge->nInput==0 || pMerge->nInput==(pCsr->nPtr+bBtree) );
+
+ for(i=0; i<(pMerge->nInput-bBtree); i++){
+ SegmentPtr *pPtr = &pCsr->aPtr[i];
+ if( pPtr->pPg ){
+ pMerge->aInput[i].iPg = lsmFsPageNumber(pPtr->pPg);
+ pMerge->aInput[i].iCell = pPtr->iCell;
+ }else{
+ pMerge->aInput[i].iPg = 0;
+ pMerge->aInput[i].iCell = 0;
+ }
+ }
+ if( bBtree && pMerge->nInput ){
+ assert( i==pCsr->nPtr );
+ btreeCursorPosition(pCsr->pBtCsr, &pMerge->aInput[i]);
+ }
+
+ /* Store the location of the split-key */
+ iPtr = pCsr->aTree[1] - CURSOR_DATA_SEGMENT;
+ if( iPtr<pCsr->nPtr ){
+ pMerge->splitkey = pMerge->aInput[iPtr];
+ }else{
+ btreeCursorSplitkey(pCsr->pBtCsr, &pMerge->splitkey);
+ }
+
+ pMerge->iOutputOff = -1;
+ }
+
+ lsmMCursorClose(pCsr, 0);
+
+ /* Persist and release the output page. */
+ if( rc==LSM_OK ) rc = mergeWorkerPersistAndRelease(pMW);
+ if( rc==LSM_OK ) rc = mergeWorkerBtreeIndirect(pMW);
+ if( rc==LSM_OK ) rc = mergeWorkerFinishHierarchy(pMW);
+ if( rc==LSM_OK ) rc = mergeWorkerAddPadding(pMW);
+ lsmFsFlushWaiting(pMW->pDb->pFS, &rc);
+ mergeWorkerReleaseAll(pMW);
+
+ lsmFree(pMW->pDb->pEnv, pMW->aGobble);
+ pMW->aGobble = 0;
+ pMW->pCsr = 0;
+
+ *pRc = rc;
+}
+
+/*
+** The cursor passed as the first argument is being used as the input for
+** a merge operation. When this function is called, *piFlags contains the
+** database entry flags for the current entry. The entry about to be written
+** to the output.
+**
+** Note that this function only has to work for cursors configured to
+** iterate forwards (not backwards).
+*/
+static void mergeRangeDeletes(MultiCursor *pCsr, int *piVal, int *piFlags){
+ int f = *piFlags;
+ int iKey = pCsr->aTree[1];
+ int i;
+
+ assert( pCsr->flags & CURSOR_NEXT_OK );
+ if( pCsr->flags & CURSOR_IGNORE_DELETE ){
+ /* The ignore-delete flag is set when the output of the merge will form
+ ** the oldest level in the database. In this case there is no point in
+ ** retaining any range-delete flags. */
+ assert( (f & LSM_POINT_DELETE)==0 );
+ f &= ~(LSM_START_DELETE|LSM_END_DELETE);
+ }else{
+ for(i=0; i<(CURSOR_DATA_SEGMENT + pCsr->nPtr); i++){
+ if( i!=iKey ){
+ int eType;
+ void *pKey;
+ int nKey;
+ int res;
+ multiCursorGetKey(pCsr, i, &eType, &pKey, &nKey);
+
+ if( pKey ){
+ res = sortedKeyCompare(pCsr->pDb->xCmp,
+ rtTopic(pCsr->eType), pCsr->key.pData, pCsr->key.nData,
+ rtTopic(eType), pKey, nKey
+ );
+ assert( res<=0 );
+ if( res==0 ){
+ if( (f & (LSM_INSERT|LSM_POINT_DELETE))==0 ){
+ if( eType & LSM_INSERT ){
+ f |= LSM_INSERT;
+ *piVal = i;
+ }
+ else if( eType & LSM_POINT_DELETE ){
+ f |= LSM_POINT_DELETE;
+ }
+ }
+ f |= (eType & (LSM_END_DELETE|LSM_START_DELETE));
+ }
+
+ if( i>iKey && (eType & LSM_END_DELETE) && res<0 ){
+ if( f & (LSM_INSERT|LSM_POINT_DELETE) ){
+ f |= (LSM_END_DELETE|LSM_START_DELETE);
+ }else{
+ f = 0;
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ assert( (f & LSM_INSERT)==0 || (f & LSM_POINT_DELETE)==0 );
+ if( (f & LSM_START_DELETE)
+ && (f & LSM_END_DELETE)
+ && (f & LSM_POINT_DELETE )
+ ){
+ f = 0;
+ }
+ }
+
+ *piFlags = f;
+}
+
+static int mergeWorkerStep(MergeWorker *pMW){
+ lsm_db *pDb = pMW->pDb; /* Database handle */
+ MultiCursor *pCsr; /* Cursor to read input data from */
+ int rc = LSM_OK; /* Return code */
+ int eType; /* SORTED_SEPARATOR, WRITE or DELETE */
+ void *pKey; int nKey; /* Key */
+ Pgno iPtr;
+ int iVal;
+
+ pCsr = pMW->pCsr;
+
+ /* Pull the next record out of the source cursor. */
+ lsmMCursorKey(pCsr, &pKey, &nKey);
+ eType = pCsr->eType;
+
+ /* Figure out if the output record may have a different pointer value
+ ** than the previous. This is the case if the current key is identical to
+ ** a key that appears in the lowest level run being merged. If so, set
+ ** iPtr to the absolute pointer value. If not, leave iPtr set to zero,
+ ** indicating that the output pointer value should be a copy of the pointer
+ ** value written with the previous key. */
+ iPtr = (pCsr->pPrevMergePtr ? *pCsr->pPrevMergePtr : 0);
+ if( pCsr->pBtCsr ){
+ BtreeCursor *pBtCsr = pCsr->pBtCsr;
+ if( pBtCsr->pKey ){
+ int res = rtTopic(pBtCsr->eType) - rtTopic(eType);
+ if( res==0 ) res = pDb->xCmp(pBtCsr->pKey, pBtCsr->nKey, pKey, nKey);
+ if( 0==res ) iPtr = pBtCsr->iPtr;
+ assert( res>=0 );
+ }
+ }else if( pCsr->nPtr ){
+ SegmentPtr *pPtr = &pCsr->aPtr[pCsr->nPtr-1];
+ if( pPtr->pPg
+ && 0==pDb->xCmp(pPtr->pKey, pPtr->nKey, pKey, nKey)
+ ){
+ iPtr = pPtr->iPtr+pPtr->iPgPtr;
+ }
+ }
+
+ iVal = pCsr->aTree[1];
+ mergeRangeDeletes(pCsr, &iVal, &eType);
+
+ if( eType!=0 ){
+ if( pMW->aGobble ){
+ int iGobble = pCsr->aTree[1] - CURSOR_DATA_SEGMENT;
+ if( iGobble<pCsr->nPtr && iGobble>=0 ){
+ SegmentPtr *pGobble = &pCsr->aPtr[iGobble];
+ if( (pGobble->flags & PGFTR_SKIP_THIS_FLAG)==0 ){
+ pMW->aGobble[iGobble] = lsmFsPageNumber(pGobble->pPg);
+ }
+ }
+ }
+
+ /* If this is a separator key and we know that the output pointer has not
+ ** changed, there is no point in writing an output record. Otherwise,
+ ** proceed. */
+ if( rc==LSM_OK && (rtIsSeparator(eType)==0 || iPtr!=0) ){
+ /* Write the record into the main run. */
+ void *pVal; int nVal;
+ rc = multiCursorGetVal(pCsr, iVal, &pVal, &nVal);
+ if( pVal && rc==LSM_OK ){
+ assert( nVal>=0 );
+ rc = sortedBlobSet(pDb->pEnv, &pCsr->val, pVal, nVal);
+ pVal = pCsr->val.pData;
+ }
+ if( rc==LSM_OK ){
+ rc = mergeWorkerWrite(pMW, eType, pKey, nKey, pVal, nVal, iPtr);
+ }
+ }
+ }
+
+ /* Advance the cursor to the next input record (assuming one exists). */
+ assert( lsmMCursorValid(pMW->pCsr) );
+ if( rc==LSM_OK ) rc = lsmMCursorNext(pMW->pCsr);
+
+ return rc;
+}
+
+static int mergeWorkerDone(MergeWorker *pMW){
+ return pMW->pCsr==0 || !lsmMCursorValid(pMW->pCsr);
+}
+
+static void sortedFreeLevel(lsm_env *pEnv, Level *p){
+ if( p ){
+ lsmFree(pEnv, p->pSplitKey);
+ lsmFree(pEnv, p->pMerge);
+ lsmFree(pEnv, p->aRhs);
+ lsmFree(pEnv, p);
+ }
+}
+
+static void sortedInvokeWorkHook(lsm_db *pDb){
+ if( pDb->xWork ){
+ pDb->xWork(pDb, pDb->pWorkCtx);
+ }
+}
+
+static int sortedNewToplevel(
+ lsm_db *pDb, /* Connection handle */
+ int eTree, /* One of the TREE_XXX constants */
+ int *pnWrite /* OUT: Number of database pages written */
+){
+ int rc = LSM_OK; /* Return Code */
+ MultiCursor *pCsr = 0;
+ Level *pNext = 0; /* The current top level */
+ Level *pNew; /* The new level itself */
+ Segment *pLinked = 0; /* Delete separators from this segment */
+ Level *pDel = 0; /* Delete this entire level */
+ int nWrite = 0; /* Number of database pages written */
+ Freelist freelist;
+
+ if( eTree!=TREE_NONE ){
+ rc = lsmShmCacheChunks(pDb, pDb->treehdr.nChunk);
+ }
+
+ assert( pDb->bUseFreelist==0 );
+ pDb->pFreelist = &freelist;
+ pDb->bUseFreelist = 1;
+ memset(&freelist, 0, sizeof(freelist));
+
+ /* Allocate the new level structure to write to. */
+ pNext = lsmDbSnapshotLevel(pDb->pWorker);
+ pNew = (Level *)lsmMallocZeroRc(pDb->pEnv, sizeof(Level), &rc);
+ if( pNew ){
+ pNew->pNext = pNext;
+ lsmDbSnapshotSetLevel(pDb->pWorker, pNew);
+ }
+
+ /* Create a cursor to gather the data required by the new segment. The new
+ ** segment contains everything in the tree and pointers to the next segment
+ ** in the database (if any). */
+ pCsr = multiCursorNew(pDb, &rc);
+ if( pCsr ){
+ pCsr->pDb = pDb;
+ rc = multiCursorVisitFreelist(pCsr);
+ if( rc==LSM_OK ){
+ rc = multiCursorAddTree(pCsr, pDb->pWorker, eTree);
+ }
+ if( rc==LSM_OK && pNext && pNext->pMerge==0 ){
+ if( (pNext->flags & LEVEL_FREELIST_ONLY) ){
+ pDel = pNext;
+ pCsr->aPtr = lsmMallocZeroRc(pDb->pEnv, sizeof(SegmentPtr), &rc);
+ multiCursorAddOne(pCsr, pNext, &rc);
+ }else if( eTree!=TREE_NONE && pNext->lhs.iRoot ){
+ pLinked = &pNext->lhs;
+ rc = btreeCursorNew(pDb, pLinked, &pCsr->pBtCsr);
+ }
+ }
+
+ /* If this will be the only segment in the database, discard any delete
+ ** markers present in the in-memory tree. */
+ if( pNext==0 ){
+ multiCursorIgnoreDelete(pCsr);
+ }
+ }
+
+ if( rc!=LSM_OK ){
+ lsmMCursorClose(pCsr, 0);
+ }else{
+ Pgno iLeftPtr = 0;
+ Merge merge; /* Merge object used to create new level */
+ MergeWorker mergeworker; /* MergeWorker object for the same purpose */
+
+ memset(&merge, 0, sizeof(Merge));
+ memset(&mergeworker, 0, sizeof(MergeWorker));
+
+ pNew->pMerge = &merge;
+ pNew->flags |= LEVEL_INCOMPLETE;
+ mergeworker.pDb = pDb;
+ mergeworker.pLevel = pNew;
+ mergeworker.pCsr = pCsr;
+ pCsr->pPrevMergePtr = &iLeftPtr;
+
+ /* Mark the separators array for the new level as a "phantom". */
+ mergeworker.bFlush = 1;
+
+ /* Do the work to create the new merged segment on disk */
+ if( rc==LSM_OK ) rc = lsmMCursorFirst(pCsr);
+ while( rc==LSM_OK && mergeWorkerDone(&mergeworker)==0 ){
+ rc = mergeWorkerStep(&mergeworker);
+ }
+ mergeWorkerShutdown(&mergeworker, &rc);
+ assert( rc!=LSM_OK || mergeworker.nWork==0 || pNew->lhs.iFirst );
+ if( rc==LSM_OK && pNew->lhs.iFirst ){
+ rc = lsmFsSortedFinish(pDb->pFS, &pNew->lhs);
+ }
+ nWrite = mergeworker.nWork;
+ pNew->flags &= ~LEVEL_INCOMPLETE;
+ if( eTree==TREE_NONE ){
+ pNew->flags |= LEVEL_FREELIST_ONLY;
+ }
+ pNew->pMerge = 0;
+ }
+
+ if( rc!=LSM_OK || pNew->lhs.iFirst==0 ){
+ assert( rc!=LSM_OK || pDb->pWorker->freelist.nEntry==0 );
+ lsmDbSnapshotSetLevel(pDb->pWorker, pNext);
+ sortedFreeLevel(pDb->pEnv, pNew);
+ }else{
+ if( pLinked ){
+ pLinked->iRoot = 0;
+ }else if( pDel ){
+ assert( pNew->pNext==pDel );
+ pNew->pNext = pDel->pNext;
+ lsmFsSortedDelete(pDb->pFS, pDb->pWorker, 1, &pDel->lhs);
+ sortedFreeLevel(pDb->pEnv, pDel);
+ }
+
+#if LSM_LOG_STRUCTURE
+ lsmSortedDumpStructure(pDb, pDb->pWorker, LSM_LOG_DATA, 0, "new-toplevel");
+#endif
+
+ if( freelist.nEntry ){
+ Freelist *p = &pDb->pWorker->freelist;
+ lsmFree(pDb->pEnv, p->aEntry);
+ memcpy(p, &freelist, sizeof(freelist));
+ freelist.aEntry = 0;
+ }else{
+ pDb->pWorker->freelist.nEntry = 0;
+ }
+
+ assertBtreeOk(pDb, &pNew->lhs);
+ sortedInvokeWorkHook(pDb);
+ }
+
+ if( pnWrite ) *pnWrite = nWrite;
+ pDb->pWorker->nWrite += nWrite;
+ pDb->pFreelist = 0;
+ pDb->bUseFreelist = 0;
+ lsmFree(pDb->pEnv, freelist.aEntry);
+ return rc;
+}
+
+/*
+** The nMerge levels in the LSM beginning with pLevel consist of a
+** left-hand-side segment only. Replace these levels with a single new
+** level consisting of a new empty segment on the left-hand-side and the
+** nMerge segments from the replaced levels on the right-hand-side.
+**
+** Also, allocate and populate a Merge object and set Level.pMerge to
+** point to it.
+*/
+static int sortedMergeSetup(
+ lsm_db *pDb, /* Database handle */
+ Level *pLevel, /* First level to merge */
+ int nMerge, /* Merge this many levels together */
+ Level **ppNew /* New, merged, level */
+){
+ int rc = LSM_OK; /* Return Code */
+ Level *pNew; /* New Level object */
+ int bUseNext = 0; /* True to link in next separators */
+ Merge *pMerge; /* New Merge object */
+ int nByte; /* Bytes of space allocated at pMerge */
+
+#ifdef LSM_DEBUG
+ int iLevel;
+ Level *pX = pLevel;
+ for(iLevel=0; iLevel<nMerge; iLevel++){
+ assert( pX->nRight==0 );
+ pX = pX->pNext;
+ }
+#endif
+
+ /* Allocate the new Level object */
+ pNew = (Level *)lsmMallocZeroRc(pDb->pEnv, sizeof(Level), &rc);
+ if( pNew ){
+ pNew->aRhs = (Segment *)lsmMallocZeroRc(pDb->pEnv,
+ nMerge * sizeof(Segment), &rc);
+ }
+
+ /* Populate the new Level object */
+ if( rc==LSM_OK ){
+ Level *pNext = 0; /* Level following pNew */
+ int i;
+ int bFreeOnly = 1;
+ Level *pTopLevel;
+ Level *p = pLevel;
+ Level **pp;
+ pNew->nRight = nMerge;
+ pNew->iAge = pLevel->iAge+1;
+ for(i=0; i<nMerge; i++){
+ assert( p->nRight==0 );
+ pNext = p->pNext;
+ pNew->aRhs[i] = p->lhs;
+ if( (p->flags & LEVEL_FREELIST_ONLY)==0 ) bFreeOnly = 0;
+ sortedFreeLevel(pDb->pEnv, p);
+ p = pNext;
+ }
+
+ if( bFreeOnly ) pNew->flags |= LEVEL_FREELIST_ONLY;
+
+ /* Replace the old levels with the new. */
+ pTopLevel = lsmDbSnapshotLevel(pDb->pWorker);
+ pNew->pNext = p;
+ for(pp=&pTopLevel; *pp!=pLevel; pp=&((*pp)->pNext));
+ *pp = pNew;
+ lsmDbSnapshotSetLevel(pDb->pWorker, pTopLevel);
+
+ /* Determine whether or not the next separators will be linked in */
+ if( pNext && pNext->pMerge==0 && pNext->lhs.iRoot && pNext
+ && (bFreeOnly==0 || (pNext->flags & LEVEL_FREELIST_ONLY))
+ ){
+ bUseNext = 1;
+ }
+ }
+
+ /* Allocate the merge object */
+ nByte = sizeof(Merge) + sizeof(MergeInput) * (nMerge + bUseNext);
+ pMerge = (Merge *)lsmMallocZeroRc(pDb->pEnv, nByte, &rc);
+ if( pMerge ){
+ pMerge->aInput = (MergeInput *)&pMerge[1];
+ pMerge->nInput = nMerge + bUseNext;
+ pNew->pMerge = pMerge;
+ }
+
+ *ppNew = pNew;
+ return rc;
+}
+
+static int mergeWorkerInit(
+ lsm_db *pDb, /* Db connection to do merge work */
+ Level *pLevel, /* Level to work on merging */
+ MergeWorker *pMW /* Object to initialize */
+){
+ int rc = LSM_OK; /* Return code */
+ Merge *pMerge = pLevel->pMerge; /* Persistent part of merge state */
+ MultiCursor *pCsr = 0; /* Cursor opened for pMW */
+ Level *pNext = pLevel->pNext; /* Next level in LSM */
+
+ assert( pDb->pWorker );
+ assert( pLevel->pMerge );
+ assert( pLevel->nRight>0 );
+
+ memset(pMW, 0, sizeof(MergeWorker));
+ pMW->pDb = pDb;
+ pMW->pLevel = pLevel;
+ pMW->aGobble = lsmMallocZeroRc(pDb->pEnv, sizeof(Pgno) * pLevel->nRight, &rc);
+
+ /* Create a multi-cursor to read the data to write to the new
+ ** segment. The new segment contains:
+ **
+ ** 1. Records from LHS of each of the nMerge levels being merged.
+ ** 2. Separators from either the last level being merged, or the
+ ** separators attached to the LHS of the following level, or neither.
+ **
+ ** If the new level is the lowest (oldest) in the db, discard any
+ ** delete keys. Key annihilation.
+ */
+ pCsr = multiCursorNew(pDb, &rc);
+ if( pCsr ){
+ pCsr->flags |= CURSOR_NEXT_OK;
+ rc = multiCursorAddRhs(pCsr, pLevel);
+ }
+ if( rc==LSM_OK && pMerge->nInput > pLevel->nRight ){
+ rc = btreeCursorNew(pDb, &pNext->lhs, &pCsr->pBtCsr);
+ }else if( pNext ){
+ multiCursorReadSeparators(pCsr);
+ }else{
+ multiCursorIgnoreDelete(pCsr);
+ }
+
+ assert( rc!=LSM_OK || pMerge->nInput==(pCsr->nPtr+(pCsr->pBtCsr!=0)) );
+ pMW->pCsr = pCsr;
+
+ /* Load the b-tree hierarchy into memory. */
+ if( rc==LSM_OK ) rc = mergeWorkerLoadHierarchy(pMW);
+ if( rc==LSM_OK && pMW->hier.nHier==0 ){
+ pMW->aSave[0].iPgno = pLevel->lhs.iFirst;
+ }
+
+ /* Position the cursor. */
+ if( rc==LSM_OK ){
+ pCsr->pPrevMergePtr = &pMerge->iCurrentPtr;
+ if( pLevel->lhs.iFirst==0 ){
+ /* The output array is still empty. So position the cursor at the very
+ ** start of the input. */
+ rc = multiCursorEnd(pCsr, 0);
+ }else{
+ /* The output array is non-empty. Position the cursor based on the
+ ** page/cell data saved in the Merge.aInput[] array. */
+ int i;
+ for(i=0; rc==LSM_OK && i<pCsr->nPtr; i++){
+ MergeInput *pInput = &pMerge->aInput[i];
+ if( pInput->iPg ){
+ SegmentPtr *pPtr;
+ assert( pCsr->aPtr[i].pPg==0 );
+ pPtr = &pCsr->aPtr[i];
+ rc = segmentPtrLoadPage(pDb->pFS, pPtr, pInput->iPg);
+ if( rc==LSM_OK && pPtr->nCell>0 ){
+ rc = segmentPtrLoadCell(pPtr, pInput->iCell);
+ }
+ }
+ }
+
+ if( rc==LSM_OK && pCsr->pBtCsr ){
+ int (*xCmp)(void *, int, void *, int) = pCsr->pDb->xCmp;
+ assert( i==pCsr->nPtr );
+ rc = btreeCursorRestore(pCsr->pBtCsr, xCmp, &pMerge->aInput[i]);
+ }
+
+ if( rc==LSM_OK ){
+ rc = multiCursorSetupTree(pCsr, 0);
+ }
+ }
+ pCsr->flags |= CURSOR_NEXT_OK;
+ }
+
+ return rc;
+}
+
+static int sortedBtreeGobble(
+ lsm_db *pDb, /* Worker connection */
+ MultiCursor *pCsr, /* Multi-cursor being used for a merge */
+ int iGobble /* pCsr->aPtr[] entry to operate on */
+){
+ int rc = LSM_OK;
+ if( rtTopic(pCsr->eType)==0 ){
+ Segment *pSeg = pCsr->aPtr[iGobble].pSeg;
+ Pgno *aPg;
+ int nPg;
+
+ /* Seek from the root of the b-tree to the segment leaf that may contain
+ ** a key equal to the one multi-cursor currently points to. Record the
+ ** page number of each b-tree page and the leaf. The segment may be
+ ** gobbled up to (but not including) the first of these page numbers.
+ */
+ assert( pSeg->iRoot>0 );
+ aPg = lsmMallocZeroRc(pDb->pEnv, sizeof(Pgno)*32, &rc);
+ if( rc==LSM_OK ){
+ rc = seekInBtree(pCsr, pSeg,
+ rtTopic(pCsr->eType), pCsr->key.pData, pCsr->key.nData, aPg, 0
+ );
+ }
+
+ if( rc==LSM_OK ){
+ for(nPg=0; aPg[nPg]; nPg++);
+ lsmFsGobble(pDb, pSeg, aPg, nPg);
+ }
+
+ lsmFree(pDb->pEnv, aPg);
+ }
+ return rc;
+}
+
+/*
+** Argument p points to a level of age N. Return the number of levels in
+** the linked list starting at p that have age=N (always at least 1).
+*/
+static int sortedCountLevels(Level *p){
+ int iAge = p->iAge;
+ int nRet = 0;
+ do {
+ nRet++;
+ p = p->pNext;
+ }while( p && p->iAge==iAge );
+ return nRet;
+}
+
+static int sortedSelectLevel(lsm_db *pDb, int nMerge, Level **ppOut){
+ Level *pTopLevel = lsmDbSnapshotLevel(pDb->pWorker);
+ int rc = LSM_OK;
+ Level *pLevel = 0; /* Output value */
+ Level *pBest = 0; /* Best level to work on found so far */
+ int nBest; /* Number of segments merged at pBest */
+ Level *pThis = 0; /* First in run of levels with age=iAge */
+ int nThis = 0; /* Number of levels starting at pThis */
+
+ assert( nMerge>=1 );
+ nBest = LSM_MAX(1, nMerge-1);
+
+ /* Find the longest contiguous run of levels not currently undergoing a
+ ** merge with the same age in the structure. Or the level being merged
+ ** with the largest number of right-hand segments. Work on it. */
+ for(pLevel=pTopLevel; pLevel; pLevel=pLevel->pNext){
+ if( pLevel->nRight==0 && pThis && pLevel->iAge==pThis->iAge ){
+ nThis++;
+ }else{
+ if( nThis>nBest ){
+ if( (pLevel->iAge!=pThis->iAge+1)
+ || (pLevel->nRight==0 && sortedCountLevels(pLevel)<=pDb->nMerge)
+ ){
+ pBest = pThis;
+ nBest = nThis;
+ }
+ }
+ if( pLevel->nRight ){
+ if( pLevel->nRight>nBest ){
+ nBest = pLevel->nRight;
+ pBest = pLevel;
+ }
+ nThis = 0;
+ pThis = 0;
+ }else{
+ pThis = pLevel;
+ nThis = 1;
+ }
+ }
+ }
+ if( nThis>nBest ){
+ assert( pThis );
+ pBest = pThis;
+ nBest = nThis;
+ }
+
+ if( pBest==0 && nMerge==1 ){
+ int nFree = 0;
+ int nUsr = 0;
+ for(pLevel=pTopLevel; pLevel; pLevel=pLevel->pNext){
+ assert( !pLevel->nRight );
+ if( pLevel->flags & LEVEL_FREELIST_ONLY ){
+ nFree++;
+ }else{
+ nUsr++;
+ }
+ }
+ if( nUsr>1 ){
+ pBest = pTopLevel;
+ nBest = nFree + nUsr;
+ }
+ }
+
+ if( pBest ){
+ if( pBest->nRight==0 ){
+ rc = sortedMergeSetup(pDb, pBest, nBest, ppOut);
+ }else{
+ *ppOut = pBest;
+ }
+ }
+
+ return rc;
+}
+
+static int sortedDbIsFull(lsm_db *pDb){
+ Level *pTop = lsmDbSnapshotLevel(pDb->pWorker);
+
+ if( lsmDatabaseFull(pDb) ) return 1;
+ if( pTop && pTop->iAge==0
+ && (pTop->nRight || sortedCountLevels(pTop)>=pDb->nMerge)
+ ){
+ return 1;
+ }
+ return 0;
+}
+
+typedef struct MoveBlockCtx MoveBlockCtx;
+struct MoveBlockCtx {
+ int iSeen; /* Previous free block on list */
+ int iFrom; /* Total number of blocks in file */
+};
+
+static int moveBlockCb(void *pCtx, int iBlk, i64 iSnapshot){
+ MoveBlockCtx *p = (MoveBlockCtx *)pCtx;
+ assert( p->iFrom==0 );
+ if( iBlk==(p->iSeen-1) ){
+ p->iSeen = iBlk;
+ return 0;
+ }
+ p->iFrom = p->iSeen-1;
+ return 1;
+}
+
+/*
+** This function is called to further compact a database for which all
+** of the content has already been merged into a single segment. If
+** possible, it moves the contents of a single block from the end of the
+** file to a free-block that lies closer to the start of the file (allowing
+** the file to be eventually truncated).
+*/
+static int sortedMoveBlock(lsm_db *pDb, int *pnWrite){
+ Snapshot *p = pDb->pWorker;
+ Level *pLvl = lsmDbSnapshotLevel(p);
+ int iFrom; /* Block to move */
+ int iTo; /* Destination to move block to */
+ int rc; /* Return code */
+
+ MoveBlockCtx sCtx;
+
+ assert( pLvl->pNext==0 && pLvl->nRight==0 );
+ assert( p->redirect.n<=LSM_MAX_BLOCK_REDIRECTS );
+
+ *pnWrite = 0;
+
+ /* Check that the redirect array is not already full. If it is, return
+ ** without moving any database content. */
+ if( p->redirect.n>=LSM_MAX_BLOCK_REDIRECTS ) return LSM_OK;
+
+ /* Find the last block of content in the database file. Do this by
+ ** traversing the free-list in reverse (descending block number) order.
+ ** The first block not on the free list is the one that will be moved.
+ ** Since the db consists of a single segment, there is no ambiguity as
+ ** to which segment the block belongs to. */
+ sCtx.iSeen = p->nBlock+1;
+ sCtx.iFrom = 0;
+ rc = lsmWalkFreelist(pDb, 1, moveBlockCb, &sCtx);
+ if( rc!=LSM_OK || sCtx.iFrom==0 ) return rc;
+ iFrom = sCtx.iFrom;
+
+ /* Find the first free block in the database, ignoring block 1. Block
+ ** 1 is tricky as it is smaller than the other blocks. */
+ rc = lsmBlockAllocate(pDb, iFrom, &iTo);
+ if( rc!=LSM_OK || iTo==0 ) return rc;
+ assert( iTo!=1 && iTo<iFrom );
+
+ rc = lsmFsMoveBlock(pDb->pFS, &pLvl->lhs, iTo, iFrom);
+ if( rc==LSM_OK ){
+ if( p->redirect.a==0 ){
+ int nByte = sizeof(struct RedirectEntry) * LSM_MAX_BLOCK_REDIRECTS;
+ p->redirect.a = lsmMallocZeroRc(pDb->pEnv, nByte, &rc);
+ }
+ if( rc==LSM_OK ){
+
+ /* Check if the block just moved was already redirected. */
+ int i;
+ for(i=0; i<p->redirect.n; i++){
+ if( p->redirect.a[i].iTo==iFrom ) break;
+ }
+
+ if( i==p->redirect.n ){
+ /* Block iFrom was not already redirected. Add a new array entry. */
+ memmove(&p->redirect.a[1], &p->redirect.a[0],
+ sizeof(struct RedirectEntry) * p->redirect.n
+ );
+ p->redirect.a[0].iFrom = iFrom;
+ p->redirect.a[0].iTo = iTo;
+ p->redirect.n++;
+ }else{
+ /* Block iFrom was already redirected. Overwrite existing entry. */
+ p->redirect.a[i].iTo = iTo;
+ }
+
+ rc = lsmBlockFree(pDb, iFrom);
+
+ *pnWrite = lsmFsBlockSize(pDb->pFS) / lsmFsPageSize(pDb->pFS);
+ pLvl->lhs.pRedirect = &p->redirect;
+ }
+ }
+
+#if LSM_LOG_STRUCTURE
+ if( rc==LSM_OK ){
+ char aBuf[64];
+ sprintf(aBuf, "move-block %d/%d", p->redirect.n-1, LSM_MAX_BLOCK_REDIRECTS);
+ lsmSortedDumpStructure(pDb, pDb->pWorker, LSM_LOG_DATA, 0, aBuf);
+ }
+#endif
+ return rc;
+}
+
+/*
+*/
+static int mergeInsertFreelistSegments(
+ lsm_db *pDb,
+ int nFree,
+ MergeWorker *pMW
+){
+ int rc = LSM_OK;
+ if( nFree>0 ){
+ MultiCursor *pCsr = pMW->pCsr;
+ Level *pLvl = pMW->pLevel;
+ SegmentPtr *aNew1;
+ Segment *aNew2;
+
+ Level *pIter;
+ Level *pNext;
+ int i = 0;
+
+ aNew1 = (SegmentPtr *)lsmMallocZeroRc(
+ pDb->pEnv, sizeof(SegmentPtr) * (pCsr->nPtr+nFree), &rc
+ );
+ if( rc ) return rc;
+ memcpy(&aNew1[nFree], pCsr->aPtr, sizeof(SegmentPtr)*pCsr->nPtr);
+ pCsr->nPtr += nFree;
+ lsmFree(pDb->pEnv, pCsr->aTree);
+ lsmFree(pDb->pEnv, pCsr->aPtr);
+ pCsr->aTree = 0;
+ pCsr->aPtr = aNew1;
+
+ aNew2 = (Segment *)lsmMallocZeroRc(
+ pDb->pEnv, sizeof(Segment) * (pLvl->nRight+nFree), &rc
+ );
+ if( rc ) return rc;
+ memcpy(&aNew2[nFree], pLvl->aRhs, sizeof(Segment)*pLvl->nRight);
+ pLvl->nRight += nFree;
+ lsmFree(pDb->pEnv, pLvl->aRhs);
+ pLvl->aRhs = aNew2;
+
+ for(pIter=pDb->pWorker->pLevel; rc==LSM_OK && pIter!=pLvl; pIter=pNext){
+ Segment *pSeg = &pLvl->aRhs[i];
+ memcpy(pSeg, &pIter->lhs, sizeof(Segment));
+
+ pCsr->aPtr[i].pSeg = pSeg;
+ pCsr->aPtr[i].pLevel = pLvl;
+ rc = segmentPtrEnd(pCsr, &pCsr->aPtr[i], 0);
+
+ pDb->pWorker->pLevel = pNext = pIter->pNext;
+ sortedFreeLevel(pDb->pEnv, pIter);
+ i++;
+ }
+ assert( i==nFree );
+ assert( rc!=LSM_OK || pDb->pWorker->pLevel==pLvl );
+
+ for(i=nFree; i<pCsr->nPtr; i++){
+ pCsr->aPtr[i].pSeg = &pLvl->aRhs[i];
+ }
+
+ lsmFree(pDb->pEnv, pMW->aGobble);
+ pMW->aGobble = 0;
+ }
+ return rc;
+}
+
+static int sortedWork(
+ lsm_db *pDb, /* Database handle. Must be worker. */
+ int nWork, /* Number of pages of work to do */
+ int nMerge, /* Try to merge this many levels at once */
+ int bFlush, /* Set if call is to make room for a flush */
+ int *pnWrite /* OUT: Actual number of pages written */
+){
+ int rc = LSM_OK; /* Return Code */
+ int nRemaining = nWork; /* Units of work to do before returning */
+ Snapshot *pWorker = pDb->pWorker;
+
+ assert( pWorker );
+ if( lsmDbSnapshotLevel(pWorker)==0 ) return LSM_OK;
+
+ while( nRemaining>0 ){
+ Level *pLevel = 0;
+
+ /* Find a level to work on. */
+ rc = sortedSelectLevel(pDb, nMerge, &pLevel);
+ assert( rc==LSM_OK || pLevel==0 );
+
+ if( pLevel==0 ){
+ int nDone = 0;
+ Level *pTopLevel = lsmDbSnapshotLevel(pDb->pWorker);
+ if( bFlush==0 && nMerge==1 && pTopLevel && pTopLevel->pNext==0 ){
+ rc = sortedMoveBlock(pDb, &nDone);
+ }
+ nRemaining -= nDone;
+
+ /* Could not find any work to do. Finished. */
+ if( nDone==0 ) break;
+ }else{
+ int bSave = 0;
+ Freelist freelist = {0, 0, 0};
+ MergeWorker mergeworker; /* State used to work on the level merge */
+
+ assert( pDb->bIncrMerge==0 );
+ assert( pDb->pFreelist==0 && pDb->bUseFreelist==0 );
+
+ pDb->bIncrMerge = 1;
+ rc = mergeWorkerInit(pDb, pLevel, &mergeworker);
+ assert( mergeworker.nWork==0 );
+
+ while( rc==LSM_OK
+ && 0==mergeWorkerDone(&mergeworker)
+ && (mergeworker.nWork<nRemaining || pDb->bUseFreelist)
+ ){
+ int eType = rtTopic(mergeworker.pCsr->eType);
+ rc = mergeWorkerStep(&mergeworker);
+
+ /* If the cursor now points at the first entry past the end of the
+ ** user data (i.e. either to EOF or to the first free-list entry
+ ** that will be added to the run), then check if it is possible to
+ ** merge in any free-list entries that are either in-memory or in
+ ** free-list-only blocks. */
+ if( rc==LSM_OK && nMerge==1 && eType==0
+ && (rtTopic(mergeworker.pCsr->eType) || mergeWorkerDone(&mergeworker))
+ ){
+ int nFree = 0; /* Number of free-list-only levels to merge */
+ Level *pLvl;
+ assert( pDb->pFreelist==0 && pDb->bUseFreelist==0 );
+
+ /* Now check if all levels containing data newer than this one
+ ** are single-segment free-list only levels. If so, they will be
+ ** merged in now. */
+ for(pLvl=pDb->pWorker->pLevel;
+ pLvl!=mergeworker.pLevel && (pLvl->flags & LEVEL_FREELIST_ONLY);
+ pLvl=pLvl->pNext
+ ){
+ assert( pLvl->nRight==0 );
+ nFree++;
+ }
+ if( pLvl==mergeworker.pLevel ){
+
+ rc = mergeInsertFreelistSegments(pDb, nFree, &mergeworker);
+ if( rc==LSM_OK ){
+ rc = multiCursorVisitFreelist(mergeworker.pCsr);
+ }
+ if( rc==LSM_OK ){
+ rc = multiCursorSetupTree(mergeworker.pCsr, 0);
+ pDb->pFreelist = &freelist;
+ pDb->bUseFreelist = 1;
+ }
+ }
+ }
+ }
+ nRemaining -= LSM_MAX(mergeworker.nWork, 1);
+
+ if( rc==LSM_OK ){
+ /* Check if the merge operation is completely finished. If not,
+ ** gobble up (declare eligible for recycling) any pages from rhs
+ ** segments for which the content has been completely merged into
+ ** the lhs of the level. */
+ if( mergeWorkerDone(&mergeworker)==0 ){
+ int i;
+ for(i=0; i<pLevel->nRight; i++){
+ SegmentPtr *pGobble = &mergeworker.pCsr->aPtr[i];
+ if( pGobble->pSeg->iRoot ){
+ rc = sortedBtreeGobble(pDb, mergeworker.pCsr, i);
+ }else if( mergeworker.aGobble[i] ){
+ lsmFsGobble(pDb, pGobble->pSeg, &mergeworker.aGobble[i], 1);
+ }
+ }
+ }else{
+ int i;
+ int bEmpty;
+ mergeWorkerShutdown(&mergeworker, &rc);
+ bEmpty = (pLevel->lhs.iFirst==0);
+
+ if( bEmpty==0 && rc==LSM_OK ){
+ rc = lsmFsSortedFinish(pDb->pFS, &pLevel->lhs);
+ }
+
+ if( pDb->bUseFreelist ){
+ Freelist *p = &pDb->pWorker->freelist;
+ lsmFree(pDb->pEnv, p->aEntry);
+ memcpy(p, &freelist, sizeof(freelist));
+ pDb->bUseFreelist = 0;
+ pDb->pFreelist = 0;
+ bSave = 1;
+ }
+
+ for(i=0; i<pLevel->nRight; i++){
+ lsmFsSortedDelete(pDb->pFS, pWorker, 1, &pLevel->aRhs[i]);
+ }
+
+ if( bEmpty ){
+ /* If the new level is completely empty, remove it from the
+ ** database snapshot. This can only happen if all input keys were
+ ** annihilated. Since keys are only annihilated if the new level
+ ** is the last in the linked list (contains the most ancient of
+ ** database content), this guarantees that pLevel->pNext==0. */
+ Level *pTop; /* Top level of worker snapshot */
+ Level **pp; /* Read/write iterator for Level.pNext list */
+
+ assert( pLevel->pNext==0 );
+
+ /* Remove the level from the worker snapshot. */
+ pTop = lsmDbSnapshotLevel(pWorker);
+ for(pp=&pTop; *pp!=pLevel; pp=&((*pp)->pNext));
+ *pp = pLevel->pNext;
+ lsmDbSnapshotSetLevel(pWorker, pTop);
+
+ /* Free the Level structure. */
+ sortedFreeLevel(pDb->pEnv, pLevel);
+ }else{
+
+ /* Free the separators of the next level, if required. */
+ if( pLevel->pMerge->nInput > pLevel->nRight ){
+ assert( pLevel->pNext->lhs.iRoot );
+ pLevel->pNext->lhs.iRoot = 0;
+ }
+
+ /* Zero the right-hand-side of pLevel */
+ lsmFree(pDb->pEnv, pLevel->aRhs);
+ pLevel->nRight = 0;
+ pLevel->aRhs = 0;
+
+ /* Free the Merge object */
+ lsmFree(pDb->pEnv, pLevel->pMerge);
+ pLevel->pMerge = 0;
+ }
+
+ if( bSave && rc==LSM_OK ){
+ pDb->bIncrMerge = 0;
+ rc = lsmSaveWorker(pDb, 0);
+ }
+ }
+ }
+
+ /* Clean up the MergeWorker object initialized above. If no error
+ ** has occurred, invoke the work-hook to inform the application that
+ ** the database structure has changed. */
+ mergeWorkerShutdown(&mergeworker, &rc);
+ pDb->bIncrMerge = 0;
+ if( rc==LSM_OK ) sortedInvokeWorkHook(pDb);
+
+#if LSM_LOG_STRUCTURE
+ lsmSortedDumpStructure(pDb, pDb->pWorker, LSM_LOG_DATA, 0, "work");
+#endif
+ assertBtreeOk(pDb, &pLevel->lhs);
+ assertRunInOrder(pDb, &pLevel->lhs);
+
+ /* If bFlush is true and the database is no longer considered "full",
+ ** break out of the loop even if nRemaining is still greater than
+ ** zero. The caller has an in-memory tree to flush to disk. */
+ if( bFlush && sortedDbIsFull(pDb)==0 ) break;
+ }
+ }
+
+ if( pnWrite ) *pnWrite = (nWork - nRemaining);
+ pWorker->nWrite += (nWork - nRemaining);
+
+#ifdef LSM_LOG_WORK
+ lsmLogMessage(pDb, rc, "sortedWork(): %d pages", (nWork-nRemaining));
+#endif
+ return rc;
+}
+
+/*
+** The database connection passed as the first argument must be a worker
+** connection. This function checks if there exists an "old" in-memory tree
+** ready to be flushed to disk. If so, true is returned. Otherwise false.
+**
+** If an error occurs, *pRc is set to an LSM error code before returning.
+** It is assumed that *pRc is set to LSM_OK when this function is called.
+*/
+static int sortedTreeHasOld(lsm_db *pDb, int *pRc){
+ int rc = LSM_OK;
+ int bRet = 0;
+
+ assert( pDb->pWorker );
+ if( *pRc==LSM_OK ){
+ if( rc==LSM_OK
+ && pDb->treehdr.iOldShmid
+ && pDb->treehdr.iOldLog!=pDb->pWorker->iLogOff
+ ){
+ bRet = 1;
+ }else{
+ bRet = 0;
+ }
+ *pRc = rc;
+ }
+ assert( *pRc==LSM_OK || bRet==0 );
+ return bRet;
+}
+
+/*
+** Create a new free-list only top-level segment. Return LSM_OK if successful
+** or an LSM error code if some error occurs.
+*/
+static int sortedNewFreelistOnly(lsm_db *pDb){
+ return sortedNewToplevel(pDb, TREE_NONE, 0);
+}
+
+int lsmSaveWorker(lsm_db *pDb, int bFlush){
+ Snapshot *p = pDb->pWorker;
+ if( p->freelist.nEntry>pDb->nMaxFreelist ){
+ int rc = sortedNewFreelistOnly(pDb);
+ if( rc!=LSM_OK ) return rc;
+ }
+ return lsmCheckpointSaveWorker(pDb, bFlush);
+}
+
+static int doLsmSingleWork(
+ lsm_db *pDb,
+ int bShutdown,
+ int nMerge, /* Minimum segments to merge together */
+ int nPage, /* Number of pages to write to disk */
+ int *pnWrite, /* OUT: Pages actually written to disk */
+ int *pbCkpt /* OUT: True if an auto-checkpoint is req. */
+){
+ Snapshot *pWorker; /* Worker snapshot */
+ int rc = LSM_OK; /* Return code */
+ int bDirty = 0;
+ int nMax = nPage; /* Maximum pages to write to disk */
+ int nRem = nPage;
+ int bCkpt = 0;
+
+ assert( nPage>0 );
+
+ /* Open the worker 'transaction'. It will be closed before this function
+ ** returns. */
+ assert( pDb->pWorker==0 );
+ rc = lsmBeginWork(pDb);
+ if( rc!=LSM_OK ) return rc;
+ pWorker = pDb->pWorker;
+
+ /* If this connection is doing auto-checkpoints, set nMax (and nRem) so
+ ** that this call stops writing when the auto-checkpoint is due. The
+ ** caller will do the checkpoint, then possibly call this function again. */
+ if( bShutdown==0 && pDb->nAutockpt ){
+ u32 nSync;
+ u32 nUnsync;
+ int nPgsz;
+
+ lsmCheckpointSynced(pDb, 0, 0, &nSync);
+ nUnsync = lsmCheckpointNWrite(pDb->pShmhdr->aSnap1, 0);
+ nPgsz = lsmCheckpointPgsz(pDb->pShmhdr->aSnap1);
+
+ nMax = LSM_MIN(nMax, (pDb->nAutockpt/nPgsz) - (int)(nUnsync-nSync));
+ if( nMax<nRem ){
+ bCkpt = 1;
+ nRem = LSM_MAX(nMax, 0);
+ }
+ }
+
+ /* If there exists in-memory data ready to be flushed to disk, attempt
+ ** to flush it now. */
+ if( pDb->nTransOpen==0 ){
+ rc = lsmTreeLoadHeader(pDb, 0);
+ }
+ if( sortedTreeHasOld(pDb, &rc) ){
+ /* sortedDbIsFull() returns non-zero if either (a) there are too many
+ ** levels in total in the db, or (b) there are too many levels with the
+ ** the same age in the db. Either way, call sortedWork() to merge
+ ** existing segments together until this condition is cleared. */
+ if( sortedDbIsFull(pDb) ){
+ int nPg = 0;
+ rc = sortedWork(pDb, nRem, nMerge, 1, &nPg);
+ nRem -= nPg;
+ assert( rc!=LSM_OK || nRem<=0 || !sortedDbIsFull(pDb) );
+ bDirty = 1;
+ }
+
+ if( rc==LSM_OK && nRem>0 ){
+ int nPg = 0;
+ rc = sortedNewToplevel(pDb, TREE_OLD, &nPg);
+ nRem -= nPg;
+ if( rc==LSM_OK ){
+ if( pDb->nTransOpen>0 ){
+ lsmTreeDiscardOld(pDb);
+ }
+ rc = lsmSaveWorker(pDb, 1);
+ bDirty = 0;
+ }
+ }
+ }
+
+ /* If nPage is still greater than zero, do some merging. */
+ if( rc==LSM_OK && nRem>0 && bShutdown==0 ){
+ int nPg = 0;
+ rc = sortedWork(pDb, nRem, nMerge, 0, &nPg);
+ nRem -= nPg;
+ if( nPg ) bDirty = 1;
+ }
+
+ /* If the in-memory part of the free-list is too large, write a new
+ ** top-level containing just the in-memory free-list entries to disk. */
+ if( rc==LSM_OK && pDb->pWorker->freelist.nEntry > pDb->nMaxFreelist ){
+ int nPg = 0;
+ while( rc==LSM_OK && lsmDatabaseFull(pDb) ){
+ rc = sortedWork(pDb, 16, nMerge, 1, &nPg);
+ nRem -= nPg;
+ }
+ if( rc==LSM_OK ){
+ rc = sortedNewFreelistOnly(pDb);
+ }
+ nRem -= nPg;
+ if( nPg ) bDirty = 1;
+ }
+
+ if( rc==LSM_OK ){
+ *pnWrite = (nMax - nRem);
+ *pbCkpt = (bCkpt && nRem<=0);
+ if( nMerge==1 && pDb->nAutockpt>0 && *pnWrite>0
+ && pWorker->pLevel
+ && pWorker->pLevel->nRight==0
+ && pWorker->pLevel->pNext==0
+ ){
+ *pbCkpt = 1;
+ }
+ }
+
+ if( rc==LSM_OK && bDirty ){
+ lsmFinishWork(pDb, 0, &rc);
+ }else{
+ int rcdummy = LSM_BUSY;
+ lsmFinishWork(pDb, 0, &rcdummy);
+ *pnWrite = 0;
+ }
+ assert( pDb->pWorker==0 );
+ return rc;
+}
+
+static int doLsmWork(lsm_db *pDb, int nMerge, int nPage, int *pnWrite){
+ int rc = LSM_OK; /* Return code */
+ int nWrite = 0; /* Number of pages written */
+
+ assert( nMerge>=1 );
+
+ if( nPage!=0 ){
+ int bCkpt = 0;
+ do {
+ int nThis = 0;
+ int nReq = (nPage>=0) ? (nPage-nWrite) : ((int)0x7FFFFFFF);
+
+ bCkpt = 0;
+ rc = doLsmSingleWork(pDb, 0, nMerge, nReq, &nThis, &bCkpt);
+ nWrite += nThis;
+ if( rc==LSM_OK && bCkpt ){
+ rc = lsm_checkpoint(pDb, 0);
+ }
+ }while( rc==LSM_OK && bCkpt && (nWrite<nPage || nPage<0) );
+ }
+
+ if( pnWrite ){
+ if( rc==LSM_OK ){
+ *pnWrite = nWrite;
+ }else{
+ *pnWrite = 0;
+ }
+ }
+ return rc;
+}
+
+/*
+** Perform work to merge database segments together.
+*/
+int lsm_work(lsm_db *pDb, int nMerge, int nKB, int *pnWrite){
+ int rc; /* Return code */
+ int nPgsz; /* Nominal page size in bytes */
+ int nPage; /* Equivalent of nKB in pages */
+ int nWrite = 0; /* Number of pages written */
+
+ /* This function may not be called if pDb has an open read or write
+ ** transaction. Return LSM_MISUSE if an application attempts this. */
+ if( pDb->nTransOpen || pDb->pCsr ) return LSM_MISUSE_BKPT;
+ if( nMerge<=0 ) nMerge = pDb->nMerge;
+
+ lsmFsPurgeCache(pDb->pFS);
+
+ /* Convert from KB to pages */
+ nPgsz = lsmFsPageSize(pDb->pFS);
+ if( nKB>=0 ){
+ nPage = ((i64)nKB * 1024 + nPgsz - 1) / nPgsz;
+ }else{
+ nPage = -1;
+ }
+
+ rc = doLsmWork(pDb, nMerge, nPage, &nWrite);
+
+ if( pnWrite ){
+ /* Convert back from pages to KB */
+ *pnWrite = (int)(((i64)nWrite * 1024 + nPgsz - 1) / nPgsz);
+ }
+ return rc;
+}
+
+int lsm_flush(lsm_db *db){
+ int rc;
+
+ if( db->nTransOpen>0 || db->pCsr ){
+ rc = LSM_MISUSE_BKPT;
+ }else{
+ rc = lsmBeginWriteTrans(db);
+ if( rc==LSM_OK ){
+ lsmFlushTreeToDisk(db);
+ lsmTreeDiscardOld(db);
+ lsmTreeMakeOld(db);
+ lsmTreeDiscardOld(db);
+ }
+
+ if( rc==LSM_OK ){
+ rc = lsmFinishWriteTrans(db, 1);
+ }else{
+ lsmFinishWriteTrans(db, 0);
+ }
+ lsmFinishReadTrans(db);
+ }
+
+ return rc;
+}
+
+/*
+** This function is called in auto-work mode to perform merging work on
+** the data structure. It performs enough merging work to prevent the
+** height of the tree from growing indefinitely assuming that roughly
+** nUnit database pages worth of data have been written to the database
+** (i.e. the in-memory tree) since the last call.
+*/
+int lsmSortedAutoWork(
+ lsm_db *pDb, /* Database handle */
+ int nUnit /* Pages of data written to in-memory tree */
+){
+ int rc = LSM_OK; /* Return code */
+ int nDepth = 0; /* Current height of tree (longest path) */
+ Level *pLevel; /* Used to iterate through levels */
+ int bRestore = 0;
+
+ assert( pDb->pWorker==0 );
+ assert( pDb->nTransOpen>0 );
+
+ /* Determine how many units of work to do before returning. One unit of
+ ** work is achieved by writing one page (~4KB) of merged data. */
+ for(pLevel=lsmDbSnapshotLevel(pDb->pClient); pLevel; pLevel=pLevel->pNext){
+ /* nDepth += LSM_MAX(1, pLevel->nRight); */
+ nDepth += 1;
+ }
+ if( lsmTreeHasOld(pDb) ){
+ nDepth += 1;
+ bRestore = 1;
+ rc = lsmSaveCursors(pDb);
+ if( rc!=LSM_OK ) return rc;
+ }
+
+ if( nDepth>0 ){
+ int nRemaining; /* Units of work to do before returning */
+
+ nRemaining = nUnit * nDepth;
+#ifdef LSM_LOG_WORK
+ lsmLogMessage(pDb, rc, "lsmSortedAutoWork(): %d*%d = %d pages",
+ nUnit, nDepth, nRemaining);
+#endif
+ assert( nRemaining>=0 );
+ rc = doLsmWork(pDb, pDb->nMerge, nRemaining, 0);
+ if( rc==LSM_BUSY ) rc = LSM_OK;
+
+ if( bRestore && pDb->pCsr ){
+ lsmMCursorFreeCache(pDb);
+ lsmFreeSnapshot(pDb->pEnv, pDb->pClient);
+ pDb->pClient = 0;
+ rc = lsmCheckpointLoad(pDb, 0);
+ if( rc==LSM_OK ){
+ rc = lsmCheckpointDeserialize(pDb, 0, pDb->aSnapshot, &pDb->pClient);
+ }
+ if( rc==LSM_OK ){
+ rc = lsmRestoreCursors(pDb);
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** This function is only called during system shutdown. The contents of
+** any in-memory trees present (old or current) are written out to disk.
+*/
+int lsmFlushTreeToDisk(lsm_db *pDb){
+ int rc;
+
+ rc = lsmBeginWork(pDb);
+ while( rc==LSM_OK && sortedDbIsFull(pDb) ){
+ rc = sortedWork(pDb, 256, pDb->nMerge, 1, 0);
+ }
+
+ if( rc==LSM_OK ){
+ rc = sortedNewToplevel(pDb, TREE_BOTH, 0);
+ }
+
+ lsmFinishWork(pDb, 1, &rc);
+ return rc;
+}
+
+/*
+** Return a string representation of the segment passed as the only argument.
+** Space for the returned string is allocated using lsmMalloc(), and should
+** be freed by the caller using lsmFree().
+*/
+static char *segToString(lsm_env *pEnv, Segment *pSeg, int nMin){
+ int nSize = pSeg->nSize;
+ Pgno iRoot = pSeg->iRoot;
+ Pgno iFirst = pSeg->iFirst;
+ Pgno iLast = pSeg->iLastPg;
+ char *z;
+
+ char *z1;
+ char *z2;
+ int nPad;
+
+ z1 = lsmMallocPrintf(pEnv, "%d.%d", iFirst, iLast);
+ if( iRoot ){
+ z2 = lsmMallocPrintf(pEnv, "root=%d", iRoot);
+ }else{
+ z2 = lsmMallocPrintf(pEnv, "size=%d", nSize);
+ }
+
+ nPad = nMin - 2 - strlen(z1) - 1 - strlen(z2);
+ nPad = LSM_MAX(0, nPad);
+
+ if( iRoot ){
+ z = lsmMallocPrintf(pEnv, "/%s %*s%s\\", z1, nPad, "", z2);
+ }else{
+ z = lsmMallocPrintf(pEnv, "|%s %*s%s|", z1, nPad, "", z2);
+ }
+ lsmFree(pEnv, z1);
+ lsmFree(pEnv, z2);
+
+ return z;
+}
+
+static int fileToString(
+ lsm_db *pDb, /* For xMalloc() */
+ char *aBuf,
+ int nBuf,
+ int nMin,
+ Segment *pSeg
+){
+ int i = 0;
+ if( pSeg ){
+ char *zSeg;
+
+ zSeg = segToString(pDb->pEnv, pSeg, nMin);
+ sqlite3_snprintf(nBuf-i, &aBuf[i], "%s", zSeg);
+ i += strlen(&aBuf[i]);
+ lsmFree(pDb->pEnv, zSeg);
+
+#ifdef LSM_LOG_FREELIST
+ lsmInfoArrayStructure(pDb, 1, pSeg->iFirst, &zSeg);
+ sqlite3_snprintf(nBuf-i, &aBuf[i], " (%s)", zSeg);
+ i += strlen(&aBuf[i]);
+ lsmFree(pDb->pEnv, zSeg);
+#endif
+ }else{
+ aBuf[0] = '\0';
+ }
+
+ return i;
+}
+
+void sortedDumpPage(lsm_db *pDb, Segment *pRun, Page *pPg, int bVals){
+ Blob blob = {0, 0, 0}; /* Blob used for keys */
+ LsmString s;
+ int i;
+
+ int nRec;
+ int iPtr;
+ int flags;
+ u8 *aData;
+ int nData;
+
+ aData = fsPageData(pPg, &nData);
+
+ nRec = pageGetNRec(aData, nData);
+ iPtr = pageGetPtr(aData, nData);
+ flags = pageGetFlags(aData, nData);
+
+ lsmStringInit(&s, pDb->pEnv);
+ lsmStringAppendf(&s,"nCell=%d iPtr=%d flags=%d {", nRec, iPtr, flags);
+ if( flags&SEGMENT_BTREE_FLAG ) iPtr = 0;
+
+ for(i=0; i<nRec; i++){
+ Page *pRef = 0; /* Pointer to page iRef */
+ int iChar;
+ u8 *aKey; int nKey = 0; /* Key */
+ u8 *aVal; int nVal = 0; /* Value */
+ int iTopic;
+ u8 *aCell;
+ int iPgPtr;
+ int eType;
+
+ aCell = pageGetCell(aData, nData, i);
+ eType = *aCell++;
+ assert( (flags & SEGMENT_BTREE_FLAG) || eType!=0 );
+ aCell += lsmVarintGet32(aCell, &iPgPtr);
+
+ if( eType==0 ){
+ Pgno iRef; /* Page number of referenced page */
+ aCell += lsmVarintGet64(aCell, &iRef);
+ lsmFsDbPageGet(pDb->pFS, pRun, iRef, &pRef);
+ aKey = pageGetKey(pRun, pRef, 0, &iTopic, &nKey, &blob);
+ }else{
+ aCell += lsmVarintGet32(aCell, &nKey);
+ if( rtIsWrite(eType) ) aCell += lsmVarintGet32(aCell, &nVal);
+ sortedReadData(0, pPg, (aCell-aData), nKey+nVal, (void **)&aKey, &blob);
+ aVal = &aKey[nKey];
+ iTopic = eType;
+ }
+
+ lsmStringAppendf(&s, "%s%2X:", (i==0?"":" "), iTopic);
+ for(iChar=0; iChar<nKey; iChar++){
+ lsmStringAppendf(&s, "%c", isalnum(aKey[iChar]) ? aKey[iChar] : '.');
+ }
+ if( nVal>0 && bVals ){
+ lsmStringAppendf(&s, "##");
+ for(iChar=0; iChar<nVal; iChar++){
+ lsmStringAppendf(&s, "%c", isalnum(aVal[iChar]) ? aVal[iChar] : '.');
+ }
+ }
+
+ lsmStringAppendf(&s, " %d", iPgPtr+iPtr);
+ lsmFsPageRelease(pRef);
+ }
+ lsmStringAppend(&s, "}", 1);
+
+ lsmLogMessage(pDb, LSM_OK, " Page %d: %s", lsmFsPageNumber(pPg), s.z);
+ lsmStringClear(&s);
+
+ sortedBlobFree(&blob);
+}
+
+static void infoCellDump(
+ lsm_db *pDb, /* Database handle */
+ Segment *pSeg, /* Segment page belongs to */
+ int bIndirect, /* True to follow indirect refs */
+ Page *pPg,
+ int iCell,
+ int *peType,
+ int *piPgPtr,
+ u8 **paKey, int *pnKey,
+ u8 **paVal, int *pnVal,
+ Blob *pBlob
+){
+ u8 *aData; int nData; /* Page data */
+ u8 *aKey; int nKey = 0; /* Key */
+ u8 *aVal; int nVal = 0; /* Value */
+ int eType;
+ int iPgPtr;
+ Page *pRef = 0; /* Pointer to page iRef */
+ u8 *aCell;
+
+ aData = fsPageData(pPg, &nData);
+
+ aCell = pageGetCell(aData, nData, iCell);
+ eType = *aCell++;
+ aCell += lsmVarintGet32(aCell, &iPgPtr);
+
+ if( eType==0 ){
+ int dummy;
+ Pgno iRef; /* Page number of referenced page */
+ aCell += lsmVarintGet64(aCell, &iRef);
+ if( bIndirect ){
+ lsmFsDbPageGet(pDb->pFS, pSeg, iRef, &pRef);
+ pageGetKeyCopy(pDb->pEnv, pSeg, pRef, 0, &dummy, pBlob);
+ aKey = (u8 *)pBlob->pData;
+ nKey = pBlob->nData;
+ lsmFsPageRelease(pRef);
+ }else{
+ aKey = (u8 *)"<indirect>";
+ nKey = 11;
+ }
+ }else{
+ aCell += lsmVarintGet32(aCell, &nKey);
+ if( rtIsWrite(eType) ) aCell += lsmVarintGet32(aCell, &nVal);
+ sortedReadData(pSeg, pPg, (aCell-aData), nKey+nVal, (void **)&aKey, pBlob);
+ aVal = &aKey[nKey];
+ }
+
+ if( peType ) *peType = eType;
+ if( piPgPtr ) *piPgPtr = iPgPtr;
+ if( paKey ) *paKey = aKey;
+ if( paVal ) *paVal = aVal;
+ if( pnKey ) *pnKey = nKey;
+ if( pnVal ) *pnVal = nVal;
+}
+
+static int infoAppendBlob(LsmString *pStr, int bHex, u8 *z, int n){
+ int iChar;
+ for(iChar=0; iChar<n; iChar++){
+ if( bHex ){
+ lsmStringAppendf(pStr, "%02X", z[iChar]);
+ }else{
+ lsmStringAppendf(pStr, "%c", isalnum(z[iChar]) ?z[iChar] : '.');
+ }
+ }
+ return LSM_OK;
+}
+
+#define INFO_PAGE_DUMP_DATA 0x01
+#define INFO_PAGE_DUMP_VALUES 0x02
+#define INFO_PAGE_DUMP_HEX 0x04
+#define INFO_PAGE_DUMP_INDIRECT 0x08
+
+static int infoPageDump(
+ lsm_db *pDb, /* Database handle */
+ Pgno iPg, /* Page number of page to dump */
+ int flags,
+ char **pzOut /* OUT: lsmMalloc'd string */
+){
+ int rc = LSM_OK; /* Return code */
+ Page *pPg = 0; /* Handle for page iPg */
+ int i, j; /* Loop counters */
+ const int perLine = 16; /* Bytes per line in the raw hex dump */
+ Segment *pSeg = 0;
+ Snapshot *pSnap;
+
+ int bValues = (flags & INFO_PAGE_DUMP_VALUES);
+ int bHex = (flags & INFO_PAGE_DUMP_HEX);
+ int bData = (flags & INFO_PAGE_DUMP_DATA);
+ int bIndirect = (flags & INFO_PAGE_DUMP_INDIRECT);
+
+ *pzOut = 0;
+ if( iPg==0 ) return LSM_ERROR;
+
+ assert( pDb->pClient || pDb->pWorker );
+ pSnap = pDb->pClient;
+ if( pSnap==0 ) pSnap = pDb->pWorker;
+ if( pSnap->redirect.n>0 ){
+ Level *pLvl;
+ int bUse = 0;
+ for(pLvl=pSnap->pLevel; pLvl->pNext; pLvl=pLvl->pNext);
+ pSeg = (pLvl->nRight==0 ? &pLvl->lhs : &pLvl->aRhs[pLvl->nRight-1]);
+ rc = lsmFsSegmentContainsPg(pDb->pFS, pSeg, iPg, &bUse);
+ if( bUse==0 ){
+ pSeg = 0;
+ }
+ }
+
+ /* iPg is a real page number (not subject to redirection). So it is safe
+ ** to pass a NULL in place of the segment pointer as the second argument
+ ** to lsmFsDbPageGet() here. */
+ if( rc==LSM_OK ){
+ rc = lsmFsDbPageGet(pDb->pFS, 0, iPg, &pPg);
+ }
+
+ if( rc==LSM_OK ){
+ Blob blob = {0, 0, 0, 0};
+ int nKeyWidth = 0;
+ LsmString str;
+ int nRec;
+ int iPtr;
+ int flags;
+ int iCell;
+ u8 *aData; int nData; /* Page data and size thereof */
+
+ aData = fsPageData(pPg, &nData);
+ nRec = pageGetNRec(aData, nData);
+ iPtr = pageGetPtr(aData, nData);
+ flags = pageGetFlags(aData, nData);
+
+ lsmStringInit(&str, pDb->pEnv);
+ lsmStringAppendf(&str, "Page : %lld (%d bytes)\n", iPg, nData);
+ lsmStringAppendf(&str, "nRec : %d\n", nRec);
+ lsmStringAppendf(&str, "iPtr : %d\n", iPtr);
+ lsmStringAppendf(&str, "flags: %04x\n", flags);
+ lsmStringAppendf(&str, "\n");
+
+ for(iCell=0; iCell<nRec; iCell++){
+ int nKey;
+ infoCellDump(
+ pDb, pSeg, bIndirect, pPg, iCell, 0, 0, 0, &nKey, 0, 0, &blob
+ );
+ if( nKey>nKeyWidth ) nKeyWidth = nKey;
+ }
+ if( bHex ) nKeyWidth = nKeyWidth * 2;
+
+ for(iCell=0; iCell<nRec; iCell++){
+ u8 *aKey; int nKey = 0; /* Key */
+ u8 *aVal; int nVal = 0; /* Value */
+ int iPgPtr;
+ int eType;
+ Pgno iAbsPtr;
+ char zFlags[8];
+
+ infoCellDump(pDb, pSeg, bIndirect, pPg, iCell, &eType, &iPgPtr,
+ &aKey, &nKey, &aVal, &nVal, &blob
+ );
+ iAbsPtr = iPgPtr + ((flags & SEGMENT_BTREE_FLAG) ? 0 : iPtr);
+
+ lsmFlagsToString(eType, zFlags);
+ lsmStringAppendf(&str, "%s %d (%s) ",
+ zFlags, iAbsPtr, (rtTopic(eType) ? "sys" : "usr")
+ );
+ infoAppendBlob(&str, bHex, aKey, nKey);
+ if( nVal>0 && bValues ){
+ lsmStringAppendf(&str, "%*s", nKeyWidth - (nKey*(1+bHex)), "");
+ lsmStringAppendf(&str, " ");
+ infoAppendBlob(&str, bHex, aVal, nVal);
+ }
+ if( rtTopic(eType) ){
+ int iBlk = (int)~lsmGetU32(aKey);
+ lsmStringAppendf(&str, " (block=%d", iBlk);
+ if( nVal>0 ){
+ i64 iSnap = lsmGetU64(aVal);
+ lsmStringAppendf(&str, " snapshot=%lld", iSnap);
+ }
+ lsmStringAppendf(&str, ")");
+ }
+ lsmStringAppendf(&str, "\n");
+ }
+
+ if( bData ){
+ lsmStringAppendf(&str, "\n-------------------"
+ "-------------------------------------------------------------\n");
+ lsmStringAppendf(&str, "Page %d\n",
+ iPg, (iPg-1)*nData, iPg*nData - 1);
+ for(i=0; i<nData; i += perLine){
+ lsmStringAppendf(&str, "%04x: ", i);
+ for(j=0; j<perLine; j++){
+ if( i+j>nData ){
+ lsmStringAppendf(&str, " ");
+ }else{
+ lsmStringAppendf(&str, "%02x ", aData[i+j]);
+ }
+ }
+ lsmStringAppendf(&str, " ");
+ for(j=0; j<perLine; j++){
+ if( i+j>nData ){
+ lsmStringAppendf(&str, " ");
+ }else{
+ lsmStringAppendf(&str,"%c", isprint(aData[i+j]) ? aData[i+j] : '.');
+ }
+ }
+ lsmStringAppendf(&str,"\n");
+ }
+ }
+
+ *pzOut = str.z;
+ sortedBlobFree(&blob);
+ lsmFsPageRelease(pPg);
+ }
+
+ return rc;
+}
+
+int lsmInfoPageDump(
+ lsm_db *pDb, /* Database handle */
+ Pgno iPg, /* Page number of page to dump */
+ int bHex, /* True to output key/value in hex form */
+ char **pzOut /* OUT: lsmMalloc'd string */
+){
+ int flags = INFO_PAGE_DUMP_DATA | INFO_PAGE_DUMP_VALUES;
+ if( bHex ) flags |= INFO_PAGE_DUMP_HEX;
+ return infoPageDump(pDb, iPg, flags, pzOut);
+}
+
+void sortedDumpSegment(lsm_db *pDb, Segment *pRun, int bVals){
+ assert( pDb->xLog );
+ if( pRun && pRun->iFirst ){
+ int flags = (bVals ? INFO_PAGE_DUMP_VALUES : 0);
+ char *zSeg;
+ Page *pPg;
+
+ zSeg = segToString(pDb->pEnv, pRun, 0);
+ lsmLogMessage(pDb, LSM_OK, "Segment: %s", zSeg);
+ lsmFree(pDb->pEnv, zSeg);
+
+ lsmFsDbPageGet(pDb->pFS, pRun, pRun->iFirst, &pPg);
+ while( pPg ){
+ Page *pNext;
+ char *z = 0;
+ infoPageDump(pDb, lsmFsPageNumber(pPg), flags, &z);
+ lsmLogMessage(pDb, LSM_OK, "%s", z);
+ lsmFree(pDb->pEnv, z);
+#if 0
+ sortedDumpPage(pDb, pRun, pPg, bVals);
+#endif
+ lsmFsDbPageNext(pRun, pPg, 1, &pNext);
+ lsmFsPageRelease(pPg);
+ pPg = pNext;
+ }
+ }
+}
+
+/*
+** Invoke the log callback zero or more times with messages that describe
+** the current database structure.
+*/
+void lsmSortedDumpStructure(
+ lsm_db *pDb, /* Database handle (used for xLog callback) */
+ Snapshot *pSnap, /* Snapshot to dump */
+ int bKeys, /* Output the keys from each segment */
+ int bVals, /* Output the values from each segment */
+ const char *zWhy /* Caption to print near top of dump */
+){
+ Snapshot *pDump = pSnap;
+ Level *pTopLevel;
+ char *zFree = 0;
+
+ assert( pSnap );
+ pTopLevel = lsmDbSnapshotLevel(pDump);
+ if( pDb->xLog && pTopLevel ){
+ static int nCall = 0;
+ Level *pLevel;
+ int iLevel = 0;
+
+ nCall++;
+ lsmLogMessage(pDb, LSM_OK, "Database structure %d (%s)", nCall, zWhy);
+
+#if 0
+ if( nCall==1031 || nCall==1032 ) bKeys=1;
+#endif
+
+ for(pLevel=pTopLevel; pLevel; pLevel=pLevel->pNext){
+ char zLeft[1024];
+ char zRight[1024];
+ int i = 0;
+
+ Segment *aLeft[24];
+ Segment *aRight[24];
+
+ int nLeft = 0;
+ int nRight = 0;
+
+ Segment *pSeg = &pLevel->lhs;
+ aLeft[nLeft++] = pSeg;
+
+ for(i=0; i<pLevel->nRight; i++){
+ aRight[nRight++] = &pLevel->aRhs[i];
+ }
+
+#ifdef LSM_LOG_FREELIST
+ if( nRight ){
+ memmove(&aRight[1], aRight, sizeof(aRight[0])*nRight);
+ aRight[0] = 0;
+ nRight++;
+ }
+#endif
+
+ for(i=0; i<nLeft || i<nRight; i++){
+ int iPad = 0;
+ char zLevel[32];
+ zLeft[0] = '\0';
+ zRight[0] = '\0';
+
+ if( i<nLeft ){
+ fileToString(pDb, zLeft, sizeof(zLeft), 24, aLeft[i]);
+ }
+ if( i<nRight ){
+ fileToString(pDb, zRight, sizeof(zRight), 24, aRight[i]);
+ }
+
+ if( i==0 ){
+ sqlite3_snprintf(sizeof(zLevel), zLevel, "L%d: (age=%d) (flags=%.4x)",
+ iLevel, (int)pLevel->iAge, (int)pLevel->flags
+ );
+ }else{
+ zLevel[0] = '\0';
+ }
+
+ if( nRight==0 ){
+ iPad = 10;
+ }
+
+ lsmLogMessage(pDb, LSM_OK, "% 25s % *s% -35s %s",
+ zLevel, iPad, "", zLeft, zRight
+ );
+ }
+
+ iLevel++;
+ }
+
+ if( bKeys ){
+ for(pLevel=pTopLevel; pLevel; pLevel=pLevel->pNext){
+ int i;
+ sortedDumpSegment(pDb, &pLevel->lhs, bVals);
+ for(i=0; i<pLevel->nRight; i++){
+ sortedDumpSegment(pDb, &pLevel->aRhs[i], bVals);
+ }
+ }
+ }
+ }
+
+ lsmInfoFreelist(pDb, &zFree);
+ lsmLogMessage(pDb, LSM_OK, "Freelist: %s", zFree);
+ lsmFree(pDb->pEnv, zFree);
+
+ assert( lsmFsIntegrityCheck(pDb) );
+}
+
+void lsmSortedFreeLevel(lsm_env *pEnv, Level *pLevel){
+ Level *pNext;
+ Level *p;
+
+ for(p=pLevel; p; p=pNext){
+ pNext = p->pNext;
+ sortedFreeLevel(pEnv, p);
+ }
+}
+
+void lsmSortedSaveTreeCursors(lsm_db *pDb){
+ MultiCursor *pCsr;
+ for(pCsr=pDb->pCsr; pCsr; pCsr=pCsr->pNext){
+ lsmTreeCursorSave(pCsr->apTreeCsr[0]);
+ lsmTreeCursorSave(pCsr->apTreeCsr[1]);
+ }
+}
+
+void lsmSortedExpandBtreePage(Page *pPg, int nOrig){
+ u8 *aData;
+ int nData;
+ int nEntry;
+ int iHdr;
+
+ aData = lsmFsPageData(pPg, &nData);
+ nEntry = pageGetNRec(aData, nOrig);
+ iHdr = SEGMENT_EOF(nOrig, nEntry);
+ memmove(&aData[iHdr + (nData-nOrig)], &aData[iHdr], nOrig-iHdr);
+}
+
+#ifdef LSM_DEBUG_EXPENSIVE
+static void assertRunInOrder(lsm_db *pDb, Segment *pSeg){
+ Page *pPg = 0;
+ Blob blob1 = {0, 0, 0, 0};
+ Blob blob2 = {0, 0, 0, 0};
+
+ lsmFsDbPageGet(pDb->pFS, pSeg, pSeg->iFirst, &pPg);
+ while( pPg ){
+ u8 *aData; int nData;
+ Page *pNext;
+
+ aData = lsmFsPageData(pPg, &nData);
+ if( 0==(pageGetFlags(aData, nData) & SEGMENT_BTREE_FLAG) ){
+ int i;
+ int nRec = pageGetNRec(aData, nData);
+ for(i=0; i<nRec; i++){
+ int iTopic1, iTopic2;
+ pageGetKeyCopy(pDb->pEnv, pSeg, pPg, i, &iTopic1, &blob1);
+
+ if( i==0 && blob2.nData ){
+ assert( sortedKeyCompare(
+ pDb->xCmp, iTopic2, blob2.pData, blob2.nData,
+ iTopic1, blob1.pData, blob1.nData
+ )<0 );
+ }
+
+ if( i<(nRec-1) ){
+ pageGetKeyCopy(pDb->pEnv, pSeg, pPg, i+1, &iTopic2, &blob2);
+ assert( sortedKeyCompare(
+ pDb->xCmp, iTopic1, blob1.pData, blob1.nData,
+ iTopic2, blob2.pData, blob2.nData
+ )<0 );
+ }
+ }
+ }
+
+ lsmFsDbPageNext(pSeg, pPg, 1, &pNext);
+ lsmFsPageRelease(pPg);
+ pPg = pNext;
+ }
+
+ sortedBlobFree(&blob1);
+ sortedBlobFree(&blob2);
+}
+#endif
+
+#ifdef LSM_DEBUG_EXPENSIVE
+/*
+** This function is only included in the build if LSM_DEBUG_EXPENSIVE is
+** defined. Its only purpose is to evaluate various assert() statements to
+** verify that the database is well formed in certain respects.
+**
+** More specifically, it checks that the array pOne contains the required
+** pointers to pTwo. Array pTwo must be a main array. pOne may be either a
+** separators array or another main array. If pOne does not contain the
+** correct set of pointers, an assert() statement fails.
+*/
+static int assertPointersOk(
+ lsm_db *pDb, /* Database handle */
+ Segment *pOne, /* Segment containing pointers */
+ Segment *pTwo, /* Segment containing pointer targets */
+ int bRhs /* True if pTwo may have been Gobble()d */
+){
+ int rc = LSM_OK; /* Error code */
+ SegmentPtr ptr1; /* Iterates through pOne */
+ SegmentPtr ptr2; /* Iterates through pTwo */
+ Pgno iPrev;
+
+ assert( pOne && pTwo );
+
+ memset(&ptr1, 0, sizeof(ptr1));
+ memset(&ptr2, 0, sizeof(ptr1));
+ ptr1.pSeg = pOne;
+ ptr2.pSeg = pTwo;
+ segmentPtrEndPage(pDb->pFS, &ptr1, 0, &rc);
+ segmentPtrEndPage(pDb->pFS, &ptr2, 0, &rc);
+
+ /* Check that the footer pointer of the first page of pOne points to
+ ** the first page of pTwo. */
+ iPrev = pTwo->iFirst;
+ if( ptr1.iPtr!=iPrev && !bRhs ){
+ assert( 0 );
+ }
+
+ if( rc==LSM_OK && ptr1.nCell>0 ){
+ rc = segmentPtrLoadCell(&ptr1, 0);
+ }
+
+ while( rc==LSM_OK && ptr2.pPg ){
+ Pgno iThis;
+
+ /* Advance to the next page of segment pTwo that contains at least
+ ** one cell. Break out of the loop if the iterator reaches EOF. */
+ do{
+ rc = segmentPtrNextPage(&ptr2, 1);
+ assert( rc==LSM_OK );
+ }while( rc==LSM_OK && ptr2.pPg && ptr2.nCell==0 );
+ if( rc!=LSM_OK || ptr2.pPg==0 ) break;
+ iThis = lsmFsPageNumber(ptr2.pPg);
+
+ if( (ptr2.flags & (PGFTR_SKIP_THIS_FLAG|SEGMENT_BTREE_FLAG))==0 ){
+
+ /* Load the first cell in the array pTwo page. */
+ rc = segmentPtrLoadCell(&ptr2, 0);
+
+ /* Iterate forwards through pOne, searching for a key that matches the
+ ** key ptr2.pKey/nKey. This key should have a pointer to the page that
+ ** ptr2 currently points to. */
+ while( rc==LSM_OK ){
+ int res = rtTopic(ptr1.eType) - rtTopic(ptr2.eType);
+ if( res==0 ){
+ res = pDb->xCmp(ptr1.pKey, ptr1.nKey, ptr2.pKey, ptr2.nKey);
+ }
+
+ if( res<0 ){
+ assert( bRhs || ptr1.iPtr+ptr1.iPgPtr==iPrev );
+ }else if( res>0 ){
+ assert( 0 );
+ }else{
+ assert( ptr1.iPtr+ptr1.iPgPtr==iThis );
+ iPrev = iThis;
+ break;
+ }
+
+ rc = segmentPtrAdvance(0, &ptr1, 0);
+ if( ptr1.pPg==0 ){
+ assert( 0 );
+ }
+ }
+ }
+ }
+
+ segmentPtrReset(&ptr1);
+ segmentPtrReset(&ptr2);
+ return LSM_OK;
+}
+
+/*
+** This function is only included in the build if LSM_DEBUG_EXPENSIVE is
+** defined. Its only purpose is to evaluate various assert() statements to
+** verify that the database is well formed in certain respects.
+**
+** More specifically, it checks that the b-tree embedded in array pRun
+** contains the correct keys. If not, an assert() fails.
+*/
+static int assertBtreeOk(
+ lsm_db *pDb,
+ Segment *pSeg
+){
+ int rc = LSM_OK; /* Return code */
+ if( pSeg->iRoot ){
+ Blob blob = {0, 0, 0}; /* Buffer used to cache overflow keys */
+ FileSystem *pFS = pDb->pFS; /* File system to read from */
+ Page *pPg = 0; /* Main run page */
+ BtreeCursor *pCsr = 0; /* Btree cursor */
+
+ rc = btreeCursorNew(pDb, pSeg, &pCsr);
+ if( rc==LSM_OK ){
+ rc = btreeCursorFirst(pCsr);
+ }
+ if( rc==LSM_OK ){
+ rc = lsmFsDbPageGet(pFS, pSeg, pSeg->iFirst, &pPg);
+ }
+
+ while( rc==LSM_OK ){
+ Page *pNext;
+ u8 *aData;
+ int nData;
+ int flags;
+
+ rc = lsmFsDbPageNext(pSeg, pPg, 1, &pNext);
+ lsmFsPageRelease(pPg);
+ pPg = pNext;
+ if( pPg==0 ) break;
+ aData = fsPageData(pPg, &nData);
+ flags = pageGetFlags(aData, nData);
+ if( rc==LSM_OK
+ && 0==((SEGMENT_BTREE_FLAG|PGFTR_SKIP_THIS_FLAG) & flags)
+ && 0!=pageGetNRec(aData, nData)
+ ){
+ u8 *pKey;
+ int nKey;
+ int iTopic;
+ pKey = pageGetKey(pSeg, pPg, 0, &iTopic, &nKey, &blob);
+ assert( nKey==pCsr->nKey && 0==memcmp(pKey, pCsr->pKey, nKey) );
+ assert( lsmFsPageNumber(pPg)==pCsr->iPtr );
+ rc = btreeCursorNext(pCsr);
+ }
+ }
+ assert( rc!=LSM_OK || pCsr->pKey==0 );
+
+ if( pPg ) lsmFsPageRelease(pPg);
+
+ btreeCursorFree(pCsr);
+ sortedBlobFree(&blob);
+ }
+
+ return rc;
+}
+#endif /* ifdef LSM_DEBUG_EXPENSIVE */
--- /dev/null
+/*
+** 2012-04-27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** Dynamic string functions.
+*/
+#include "lsmInt.h"
+
+/*
+** Turn bulk and uninitialized memory into an LsmString object
+*/
+void lsmStringInit(LsmString *pStr, lsm_env *pEnv){
+ memset(pStr, 0, sizeof(pStr[0]));
+ pStr->pEnv = pEnv;
+}
+
+/*
+** Increase the memory allocated for holding the string. Realloc as needed.
+**
+** If a memory allocation error occurs, set pStr->n to -1 and free the existing
+** allocation. If a prior memory allocation has occurred, this routine is a
+** no-op.
+*/
+int lsmStringExtend(LsmString *pStr, int nNew){
+ assert( nNew>0 );
+ if( pStr->n<0 ) return LSM_NOMEM;
+ if( pStr->n + nNew >= pStr->nAlloc ){
+ int nAlloc = pStr->n + nNew + 100;
+ char *zNew = lsmRealloc(pStr->pEnv, pStr->z, nAlloc);
+ if( zNew==0 ){
+ lsmFree(pStr->pEnv, pStr->z);
+ nAlloc = 0;
+ pStr->n = -1;
+ pStr->z = 0;
+ }else{
+ pStr->nAlloc = nAlloc;
+ pStr->z = zNew;
+ }
+ }
+ return (pStr->z ? LSM_OK : LSM_NOMEM_BKPT);
+}
+
+/*
+** Clear an LsmString object, releasing any allocated memory that it holds.
+** This also clears the error indication (if any).
+*/
+void lsmStringClear(LsmString *pStr){
+ lsmFree(pStr->pEnv, pStr->z);
+ lsmStringInit(pStr, pStr->pEnv);
+}
+
+/*
+** Append N bytes of text to the end of an LsmString object. If
+** N is negative, append the entire string.
+**
+** If the string is in an error state, this routine is a no-op.
+*/
+int lsmStringAppend(LsmString *pStr, const char *z, int N){
+ int rc;
+ if( N<0 ) N = (int)strlen(z);
+ rc = lsmStringExtend(pStr, N+1);
+ if( pStr->nAlloc ){
+ memcpy(pStr->z+pStr->n, z, N+1);
+ pStr->n += N;
+ }
+ return rc;
+}
+
+int lsmStringBinAppend(LsmString *pStr, const u8 *a, int n){
+ int rc;
+ rc = lsmStringExtend(pStr, n);
+ if( pStr->nAlloc ){
+ memcpy(pStr->z+pStr->n, a, n);
+ pStr->n += n;
+ }
+ return rc;
+}
+
+/*
+** Append printf-formatted content to an LsmString.
+*/
+void lsmStringVAppendf(
+ LsmString *pStr,
+ const char *zFormat,
+ va_list ap1,
+ va_list ap2
+){
+#if (!defined(__STDC_VERSION__) || (__STDC_VERSION__<199901L)) && \
+ !defined(__APPLE__)
+ extern int vsnprintf(char *str, size_t size, const char *format, va_list ap)
+ /* Compatibility crutch for C89 compilation mode. sqlite3_vsnprintf()
+ does not work identically and causes test failures if used here.
+ For the time being we are assuming that the target has vsnprintf(),
+ but that is not guaranteed to be the case for pure C89 platforms.
+ */;
+#endif
+ int nWrite;
+ int nAvail;
+
+ nAvail = pStr->nAlloc - pStr->n;
+ nWrite = vsnprintf(pStr->z + pStr->n, nAvail, zFormat, ap1);
+
+ if( nWrite>=nAvail ){
+ lsmStringExtend(pStr, nWrite+1);
+ if( pStr->nAlloc==0 ) return;
+ nWrite = vsnprintf(pStr->z + pStr->n, nWrite+1, zFormat, ap2);
+ }
+
+ pStr->n += nWrite;
+ pStr->z[pStr->n] = 0;
+}
+
+void lsmStringAppendf(LsmString *pStr, const char *zFormat, ...){
+ va_list ap, ap2;
+ va_start(ap, zFormat);
+ va_start(ap2, zFormat);
+ lsmStringVAppendf(pStr, zFormat, ap, ap2);
+ va_end(ap);
+ va_end(ap2);
+}
+
+int lsmStrlen(const char *zName){
+ int nRet = 0;
+ while( zName[nRet] ) nRet++;
+ return nRet;
+}
+
+/*
+** Write into memory obtained from lsm_malloc().
+*/
+char *lsmMallocPrintf(lsm_env *pEnv, const char *zFormat, ...){
+ LsmString s;
+ va_list ap, ap2;
+ lsmStringInit(&s, pEnv);
+ va_start(ap, zFormat);
+ va_start(ap2, zFormat);
+ lsmStringVAppendf(&s, zFormat, ap, ap2);
+ va_end(ap);
+ va_end(ap2);
+ if( s.n<0 ) return 0;
+ return (char *)lsmReallocOrFree(pEnv, s.z, s.n+1);
+}
--- /dev/null
+/*
+** 2011-08-18
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains the implementation of an in-memory tree structure.
+**
+** Technically the tree is a B-tree of order 4 (in the Knuth sense - each
+** node may have up to 4 children). Keys are stored within B-tree nodes by
+** reference. This may be slightly slower than a conventional red-black
+** tree, but it is simpler. It is also an easier structure to modify to
+** create a version that supports nested transaction rollback.
+**
+** This tree does not currently support a delete operation. One is not
+** required. When LSM deletes a key from a database, it inserts a DELETE
+** marker into the data structure. As a result, although the value associated
+** with a key stored in the in-memory tree structure may be modified, no
+** keys are ever removed.
+*/
+
+/*
+** MVCC NOTES
+**
+** The in-memory tree structure supports SQLite-style MVCC. This means
+** that while one client is writing to the tree structure, other clients
+** may still be querying an older snapshot of the tree.
+**
+** One way to implement this is to use an append-only b-tree. In this
+** case instead of modifying nodes in-place, a copy of the node is made
+** and the required modifications made to the copy. The parent of the
+** node is then modified (to update the pointer so that it points to
+** the new copy), which causes a copy of the parent to be made, and so on.
+** This means that each time the tree is written to a new root node is
+** created. A snapshot is identified by the root node that it uses.
+**
+** The problem with the above is that each time the tree is written to,
+** a copy of the node structure modified and all of its ancestor nodes
+** is made. This may prove excessive with large tree structures.
+**
+** To reduce this overhead, the data structure used for a tree node is
+** designed so that it may be edited in place exactly once without
+** affecting existing users. In other words, the node structure is capable
+** of storing two separate versions of the node at the same time.
+** When a node is to be edited, if the node structure already contains
+** two versions, a copy is made as in the append-only approach. Or, if
+** it only contains a single version, it is edited in place.
+**
+** This reduces the overhead so that, roughly, one new node structure
+** must be allocated for each write (on top of those allocations that
+** would have been required by a non-MVCC tree). Logic: Assume that at
+** any time, 50% of nodes in the tree already contain 2 versions. When
+** a new entry is written to a node, there is a 50% chance that a copy
+** of the node will be required. And a 25% chance that a copy of its
+** parent is required. And so on.
+**
+** ROLLBACK
+**
+** The in-memory tree also supports transaction and sub-transaction
+** rollback. In order to rollback to point in time X, the following is
+** necessary:
+**
+** 1. All memory allocated since X must be freed, and
+** 2. All "v2" data adding to nodes that existed at X should be zeroed.
+** 3. The root node must be restored to its X value.
+**
+** The Mempool object used to allocate memory for the tree supports
+** operation (1) - see the lsmPoolMark() and lsmPoolRevert() functions.
+**
+** To support (2), all nodes that have v2 data are part of a singly linked
+** list, sorted by the age of the v2 data (nodes that have had data added
+** most recently are at the end of the list). So to zero all v2 data added
+** since X, the linked list is traversed from the first node added following
+** X onwards.
+**
+*/
+
+#ifndef _LSM_INT_H
+# include "lsmInt.h"
+#endif
+
+#include <string.h>
+
+#define MAX_DEPTH 32
+
+typedef struct TreeKey TreeKey;
+typedef struct TreeNode TreeNode;
+typedef struct TreeLeaf TreeLeaf;
+typedef struct NodeVersion NodeVersion;
+
+struct TreeOld {
+ u32 iShmid; /* Last shared-memory chunk in use by old */
+ u32 iRoot; /* Offset of root node in shm file */
+ u32 nHeight; /* Height of tree structure */
+};
+
+#if 0
+/*
+** assert() that a TreeKey.flags value is sane. Usage:
+**
+** assert( lsmAssertFlagsOk(pTreeKey->flags) );
+*/
+static int lsmAssertFlagsOk(u8 keyflags){
+ /* At least one flag must be set. Otherwise, what is this key doing? */
+ assert( keyflags!=0 );
+
+ /* The POINT_DELETE and INSERT flags cannot both be set. */
+ assert( (keyflags & LSM_POINT_DELETE)==0 || (keyflags & LSM_INSERT)==0 );
+
+ /* If both the START_DELETE and END_DELETE flags are set, then the INSERT
+ ** flag must also be set. In other words - the three DELETE flags cannot
+ ** all be set */
+ assert( (keyflags & LSM_END_DELETE)==0
+ || (keyflags & LSM_START_DELETE)==0
+ || (keyflags & LSM_POINT_DELETE)==0
+ );
+
+ return 1;
+}
+#endif
+static int assert_delete_ranges_match(lsm_db *);
+static int treeCountEntries(lsm_db *db);
+
+/*
+** Container for a key-value pair. Within the *-shm file, each key/value
+** pair is stored in a single allocation (which may not actually be
+** contiguous in memory). Layout is the TreeKey structure, followed by
+** the nKey bytes of key blob, followed by the nValue bytes of value blob
+** (if nValue is non-negative).
+*/
+struct TreeKey {
+ int nKey; /* Size of pKey in bytes */
+ int nValue; /* Size of pValue. Or negative. */
+ u8 flags; /* Various LSM_XXX flags */
+};
+
+#define TKV_KEY(p) ((void *)&(p)[1])
+#define TKV_VAL(p) ((void *)(((u8 *)&(p)[1]) + (p)->nKey))
+
+/*
+** A single tree node. A node structure may contain up to 3 key/value
+** pairs. Internal (non-leaf) nodes have up to 4 children.
+**
+** TODO: Update the format of this to be more compact. Get it working
+** first though...
+*/
+struct TreeNode {
+ u32 aiKeyPtr[3]; /* Array of pointers to TreeKey objects */
+
+ /* The following fields are present for interior nodes only, not leaves. */
+ u32 aiChildPtr[4]; /* Array of pointers to child nodes */
+
+ /* The extra child pointer slot. */
+ u32 iV2; /* Transaction number of v2 */
+ u8 iV2Child; /* apChild[] entry replaced by pV2Ptr */
+ u32 iV2Ptr; /* Substitute pointer */
+};
+
+struct TreeLeaf {
+ u32 aiKeyPtr[3]; /* Array of pointers to TreeKey objects */
+};
+
+typedef struct TreeBlob TreeBlob;
+struct TreeBlob {
+ int n;
+ u8 *a;
+};
+
+/*
+** Cursor for searching a tree structure.
+**
+** If a cursor does not point to any element (a.k.a. EOF), then the
+** TreeCursor.iNode variable is set to a negative value. Otherwise, the
+** cursor currently points to key aiCell[iNode] on node apTreeNode[iNode].
+**
+** Entries in the apTreeNode[] and aiCell[] arrays contain the node and
+** index of the TreeNode.apChild[] pointer followed to descend to the
+** current element. Hence apTreeNode[0] always contains the root node of
+** the tree.
+*/
+struct TreeCursor {
+ lsm_db *pDb; /* Database handle for this cursor */
+ TreeRoot *pRoot; /* Root node and height of tree to access */
+ int iNode; /* Cursor points at apTreeNode[iNode] */
+ TreeNode *apTreeNode[MAX_DEPTH];/* Current position in tree */
+ u8 aiCell[MAX_DEPTH]; /* Current position in tree */
+ TreeKey *pSave; /* Saved key */
+ TreeBlob blob; /* Dynamic storage for a key */
+};
+
+/*
+** A value guaranteed to be larger than the largest possible transaction
+** id (TreeHeader.iTransId).
+*/
+#define WORKING_VERSION (1<<30)
+
+static int tblobGrow(lsm_db *pDb, TreeBlob *p, int n, int *pRc){
+ if( n>p->n ){
+ lsmFree(pDb->pEnv, p->a);
+ p->a = lsmMallocRc(pDb->pEnv, n, pRc);
+ p->n = n;
+ }
+ return (p->a==0);
+}
+static void tblobFree(lsm_db *pDb, TreeBlob *p){
+ lsmFree(pDb->pEnv, p->a);
+}
+
+
+/***********************************************************************
+** Start of IntArray methods. */
+/*
+** Append value iVal to the contents of IntArray *p. Return LSM_OK if
+** successful, or LSM_NOMEM if an OOM condition is encountered.
+*/
+static int intArrayAppend(lsm_env *pEnv, IntArray *p, u32 iVal){
+ assert( p->nArray<=p->nAlloc );
+ if( p->nArray>=p->nAlloc ){
+ u32 *aNew;
+ int nNew = p->nArray ? p->nArray*2 : 128;
+ aNew = lsmRealloc(pEnv, p->aArray, nNew*sizeof(u32));
+ if( !aNew ) return LSM_NOMEM_BKPT;
+ p->aArray = aNew;
+ p->nAlloc = nNew;
+ }
+
+ p->aArray[p->nArray++] = iVal;
+ return LSM_OK;
+}
+
+/*
+** Zero the IntArray object.
+*/
+static void intArrayFree(lsm_env *pEnv, IntArray *p){
+ p->nArray = 0;
+}
+
+/*
+** Return the number of entries currently in the int-array object.
+*/
+static int intArraySize(IntArray *p){
+ return p->nArray;
+}
+
+/*
+** Return a copy of the iIdx'th entry in the int-array.
+*/
+static u32 intArrayEntry(IntArray *p, int iIdx){
+ return p->aArray[iIdx];
+}
+
+/*
+** Truncate the int-array so that all but the first nVal values are
+** discarded.
+*/
+static void intArrayTruncate(IntArray *p, int nVal){
+ p->nArray = nVal;
+}
+/* End of IntArray methods.
+***********************************************************************/
+
+static int treeKeycmp(void *p1, int n1, void *p2, int n2){
+ int res;
+ res = memcmp(p1, p2, LSM_MIN(n1, n2));
+ if( res==0 ) res = (n1-n2);
+ return res;
+}
+
+/*
+** The pointer passed as the first argument points to an interior node,
+** not a leaf. This function returns the offset of the iCell'th child
+** sub-tree of the node.
+*/
+static u32 getChildPtr(TreeNode *p, int iVersion, int iCell){
+ assert( iCell>=0 && iCell<=array_size(p->aiChildPtr) );
+ if( p->iV2 && p->iV2<=iVersion && iCell==p->iV2Child ) return p->iV2Ptr;
+ return p->aiChildPtr[iCell];
+}
+
+/*
+** Given an offset within the *-shm file, return the associated chunk number.
+*/
+static int treeOffsetToChunk(u32 iOff){
+ assert( LSM_SHM_CHUNK_SIZE==(1<<15) );
+ return (int)(iOff>>15);
+}
+
+#define treeShmptrUnsafe(pDb, iPtr) \
+(&((u8*)((pDb)->apShm[(iPtr)>>15]))[(iPtr) & (LSM_SHM_CHUNK_SIZE-1)])
+
+/*
+** Return a pointer to the mapped memory location associated with *-shm
+** file offset iPtr.
+*/
+static void *treeShmptr(lsm_db *pDb, u32 iPtr){
+
+ assert( (iPtr>>15)<pDb->nShm );
+ assert( pDb->apShm[iPtr>>15] );
+
+ return iPtr ? treeShmptrUnsafe(pDb, iPtr) : 0;
+}
+
+static ShmChunk * treeShmChunk(lsm_db *pDb, int iChunk){
+ return (ShmChunk *)(pDb->apShm[iChunk]);
+}
+
+static ShmChunk * treeShmChunkRc(lsm_db *pDb, int iChunk, int *pRc){
+ assert( *pRc==LSM_OK );
+ if( iChunk<pDb->nShm || LSM_OK==(*pRc = lsmShmCacheChunks(pDb, iChunk+1)) ){
+ return (ShmChunk *)(pDb->apShm[iChunk]);
+ }
+ return 0;
+}
+
+
+#ifndef NDEBUG
+static void assertIsWorkingChild(
+ lsm_db *db,
+ TreeNode *pNode,
+ TreeNode *pParent,
+ int iCell
+){
+ TreeNode *p;
+ u32 iPtr = getChildPtr(pParent, WORKING_VERSION, iCell);
+ p = treeShmptr(db, iPtr);
+ assert( p==pNode );
+}
+#else
+# define assertIsWorkingChild(w,x,y,z)
+#endif
+
+/* Values for the third argument to treeShmkey(). */
+#define TKV_LOADKEY 1
+#define TKV_LOADVAL 2
+
+static TreeKey *treeShmkey(
+ lsm_db *pDb, /* Database handle */
+ u32 iPtr, /* Shmptr to TreeKey struct */
+ int eLoad, /* Either zero or a TREEKEY_LOADXXX value */
+ TreeBlob *pBlob, /* Used if dynamic memory is required */
+ int *pRc /* IN/OUT: Error code */
+){
+ TreeKey *pRet;
+
+ assert( eLoad==TKV_LOADKEY || eLoad==TKV_LOADVAL );
+ pRet = (TreeKey *)treeShmptr(pDb, iPtr);
+ if( pRet ){
+ int nReq; /* Bytes of space required at pRet */
+ int nAvail; /* Bytes of space available at pRet */
+
+ nReq = sizeof(TreeKey) + pRet->nKey;
+ if( eLoad==TKV_LOADVAL && pRet->nValue>0 ){
+ nReq += pRet->nValue;
+ }
+ assert( LSM_SHM_CHUNK_SIZE==(1<<15) );
+ nAvail = LSM_SHM_CHUNK_SIZE - (iPtr & (LSM_SHM_CHUNK_SIZE-1));
+
+ if( nAvail<nReq ){
+ if( tblobGrow(pDb, pBlob, nReq, pRc)==0 ){
+ int nLoad = 0;
+ while( *pRc==LSM_OK ){
+ ShmChunk *pChunk;
+ void *p = treeShmptr(pDb, iPtr);
+ int n = LSM_MIN(nAvail, nReq-nLoad);
+
+ memcpy(&pBlob->a[nLoad], p, n);
+ nLoad += n;
+ if( nLoad==nReq ) break;
+
+ pChunk = treeShmChunk(pDb, treeOffsetToChunk(iPtr));
+ assert( pChunk );
+ iPtr = (pChunk->iNext * LSM_SHM_CHUNK_SIZE) + LSM_SHM_CHUNK_HDR;
+ nAvail = LSM_SHM_CHUNK_SIZE - LSM_SHM_CHUNK_HDR;
+ }
+ }
+ pRet = (TreeKey *)(pBlob->a);
+ }
+ }
+
+ return pRet;
+}
+
+#if defined(LSM_DEBUG) && defined(LSM_EXPENSIVE_ASSERT)
+void assert_leaf_looks_ok(TreeNode *pNode){
+ assert( pNode->apKey[1] );
+}
+
+void assert_node_looks_ok(TreeNode *pNode, int nHeight){
+ if( pNode ){
+ assert( pNode->apKey[1] );
+ if( nHeight>1 ){
+ int i;
+ assert( getChildPtr(pNode, WORKING_VERSION, 1) );
+ assert( getChildPtr(pNode, WORKING_VERSION, 2) );
+ for(i=0; i<4; i++){
+ assert_node_looks_ok(getChildPtr(pNode, WORKING_VERSION, i), nHeight-1);
+ }
+ }
+ }
+}
+
+/*
+** Run various assert() statements to check that the working-version of the
+** tree is correct in the following respects:
+**
+** * todo...
+*/
+void assert_tree_looks_ok(int rc, Tree *pTree){
+}
+#else
+# define assert_tree_looks_ok(x,y)
+#endif
+
+void lsmFlagsToString(int flags, char *zFlags){
+
+ zFlags[0] = (flags & LSM_END_DELETE) ? ']' : '.';
+
+ /* Only one of LSM_POINT_DELETE, LSM_INSERT and LSM_SEPARATOR should ever
+ ** be set. If this is not true, write a '?' to the output. */
+ switch( flags & (LSM_POINT_DELETE|LSM_INSERT|LSM_SEPARATOR) ){
+ case 0: zFlags[1] = '.'; break;
+ case LSM_POINT_DELETE: zFlags[1] = '-'; break;
+ case LSM_INSERT: zFlags[1] = '+'; break;
+ case LSM_SEPARATOR: zFlags[1] = '^'; break;
+ default: zFlags[1] = '?'; break;
+ }
+
+ zFlags[2] = (flags & LSM_SYSTEMKEY) ? '*' : '.';
+ zFlags[3] = (flags & LSM_START_DELETE) ? '[' : '.';
+ zFlags[4] = '\0';
+}
+
+#ifdef LSM_DEBUG
+
+/*
+** Pointer pBlob points to a buffer containing a blob of binary data
+** nBlob bytes long. Append the contents of this blob to *pStr, with
+** each octet represented by a 2-digit hexadecimal number. For example,
+** if the input blob is three bytes in size and contains {0x01, 0x44, 0xFF},
+** then "0144ff" is appended to *pStr.
+*/
+static void lsmAppendStrBlob(LsmString *pStr, void *pBlob, int nBlob){
+ int i;
+ lsmStringExtend(pStr, nBlob*2);
+ if( pStr->nAlloc==0 ) return;
+ for(i=0; i<nBlob; i++){
+ u8 c = ((u8*)pBlob)[i];
+ if( c>='a' && c<='z' ){
+ pStr->z[pStr->n++] = c;
+ }else if( c!=0 || nBlob==1 || i!=(nBlob-1) ){
+ pStr->z[pStr->n++] = "0123456789abcdef"[(c>>4)&0xf];
+ pStr->z[pStr->n++] = "0123456789abcdef"[c&0xf];
+ }
+ }
+ pStr->z[pStr->n] = 0;
+}
+
+#if 0 /* NOT USED */
+/*
+** Append nIndent space (0x20) characters to string *pStr.
+*/
+static void lsmAppendIndent(LsmString *pStr, int nIndent){
+ int i;
+ lsmStringExtend(pStr, nIndent);
+ for(i=0; i<nIndent; i++) lsmStringAppend(pStr, " ", 1);
+}
+#endif
+
+static void strAppendFlags(LsmString *pStr, u8 flags){
+ char zFlags[8];
+
+ lsmFlagsToString(flags, zFlags);
+ zFlags[4] = ':';
+
+ lsmStringAppend(pStr, zFlags, 5);
+}
+
+void dump_node_contents(
+ lsm_db *pDb,
+ u32 iNode, /* Print out the contents of this node */
+ char *zPath, /* Path from root to this node */
+ int nPath, /* Number of bytes in zPath */
+ int nHeight /* Height: (0==leaf) (1==parent-of-leaf) */
+){
+ const char *zSpace = " ";
+ int i;
+ int rc = LSM_OK;
+ LsmString s;
+ TreeNode *pNode;
+ TreeBlob b = {0, 0};
+
+ pNode = (TreeNode *)treeShmptr(pDb, iNode);
+
+ if( nHeight==0 ){
+ /* Append the nIndent bytes of space to string s. */
+ lsmStringInit(&s, pDb->pEnv);
+
+ /* Append each key to string s. */
+ for(i=0; i<3; i++){
+ u32 iPtr = pNode->aiKeyPtr[i];
+ if( iPtr ){
+ TreeKey *pKey = treeShmkey(pDb, pNode->aiKeyPtr[i],TKV_LOADKEY, &b,&rc);
+ strAppendFlags(&s, pKey->flags);
+ lsmAppendStrBlob(&s, TKV_KEY(pKey), pKey->nKey);
+ lsmStringAppend(&s, " ", -1);
+ }
+ }
+
+ printf("% 6d %.*sleaf%.*s: %s\n",
+ iNode, nPath, zPath, 20-nPath-4, zSpace, s.z
+ );
+ lsmStringClear(&s);
+ }else{
+ for(i=0; i<4 && nHeight>0; i++){
+ u32 iPtr = getChildPtr(pNode, pDb->treehdr.root.iTransId, i);
+ zPath[nPath] = i+'0';
+ zPath[nPath+1] = '/';
+
+ if( iPtr ){
+ dump_node_contents(pDb, iPtr, zPath, nPath+2, nHeight-1);
+ }
+ if( i!=3 && pNode->aiKeyPtr[i] ){
+ TreeKey *pKey = treeShmkey(pDb, pNode->aiKeyPtr[i], TKV_LOADKEY,&b,&rc);
+ lsmStringInit(&s, pDb->pEnv);
+ strAppendFlags(&s, pKey->flags);
+ lsmAppendStrBlob(&s, TKV_KEY(pKey), pKey->nKey);
+ printf("% 6d %.*s%.*s: %s\n",
+ iNode, nPath+1, zPath, 20-nPath-1, zSpace, s.z);
+ lsmStringClear(&s);
+ }
+ }
+ }
+
+ tblobFree(pDb, &b);
+}
+
+void dump_tree_contents(lsm_db *pDb, const char *zCaption){
+ char zPath[64];
+ TreeRoot *p = &pDb->treehdr.root;
+ printf("\n%s\n", zCaption);
+ zPath[0] = '/';
+ if( p->iRoot ){
+ dump_node_contents(pDb, p->iRoot, zPath, 1, p->nHeight-1);
+ }
+ fflush(stdout);
+}
+
+#endif
+
+/*
+** Initialize a cursor object, the space for which has already been
+** allocated.
+*/
+static void treeCursorInit(lsm_db *pDb, int bOld, TreeCursor *pCsr){
+ memset(pCsr, 0, sizeof(TreeCursor));
+ pCsr->pDb = pDb;
+ if( bOld ){
+ pCsr->pRoot = &pDb->treehdr.oldroot;
+ }else{
+ pCsr->pRoot = &pDb->treehdr.root;
+ }
+ pCsr->iNode = -1;
+}
+
+/*
+** Return a pointer to the mapping of the TreeKey object that the cursor
+** is pointing to.
+*/
+static TreeKey *csrGetKey(TreeCursor *pCsr, TreeBlob *pBlob, int *pRc){
+ TreeKey *pRet;
+ lsm_db *pDb = pCsr->pDb;
+ u32 iPtr = pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[pCsr->aiCell[pCsr->iNode]];
+
+ assert( iPtr );
+ pRet = (TreeKey*)treeShmptrUnsafe(pDb, iPtr);
+ if( !(pRet->flags & LSM_CONTIGUOUS) ){
+ pRet = treeShmkey(pDb, iPtr, TKV_LOADVAL, pBlob, pRc);
+ }
+
+ return pRet;
+}
+
+/*
+** Save the current position of tree cursor pCsr.
+*/
+int lsmTreeCursorSave(TreeCursor *pCsr){
+ int rc = LSM_OK;
+ if( pCsr && pCsr->pSave==0 ){
+ int iNode = pCsr->iNode;
+ if( iNode>=0 ){
+ pCsr->pSave = csrGetKey(pCsr, &pCsr->blob, &rc);
+ }
+ pCsr->iNode = -1;
+ }
+ return rc;
+}
+
+/*
+** Restore the position of a saved tree cursor.
+*/
+static int treeCursorRestore(TreeCursor *pCsr, int *pRes){
+ int rc = LSM_OK;
+ if( pCsr->pSave ){
+ TreeKey *pKey = pCsr->pSave;
+ pCsr->pSave = 0;
+ if( pRes ){
+ rc = lsmTreeCursorSeek(pCsr, TKV_KEY(pKey), pKey->nKey, pRes);
+ }
+ }
+ return rc;
+}
+
+/*
+** Allocate nByte bytes of space within the *-shm file. If successful,
+** return LSM_OK and set *piPtr to the offset within the file at which
+** the allocated space is located.
+*/
+static u32 treeShmalloc(lsm_db *pDb, int bAlign, int nByte, int *pRc){
+ u32 iRet = 0;
+ if( *pRc==LSM_OK ){
+ const static int CHUNK_SIZE = LSM_SHM_CHUNK_SIZE;
+ const static int CHUNK_HDR = LSM_SHM_CHUNK_HDR;
+ u32 iWrite; /* Current write offset */
+ u32 iEof; /* End of current chunk */
+ int iChunk; /* Current chunk */
+
+ assert( nByte <= (CHUNK_SIZE-CHUNK_HDR) );
+
+ /* Check if there is enough space on the current chunk to fit the
+ ** new allocation. If not, link in a new chunk and put the new
+ ** allocation at the start of it. */
+ iWrite = pDb->treehdr.iWrite;
+ if( bAlign ){
+ iWrite = (iWrite + 3) & ~0x0003;
+ assert( (iWrite % 4)==0 );
+ }
+
+ assert( iWrite );
+ iChunk = treeOffsetToChunk(iWrite-1);
+ iEof = (iChunk+1) * CHUNK_SIZE;
+ assert( iEof>=iWrite && (iEof-iWrite)<CHUNK_SIZE );
+ if( (iWrite+nByte)>iEof ){
+ ShmChunk *pHdr; /* Header of chunk just finished (iChunk) */
+ ShmChunk *pFirst; /* Header of chunk treehdr.iFirst */
+ ShmChunk *pNext; /* Header of new chunk */
+ int iNext = 0; /* Next chunk */
+ int rc = LSM_OK;
+
+ pFirst = treeShmChunk(pDb, pDb->treehdr.iFirst);
+
+ assert( shm_sequence_ge(pDb->treehdr.iUsedShmid, pFirst->iShmid) );
+ assert( (pDb->treehdr.iNextShmid+1-pDb->treehdr.nChunk)==pFirst->iShmid );
+
+ /* Check if the chunk at the start of the linked list is still in
+ ** use. If not, reuse it. If so, allocate a new chunk by appending
+ ** to the *-shm file. */
+ if( pDb->treehdr.iUsedShmid!=pFirst->iShmid ){
+ int bInUse;
+ rc = lsmTreeInUse(pDb, pFirst->iShmid, &bInUse);
+ if( rc!=LSM_OK ){
+ *pRc = rc;
+ return 0;
+ }
+ if( bInUse==0 ){
+ iNext = pDb->treehdr.iFirst;
+ pDb->treehdr.iFirst = pFirst->iNext;
+ assert( pDb->treehdr.iFirst );
+ }
+ }
+ if( iNext==0 ) iNext = pDb->treehdr.nChunk++;
+
+ /* Set the header values for the new chunk */
+ pNext = treeShmChunkRc(pDb, iNext, &rc);
+ if( pNext ){
+ pNext->iNext = 0;
+ pNext->iShmid = (pDb->treehdr.iNextShmid++);
+ }else{
+ *pRc = rc;
+ return 0;
+ }
+
+ /* Set the header values for the chunk just finished */
+ pHdr = (ShmChunk *)treeShmptr(pDb, iChunk*CHUNK_SIZE);
+ pHdr->iNext = iNext;
+
+ /* Advance to the next chunk */
+ iWrite = iNext * CHUNK_SIZE + CHUNK_HDR;
+ }
+
+ /* Allocate space at iWrite. */
+ iRet = iWrite;
+ pDb->treehdr.iWrite = iWrite + nByte;
+ pDb->treehdr.root.nByte += nByte;
+ }
+ return iRet;
+}
+
+/*
+** Allocate and zero nByte bytes of space within the *-shm file.
+*/
+static void *treeShmallocZero(lsm_db *pDb, int nByte, u32 *piPtr, int *pRc){
+ u32 iPtr;
+ void *p;
+ iPtr = treeShmalloc(pDb, 1, nByte, pRc);
+ p = treeShmptr(pDb, iPtr);
+ if( p ){
+ assert( *pRc==LSM_OK );
+ memset(p, 0, nByte);
+ *piPtr = iPtr;
+ }
+ return p;
+}
+
+static TreeNode *newTreeNode(lsm_db *pDb, u32 *piPtr, int *pRc){
+ return treeShmallocZero(pDb, sizeof(TreeNode), piPtr, pRc);
+}
+
+static TreeLeaf *newTreeLeaf(lsm_db *pDb, u32 *piPtr, int *pRc){
+ return treeShmallocZero(pDb, sizeof(TreeLeaf), piPtr, pRc);
+}
+
+static TreeKey *newTreeKey(
+ lsm_db *pDb,
+ u32 *piPtr,
+ void *pKey, int nKey, /* Key data */
+ void *pVal, int nVal, /* Value data (or nVal<0 for delete) */
+ int *pRc
+){
+ TreeKey *p;
+ u32 iPtr;
+ u32 iEnd;
+ int nRem;
+ u8 *a;
+ int n;
+
+ /* Allocate space for the TreeKey structure itself */
+ *piPtr = iPtr = treeShmalloc(pDb, 1, sizeof(TreeKey), pRc);
+ p = treeShmptr(pDb, iPtr);
+ if( *pRc ) return 0;
+ p->nKey = nKey;
+ p->nValue = nVal;
+
+ /* Allocate and populate the space required for the key and value. */
+ n = nRem = nKey;
+ a = (u8 *)pKey;
+ while( a ){
+ while( nRem>0 ){
+ u8 *aAlloc;
+ int nAlloc;
+ u32 iWrite;
+
+ iWrite = (pDb->treehdr.iWrite & (LSM_SHM_CHUNK_SIZE-1));
+ iWrite = LSM_MAX(iWrite, LSM_SHM_CHUNK_HDR);
+ nAlloc = LSM_MIN((LSM_SHM_CHUNK_SIZE-iWrite), nRem);
+
+ aAlloc = treeShmptr(pDb, treeShmalloc(pDb, 0, nAlloc, pRc));
+ if( aAlloc==0 ) break;
+ memcpy(aAlloc, &a[n-nRem], nAlloc);
+ nRem -= nAlloc;
+ }
+ a = pVal;
+ n = nRem = nVal;
+ pVal = 0;
+ }
+
+ iEnd = iPtr + sizeof(TreeKey) + nKey + LSM_MAX(0, nVal);
+ if( (iPtr & ~(LSM_SHM_CHUNK_SIZE-1))!=(iEnd & ~(LSM_SHM_CHUNK_SIZE-1)) ){
+ p->flags = 0;
+ }else{
+ p->flags = LSM_CONTIGUOUS;
+ }
+
+ if( *pRc ) return 0;
+#if 0
+ printf("store: %d %s\n", (int)iPtr, (char *)pKey);
+#endif
+ return p;
+}
+
+static TreeNode *copyTreeNode(
+ lsm_db *pDb,
+ TreeNode *pOld,
+ u32 *piNew,
+ int *pRc
+){
+ TreeNode *pNew;
+
+ pNew = newTreeNode(pDb, piNew, pRc);
+ if( pNew ){
+ memcpy(pNew->aiKeyPtr, pOld->aiKeyPtr, sizeof(pNew->aiKeyPtr));
+ memcpy(pNew->aiChildPtr, pOld->aiChildPtr, sizeof(pNew->aiChildPtr));
+ if( pOld->iV2 ) pNew->aiChildPtr[pOld->iV2Child] = pOld->iV2Ptr;
+ }
+ return pNew;
+}
+
+static TreeNode *copyTreeLeaf(
+ lsm_db *pDb,
+ TreeLeaf *pOld,
+ u32 *piNew,
+ int *pRc
+){
+ TreeLeaf *pNew;
+ pNew = newTreeLeaf(pDb, piNew, pRc);
+ if( pNew ){
+ memcpy(pNew, pOld, sizeof(TreeLeaf));
+ }
+ return (TreeNode *)pNew;
+}
+
+/*
+** The tree cursor passed as the second argument currently points to an
+** internal node (not a leaf). Specifically, to a sub-tree pointer. This
+** function replaces the sub-tree that the cursor currently points to
+** with sub-tree pNew.
+**
+** The sub-tree may be replaced either by writing the "v2 data" on the
+** internal node, or by allocating a new TreeNode structure and then
+** calling this function on the parent of the internal node.
+*/
+static int treeUpdatePtr(lsm_db *pDb, TreeCursor *pCsr, u32 iNew){
+ int rc = LSM_OK;
+ if( pCsr->iNode<0 ){
+ /* iNew is the new root node */
+ pDb->treehdr.root.iRoot = iNew;
+ }else{
+ /* If this node already has version 2 content, allocate a copy and
+ ** update the copy with the new pointer value. Otherwise, store the
+ ** new pointer as v2 data within the current node structure. */
+
+ TreeNode *p; /* The node to be modified */
+ int iChildPtr; /* apChild[] entry to modify */
+
+ p = pCsr->apTreeNode[pCsr->iNode];
+ iChildPtr = pCsr->aiCell[pCsr->iNode];
+
+ if( p->iV2 ){
+ /* The "allocate new TreeNode" option */
+ u32 iCopy;
+ TreeNode *pCopy;
+ pCopy = copyTreeNode(pDb, p, &iCopy, &rc);
+ if( pCopy ){
+ assert( rc==LSM_OK );
+ pCopy->aiChildPtr[iChildPtr] = iNew;
+ pCsr->iNode--;
+ rc = treeUpdatePtr(pDb, pCsr, iCopy);
+ }
+ }else{
+ /* The "v2 data" option */
+ u32 iPtr;
+ assert( pDb->treehdr.root.iTransId>0 );
+
+ if( pCsr->iNode ){
+ iPtr = getChildPtr(
+ pCsr->apTreeNode[pCsr->iNode-1],
+ pDb->treehdr.root.iTransId, pCsr->aiCell[pCsr->iNode-1]
+ );
+ }else{
+ iPtr = pDb->treehdr.root.iRoot;
+ }
+ rc = intArrayAppend(pDb->pEnv, &pDb->rollback, iPtr);
+
+ if( rc==LSM_OK ){
+ p->iV2 = pDb->treehdr.root.iTransId;
+ p->iV2Child = (u8)iChildPtr;
+ p->iV2Ptr = iNew;
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Cursor pCsr points at a node that is part of pTree. This function
+** inserts a new key and optionally child node pointer into that node.
+**
+** The position into which the new key and pointer are inserted is
+** determined by the iSlot parameter. The new key will be inserted to
+** the left of the key currently stored in apKey[iSlot]. Or, if iSlot is
+** greater than the index of the rightmost key in the node.
+**
+** Pointer pLeftPtr points to a child tree that contains keys that are
+** smaller than pTreeKey.
+*/
+static int treeInsert(
+ lsm_db *pDb, /* Database handle */
+ TreeCursor *pCsr, /* Cursor indicating path to insert at */
+ u32 iLeftPtr, /* Left child pointer */
+ u32 iTreeKey, /* Location of key to insert */
+ u32 iRightPtr, /* Right child pointer */
+ int iSlot /* Position to insert key into */
+){
+ int rc = LSM_OK;
+ TreeNode *pNode = pCsr->apTreeNode[pCsr->iNode];
+
+ /* Check if the node is currently full. If so, split pNode in two and
+ ** call this function recursively to add a key to the parent. Otherwise,
+ ** insert the new key directly into pNode. */
+ assert( pNode->aiKeyPtr[1] );
+ if( pNode->aiKeyPtr[0] && pNode->aiKeyPtr[2] ){
+ u32 iLeft; TreeNode *pLeft; /* New left-hand sibling node */
+ u32 iRight; TreeNode *pRight; /* New right-hand sibling node */
+
+ pLeft = newTreeNode(pDb, &iLeft, &rc);
+ pRight = newTreeNode(pDb, &iRight, &rc);
+ if( rc ) return rc;
+
+ pLeft->aiChildPtr[1] = getChildPtr(pNode, WORKING_VERSION, 0);
+ pLeft->aiKeyPtr[1] = pNode->aiKeyPtr[0];
+ pLeft->aiChildPtr[2] = getChildPtr(pNode, WORKING_VERSION, 1);
+
+ pRight->aiChildPtr[1] = getChildPtr(pNode, WORKING_VERSION, 2);
+ pRight->aiKeyPtr[1] = pNode->aiKeyPtr[2];
+ pRight->aiChildPtr[2] = getChildPtr(pNode, WORKING_VERSION, 3);
+
+ if( pCsr->iNode==0 ){
+ /* pNode is the root of the tree. Grow the tree by one level. */
+ u32 iRoot; TreeNode *pRoot; /* New root node */
+
+ pRoot = newTreeNode(pDb, &iRoot, &rc);
+ pRoot->aiKeyPtr[1] = pNode->aiKeyPtr[1];
+ pRoot->aiChildPtr[1] = iLeft;
+ pRoot->aiChildPtr[2] = iRight;
+
+ pDb->treehdr.root.iRoot = iRoot;
+ pDb->treehdr.root.nHeight++;
+ }else{
+
+ pCsr->iNode--;
+ rc = treeInsert(pDb, pCsr,
+ iLeft, pNode->aiKeyPtr[1], iRight, pCsr->aiCell[pCsr->iNode]
+ );
+ }
+
+ assert( pLeft->iV2==0 );
+ assert( pRight->iV2==0 );
+ switch( iSlot ){
+ case 0:
+ pLeft->aiKeyPtr[0] = iTreeKey;
+ pLeft->aiChildPtr[0] = iLeftPtr;
+ if( iRightPtr ) pLeft->aiChildPtr[1] = iRightPtr;
+ break;
+ case 1:
+ pLeft->aiChildPtr[3] = (iRightPtr ? iRightPtr : pLeft->aiChildPtr[2]);
+ pLeft->aiKeyPtr[2] = iTreeKey;
+ pLeft->aiChildPtr[2] = iLeftPtr;
+ break;
+ case 2:
+ pRight->aiKeyPtr[0] = iTreeKey;
+ pRight->aiChildPtr[0] = iLeftPtr;
+ if( iRightPtr ) pRight->aiChildPtr[1] = iRightPtr;
+ break;
+ case 3:
+ pRight->aiChildPtr[3] = (iRightPtr ? iRightPtr : pRight->aiChildPtr[2]);
+ pRight->aiKeyPtr[2] = iTreeKey;
+ pRight->aiChildPtr[2] = iLeftPtr;
+ break;
+ }
+
+ }else{
+ TreeNode *pNew;
+ u32 *piKey;
+ u32 *piChild;
+ u32 iStore = 0;
+ u32 iNew = 0;
+ int i;
+
+ /* Allocate a new version of node pNode. */
+ pNew = newTreeNode(pDb, &iNew, &rc);
+ if( rc ) return rc;
+
+ piKey = pNew->aiKeyPtr;
+ piChild = pNew->aiChildPtr;
+
+ for(i=0; i<iSlot; i++){
+ if( pNode->aiKeyPtr[i] ){
+ *(piKey++) = pNode->aiKeyPtr[i];
+ *(piChild++) = getChildPtr(pNode, WORKING_VERSION, i);
+ }
+ }
+
+ *piKey++ = iTreeKey;
+ *piChild++ = iLeftPtr;
+
+ iStore = iRightPtr;
+ for(i=iSlot; i<3; i++){
+ if( pNode->aiKeyPtr[i] ){
+ *(piKey++) = pNode->aiKeyPtr[i];
+ *(piChild++) = iStore ? iStore : getChildPtr(pNode, WORKING_VERSION, i);
+ iStore = 0;
+ }
+ }
+
+ if( iStore ){
+ *piChild = iStore;
+ }else{
+ *piChild = getChildPtr(pNode, WORKING_VERSION,
+ (pNode->aiKeyPtr[2] ? 3 : 2)
+ );
+ }
+ pCsr->iNode--;
+ rc = treeUpdatePtr(pDb, pCsr, iNew);
+ }
+
+ return rc;
+}
+
+static int treeInsertLeaf(
+ lsm_db *pDb, /* Database handle */
+ TreeCursor *pCsr, /* Cursor structure */
+ u32 iTreeKey, /* Key pointer to insert */
+ int iSlot /* Insert key to the left of this */
+){
+ int rc = LSM_OK; /* Return code */
+ TreeNode *pLeaf = pCsr->apTreeNode[pCsr->iNode];
+ TreeLeaf *pNew;
+ u32 iNew;
+
+ assert( iSlot>=0 && iSlot<=4 );
+ assert( pCsr->iNode>0 );
+ assert( pLeaf->aiKeyPtr[1] );
+
+ pCsr->iNode--;
+
+ pNew = newTreeLeaf(pDb, &iNew, &rc);
+ if( pNew ){
+ if( pLeaf->aiKeyPtr[0] && pLeaf->aiKeyPtr[2] ){
+ /* The leaf is full. Split it in two. */
+ TreeLeaf *pRight;
+ u32 iRight;
+ pRight = newTreeLeaf(pDb, &iRight, &rc);
+ if( pRight ){
+ assert( rc==LSM_OK );
+ pNew->aiKeyPtr[1] = pLeaf->aiKeyPtr[0];
+ pRight->aiKeyPtr[1] = pLeaf->aiKeyPtr[2];
+ switch( iSlot ){
+ case 0: pNew->aiKeyPtr[0] = iTreeKey; break;
+ case 1: pNew->aiKeyPtr[2] = iTreeKey; break;
+ case 2: pRight->aiKeyPtr[0] = iTreeKey; break;
+ case 3: pRight->aiKeyPtr[2] = iTreeKey; break;
+ }
+
+ rc = treeInsert(pDb, pCsr, iNew, pLeaf->aiKeyPtr[1], iRight,
+ pCsr->aiCell[pCsr->iNode]
+ );
+ }
+ }else{
+ int iOut = 0;
+ int i;
+ for(i=0; i<4; i++){
+ if( i==iSlot ) pNew->aiKeyPtr[iOut++] = iTreeKey;
+ if( i<3 && pLeaf->aiKeyPtr[i] ){
+ pNew->aiKeyPtr[iOut++] = pLeaf->aiKeyPtr[i];
+ }
+ }
+ rc = treeUpdatePtr(pDb, pCsr, iNew);
+ }
+ }
+
+ return rc;
+}
+
+void lsmTreeMakeOld(lsm_db *pDb){
+
+ /* A write transaction must be open. Otherwise the code below that
+ ** assumes (pDb->pClient->iLogOff) is current may malfunction.
+ **
+ ** Update: currently this assert fails due to lsm_flush(), which does
+ ** not set nTransOpen.
+ */
+ assert( /* pDb->nTransOpen>0 && */ pDb->iReader>=0 );
+
+ if( pDb->treehdr.iOldShmid==0 ){
+ pDb->treehdr.iOldLog = (pDb->treehdr.log.aRegion[2].iEnd << 1);
+ pDb->treehdr.iOldLog |= (~(pDb->pClient->iLogOff) & (i64)0x0001);
+
+ pDb->treehdr.oldcksum0 = pDb->treehdr.log.cksum0;
+ pDb->treehdr.oldcksum1 = pDb->treehdr.log.cksum1;
+ pDb->treehdr.iOldShmid = pDb->treehdr.iNextShmid-1;
+ memcpy(&pDb->treehdr.oldroot, &pDb->treehdr.root, sizeof(TreeRoot));
+
+ pDb->treehdr.root.iTransId = 1;
+ pDb->treehdr.root.iRoot = 0;
+ pDb->treehdr.root.nHeight = 0;
+ pDb->treehdr.root.nByte = 0;
+ }
+}
+
+void lsmTreeDiscardOld(lsm_db *pDb){
+ assert( lsmShmAssertLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_EXCL)
+ || lsmShmAssertLock(pDb, LSM_LOCK_DMS2, LSM_LOCK_EXCL)
+ );
+ pDb->treehdr.iUsedShmid = pDb->treehdr.iOldShmid;
+ pDb->treehdr.iOldShmid = 0;
+}
+
+int lsmTreeHasOld(lsm_db *pDb){
+ return pDb->treehdr.iOldShmid!=0;
+}
+
+/*
+** This function is called during recovery to initialize the
+** tree header. Only the database connections private copy of the tree-header
+** is initialized here - it will be copied into shared memory if log file
+** recovery is successful.
+*/
+int lsmTreeInit(lsm_db *pDb){
+ ShmChunk *pOne;
+ int rc = LSM_OK;
+
+ memset(&pDb->treehdr, 0, sizeof(TreeHeader));
+ pDb->treehdr.root.iTransId = 1;
+ pDb->treehdr.iFirst = 1;
+ pDb->treehdr.nChunk = 2;
+ pDb->treehdr.iWrite = LSM_SHM_CHUNK_SIZE + LSM_SHM_CHUNK_HDR;
+ pDb->treehdr.iNextShmid = 2;
+ pDb->treehdr.iUsedShmid = 1;
+
+ pOne = treeShmChunkRc(pDb, 1, &rc);
+ if( pOne ){
+ pOne->iNext = 0;
+ pOne->iShmid = 1;
+ }
+ return rc;
+}
+
+static void treeHeaderChecksum(
+ TreeHeader *pHdr,
+ u32 *aCksum
+){
+ u32 cksum1 = 0x12345678;
+ u32 cksum2 = 0x9ABCDEF0;
+ u32 *a = (u32 *)pHdr;
+ int i;
+
+ assert( (offsetof(TreeHeader, aCksum) + sizeof(u32)*2)==sizeof(TreeHeader) );
+ assert( (sizeof(TreeHeader) % (sizeof(u32)*2))==0 );
+
+ for(i=0; i<(offsetof(TreeHeader, aCksum) / sizeof(u32)); i+=2){
+ cksum1 += a[i];
+ cksum2 += (cksum1 + a[i+1]);
+ }
+ aCksum[0] = cksum1;
+ aCksum[1] = cksum2;
+}
+
+/*
+** Return true if the checksum stored in TreeHeader object *pHdr is
+** consistent with the contents of its other fields.
+*/
+static int treeHeaderChecksumOk(TreeHeader *pHdr){
+ u32 aCksum[2];
+ treeHeaderChecksum(pHdr, aCksum);
+ return (0==memcmp(aCksum, pHdr->aCksum, sizeof(aCksum)));
+}
+
+/*
+** This type is used by functions lsmTreeRepair() and treeSortByShmid() to
+** make relinking the linked list of shared-memory chunks easier.
+*/
+typedef struct ShmChunkLoc ShmChunkLoc;
+struct ShmChunkLoc {
+ ShmChunk *pShm;
+ u32 iLoc;
+};
+
+/*
+** This function checks that the linked list of shared memory chunks
+** that starts at chunk db->treehdr.iFirst:
+**
+** 1) Includes all chunks in the shared-memory region, and
+** 2) Links them together in order of ascending shm-id.
+**
+** If no error occurs and the conditions above are met, LSM_OK is returned.
+**
+** If either of the conditions are untrue, LSM_CORRUPT is returned. Or, if
+** an error is encountered before the checks are completed, another LSM error
+** code (i.e. LSM_IOERR or LSM_NOMEM) may be returned.
+*/
+static int treeCheckLinkedList(lsm_db *db){
+ int rc = LSM_OK;
+ int nVisit = 0;
+ ShmChunk *p;
+
+ p = treeShmChunkRc(db, db->treehdr.iFirst, &rc);
+ while( rc==LSM_OK && p ){
+ if( p->iNext ){
+ if( p->iNext>=db->treehdr.nChunk ){
+ rc = LSM_CORRUPT_BKPT;
+ }else{
+ ShmChunk *pNext = treeShmChunkRc(db, p->iNext, &rc);
+ if( rc==LSM_OK ){
+ if( pNext->iShmid!=p->iShmid+1 ){
+ rc = LSM_CORRUPT_BKPT;
+ }
+ p = pNext;
+ }
+ }
+ }else{
+ p = 0;
+ }
+ nVisit++;
+ }
+
+ if( rc==LSM_OK && nVisit!=db->treehdr.nChunk-1 ){
+ rc = LSM_CORRUPT_BKPT;
+ }
+ return rc;
+}
+
+/*
+** Iterate through the current in-memory tree. If there are any v2-pointers
+** with transaction ids larger than db->treehdr.iTransId, zero them.
+*/
+static int treeRepairPtrs(lsm_db *db){
+ int rc = LSM_OK;
+
+ if( db->treehdr.root.nHeight>1 ){
+ TreeCursor csr; /* Cursor used to iterate through tree */
+ u32 iTransId = db->treehdr.root.iTransId;
+
+ /* Initialize the cursor structure. Also decrement the nHeight variable
+ ** in the tree-header. This will prevent the cursor from visiting any
+ ** leaf nodes. */
+ db->treehdr.root.nHeight--;
+ treeCursorInit(db, 0, &csr);
+
+ rc = lsmTreeCursorEnd(&csr, 0);
+ while( rc==LSM_OK && lsmTreeCursorValid(&csr) ){
+ TreeNode *pNode = csr.apTreeNode[csr.iNode];
+ if( pNode->iV2>iTransId ){
+ pNode->iV2Child = 0;
+ pNode->iV2Ptr = 0;
+ pNode->iV2 = 0;
+ }
+ rc = lsmTreeCursorNext(&csr);
+ }
+ tblobFree(csr.pDb, &csr.blob);
+
+ db->treehdr.root.nHeight++;
+ }
+
+ return rc;
+}
+
+static int treeRepairList(lsm_db *db){
+ int rc = LSM_OK;
+ int i;
+ ShmChunk *p;
+ ShmChunk *pMin = 0;
+ u32 iMin = 0;
+
+ /* Iterate through all shm chunks. Find the smallest shm-id present in
+ ** the shared-memory region. */
+ for(i=1; rc==LSM_OK && i<db->treehdr.nChunk; i++){
+ p = treeShmChunkRc(db, i, &rc);
+ if( p && (pMin==0 || shm_sequence_ge(pMin->iShmid, p->iShmid)) ){
+ pMin = p;
+ iMin = i;
+ }
+ }
+
+ /* Fix the shm-id values on any chunks with a shm-id greater than or
+ ** equal to treehdr.iNextShmid. Then do a merge-sort of all chunks to
+ ** fix the ShmChunk.iNext pointers.
+ */
+ if( rc==LSM_OK ){
+ int nSort;
+ int nByte;
+ u32 iPrevShmid;
+ ShmChunkLoc *aSort;
+
+ /* Allocate space for a merge sort. */
+ nSort = 1;
+ while( nSort < (db->treehdr.nChunk-1) ) nSort = nSort * 2;
+ nByte = sizeof(ShmChunkLoc) * nSort * 2;
+ aSort = lsmMallocZeroRc(db->pEnv, nByte, &rc);
+ iPrevShmid = pMin->iShmid;
+
+ /* Fix all shm-ids, if required. */
+ if( rc==LSM_OK ){
+ iPrevShmid = pMin->iShmid-1;
+ for(i=1; i<db->treehdr.nChunk; i++){
+ p = treeShmChunk(db, i);
+ aSort[i-1].pShm = p;
+ aSort[i-1].iLoc = i;
+ if( i!=db->treehdr.iFirst ){
+ if( shm_sequence_ge(p->iShmid, db->treehdr.iNextShmid) ){
+ p->iShmid = iPrevShmid--;
+ }
+ }
+ }
+ if( iMin!=db->treehdr.iFirst ){
+ p = treeShmChunk(db, db->treehdr.iFirst);
+ p->iShmid = iPrevShmid;
+ }
+ }
+
+ if( rc==LSM_OK ){
+ ShmChunkLoc *aSpace = &aSort[nSort];
+ for(i=0; i<nSort; i++){
+ if( aSort[i].pShm ){
+ assert( shm_sequence_ge(aSort[i].pShm->iShmid, iPrevShmid) );
+ assert( aSpace[aSort[i].pShm->iShmid - iPrevShmid].pShm==0 );
+ aSpace[aSort[i].pShm->iShmid - iPrevShmid] = aSort[i];
+ }
+ }
+
+ if( aSpace[nSort-1].pShm ) aSpace[nSort-1].pShm->iNext = 0;
+ for(i=0; i<nSort-1; i++){
+ if( aSpace[i].pShm ){
+ aSpace[i].pShm->iNext = aSpace[i+1].iLoc;
+ }
+ }
+
+ rc = treeCheckLinkedList(db);
+ lsmFree(db->pEnv, aSort);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** This function is called as part of opening a write-transaction if the
+** writer-flag is already set - indicating that the previous writer
+** failed before ending its transaction.
+*/
+int lsmTreeRepair(lsm_db *db){
+ int rc = LSM_OK;
+ TreeHeader hdr;
+ ShmHeader *pHdr = db->pShmhdr;
+
+ /* Ensure that the two tree-headers are consistent. Copy one over the other
+ ** if necessary. Prefer the data from a tree-header for which the checksum
+ ** computes. Or, if they both compute, prefer tree-header-1. */
+ if( memcmp(&pHdr->hdr1, &pHdr->hdr2, sizeof(TreeHeader)) ){
+ if( treeHeaderChecksumOk(&pHdr->hdr1) ){
+ memcpy(&pHdr->hdr2, &pHdr->hdr1, sizeof(TreeHeader));
+ }else{
+ memcpy(&pHdr->hdr1, &pHdr->hdr2, sizeof(TreeHeader));
+ }
+ }
+
+ /* Save the connections current copy of the tree-header. It will be
+ ** restored before returning. */
+ memcpy(&hdr, &db->treehdr, sizeof(TreeHeader));
+
+ /* Walk the tree. Zero any v2 pointers with a transaction-id greater than
+ ** the transaction-id currently in the tree-headers. */
+ rc = treeRepairPtrs(db);
+
+ /* Repair the linked list of shared-memory chunks. */
+ if( rc==LSM_OK ){
+ rc = treeRepairList(db);
+ }
+
+ memcpy(&db->treehdr, &hdr, sizeof(TreeHeader));
+ return rc;
+}
+
+static void treeOverwriteKey(lsm_db *db, TreeCursor *pCsr, u32 iKey, int *pRc){
+ if( *pRc==LSM_OK ){
+ TreeRoot *p = &db->treehdr.root;
+ TreeNode *pNew;
+ u32 iNew;
+ TreeNode *pNode = pCsr->apTreeNode[pCsr->iNode];
+ int iCell = pCsr->aiCell[pCsr->iNode];
+
+ /* Create a copy of this node */
+ if( (pCsr->iNode>0 && pCsr->iNode==(p->nHeight-1)) ){
+ pNew = copyTreeLeaf(db, (TreeLeaf *)pNode, &iNew, pRc);
+ }else{
+ pNew = copyTreeNode(db, pNode, &iNew, pRc);
+ }
+
+ if( pNew ){
+ /* Modify the value in the new version */
+ pNew->aiKeyPtr[iCell] = iKey;
+
+ /* Change the pointer in the parent (if any) to point at the new
+ ** TreeNode */
+ pCsr->iNode--;
+ treeUpdatePtr(db, pCsr, iNew);
+ }
+ }
+}
+
+static int treeNextIsEndDelete(lsm_db *db, TreeCursor *pCsr){
+ int iNode = pCsr->iNode;
+ int iCell = pCsr->aiCell[iNode]+1;
+
+ /* Cursor currently points to a leaf node. */
+ assert( pCsr->iNode==(db->treehdr.root.nHeight-1) );
+
+ while( iNode>=0 ){
+ TreeNode *pNode = pCsr->apTreeNode[iNode];
+ if( iCell<3 && pNode->aiKeyPtr[iCell] ){
+ int rc = LSM_OK;
+ TreeKey *pKey = treeShmptr(db, pNode->aiKeyPtr[iCell]);
+ assert( rc==LSM_OK );
+ return ((pKey->flags & LSM_END_DELETE) ? 1 : 0);
+ }
+ iNode--;
+ iCell = pCsr->aiCell[iNode];
+ }
+
+ return 0;
+}
+
+static int treePrevIsStartDelete(lsm_db *db, TreeCursor *pCsr){
+ int iNode = pCsr->iNode;
+
+ /* Cursor currently points to a leaf node. */
+ assert( pCsr->iNode==(db->treehdr.root.nHeight-1) );
+
+ while( iNode>=0 ){
+ TreeNode *pNode = pCsr->apTreeNode[iNode];
+ int iCell = pCsr->aiCell[iNode]-1;
+ if( iCell>=0 && pNode->aiKeyPtr[iCell] ){
+ int rc = LSM_OK;
+ TreeKey *pKey = treeShmptr(db, pNode->aiKeyPtr[iCell]);
+ assert( rc==LSM_OK );
+ return ((pKey->flags & LSM_START_DELETE) ? 1 : 0);
+ }
+ iNode--;
+ }
+
+ return 0;
+}
+
+
+static int treeInsertEntry(
+ lsm_db *pDb, /* Database handle */
+ int flags, /* Flags associated with entry */
+ void *pKey, /* Pointer to key data */
+ int nKey, /* Size of key data in bytes */
+ void *pVal, /* Pointer to value data (or NULL) */
+ int nVal /* Bytes in value data (or -ve for delete) */
+){
+ int rc = LSM_OK; /* Return Code */
+ TreeKey *pTreeKey; /* New key-value being inserted */
+ u32 iTreeKey;
+ TreeRoot *p = &pDb->treehdr.root;
+ TreeCursor csr; /* Cursor to seek to pKey/nKey */
+ int res; /* Result of seek operation on csr */
+
+ assert( nVal>=0 || pVal==0 );
+ assert_tree_looks_ok(LSM_OK, pTree);
+ assert( flags==LSM_INSERT || flags==LSM_POINT_DELETE
+ || flags==LSM_START_DELETE || flags==LSM_END_DELETE
+ );
+ assert( (flags & LSM_CONTIGUOUS)==0 );
+#if 0
+ dump_tree_contents(pDb, "before");
+#endif
+
+ if( p->iRoot ){
+ TreeKey *pRes; /* Key at end of seek operation */
+ treeCursorInit(pDb, 0, &csr);
+
+ /* Seek to the leaf (or internal node) that the new key belongs on */
+ rc = lsmTreeCursorSeek(&csr, pKey, nKey, &res);
+ pRes = csrGetKey(&csr, &csr.blob, &rc);
+ if( rc!=LSM_OK ) return rc;
+
+ if( flags==LSM_START_DELETE ){
+ /* When inserting a start-delete-range entry, if the key that
+ ** occurs immediately before the new entry is already a START_DELETE,
+ ** then the new entry is not required. */
+ if( (res<=0 && (pRes->flags & LSM_START_DELETE))
+ || (res>0 && treePrevIsStartDelete(pDb, &csr))
+ ){
+ goto insert_entry_out;
+ }
+ }else if( flags==LSM_END_DELETE ){
+ /* When inserting an start-delete-range entry, if the key that
+ ** occurs immediately after the new entry is already an END_DELETE,
+ ** then the new entry is not required. */
+ if( (res<0 && treeNextIsEndDelete(pDb, &csr))
+ || (res>=0 && (pRes->flags & LSM_END_DELETE))
+ ){
+ goto insert_entry_out;
+ }
+ }
+
+ if( res==0 && (flags & (LSM_END_DELETE|LSM_START_DELETE)) ){
+ if( pRes->flags & LSM_INSERT ){
+ nVal = pRes->nValue;
+ pVal = TKV_VAL(pRes);
+ }
+ flags = flags | pRes->flags;
+ }
+
+ if( flags & (LSM_INSERT|LSM_POINT_DELETE) ){
+ if( (res<0 && (pRes->flags & LSM_START_DELETE))
+ || (res>0 && (pRes->flags & LSM_END_DELETE))
+ ){
+ flags = flags | (LSM_END_DELETE|LSM_START_DELETE);
+ }else if( res==0 ){
+ flags = flags | (pRes->flags & (LSM_END_DELETE|LSM_START_DELETE));
+ }
+ }
+ }else{
+ memset(&csr, 0, sizeof(TreeCursor));
+ }
+
+ /* Allocate and populate a new key-value pair structure */
+ pTreeKey = newTreeKey(pDb, &iTreeKey, pKey, nKey, pVal, nVal, &rc);
+ if( rc!=LSM_OK ) return rc;
+ assert( pTreeKey->flags==0 || pTreeKey->flags==LSM_CONTIGUOUS );
+ pTreeKey->flags |= flags;
+
+ if( p->iRoot==0 ){
+ /* The tree is completely empty. Add a new root node and install
+ ** (pKey/nKey) as the middle entry. Even though it is a leaf at the
+ ** moment, use newTreeNode() to allocate the node (i.e. allocate enough
+ ** space for the fields used by interior nodes). This is because the
+ ** treeInsert() routine may convert this node to an interior node. */
+ TreeNode *pRoot = newTreeNode(pDb, &p->iRoot, &rc);
+ if( rc==LSM_OK ){
+ assert( p->nHeight==0 );
+ pRoot->aiKeyPtr[1] = iTreeKey;
+ p->nHeight = 1;
+ }
+ }else{
+ if( res==0 ){
+ /* The search found a match within the tree. */
+ treeOverwriteKey(pDb, &csr, iTreeKey, &rc);
+ }else{
+ /* The cursor now points to the leaf node into which the new entry should
+ ** be inserted. There may or may not be a free slot within the leaf for
+ ** the new key-value pair.
+ **
+ ** iSlot is set to the index of the key within pLeaf that the new key
+ ** should be inserted to the left of (or to a value 1 greater than the
+ ** index of the rightmost key if the new key is larger than all keys
+ ** currently stored in the node).
+ */
+ int iSlot = csr.aiCell[csr.iNode] + (res<0);
+ if( csr.iNode==0 ){
+ rc = treeInsert(pDb, &csr, 0, iTreeKey, 0, iSlot);
+ }else{
+ rc = treeInsertLeaf(pDb, &csr, iTreeKey, iSlot);
+ }
+ }
+ }
+
+#if 0
+ dump_tree_contents(pDb, "after");
+#endif
+ insert_entry_out:
+ tblobFree(pDb, &csr.blob);
+ assert_tree_looks_ok(rc, pTree);
+ return rc;
+}
+
+/*
+** Insert a new entry into the in-memory tree.
+**
+** If the value of the 5th parameter, nVal, is negative, then a delete-marker
+** is inserted into the tree. In this case the value pointer, pVal, must be
+** NULL.
+*/
+int lsmTreeInsert(
+ lsm_db *pDb, /* Database handle */
+ void *pKey, /* Pointer to key data */
+ int nKey, /* Size of key data in bytes */
+ void *pVal, /* Pointer to value data (or NULL) */
+ int nVal /* Bytes in value data (or -ve for delete) */
+){
+ int flags;
+ if( nVal<0 ){
+ flags = LSM_POINT_DELETE;
+ }else{
+ flags = LSM_INSERT;
+ }
+
+ return treeInsertEntry(pDb, flags, pKey, nKey, pVal, nVal);
+}
+
+static int treeDeleteEntry(lsm_db *db, TreeCursor *pCsr, u32 iNewptr){
+ TreeRoot *p = &db->treehdr.root;
+ TreeNode *pNode = pCsr->apTreeNode[pCsr->iNode];
+ int iSlot = pCsr->aiCell[pCsr->iNode];
+ int bLeaf;
+ int rc = LSM_OK;
+
+ assert( pNode->aiKeyPtr[1] );
+ assert( pNode->aiKeyPtr[iSlot] );
+ assert( iSlot==0 || iSlot==1 || iSlot==2 );
+ assert( (pCsr->iNode==(db->treehdr.root.nHeight-1))==(iNewptr==0) );
+
+ bLeaf = (pCsr->iNode==(p->nHeight-1) && p->nHeight>1);
+
+ if( pNode->aiKeyPtr[0] || pNode->aiKeyPtr[2] ){
+ /* There are currently at least 2 keys on this node. So just create
+ ** a new copy of the node with one of the keys removed. If the node
+ ** happens to be the root node of the tree, allocate an entire
+ ** TreeNode structure instead of just a TreeLeaf. */
+ TreeNode *pNew;
+ u32 iNew;
+
+ if( bLeaf ){
+ pNew = (TreeNode *)newTreeLeaf(db, &iNew, &rc);
+ }else{
+ pNew = newTreeNode(db, &iNew, &rc);
+ }
+ if( pNew ){
+ int i;
+ int iOut = 1;
+ for(i=0; i<4; i++){
+ if( i==iSlot ){
+ i++;
+ if( bLeaf==0 ) pNew->aiChildPtr[iOut] = iNewptr;
+ if( i<3 ) pNew->aiKeyPtr[iOut] = pNode->aiKeyPtr[i];
+ iOut++;
+ }else if( bLeaf || p->nHeight==1 ){
+ if( i<3 && pNode->aiKeyPtr[i] ){
+ pNew->aiKeyPtr[iOut++] = pNode->aiKeyPtr[i];
+ }
+ }else{
+ if( getChildPtr(pNode, WORKING_VERSION, i) ){
+ pNew->aiChildPtr[iOut] = getChildPtr(pNode, WORKING_VERSION, i);
+ if( i<3 ) pNew->aiKeyPtr[iOut] = pNode->aiKeyPtr[i];
+ iOut++;
+ }
+ }
+ }
+ assert( iOut<=4 );
+ assert( bLeaf || pNew->aiChildPtr[0]==0 );
+ pCsr->iNode--;
+ rc = treeUpdatePtr(db, pCsr, iNew);
+ }
+
+ }else if( pCsr->iNode==0 ){
+ /* Removing the only key in the root node. iNewptr is the new root. */
+ assert( iSlot==1 );
+ db->treehdr.root.iRoot = iNewptr;
+ db->treehdr.root.nHeight--;
+
+ }else{
+ /* There is only one key on this node and the node is not the root
+ ** node. Find a peer for this node. Then redistribute the contents of
+ ** the peer and the parent cell between the parent and either one or
+ ** two new nodes. */
+ TreeNode *pParent; /* Parent tree node */
+ int iPSlot;
+ u32 iPeer; /* Pointer to peer leaf node */
+ int iDir;
+ TreeNode *pPeer; /* The peer leaf node */
+ TreeNode *pNew1; u32 iNew1; /* First new leaf node */
+
+ assert( iSlot==1 );
+
+ pParent = pCsr->apTreeNode[pCsr->iNode-1];
+ iPSlot = pCsr->aiCell[pCsr->iNode-1];
+
+ if( iPSlot>0 && getChildPtr(pParent, WORKING_VERSION, iPSlot-1) ){
+ iDir = -1;
+ }else{
+ iDir = +1;
+ }
+ iPeer = getChildPtr(pParent, WORKING_VERSION, iPSlot+iDir);
+ pPeer = (TreeNode *)treeShmptr(db, iPeer);
+ assertIsWorkingChild(db, pNode, pParent, iPSlot);
+
+ /* Allocate the first new leaf node. This is always required. */
+ if( bLeaf ){
+ pNew1 = (TreeNode *)newTreeLeaf(db, &iNew1, &rc);
+ }else{
+ pNew1 = (TreeNode *)newTreeNode(db, &iNew1, &rc);
+ }
+
+ if( pPeer->aiKeyPtr[0] && pPeer->aiKeyPtr[2] ){
+ /* Peer node is completely full. This means that two new leaf nodes
+ ** and a new parent node are required. */
+
+ TreeNode *pNew2; u32 iNew2; /* Second new leaf node */
+ TreeNode *pNewP; u32 iNewP; /* New parent node */
+
+ if( bLeaf ){
+ pNew2 = (TreeNode *)newTreeLeaf(db, &iNew2, &rc);
+ }else{
+ pNew2 = (TreeNode *)newTreeNode(db, &iNew2, &rc);
+ }
+ pNewP = copyTreeNode(db, pParent, &iNewP, &rc);
+
+ if( iDir==-1 ){
+ pNew1->aiKeyPtr[1] = pPeer->aiKeyPtr[0];
+ if( bLeaf==0 ){
+ pNew1->aiChildPtr[1] = getChildPtr(pPeer, WORKING_VERSION, 0);
+ pNew1->aiChildPtr[2] = getChildPtr(pPeer, WORKING_VERSION, 1);
+ }
+
+ pNewP->aiChildPtr[iPSlot-1] = iNew1;
+ pNewP->aiKeyPtr[iPSlot-1] = pPeer->aiKeyPtr[1];
+ pNewP->aiChildPtr[iPSlot] = iNew2;
+
+ pNew2->aiKeyPtr[0] = pPeer->aiKeyPtr[2];
+ pNew2->aiKeyPtr[1] = pParent->aiKeyPtr[iPSlot-1];
+ if( bLeaf==0 ){
+ pNew2->aiChildPtr[0] = getChildPtr(pPeer, WORKING_VERSION, 2);
+ pNew2->aiChildPtr[1] = getChildPtr(pPeer, WORKING_VERSION, 3);
+ pNew2->aiChildPtr[2] = iNewptr;
+ }
+ }else{
+ pNew1->aiKeyPtr[1] = pParent->aiKeyPtr[iPSlot];
+ if( bLeaf==0 ){
+ pNew1->aiChildPtr[1] = iNewptr;
+ pNew1->aiChildPtr[2] = getChildPtr(pPeer, WORKING_VERSION, 0);
+ }
+
+ pNewP->aiChildPtr[iPSlot] = iNew1;
+ pNewP->aiKeyPtr[iPSlot] = pPeer->aiKeyPtr[0];
+ pNewP->aiChildPtr[iPSlot+1] = iNew2;
+
+ pNew2->aiKeyPtr[0] = pPeer->aiKeyPtr[1];
+ pNew2->aiKeyPtr[1] = pPeer->aiKeyPtr[2];
+ if( bLeaf==0 ){
+ pNew2->aiChildPtr[0] = getChildPtr(pPeer, WORKING_VERSION, 1);
+ pNew2->aiChildPtr[1] = getChildPtr(pPeer, WORKING_VERSION, 2);
+ pNew2->aiChildPtr[2] = getChildPtr(pPeer, WORKING_VERSION, 3);
+ }
+ }
+ assert( pCsr->iNode>=1 );
+ pCsr->iNode -= 2;
+ if( rc==LSM_OK ){
+ assert( pNew1->aiKeyPtr[1] && pNew2->aiKeyPtr[1] );
+ rc = treeUpdatePtr(db, pCsr, iNewP);
+ }
+ }else{
+ int iKOut = 0;
+ int iPOut = 0;
+ int i;
+
+ pCsr->iNode--;
+
+ if( iDir==1 ){
+ pNew1->aiKeyPtr[iKOut++] = pParent->aiKeyPtr[iPSlot];
+ if( bLeaf==0 ) pNew1->aiChildPtr[iPOut++] = iNewptr;
+ }
+ for(i=0; i<3; i++){
+ if( pPeer->aiKeyPtr[i] ){
+ pNew1->aiKeyPtr[iKOut++] = pPeer->aiKeyPtr[i];
+ }
+ }
+ if( bLeaf==0 ){
+ for(i=0; i<4; i++){
+ if( getChildPtr(pPeer, WORKING_VERSION, i) ){
+ pNew1->aiChildPtr[iPOut++] = getChildPtr(pPeer, WORKING_VERSION, i);
+ }
+ }
+ }
+ if( iDir==-1 ){
+ iPSlot--;
+ pNew1->aiKeyPtr[iKOut++] = pParent->aiKeyPtr[iPSlot];
+ if( bLeaf==0 ) pNew1->aiChildPtr[iPOut++] = iNewptr;
+ pCsr->aiCell[pCsr->iNode] = iPSlot;
+ }
+
+ rc = treeDeleteEntry(db, pCsr, iNew1);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Delete a range of keys from the tree structure (i.e. the lsm_delete_range()
+** function, not lsm_delete()).
+**
+** This is a two step process:
+**
+** 1) Remove all entries currently stored in the tree that have keys
+** that fall into the deleted range.
+**
+** TODO: There are surely good ways to optimize this step - removing
+** a range of keys from a b-tree. But for now, this function removes
+** them one at a time using the usual approach.
+**
+** 2) Unless the largest key smaller than or equal to (pKey1/nKey1) is
+** already marked as START_DELETE, insert a START_DELETE key.
+** Similarly, unless the smallest key greater than or equal to
+** (pKey2/nKey2) is already START_END, insert a START_END key.
+*/
+int lsmTreeDelete(
+ lsm_db *db,
+ void *pKey1, int nKey1, /* Start of range */
+ void *pKey2, int nKey2 /* End of range */
+){
+ int rc = LSM_OK;
+ int bDone = 0;
+ TreeRoot *p = &db->treehdr.root;
+ TreeBlob blob = {0, 0};
+
+ /* The range must be sensible - that (key1 < key2). */
+ assert( treeKeycmp(pKey1, nKey1, pKey2, nKey2)<0 );
+ assert( assert_delete_ranges_match(db) );
+
+#if 0
+ static int nCall = 0;
+ printf("\n");
+ nCall++;
+ printf("%d delete %s .. %s\n", nCall, (char *)pKey1, (char *)pKey2);
+ dump_tree_contents(db, "before delete");
+#endif
+
+ /* Step 1. This loop runs until the tree contains no keys within the
+ ** range being deleted. Or until an error occurs. */
+ while( bDone==0 && rc==LSM_OK ){
+ int res;
+ TreeCursor csr; /* Cursor to seek to first key in range */
+ void *pDel; int nDel; /* Key to (possibly) delete this iteration */
+#ifndef NDEBUG
+ int nEntry = treeCountEntries(db);
+#endif
+
+ /* Seek the cursor to the first entry in the tree greater than pKey1. */
+ treeCursorInit(db, 0, &csr);
+ lsmTreeCursorSeek(&csr, pKey1, nKey1, &res);
+ if( res<=0 && lsmTreeCursorValid(&csr) ) lsmTreeCursorNext(&csr);
+
+ /* If there is no such entry, or if it is greater than pKey2, then the
+ ** tree now contains no keys in the range being deleted. In this case
+ ** break out of the loop. */
+ bDone = 1;
+ if( lsmTreeCursorValid(&csr) ){
+ lsmTreeCursorKey(&csr, 0, &pDel, &nDel);
+ if( treeKeycmp(pDel, nDel, pKey2, nKey2)<0 ) bDone = 0;
+ }
+
+ if( bDone==0 ){
+ if( csr.iNode==(p->nHeight-1) ){
+ /* The element to delete already lies on a leaf node */
+ rc = treeDeleteEntry(db, &csr, 0);
+ }else{
+ /* 1. Overwrite the current key with a copy of the next key in the
+ ** tree (key N).
+ **
+ ** 2. Seek to key N (cursor will stop at the internal node copy of
+ ** N). Move to the next key (original copy of N). Delete
+ ** this entry.
+ */
+ u32 iKey;
+ TreeKey *pKey;
+ int iNode = csr.iNode;
+ lsmTreeCursorNext(&csr);
+ assert( csr.iNode==(p->nHeight-1) );
+
+ iKey = csr.apTreeNode[csr.iNode]->aiKeyPtr[csr.aiCell[csr.iNode]];
+ lsmTreeCursorPrev(&csr);
+
+ treeOverwriteKey(db, &csr, iKey, &rc);
+ pKey = treeShmkey(db, iKey, TKV_LOADKEY, &blob, &rc);
+ if( pKey ){
+ rc = lsmTreeCursorSeek(&csr, TKV_KEY(pKey), pKey->nKey, &res);
+ }
+ if( rc==LSM_OK ){
+ assert( res==0 && csr.iNode==iNode );
+ rc = lsmTreeCursorNext(&csr);
+ if( rc==LSM_OK ){
+ rc = treeDeleteEntry(db, &csr, 0);
+ }
+ }
+ }
+ }
+
+ /* Clean up any memory allocated by the cursor. */
+ tblobFree(db, &csr.blob);
+#if 0
+ dump_tree_contents(db, "ddd delete");
+#endif
+ assert( bDone || treeCountEntries(db)==(nEntry-1) );
+ }
+
+#if 0
+ dump_tree_contents(db, "during delete");
+#endif
+
+ /* Now insert the START_DELETE and END_DELETE keys. */
+ if( rc==LSM_OK ){
+ rc = treeInsertEntry(db, LSM_START_DELETE, pKey1, nKey1, 0, -1);
+ }
+#if 0
+ dump_tree_contents(db, "during delete 2");
+#endif
+ if( rc==LSM_OK ){
+ rc = treeInsertEntry(db, LSM_END_DELETE, pKey2, nKey2, 0, -1);
+ }
+
+#if 0
+ dump_tree_contents(db, "after delete");
+#endif
+
+ tblobFree(db, &blob);
+ assert( assert_delete_ranges_match(db) );
+ return rc;
+}
+
+/*
+** Return, in bytes, the amount of memory currently used by the tree
+** structure.
+*/
+int lsmTreeSize(lsm_db *pDb){
+ return pDb->treehdr.root.nByte;
+}
+
+/*
+** Open a cursor on the in-memory tree pTree.
+*/
+int lsmTreeCursorNew(lsm_db *pDb, int bOld, TreeCursor **ppCsr){
+ TreeCursor *pCsr;
+ *ppCsr = pCsr = lsmMalloc(pDb->pEnv, sizeof(TreeCursor));
+ if( pCsr ){
+ treeCursorInit(pDb, bOld, pCsr);
+ return LSM_OK;
+ }
+ return LSM_NOMEM_BKPT;
+}
+
+/*
+** Close an in-memory tree cursor.
+*/
+void lsmTreeCursorDestroy(TreeCursor *pCsr){
+ if( pCsr ){
+ tblobFree(pCsr->pDb, &pCsr->blob);
+ lsmFree(pCsr->pDb->pEnv, pCsr);
+ }
+}
+
+void lsmTreeCursorReset(TreeCursor *pCsr){
+ if( pCsr ){
+ pCsr->iNode = -1;
+ pCsr->pSave = 0;
+ }
+}
+
+#ifndef NDEBUG
+static int treeCsrCompare(TreeCursor *pCsr, void *pKey, int nKey){
+ TreeKey *p;
+ int cmp = 0;
+ int rc = LSM_OK;
+ assert( pCsr->iNode>=0 );
+ p = csrGetKey(pCsr, &pCsr->blob, &rc);
+ if( p ){
+ cmp = treeKeycmp(TKV_KEY(p), p->nKey, pKey, nKey);
+ }
+ return cmp;
+}
+#endif
+
+
+/*
+** Attempt to seek the cursor passed as the first argument to key (pKey/nKey)
+** in the tree structure. If an exact match for the key is found, leave the
+** cursor pointing to it and set *pRes to zero before returning. If an
+** exact match cannot be found, do one of the following:
+**
+** * Leave the cursor pointing to the smallest element in the tree that
+** is larger than the key and set *pRes to +1, or
+**
+** * Leave the cursor pointing to the largest element in the tree that
+** is smaller than the key and set *pRes to -1, or
+**
+** * If the tree is empty, leave the cursor at EOF and set *pRes to -1.
+*/
+int lsmTreeCursorSeek(TreeCursor *pCsr, void *pKey, int nKey, int *pRes){
+ int rc = LSM_OK; /* Return code */
+ lsm_db *pDb = pCsr->pDb;
+ TreeRoot *pRoot = pCsr->pRoot;
+ u32 iNodePtr; /* Location of current node in search */
+
+ /* Discard any saved position data */
+ treeCursorRestore(pCsr, 0);
+
+ iNodePtr = pRoot->iRoot;
+ if( iNodePtr==0 ){
+ /* Either an error occurred or the tree is completely empty. */
+ assert( rc!=LSM_OK || pRoot->iRoot==0 );
+ *pRes = -1;
+ pCsr->iNode = -1;
+ }else{
+ TreeBlob b = {0, 0};
+ int res = 0; /* Result of comparison function */
+ int iNode = -1;
+ while( iNodePtr ){
+ TreeNode *pNode; /* Node at location iNodePtr */
+ int iTest; /* Index of second key to test (0 or 2) */
+ u32 iTreeKey;
+ TreeKey *pTreeKey; /* Key to compare against */
+
+ pNode = (TreeNode *)treeShmptrUnsafe(pDb, iNodePtr);
+ iNode++;
+ pCsr->apTreeNode[iNode] = pNode;
+
+ /* Compare (pKey/nKey) with the key in the middle slot of B-tree node
+ ** pNode. The middle slot is never empty. If the comparison is a match,
+ ** then the search is finished. Break out of the loop. */
+ pTreeKey = (TreeKey*)treeShmptrUnsafe(pDb, pNode->aiKeyPtr[1]);
+ if( !(pTreeKey->flags & LSM_CONTIGUOUS) ){
+ pTreeKey = treeShmkey(pDb, pNode->aiKeyPtr[1], TKV_LOADKEY, &b, &rc);
+ if( rc!=LSM_OK ) break;
+ }
+ res = treeKeycmp((void *)&pTreeKey[1], pTreeKey->nKey, pKey, nKey);
+ if( res==0 ){
+ pCsr->aiCell[iNode] = 1;
+ break;
+ }
+
+ /* Based on the results of the previous comparison, compare (pKey/nKey)
+ ** to either the left or right key of the B-tree node, if such a key
+ ** exists. */
+ iTest = (res>0 ? 0 : 2);
+ iTreeKey = pNode->aiKeyPtr[iTest];
+ if( iTreeKey ){
+ pTreeKey = (TreeKey*)treeShmptrUnsafe(pDb, iTreeKey);
+ if( !(pTreeKey->flags & LSM_CONTIGUOUS) ){
+ pTreeKey = treeShmkey(pDb, iTreeKey, TKV_LOADKEY, &b, &rc);
+ if( rc ) break;
+ }
+ res = treeKeycmp((void *)&pTreeKey[1], pTreeKey->nKey, pKey, nKey);
+ if( res==0 ){
+ pCsr->aiCell[iNode] = iTest;
+ break;
+ }
+ }else{
+ iTest = 1;
+ }
+
+ if( iNode<(pRoot->nHeight-1) ){
+ iNodePtr = getChildPtr(pNode, pRoot->iTransId, iTest + (res<0));
+ }else{
+ iNodePtr = 0;
+ }
+ pCsr->aiCell[iNode] = iTest + (iNodePtr && (res<0));
+ }
+
+ *pRes = res;
+ pCsr->iNode = iNode;
+ tblobFree(pDb, &b);
+ }
+
+ /* assert() that *pRes has been set properly */
+#ifndef NDEBUG
+ if( rc==LSM_OK && lsmTreeCursorValid(pCsr) ){
+ int cmp = treeCsrCompare(pCsr, pKey, nKey);
+ assert( *pRes==cmp || (*pRes ^ cmp)>0 );
+ }
+#endif
+
+ return rc;
+}
+
+int lsmTreeCursorNext(TreeCursor *pCsr){
+#ifndef NDEBUG
+ TreeKey *pK1;
+ TreeBlob key1 = {0, 0};
+#endif
+ lsm_db *pDb = pCsr->pDb;
+ TreeRoot *pRoot = pCsr->pRoot;
+ const int iLeaf = pRoot->nHeight-1;
+ int iCell;
+ int rc = LSM_OK;
+ TreeNode *pNode;
+
+ /* Restore the cursor position, if required */
+ int iRestore = 0;
+ treeCursorRestore(pCsr, &iRestore);
+ if( iRestore>0 ) return LSM_OK;
+
+ /* Save a pointer to the current key. This is used in an assert() at the
+ ** end of this function - to check that the 'next' key really is larger
+ ** than the current key. */
+#ifndef NDEBUG
+ pK1 = csrGetKey(pCsr, &key1, &rc);
+ if( rc!=LSM_OK ) return rc;
+#endif
+
+ assert( lsmTreeCursorValid(pCsr) );
+ assert( pCsr->aiCell[pCsr->iNode]<3 );
+
+ pNode = pCsr->apTreeNode[pCsr->iNode];
+ iCell = ++pCsr->aiCell[pCsr->iNode];
+
+ /* If the current node is not a leaf, and the current cell has sub-tree
+ ** associated with it, descend to the left-most key on the left-most
+ ** leaf of the sub-tree. */
+ if( pCsr->iNode<iLeaf && getChildPtr(pNode, pRoot->iTransId, iCell) ){
+ do {
+ u32 iNodePtr;
+ pCsr->iNode++;
+ iNodePtr = getChildPtr(pNode, pRoot->iTransId, iCell);
+ pNode = (TreeNode *)treeShmptr(pDb, iNodePtr);
+ pCsr->apTreeNode[pCsr->iNode] = pNode;
+ iCell = pCsr->aiCell[pCsr->iNode] = (pNode->aiKeyPtr[0]==0);
+ }while( pCsr->iNode < iLeaf );
+ }
+
+ /* Otherwise, the next key is found by following pointer up the tree
+ ** until there is a key immediately to the right of the pointer followed
+ ** to reach the sub-tree containing the current key. */
+ else if( iCell>=3 || pNode->aiKeyPtr[iCell]==0 ){
+ while( (--pCsr->iNode)>=0 ){
+ iCell = pCsr->aiCell[pCsr->iNode];
+ if( iCell<3 && pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[iCell] ) break;
+ }
+ }
+
+#ifndef NDEBUG
+ if( pCsr->iNode>=0 ){
+ TreeKey *pK2 = csrGetKey(pCsr, &pCsr->blob, &rc);
+ assert( rc||treeKeycmp(TKV_KEY(pK2),pK2->nKey,TKV_KEY(pK1),pK1->nKey)>=0 );
+ }
+ tblobFree(pDb, &key1);
+#endif
+
+ return rc;
+}
+
+int lsmTreeCursorPrev(TreeCursor *pCsr){
+#ifndef NDEBUG
+ TreeKey *pK1;
+ TreeBlob key1 = {0, 0};
+#endif
+ lsm_db *pDb = pCsr->pDb;
+ TreeRoot *pRoot = pCsr->pRoot;
+ const int iLeaf = pRoot->nHeight-1;
+ int iCell;
+ int rc = LSM_OK;
+ TreeNode *pNode;
+
+ /* Restore the cursor position, if required */
+ int iRestore = 0;
+ treeCursorRestore(pCsr, &iRestore);
+ if( iRestore<0 ) return LSM_OK;
+
+ /* Save a pointer to the current key. This is used in an assert() at the
+ ** end of this function - to check that the 'next' key really is smaller
+ ** than the current key. */
+#ifndef NDEBUG
+ pK1 = csrGetKey(pCsr, &key1, &rc);
+ if( rc!=LSM_OK ) return rc;
+#endif
+
+ assert( lsmTreeCursorValid(pCsr) );
+ pNode = pCsr->apTreeNode[pCsr->iNode];
+ iCell = pCsr->aiCell[pCsr->iNode];
+ assert( iCell>=0 && iCell<3 );
+
+ /* If the current node is not a leaf, and the current cell has sub-tree
+ ** associated with it, descend to the right-most key on the right-most
+ ** leaf of the sub-tree. */
+ if( pCsr->iNode<iLeaf && getChildPtr(pNode, pRoot->iTransId, iCell) ){
+ do {
+ u32 iNodePtr;
+ pCsr->iNode++;
+ iNodePtr = getChildPtr(pNode, pRoot->iTransId, iCell);
+ pNode = (TreeNode *)treeShmptr(pDb, iNodePtr);
+ if( rc!=LSM_OK ) break;
+ pCsr->apTreeNode[pCsr->iNode] = pNode;
+ iCell = 1 + (pNode->aiKeyPtr[2]!=0) + (pCsr->iNode < iLeaf);
+ pCsr->aiCell[pCsr->iNode] = iCell;
+ }while( pCsr->iNode < iLeaf );
+ }
+
+ /* Otherwise, the next key is found by following pointer up the tree until
+ ** there is a key immediately to the left of the pointer followed to reach
+ ** the sub-tree containing the current key. */
+ else{
+ do {
+ iCell = pCsr->aiCell[pCsr->iNode]-1;
+ if( iCell>=0 && pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[iCell] ) break;
+ }while( (--pCsr->iNode)>=0 );
+ pCsr->aiCell[pCsr->iNode] = iCell;
+ }
+
+#ifndef NDEBUG
+ if( pCsr->iNode>=0 ){
+ TreeKey *pK2 = csrGetKey(pCsr, &pCsr->blob, &rc);
+ assert( rc || treeKeycmp(TKV_KEY(pK2),pK2->nKey,TKV_KEY(pK1),pK1->nKey)<0 );
+ }
+ tblobFree(pDb, &key1);
+#endif
+
+ return rc;
+}
+
+/*
+** Move the cursor to the first (bLast==0) or last (bLast!=0) entry in the
+** in-memory tree.
+*/
+int lsmTreeCursorEnd(TreeCursor *pCsr, int bLast){
+ lsm_db *pDb = pCsr->pDb;
+ TreeRoot *pRoot = pCsr->pRoot;
+ int rc = LSM_OK;
+
+ u32 iNodePtr;
+ pCsr->iNode = -1;
+
+ /* Discard any saved position data */
+ treeCursorRestore(pCsr, 0);
+
+ iNodePtr = pRoot->iRoot;
+ while( iNodePtr ){
+ int iCell;
+ TreeNode *pNode;
+
+ pNode = (TreeNode *)treeShmptr(pDb, iNodePtr);
+ if( rc ) break;
+
+ if( bLast ){
+ iCell = ((pNode->aiKeyPtr[2]==0) ? 2 : 3);
+ }else{
+ iCell = ((pNode->aiKeyPtr[0]==0) ? 1 : 0);
+ }
+ pCsr->iNode++;
+ pCsr->apTreeNode[pCsr->iNode] = pNode;
+
+ if( pCsr->iNode<pRoot->nHeight-1 ){
+ iNodePtr = getChildPtr(pNode, pRoot->iTransId, iCell);
+ }else{
+ iNodePtr = 0;
+ }
+ pCsr->aiCell[pCsr->iNode] = iCell - (iNodePtr==0 && bLast);
+ }
+
+ return rc;
+}
+
+int lsmTreeCursorFlags(TreeCursor *pCsr){
+ int flags = 0;
+ if( pCsr && pCsr->iNode>=0 ){
+ int rc = LSM_OK;
+ TreeKey *pKey = (TreeKey *)treeShmptrUnsafe(pCsr->pDb,
+ pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[pCsr->aiCell[pCsr->iNode]]
+ );
+ assert( rc==LSM_OK );
+ flags = (pKey->flags & ~LSM_CONTIGUOUS);
+ }
+ return flags;
+}
+
+int lsmTreeCursorKey(TreeCursor *pCsr, int *pFlags, void **ppKey, int *pnKey){
+ TreeKey *pTreeKey;
+ int rc = LSM_OK;
+
+ assert( lsmTreeCursorValid(pCsr) );
+
+ pTreeKey = pCsr->pSave;
+ if( !pTreeKey ){
+ pTreeKey = csrGetKey(pCsr, &pCsr->blob, &rc);
+ }
+ if( rc==LSM_OK ){
+ *pnKey = pTreeKey->nKey;
+ if( pFlags ) *pFlags = pTreeKey->flags;
+ *ppKey = (void *)&pTreeKey[1];
+ }
+
+ return rc;
+}
+
+int lsmTreeCursorValue(TreeCursor *pCsr, void **ppVal, int *pnVal){
+ int res = 0;
+ int rc;
+
+ rc = treeCursorRestore(pCsr, &res);
+ if( res==0 ){
+ TreeKey *pTreeKey = csrGetKey(pCsr, &pCsr->blob, &rc);
+ if( rc==LSM_OK ){
+ if( pTreeKey->flags & LSM_INSERT ){
+ *pnVal = pTreeKey->nValue;
+ *ppVal = TKV_VAL(pTreeKey);
+ }else{
+ *ppVal = 0;
+ *pnVal = -1;
+ }
+ }
+ }else{
+ *ppVal = 0;
+ *pnVal = 0;
+ }
+
+ return rc;
+}
+
+/*
+** Return true if the cursor currently points to a valid entry.
+*/
+int lsmTreeCursorValid(TreeCursor *pCsr){
+ return (pCsr && (pCsr->pSave || pCsr->iNode>=0));
+}
+
+/*
+** Store a mark in *pMark. Later on, a call to lsmTreeRollback() with a
+** pointer to the same TreeMark structure may be used to roll the tree
+** contents back to their current state.
+*/
+void lsmTreeMark(lsm_db *pDb, TreeMark *pMark){
+ pMark->iRoot = pDb->treehdr.root.iRoot;
+ pMark->nHeight = pDb->treehdr.root.nHeight;
+ pMark->iWrite = pDb->treehdr.iWrite;
+ pMark->nChunk = pDb->treehdr.nChunk;
+ pMark->iNextShmid = pDb->treehdr.iNextShmid;
+ pMark->iRollback = intArraySize(&pDb->rollback);
+}
+
+/*
+** Roll back to mark pMark. Structure *pMark should have been previously
+** populated by a call to lsmTreeMark().
+*/
+void lsmTreeRollback(lsm_db *pDb, TreeMark *pMark){
+ int iIdx;
+ int nIdx;
+ u32 iNext;
+ ShmChunk *pChunk;
+ u32 iChunk;
+ u32 iShmid;
+
+ /* Revert all required v2 pointers. */
+ nIdx = intArraySize(&pDb->rollback);
+ for(iIdx = pMark->iRollback; iIdx<nIdx; iIdx++){
+ TreeNode *pNode;
+ pNode = treeShmptr(pDb, intArrayEntry(&pDb->rollback, iIdx));
+ assert( pNode );
+ pNode->iV2 = 0;
+ pNode->iV2Child = 0;
+ pNode->iV2Ptr = 0;
+ }
+ intArrayTruncate(&pDb->rollback, pMark->iRollback);
+
+ /* Restore the free-chunk list. */
+ assert( pMark->iWrite!=0 );
+ iChunk = treeOffsetToChunk(pMark->iWrite-1);
+ pChunk = treeShmChunk(pDb, iChunk);
+ iNext = pChunk->iNext;
+ pChunk->iNext = 0;
+
+ pChunk = treeShmChunk(pDb, pDb->treehdr.iFirst);
+ iShmid = pChunk->iShmid-1;
+
+ while( iNext ){
+ u32 iFree = iNext; /* Current chunk being rollback-freed */
+ ShmChunk *pFree; /* Pointer to chunk iFree */
+
+ pFree = treeShmChunk(pDb, iFree);
+ iNext = pFree->iNext;
+
+ if( iFree<pMark->nChunk ){
+ pFree->iNext = pDb->treehdr.iFirst;
+ pFree->iShmid = iShmid--;
+ pDb->treehdr.iFirst = iFree;
+ }
+ }
+
+ /* Restore the tree-header fields */
+ pDb->treehdr.root.iRoot = pMark->iRoot;
+ pDb->treehdr.root.nHeight = pMark->nHeight;
+ pDb->treehdr.iWrite = pMark->iWrite;
+ pDb->treehdr.nChunk = pMark->nChunk;
+ pDb->treehdr.iNextShmid = pMark->iNextShmid;
+}
+
+/*
+** Load the in-memory tree header from shared-memory into pDb->treehdr.
+** If the header cannot be loaded, return LSM_PROTOCOL.
+**
+** If the header is successfully loaded and parameter piRead is not NULL,
+** is is set to 1 if the header was loaded from ShmHeader.hdr1, or 2 if
+** the header was loaded from ShmHeader.hdr2.
+*/
+int lsmTreeLoadHeader(lsm_db *pDb, int *piRead){
+ int nRem = LSM_ATTEMPTS_BEFORE_PROTOCOL;
+ while( (nRem--)>0 ){
+ ShmHeader *pShm = pDb->pShmhdr;
+
+ memcpy(&pDb->treehdr, &pShm->hdr1, sizeof(TreeHeader));
+ if( treeHeaderChecksumOk(&pDb->treehdr) ){
+ if( piRead ) *piRead = 1;
+ return LSM_OK;
+ }
+ memcpy(&pDb->treehdr, &pShm->hdr2, sizeof(TreeHeader));
+ if( treeHeaderChecksumOk(&pDb->treehdr) ){
+ if( piRead ) *piRead = 2;
+ return LSM_OK;
+ }
+
+ lsmShmBarrier(pDb);
+ }
+ return LSM_PROTOCOL_BKPT;
+}
+
+int lsmTreeLoadHeaderOk(lsm_db *pDb, int iRead){
+ TreeHeader *p = (iRead==1) ? &pDb->pShmhdr->hdr1 : &pDb->pShmhdr->hdr2;
+ assert( iRead==1 || iRead==2 );
+ return (0==memcmp(pDb->treehdr.aCksum, p->aCksum, sizeof(u32)*2));
+}
+
+/*
+** This function is called to conclude a transaction. If argument bCommit
+** is true, the transaction is committed. Otherwise it is rolled back.
+*/
+int lsmTreeEndTransaction(lsm_db *pDb, int bCommit){
+ ShmHeader *pShm = pDb->pShmhdr;
+
+ treeHeaderChecksum(&pDb->treehdr, pDb->treehdr.aCksum);
+ memcpy(&pShm->hdr2, &pDb->treehdr, sizeof(TreeHeader));
+ lsmShmBarrier(pDb);
+ memcpy(&pShm->hdr1, &pDb->treehdr, sizeof(TreeHeader));
+ pShm->bWriter = 0;
+ intArrayFree(pDb->pEnv, &pDb->rollback);
+
+ return LSM_OK;
+}
+
+#ifndef NDEBUG
+static int assert_delete_ranges_match(lsm_db *db){
+ int prev = 0;
+ TreeBlob blob = {0, 0};
+ TreeCursor csr; /* Cursor used to iterate through tree */
+ int rc;
+
+ treeCursorInit(db, 0, &csr);
+ for( rc = lsmTreeCursorEnd(&csr, 0);
+ rc==LSM_OK && lsmTreeCursorValid(&csr);
+ rc = lsmTreeCursorNext(&csr)
+ ){
+ TreeKey *pKey = csrGetKey(&csr, &blob, &rc);
+ if( rc!=LSM_OK ) break;
+ assert( ((prev&LSM_START_DELETE)==0)==((pKey->flags&LSM_END_DELETE)==0) );
+ prev = pKey->flags;
+ }
+
+ tblobFree(csr.pDb, &csr.blob);
+ tblobFree(csr.pDb, &blob);
+
+ return 1;
+}
+
+static int treeCountEntries(lsm_db *db){
+ TreeCursor csr; /* Cursor used to iterate through tree */
+ int rc;
+ int nEntry = 0;
+
+ treeCursorInit(db, 0, &csr);
+ for( rc = lsmTreeCursorEnd(&csr, 0);
+ rc==LSM_OK && lsmTreeCursorValid(&csr);
+ rc = lsmTreeCursorNext(&csr)
+ ){
+ nEntry++;
+ }
+
+ tblobFree(csr.pDb, &csr.blob);
+
+ return nEntry;
+}
+#endif
--- /dev/null
+/*
+** 2011-12-03
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** Unix-specific run-time environment implementation for LSM.
+*/
+#if defined(__GNUC__) || defined(__TINYC__)
+/* workaround for ftruncate() visibility on gcc. */
+# ifndef _XOPEN_SOURCE
+# define _XOPEN_SOURCE 500
+# endif
+#endif
+
+#include <unistd.h>
+#include <sys/types.h>
+
+#include <sys/stat.h>
+#include <fcntl.h>
+#include <assert.h>
+#include <string.h>
+
+#include <stdlib.h>
+#include <stdarg.h>
+#include <stdio.h>
+#include <ctype.h>
+
+#include <unistd.h>
+#include <errno.h>
+
+#include <sys/mman.h>
+#include "lsmInt.h"
+
+/* There is no fdatasync() call on Android */
+#ifdef __ANDROID__
+# define fdatasync(x) fsync(x)
+#endif
+
+/*
+** An open file is an instance of the following object
+*/
+typedef struct PosixFile PosixFile;
+struct PosixFile {
+ lsm_env *pEnv; /* The run-time environment */
+ const char *zName; /* Full path to file */
+ int fd; /* The open file descriptor */
+ int shmfd; /* Shared memory file-descriptor */
+ void *pMap; /* Pointer to mapping of file fd */
+ off_t nMap; /* Size of mapping at pMap in bytes */
+ int nShm; /* Number of entries in array apShm[] */
+ void **apShm; /* Array of 32K shared memory segments */
+};
+
+static char *posixShmFile(PosixFile *p){
+ char *zShm;
+ int nName = strlen(p->zName);
+ zShm = (char *)lsmMalloc(p->pEnv, nName+4+1);
+ if( zShm ){
+ memcpy(zShm, p->zName, nName);
+ memcpy(&zShm[nName], "-shm", 5);
+ }
+ return zShm;
+}
+
+static int lsmPosixOsOpen(
+ lsm_env *pEnv,
+ const char *zFile,
+ int flags,
+ lsm_file **ppFile
+){
+ int rc = LSM_OK;
+ PosixFile *p;
+
+ p = lsm_malloc(pEnv, sizeof(PosixFile));
+ if( p==0 ){
+ rc = LSM_NOMEM;
+ }else{
+ int bReadonly = (flags & LSM_OPEN_READONLY);
+ int oflags = (bReadonly ? O_RDONLY : (O_RDWR|O_CREAT));
+ memset(p, 0, sizeof(PosixFile));
+ p->zName = zFile;
+ p->pEnv = pEnv;
+ p->fd = open(zFile, oflags, 0644);
+ if( p->fd<0 ){
+ lsm_free(pEnv, p);
+ p = 0;
+ if( errno==ENOENT ){
+ rc = lsmErrorBkpt(LSM_IOERR_NOENT);
+ }else{
+ rc = LSM_IOERR_BKPT;
+ }
+ }
+ }
+
+ *ppFile = (lsm_file *)p;
+ return rc;
+}
+
+static int lsmPosixOsWrite(
+ lsm_file *pFile, /* File to write to */
+ lsm_i64 iOff, /* Offset to write to */
+ void *pData, /* Write data from this buffer */
+ int nData /* Bytes of data to write */
+){
+ int rc = LSM_OK;
+ PosixFile *p = (PosixFile *)pFile;
+ off_t offset;
+
+ offset = lseek(p->fd, (off_t)iOff, SEEK_SET);
+ if( offset!=iOff ){
+ rc = LSM_IOERR_BKPT;
+ }else{
+ ssize_t prc = write(p->fd, pData, (size_t)nData);
+ if( prc<0 ) rc = LSM_IOERR_BKPT;
+ }
+
+ return rc;
+}
+
+static int lsmPosixOsTruncate(
+ lsm_file *pFile, /* File to write to */
+ lsm_i64 nSize /* Size to truncate file to */
+){
+ PosixFile *p = (PosixFile *)pFile;
+ int rc = LSM_OK; /* Return code */
+ int prc; /* Posix Return Code */
+ struct stat sStat; /* Result of fstat() invocation */
+
+ prc = fstat(p->fd, &sStat);
+ if( prc==0 && sStat.st_size>nSize ){
+ prc = ftruncate(p->fd, (off_t)nSize);
+ }
+ if( prc<0 ) rc = LSM_IOERR_BKPT;
+
+ return rc;
+}
+
+static int lsmPosixOsRead(
+ lsm_file *pFile, /* File to read from */
+ lsm_i64 iOff, /* Offset to read from */
+ void *pData, /* Read data into this buffer */
+ int nData /* Bytes of data to read */
+){
+ int rc = LSM_OK;
+ PosixFile *p = (PosixFile *)pFile;
+ off_t offset;
+
+ offset = lseek(p->fd, (off_t)iOff, SEEK_SET);
+ if( offset!=iOff ){
+ rc = LSM_IOERR_BKPT;
+ }else{
+ ssize_t prc = read(p->fd, pData, (size_t)nData);
+ if( prc<0 ){
+ rc = LSM_IOERR_BKPT;
+ }else if( prc<nData ){
+ memset(&((u8 *)pData)[prc], 0, nData - prc);
+ }
+
+ }
+
+ return rc;
+}
+
+static int lsmPosixOsSync(lsm_file *pFile){
+ int rc = LSM_OK;
+
+#ifndef LSM_NO_SYNC
+ PosixFile *p = (PosixFile *)pFile;
+ int prc = 0;
+
+ if( p->pMap ){
+ prc = msync(p->pMap, p->nMap, MS_SYNC);
+ }
+ if( prc==0 ) prc = fdatasync(p->fd);
+ if( prc<0 ) rc = LSM_IOERR_BKPT;
+#else
+ (void)pFile;
+#endif
+
+ return rc;
+}
+
+static int lsmPosixOsSectorSize(lsm_file *pFile){
+ return 512;
+}
+
+static int lsmPosixOsRemap(
+ lsm_file *pFile,
+ lsm_i64 iMin,
+ void **ppOut,
+ lsm_i64 *pnOut
+){
+ off_t iSz;
+ int prc;
+ PosixFile *p = (PosixFile *)pFile;
+ struct stat buf;
+
+ /* If the file is between 0 and 2MB in size, extend it in chunks of 256K.
+ ** Thereafter, in chunks of 1MB at a time. */
+ const int aIncrSz[] = {256*1024, 1024*1024};
+ int nIncrSz = aIncrSz[iMin>(2*1024*1024)];
+
+ if( p->pMap ){
+ munmap(p->pMap, p->nMap);
+ *ppOut = p->pMap = 0;
+ *pnOut = p->nMap = 0;
+ }
+
+ if( iMin>=0 ){
+ memset(&buf, 0, sizeof(buf));
+ prc = fstat(p->fd, &buf);
+ if( prc!=0 ) return LSM_IOERR_BKPT;
+ iSz = buf.st_size;
+ if( iSz<iMin ){
+ iSz = ((iMin + nIncrSz-1) / nIncrSz) * nIncrSz;
+ prc = ftruncate(p->fd, iSz);
+ if( prc!=0 ) return LSM_IOERR_BKPT;
+ }
+
+ p->pMap = mmap(0, iSz, PROT_READ|PROT_WRITE, MAP_SHARED, p->fd, 0);
+ p->nMap = iSz;
+ }
+
+ *ppOut = p->pMap;
+ *pnOut = p->nMap;
+ return LSM_OK;
+}
+
+static int lsmPosixOsFullpath(
+ lsm_env *pEnv,
+ const char *zName,
+ char *zOut,
+ int *pnOut
+){
+ int nBuf = *pnOut;
+ int nReq;
+
+ if( zName[0]!='/' ){
+ char *z;
+ char *zTmp;
+ int nTmp = 512;
+ zTmp = lsmMalloc(pEnv, nTmp);
+ while( zTmp ){
+ z = getcwd(zTmp, nTmp);
+ if( z || errno!=ERANGE ) break;
+ nTmp = nTmp*2;
+ zTmp = lsmReallocOrFree(pEnv, zTmp, nTmp);
+ }
+ if( zTmp==0 ) return LSM_NOMEM_BKPT;
+ if( z==0 ) return LSM_IOERR_BKPT;
+ assert( z==zTmp );
+
+ nTmp = strlen(zTmp);
+ nReq = nTmp + 1 + strlen(zName) + 1;
+ if( nReq<=nBuf ){
+ memcpy(zOut, zTmp, nTmp);
+ zOut[nTmp] = '/';
+ memcpy(&zOut[nTmp+1], zName, strlen(zName)+1);
+ }
+ lsmFree(pEnv, zTmp);
+ }else{
+ nReq = strlen(zName)+1;
+ if( nReq<=nBuf ){
+ memcpy(zOut, zName, strlen(zName)+1);
+ }
+ }
+
+ *pnOut = nReq;
+ return LSM_OK;
+}
+
+static int lsmPosixOsFileid(
+ lsm_file *pFile,
+ void *pBuf,
+ int *pnBuf
+){
+ int prc;
+ int nBuf;
+ int nReq;
+ PosixFile *p = (PosixFile *)pFile;
+ struct stat buf;
+
+ nBuf = *pnBuf;
+ nReq = (sizeof(buf.st_dev) + sizeof(buf.st_ino));
+ *pnBuf = nReq;
+ if( nReq>nBuf ) return LSM_OK;
+
+ memset(&buf, 0, sizeof(buf));
+ prc = fstat(p->fd, &buf);
+ if( prc!=0 ) return LSM_IOERR_BKPT;
+
+ memcpy(pBuf, &buf.st_dev, sizeof(buf.st_dev));
+ memcpy(&(((u8 *)pBuf)[sizeof(buf.st_dev)]), &buf.st_ino, sizeof(buf.st_ino));
+ return LSM_OK;
+}
+
+static int lsmPosixOsUnlink(lsm_env *pEnv, const char *zFile){
+ int prc = unlink(zFile);
+ return prc ? LSM_IOERR_BKPT : LSM_OK;
+}
+
+int lsmPosixOsLock(lsm_file *pFile, int iLock, int eType){
+ int rc = LSM_OK;
+ PosixFile *p = (PosixFile *)pFile;
+ static const short aType[3] = { F_UNLCK, F_RDLCK, F_WRLCK };
+ struct flock lock;
+
+ assert( aType[LSM_LOCK_UNLOCK]==F_UNLCK );
+ assert( aType[LSM_LOCK_SHARED]==F_RDLCK );
+ assert( aType[LSM_LOCK_EXCL]==F_WRLCK );
+ assert( eType>=0 && eType<array_size(aType) );
+ assert( iLock>0 && iLock<=32 );
+
+ memset(&lock, 0, sizeof(lock));
+ lock.l_whence = SEEK_SET;
+ lock.l_len = 1;
+ lock.l_type = aType[eType];
+ lock.l_start = (4096-iLock);
+
+ if( fcntl(p->fd, F_SETLK, &lock) ){
+ int e = errno;
+ if( e==EACCES || e==EAGAIN ){
+ rc = LSM_BUSY;
+ }else{
+ rc = LSM_IOERR_BKPT;
+ }
+ }
+
+ return rc;
+}
+
+int lsmPosixOsTestLock(lsm_file *pFile, int iLock, int nLock, int eType){
+ int rc = LSM_OK;
+ PosixFile *p = (PosixFile *)pFile;
+ static const short aType[3] = { 0, F_RDLCK, F_WRLCK };
+ struct flock lock;
+
+ assert( eType==LSM_LOCK_SHARED || eType==LSM_LOCK_EXCL );
+ assert( aType[LSM_LOCK_SHARED]==F_RDLCK );
+ assert( aType[LSM_LOCK_EXCL]==F_WRLCK );
+ assert( eType>=0 && eType<array_size(aType) );
+ assert( iLock>0 && iLock<=32 );
+
+ memset(&lock, 0, sizeof(lock));
+ lock.l_whence = SEEK_SET;
+ lock.l_len = nLock;
+ lock.l_type = aType[eType];
+ lock.l_start = (4096-iLock);
+
+ if( fcntl(p->fd, F_GETLK, &lock) ){
+ rc = LSM_IOERR_BKPT;
+ }else if( lock.l_type!=F_UNLCK ){
+ rc = LSM_BUSY;
+ }
+
+ return rc;
+}
+
+int lsmPosixOsShmMap(lsm_file *pFile, int iChunk, int sz, void **ppShm){
+ PosixFile *p = (PosixFile *)pFile;
+
+ *ppShm = 0;
+ assert( sz==LSM_SHM_CHUNK_SIZE );
+ if( iChunk>=p->nShm ){
+ int i;
+ void **apNew;
+ int nNew = iChunk+1;
+ off_t nReq = nNew * LSM_SHM_CHUNK_SIZE;
+ struct stat sStat;
+
+ /* If the shared-memory file has not been opened, open it now. */
+ if( p->shmfd<=0 ){
+ char *zShm = posixShmFile(p);
+ if( !zShm ) return LSM_NOMEM_BKPT;
+ p->shmfd = open(zShm, O_RDWR|O_CREAT, 0644);
+ lsmFree(p->pEnv, zShm);
+ if( p->shmfd<0 ){
+ return LSM_IOERR_BKPT;
+ }
+ }
+
+ /* If the shared-memory file is not large enough to contain the
+ ** requested chunk, cause it to grow. */
+ if( fstat(p->shmfd, &sStat) ){
+ return LSM_IOERR_BKPT;
+ }
+ if( sStat.st_size<nReq ){
+ if( ftruncate(p->shmfd, nReq) ){
+ return LSM_IOERR_BKPT;
+ }
+ }
+
+ apNew = (void **)lsmRealloc(p->pEnv, p->apShm, sizeof(void *) * nNew);
+ if( !apNew ) return LSM_NOMEM_BKPT;
+ for(i=p->nShm; i<nNew; i++){
+ apNew[i] = 0;
+ }
+ p->apShm = apNew;
+ p->nShm = nNew;
+ }
+
+ if( p->apShm[iChunk]==0 ){
+ p->apShm[iChunk] = mmap(0, LSM_SHM_CHUNK_SIZE,
+ PROT_READ|PROT_WRITE, MAP_SHARED, p->shmfd, iChunk*LSM_SHM_CHUNK_SIZE
+ );
+ if( p->apShm[iChunk]==0 ) return LSM_IOERR_BKPT;
+ }
+
+ *ppShm = p->apShm[iChunk];
+ return LSM_OK;
+}
+
+void lsmPosixOsShmBarrier(void){
+}
+
+int lsmPosixOsShmUnmap(lsm_file *pFile, int bDelete){
+ PosixFile *p = (PosixFile *)pFile;
+ if( p->shmfd>0 ){
+ int i;
+ for(i=0; i<p->nShm; i++){
+ if( p->apShm[i] ){
+ munmap(p->apShm[i], LSM_SHM_CHUNK_SIZE);
+ p->apShm[i] = 0;
+ }
+ }
+ close(p->shmfd);
+ p->shmfd = 0;
+ if( bDelete ){
+ char *zShm = posixShmFile(p);
+ if( zShm ) unlink(zShm);
+ lsmFree(p->pEnv, zShm);
+ }
+ }
+ return LSM_OK;
+}
+
+
+static int lsmPosixOsClose(lsm_file *pFile){
+ PosixFile *p = (PosixFile *)pFile;
+ lsmPosixOsShmUnmap(pFile, 0);
+ if( p->pMap ) munmap(p->pMap, p->nMap);
+ close(p->fd);
+ lsm_free(p->pEnv, p->apShm);
+ lsm_free(p->pEnv, p);
+ return LSM_OK;
+}
+
+static int lsmPosixOsSleep(lsm_env *pEnv, int us){
+#if 0
+ /* Apparently on Android usleep() returns void */
+ if( usleep(us) ) return LSM_IOERR;
+#endif
+ usleep(us);
+ return LSM_OK;
+}
+
+/****************************************************************************
+** Memory allocation routines.
+*/
+#define BLOCK_HDR_SIZE ROUND8( sizeof(size_t) )
+
+static void *lsmPosixOsMalloc(lsm_env *pEnv, size_t N){
+ unsigned char * m;
+ N += BLOCK_HDR_SIZE;
+ m = (unsigned char *)malloc(N);
+ *((size_t*)m) = N;
+ return m + BLOCK_HDR_SIZE;
+}
+
+static void lsmPosixOsFree(lsm_env *pEnv, void *p){
+ if(p){
+ free( ((unsigned char *)p) - BLOCK_HDR_SIZE );
+ }
+}
+
+static void *lsmPosixOsRealloc(lsm_env *pEnv, void *p, size_t N){
+ unsigned char * m = (unsigned char *)p;
+ if(1>N){
+ lsmPosixOsFree( pEnv, p );
+ return NULL;
+ }else if(NULL==p){
+ return lsmPosixOsMalloc(pEnv, N);
+ }else{
+ void * re = NULL;
+ m -= BLOCK_HDR_SIZE;
+#if 0 /* arguable: don't shrink */
+ size_t * sz = (size_t*)m;
+ if(*sz >= (size_t)N){
+ return p;
+ }
+#endif
+ re = realloc( m, N + BLOCK_HDR_SIZE );
+ if(re){
+ m = (unsigned char *)re;
+ *((size_t*)m) = N;
+ return m + BLOCK_HDR_SIZE;
+ }else{
+ return NULL;
+ }
+ }
+}
+
+static size_t lsmPosixOsMSize(lsm_env *pEnv, void *p){
+ unsigned char * m = (unsigned char *)p;
+ return *((size_t*)(m-BLOCK_HDR_SIZE));
+}
+#undef BLOCK_HDR_SIZE
+
+
+#ifdef LSM_MUTEX_PTHREADS
+/*************************************************************************
+** Mutex methods for pthreads based systems. If LSM_MUTEX_PTHREADS is
+** missing then a no-op implementation of mutexes found in lsm_mutex.c
+** will be used instead.
+*/
+#include <pthread.h>
+
+typedef struct PthreadMutex PthreadMutex;
+struct PthreadMutex {
+ lsm_env *pEnv;
+ pthread_mutex_t mutex;
+#ifdef LSM_DEBUG
+ pthread_t owner;
+#endif
+};
+
+#ifdef LSM_DEBUG
+# define LSM_PTHREAD_STATIC_MUTEX { 0, PTHREAD_MUTEX_INITIALIZER, 0 }
+#else
+# define LSM_PTHREAD_STATIC_MUTEX { 0, PTHREAD_MUTEX_INITIALIZER }
+#endif
+
+static int lsmPosixOsMutexStatic(
+ lsm_env *pEnv,
+ int iMutex,
+ lsm_mutex **ppStatic
+){
+ static PthreadMutex sMutex[2] = {
+ LSM_PTHREAD_STATIC_MUTEX,
+ LSM_PTHREAD_STATIC_MUTEX
+ };
+
+ assert( iMutex==LSM_MUTEX_GLOBAL || iMutex==LSM_MUTEX_HEAP );
+ assert( LSM_MUTEX_GLOBAL==1 && LSM_MUTEX_HEAP==2 );
+
+ *ppStatic = (lsm_mutex *)&sMutex[iMutex-1];
+ return LSM_OK;
+}
+
+static int lsmPosixOsMutexNew(lsm_env *pEnv, lsm_mutex **ppNew){
+ PthreadMutex *pMutex; /* Pointer to new mutex */
+ pthread_mutexattr_t attr; /* Attributes object */
+
+ pMutex = (PthreadMutex *)lsmMallocZero(pEnv, sizeof(PthreadMutex));
+ if( !pMutex ) return LSM_NOMEM_BKPT;
+
+ pMutex->pEnv = pEnv;
+ pthread_mutexattr_init(&attr);
+ pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
+ pthread_mutex_init(&pMutex->mutex, &attr);
+ pthread_mutexattr_destroy(&attr);
+
+ *ppNew = (lsm_mutex *)pMutex;
+ return LSM_OK;
+}
+
+static void lsmPosixOsMutexDel(lsm_mutex *p){
+ PthreadMutex *pMutex = (PthreadMutex *)p;
+ pthread_mutex_destroy(&pMutex->mutex);
+ lsmFree(pMutex->pEnv, pMutex);
+}
+
+static void lsmPosixOsMutexEnter(lsm_mutex *p){
+ PthreadMutex *pMutex = (PthreadMutex *)p;
+ pthread_mutex_lock(&pMutex->mutex);
+
+#ifdef LSM_DEBUG
+ assert( !pthread_equal(pMutex->owner, pthread_self()) );
+ pMutex->owner = pthread_self();
+ assert( pthread_equal(pMutex->owner, pthread_self()) );
+#endif
+}
+
+static int lsmPosixOsMutexTry(lsm_mutex *p){
+ int ret;
+ PthreadMutex *pMutex = (PthreadMutex *)p;
+ ret = pthread_mutex_trylock(&pMutex->mutex);
+#ifdef LSM_DEBUG
+ if( ret==0 ){
+ assert( !pthread_equal(pMutex->owner, pthread_self()) );
+ pMutex->owner = pthread_self();
+ assert( pthread_equal(pMutex->owner, pthread_self()) );
+ }
+#endif
+ return ret;
+}
+
+static void lsmPosixOsMutexLeave(lsm_mutex *p){
+ PthreadMutex *pMutex = (PthreadMutex *)p;
+#ifdef LSM_DEBUG
+ assert( pthread_equal(pMutex->owner, pthread_self()) );
+ pMutex->owner = 0;
+ assert( !pthread_equal(pMutex->owner, pthread_self()) );
+#endif
+ pthread_mutex_unlock(&pMutex->mutex);
+}
+
+#ifdef LSM_DEBUG
+static int lsmPosixOsMutexHeld(lsm_mutex *p){
+ PthreadMutex *pMutex = (PthreadMutex *)p;
+ return pMutex ? pthread_equal(pMutex->owner, pthread_self()) : 1;
+}
+static int lsmPosixOsMutexNotHeld(lsm_mutex *p){
+ PthreadMutex *pMutex = (PthreadMutex *)p;
+ return pMutex ? !pthread_equal(pMutex->owner, pthread_self()) : 1;
+}
+#endif
+/*
+** End of pthreads mutex implementation.
+*************************************************************************/
+#else
+/*************************************************************************
+** Noop mutex implementation
+*/
+typedef struct NoopMutex NoopMutex;
+struct NoopMutex {
+ lsm_env *pEnv; /* Environment handle (for xFree()) */
+ int bHeld; /* True if mutex is held */
+ int bStatic; /* True for a static mutex */
+};
+static NoopMutex aStaticNoopMutex[2] = {
+ {0, 0, 1},
+ {0, 0, 1},
+};
+
+static int lsmPosixOsMutexStatic(
+ lsm_env *pEnv,
+ int iMutex,
+ lsm_mutex **ppStatic
+){
+ assert( iMutex>=1 && iMutex<=(int)array_size(aStaticNoopMutex) );
+ *ppStatic = (lsm_mutex *)&aStaticNoopMutex[iMutex-1];
+ return LSM_OK;
+}
+static int lsmPosixOsMutexNew(lsm_env *pEnv, lsm_mutex **ppNew){
+ NoopMutex *p;
+ p = (NoopMutex *)lsmMallocZero(pEnv, sizeof(NoopMutex));
+ if( p ) p->pEnv = pEnv;
+ *ppNew = (lsm_mutex *)p;
+ return (p ? LSM_OK : LSM_NOMEM_BKPT);
+}
+static void lsmPosixOsMutexDel(lsm_mutex *pMutex) {
+ NoopMutex *p = (NoopMutex *)pMutex;
+ assert( p->bStatic==0 && p->pEnv );
+ lsmFree(p->pEnv, p);
+}
+static void lsmPosixOsMutexEnter(lsm_mutex *pMutex){
+ NoopMutex *p = (NoopMutex *)pMutex;
+ assert( p->bHeld==0 );
+ p->bHeld = 1;
+}
+static int lsmPosixOsMutexTry(lsm_mutex *pMutex){
+ NoopMutex *p = (NoopMutex *)pMutex;
+ assert( p->bHeld==0 );
+ p->bHeld = 1;
+ return 0;
+}
+static void lsmPosixOsMutexLeave(lsm_mutex *pMutex){
+ NoopMutex *p = (NoopMutex *)pMutex;
+ assert( p->bHeld==1 );
+ p->bHeld = 0;
+}
+#ifdef LSM_DEBUG
+static int lsmPosixOsMutexHeld(lsm_mutex *pMutex){
+ NoopMutex *p = (NoopMutex *)pMutex;
+ return p ? p->bHeld : 1;
+}
+static int lsmPosixOsMutexNotHeld(lsm_mutex *pMutex){
+ NoopMutex *p = (NoopMutex *)pMutex;
+ return p ? !p->bHeld : 1;
+}
+#endif
+/***************************************************************************/
+#endif /* else LSM_MUTEX_NONE */
+
+/* Without LSM_DEBUG, the MutexHeld tests are never called */
+#ifndef LSM_DEBUG
+# define lsmPosixOsMutexHeld 0
+# define lsmPosixOsMutexNotHeld 0
+#endif
+
+lsm_env *lsm_default_env(void){
+ static lsm_env posix_env = {
+ sizeof(lsm_env), /* nByte */
+ 1, /* iVersion */
+ /***** file i/o ******************/
+ 0, /* pVfsCtx */
+ lsmPosixOsFullpath, /* xFullpath */
+ lsmPosixOsOpen, /* xOpen */
+ lsmPosixOsRead, /* xRead */
+ lsmPosixOsWrite, /* xWrite */
+ lsmPosixOsTruncate, /* xTruncate */
+ lsmPosixOsSync, /* xSync */
+ lsmPosixOsSectorSize, /* xSectorSize */
+ lsmPosixOsRemap, /* xRemap */
+ lsmPosixOsFileid, /* xFileid */
+ lsmPosixOsClose, /* xClose */
+ lsmPosixOsUnlink, /* xUnlink */
+ lsmPosixOsLock, /* xLock */
+ lsmPosixOsTestLock, /* xTestLock */
+ lsmPosixOsShmMap, /* xShmMap */
+ lsmPosixOsShmBarrier, /* xShmBarrier */
+ lsmPosixOsShmUnmap, /* xShmUnmap */
+ /***** memory allocation *********/
+ 0, /* pMemCtx */
+ lsmPosixOsMalloc, /* xMalloc */
+ lsmPosixOsRealloc, /* xRealloc */
+ lsmPosixOsFree, /* xFree */
+ lsmPosixOsMSize, /* xSize */
+ /***** mutexes *********************/
+ 0, /* pMutexCtx */
+ lsmPosixOsMutexStatic, /* xMutexStatic */
+ lsmPosixOsMutexNew, /* xMutexNew */
+ lsmPosixOsMutexDel, /* xMutexDel */
+ lsmPosixOsMutexEnter, /* xMutexEnter */
+ lsmPosixOsMutexTry, /* xMutexTry */
+ lsmPosixOsMutexLeave, /* xMutexLeave */
+ lsmPosixOsMutexHeld, /* xMutexHeld */
+ lsmPosixOsMutexNotHeld, /* xMutexNotHeld */
+ /***** other *********************/
+ lsmPosixOsSleep, /* xSleep */
+ };
+ return &posix_env;
+}
--- /dev/null
+
+/*
+** 2012-02-08
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** SQLite4-compatible varint implementation.
+*/
+#include "lsmInt.h"
+
+/*************************************************************************
+** The following is a copy of the varint.c module from SQLite 4.
+*/
+
+/*
+** Decode the varint in z[]. Write the integer value into *pResult and
+** return the number of bytes in the varint.
+*/
+static int lsmSqlite4GetVarint64(const unsigned char *z, u64 *pResult){
+ unsigned int x;
+ if( z[0]<=240 ){
+ *pResult = z[0];
+ return 1;
+ }
+ if( z[0]<=248 ){
+ *pResult = (z[0]-241)*256 + z[1] + 240;
+ return 2;
+ }
+ if( z[0]==249 ){
+ *pResult = 2288 + 256*z[1] + z[2];
+ return 3;
+ }
+ if( z[0]==250 ){
+ *pResult = (z[1]<<16) + (z[2]<<8) + z[3];
+ return 4;
+ }
+ x = (z[1]<<24) + (z[2]<<16) + (z[3]<<8) + z[4];
+ if( z[0]==251 ){
+ *pResult = x;
+ return 5;
+ }
+ if( z[0]==252 ){
+ *pResult = (((u64)x)<<8) + z[5];
+ return 6;
+ }
+ if( z[0]==253 ){
+ *pResult = (((u64)x)<<16) + (z[5]<<8) + z[6];
+ return 7;
+ }
+ if( z[0]==254 ){
+ *pResult = (((u64)x)<<24) + (z[5]<<16) + (z[6]<<8) + z[7];
+ return 8;
+ }
+ *pResult = (((u64)x)<<32) +
+ (0xffffffff & ((z[5]<<24) + (z[6]<<16) + (z[7]<<8) + z[8]));
+ return 9;
+}
+
+/*
+** Write a 32-bit unsigned integer as 4 big-endian bytes.
+*/
+static void lsmVarintWrite32(unsigned char *z, unsigned int y){
+ z[0] = (unsigned char)(y>>24);
+ z[1] = (unsigned char)(y>>16);
+ z[2] = (unsigned char)(y>>8);
+ z[3] = (unsigned char)(y);
+}
+
+/*
+** Write a varint into z[]. The buffer z[] must be at least 9 characters
+** long to accommodate the largest possible varint. Return the number of
+** bytes of z[] used.
+*/
+static int lsmSqlite4PutVarint64(unsigned char *z, u64 x){
+ unsigned int w, y;
+ if( x<=240 ){
+ z[0] = (unsigned char)x;
+ return 1;
+ }
+ if( x<=2287 ){
+ y = (unsigned int)(x - 240);
+ z[0] = (unsigned char)(y/256 + 241);
+ z[1] = (unsigned char)(y%256);
+ return 2;
+ }
+ if( x<=67823 ){
+ y = (unsigned int)(x - 2288);
+ z[0] = 249;
+ z[1] = (unsigned char)(y/256);
+ z[2] = (unsigned char)(y%256);
+ return 3;
+ }
+ y = (unsigned int)x;
+ w = (unsigned int)(x>>32);
+ if( w==0 ){
+ if( y<=16777215 ){
+ z[0] = 250;
+ z[1] = (unsigned char)(y>>16);
+ z[2] = (unsigned char)(y>>8);
+ z[3] = (unsigned char)(y);
+ return 4;
+ }
+ z[0] = 251;
+ lsmVarintWrite32(z+1, y);
+ return 5;
+ }
+ if( w<=255 ){
+ z[0] = 252;
+ z[1] = (unsigned char)w;
+ lsmVarintWrite32(z+2, y);
+ return 6;
+ }
+ if( w<=32767 ){
+ z[0] = 253;
+ z[1] = (unsigned char)(w>>8);
+ z[2] = (unsigned char)w;
+ lsmVarintWrite32(z+3, y);
+ return 7;
+ }
+ if( w<=16777215 ){
+ z[0] = 254;
+ z[1] = (unsigned char)(w>>16);
+ z[2] = (unsigned char)(w>>8);
+ z[3] = (unsigned char)w;
+ lsmVarintWrite32(z+4, y);
+ return 8;
+ }
+ z[0] = 255;
+ lsmVarintWrite32(z+1, w);
+ lsmVarintWrite32(z+5, y);
+ return 9;
+}
+
+/*
+** End of SQLite 4 code.
+*************************************************************************/
+
+int lsmVarintPut64(u8 *aData, i64 iVal){
+ return lsmSqlite4PutVarint64(aData, (u64)iVal);
+}
+
+int lsmVarintGet64(const u8 *aData, i64 *piVal){
+ return lsmSqlite4GetVarint64(aData, (u64 *)piVal);
+}
+
+int lsmVarintPut32(u8 *aData, int iVal){
+ return lsmSqlite4PutVarint64(aData, (u64)iVal);
+}
+
+int lsmVarintGet32(u8 *z, int *piVal){
+ u64 i;
+ int ret;
+
+ if( z[0]<=240 ){
+ *piVal = z[0];
+ return 1;
+ }
+ if( z[0]<=248 ){
+ *piVal = (z[0]-241)*256 + z[1] + 240;
+ return 2;
+ }
+ if( z[0]==249 ){
+ *piVal = 2288 + 256*z[1] + z[2];
+ return 3;
+ }
+ if( z[0]==250 ){
+ *piVal = (z[1]<<16) + (z[2]<<8) + z[3];
+ return 4;
+ }
+
+ ret = lsmSqlite4GetVarint64(z, &i);
+ *piVal = i;
+ return ret;
+}
+
+int lsmVarintLen32(int n){
+ u8 aData[9];
+ return lsmVarintPut32(aData, n);
+}
+
+/*
+** The argument is the first byte of a varint. This function returns the
+** total number of bytes in the entire varint (including the first byte).
+*/
+int lsmVarintSize(u8 c){
+ if( c<241 ) return 1;
+ if( c<249 ) return 2;
+ return (int)(c - 246);
+}
-C In\sthe\sshell\stool,\savoid\stesting\sif\s(sqlite3_vfs.xGetCurrentInt64)\sis\sNULL\sfor\sa\sversion\s1\sVFS.\sThis\sfield\sis\sonly\sdefined\sfor\sversion\s2\sand\sgreater.
-D 2015-11-16T08:54:10.841
+C Import\sthe\sLSM\scode\sfrom\sSQLite4\sfor\suse\sin\san\sexperimental\svirtual\stable.\nNB:\sThis\sis\sa\sspeculative\sexperiment\sand\scould\seasily\sresult\sin\sa\sdead-end\nbranch.
+D 2015-11-16T16:00:22.063
F Makefile.in d828db6afa6c1fa060d01e33e4674408df1942a1
F Makefile.linux-gcc 7bc79876b875010e8c8f9502eb935ca92aa3c434
F Makefile.msc e928e68168df69b353300ac87c10105206653a03
F ext/icu/README.txt d9fbbad0c2f647c3fdf715fc9fd64af53aedfc43
F ext/icu/icu.c b2732aef0b076e4276d9b39b5a33cec7a05e1413
F ext/icu/sqliteicu.h 728867a802baa5a96de7495e9689a8e01715ef37
+F ext/lsm1/Makefile a921a54e7364814897a6ea74638741c672f42f07
+F ext/lsm1/lsm.h d88fce3ea06730f7967159b7459b037e01d82df5
+F ext/lsm1/lsmInt.h bc270dd81b3355c7410b06a6d54dd3eb9493a3e8
+F ext/lsm1/lsm_ckpt.c e7907e782fe2e95de0833675e35e726e487cc4cd
+F ext/lsm1/lsm_file.c 63796f5741422064b146cfbffbaeaeda14b70175
+F ext/lsm1/lsm_log.c 5b3e855fcfb85de9fb86fcbf65696cc6886d3231
+F ext/lsm1/lsm_main.c f52eada2910f8a57bd4cafcee39c6c375f6b7ed8
+F ext/lsm1/lsm_mem.c 4c51ea9fa285ee6e35301b33491642d071740a0a
+F ext/lsm1/lsm_mutex.c 378edf0a2b142b4f7640ee982df06d50b98788ea
+F ext/lsm1/lsm_shared.c 54cc3a5157c6abd77f7d3ae60708b9f7bf022b3c
+F ext/lsm1/lsm_sorted.c aca377f4091263a1103cf409340130bcafd87939
+F ext/lsm1/lsm_str.c 77ebdd5040ddf267a6f724d4c83132d2dce8a226
+F ext/lsm1/lsm_tree.c 5d9fb2bc58a1a70c75126bd8d7198f7b627e165b
+F ext/lsm1/lsm_unix.c fcaf5b6738713f1229dc0e1a90393ecf24f787f2
+F ext/lsm1/lsm_varint.c b19ae9bd26b5a1e8402fb8a564b25d9542338a41
F ext/misc/amatch.c a1a8f66c29d40bd71b075546ddeddb477b17a2bb
F ext/misc/closure.c 0d2a038df8fbae7f19de42e7c7d71f2e4dc88704
F ext/misc/compress.c 122faa92d25033d6c3f07c39231de074ab3d2e83
F tool/warnings-clang.sh f6aa929dc20ef1f856af04a730772f59283631d4
F tool/warnings.sh 48bd54594752d5be3337f12c72f28d2080cb630b
F tool/win/sqlite.vsix deb315d026cc8400325c5863eef847784a219a2f
-P 791761ebac26c82ab67bdf867117ec5b5d8b20b0
-R a635725b446415a63ce3c96185f06f0a
-U dan
-Z ecc9df21b64c8edc0682f60d01379dbf
+P ad5fcaa583ef743d143b6c030e0d78019709fe71
+R c1b42294f3f880839d2371f275775b59
+T *branch * lsm-vtab
+T *sym-lsm-vtab *
+T -sym-trunk *
+U drh
+Z b1fe55788e9f370521e84a28fea017e9
-ad5fcaa583ef743d143b6c030e0d78019709fe71
\ No newline at end of file
+3d930501a2acb7f20932cfeb4e3fe308b4569cd6
\ No newline at end of file