#define AES_MAX_KEYLENGTH (15 * 16)
#define AES_MAX_KEYLENGTH_U32 (AES_MAX_KEYLENGTH / sizeof(u32))
+union aes_enckey_arch {
+ u32 rndkeys[AES_MAX_KEYLENGTH_U32];
+};
+
+union aes_invkey_arch {
+ u32 inv_rndkeys[AES_MAX_KEYLENGTH_U32];
+};
+
+/**
+ * struct aes_enckey - An AES key prepared for encryption
+ * @len: Key length in bytes: 16 for AES-128, 24 for AES-192, 32 for AES-256.
+ * @nrounds: Number of rounds: 10 for AES-128, 12 for AES-192, 14 for AES-256.
+ * This is '6 + @len / 4' and is cached so that AES implementations
+ * that need it don't have to recompute it for each en/decryption.
+ * @padding: Padding to make offsetof(@k) be a multiple of 16, so that aligning
+ * this struct to a 16-byte boundary results in @k also being 16-byte
+ * aligned. Users aren't required to align this struct to 16 bytes,
+ * but it may slightly improve performance.
+ * @k: This typically contains the AES round keys as an array of '@nrounds + 1'
+ * groups of four u32 words. However, architecture-specific implementations
+ * of AES may store something else here, e.g. just the raw key if it's all
+ * they need.
+ *
+ * Note that this struct is about half the size of struct aes_key. This is
+ * separate from struct aes_key so that modes that need only AES encryption
+ * (e.g. AES-GCM, AES-CTR, AES-CMAC, tweak key in AES-XTS) don't incur the time
+ * and space overhead of computing and caching the decryption round keys.
+ *
+ * Note that there's no decryption-only equivalent (i.e. "struct aes_deckey"),
+ * since (a) it's rare that modes need decryption-only, and (b) some AES
+ * implementations use the same @k for both encryption and decryption, either
+ * always or conditionally; in the latter case both @k and @inv_k are needed.
+ */
+struct aes_enckey {
+ u32 len;
+ u32 nrounds;
+ u32 padding[2];
+ union aes_enckey_arch k;
+};
+
+/**
+ * struct aes_key - An AES key prepared for encryption and decryption
+ * @aes_enckey: Common fields and the key prepared for encryption
+ * @inv_k: This generally contains the round keys for the AES Equivalent
+ * Inverse Cipher, as an array of '@nrounds + 1' groups of four u32
+ * words. However, architecture-specific implementations of AES may
+ * store something else here. For example, they may leave this field
+ * uninitialized if they use @k for both encryption and decryption.
+ */
+struct aes_key {
+ struct aes_enckey; /* Include all fields of aes_enckey. */
+ union aes_invkey_arch inv_k;
+};
+
/*
* Please ensure that the first two fields are 16-byte aligned
* relative to the start of the structure, i.e., don't move them!
/*
* validate key length for AES algorithms
*/
-static inline int aes_check_keylen(unsigned int keylen)
+static inline int aes_check_keylen(size_t keylen)
{
switch (keylen) {
case AES_KEYSIZE_128:
unsigned int key_len);
/**
- * aes_encrypt - Encrypt a single AES block
- * @ctx: Context struct containing the key schedule
- * @out: Buffer to store the ciphertext
- * @in: Buffer containing the plaintext
+ * aes_preparekey() - Prepare an AES key for encryption and decryption
+ * @key: (output) The key structure to initialize
+ * @in_key: The raw AES key
+ * @key_len: Length of the raw key in bytes. Should be either AES_KEYSIZE_128,
+ * AES_KEYSIZE_192, or AES_KEYSIZE_256.
+ *
+ * This prepares an AES key for both the encryption and decryption directions of
+ * the block cipher. Typically this involves expanding the raw key into both
+ * the standard round keys and the Equivalent Inverse Cipher round keys, but
+ * some architecture-specific implementations don't do the full expansion here.
+ *
+ * The caller is responsible for zeroizing both the struct aes_key and the raw
+ * key once they are no longer needed.
+ *
+ * If you don't need decryption support, use aes_prepareenckey() instead.
+ *
+ * Return: 0 on success or -EINVAL if the given key length is invalid. No other
+ * errors are possible, so callers that always pass a valid key length
+ * don't need to check for errors.
+ *
+ * Context: Any context.
+ */
+int aes_preparekey(struct aes_key *key, const u8 *in_key, size_t key_len);
+
+/**
+ * aes_prepareenckey() - Prepare an AES key for encryption-only
+ * @key: (output) The key structure to initialize
+ * @in_key: The raw AES key
+ * @key_len: Length of the raw key in bytes. Should be either AES_KEYSIZE_128,
+ * AES_KEYSIZE_192, or AES_KEYSIZE_256.
+ *
+ * This prepares an AES key for only the encryption direction of the block
+ * cipher. Typically this involves expanding the raw key into only the standard
+ * round keys, resulting in a struct about half the size of struct aes_key.
+ *
+ * The caller is responsible for zeroizing both the struct aes_enckey and the
+ * raw key once they are no longer needed.
+ *
+ * Note that while the resulting prepared key supports only AES encryption, it
+ * can still be used for decrypting in a mode of operation that uses AES in only
+ * the encryption (forward) direction, for example counter mode.
+ *
+ * Return: 0 on success or -EINVAL if the given key length is invalid. No other
+ * errors are possible, so callers that always pass a valid key length
+ * don't need to check for errors.
+ *
+ * Context: Any context.
+ */
+int aes_prepareenckey(struct aes_enckey *key, const u8 *in_key, size_t key_len);
+
+typedef union {
+ const struct aes_enckey *enc_key;
+ const struct aes_key *full_key;
+} aes_encrypt_arg __attribute__ ((__transparent_union__));
+
+/**
+ * aes_encrypt() - Encrypt a single AES block
+ * @key: The AES key, as a pointer to either an encryption-only key
+ * (struct aes_enckey) or a full, bidirectional key (struct aes_key).
+ * @out: Buffer to store the ciphertext block
+ * @in: Buffer containing the plaintext block
+ *
+ * Context: Any context.
*/
-void aes_encrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in);
+#define aes_encrypt(key, out, in) \
+ _Generic((key), \
+ struct crypto_aes_ctx *: aes_encrypt_old((const struct crypto_aes_ctx *)(key), (out), (in)), \
+ const struct crypto_aes_ctx *: aes_encrypt_old((const struct crypto_aes_ctx *)(key), (out), (in)), \
+ struct aes_enckey *: aes_encrypt_new((const struct aes_enckey *)(key), (out), (in)), \
+ const struct aes_enckey *: aes_encrypt_new((const struct aes_enckey *)(key), (out), (in)), \
+ struct aes_key *: aes_encrypt_new((const struct aes_key *)(key), (out), (in)), \
+ const struct aes_key *: aes_encrypt_new((const struct aes_key *)(key), (out), (in)))
+void aes_encrypt_old(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in);
+void aes_encrypt_new(aes_encrypt_arg key, u8 out[at_least AES_BLOCK_SIZE],
+ const u8 in[at_least AES_BLOCK_SIZE]);
/**
- * aes_decrypt - Decrypt a single AES block
- * @ctx: Context struct containing the key schedule
- * @out: Buffer to store the plaintext
- * @in: Buffer containing the ciphertext
+ * aes_decrypt() - Decrypt a single AES block
+ * @key: The AES key, previously initialized by aes_preparekey()
+ * @out: Buffer to store the plaintext block
+ * @in: Buffer containing the ciphertext block
+ *
+ * Context: Any context.
*/
-void aes_decrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in);
+#define aes_decrypt(key, out, in) \
+ _Generic((key), \
+ struct crypto_aes_ctx *: aes_decrypt_old((const struct crypto_aes_ctx *)(key), (out), (in)), \
+ const struct crypto_aes_ctx *: aes_decrypt_old((const struct crypto_aes_ctx *)(key), (out), (in)), \
+ struct aes_key *: aes_decrypt_new((const struct aes_key *)(key), (out), (in)), \
+ const struct aes_key *: aes_decrypt_new((const struct aes_key *)(key), (out), (in)))
+void aes_decrypt_old(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in);
+void aes_decrypt_new(const struct aes_key *key, u8 out[at_least AES_BLOCK_SIZE],
+ const u8 in[at_least AES_BLOCK_SIZE]);
extern const u8 crypto_aes_sbox[];
extern const u8 crypto_aes_inv_sbox[];
+extern const u32 aes_enc_tab[256];
+extern const u32 aes_dec_tab[256];
void aescfb_encrypt(const struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src,
int len, const u8 iv[AES_BLOCK_SIZE]);
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2017-2019 Linaro Ltd <ard.biesheuvel@linaro.org>
+ * Copyright 2026 Google LLC
*/
#include <crypto/aes.h>
+#include <linux/cache.h>
#include <linux/crypto.h>
#include <linux/export.h>
#include <linux/module.h>
EXPORT_SYMBOL(crypto_aes_sbox);
EXPORT_SYMBOL(crypto_aes_inv_sbox);
+/* aes_enc_tab[i] contains MixColumn([SubByte(i), 0, 0, 0]). */
+const u32 ____cacheline_aligned aes_enc_tab[256] = {
+ 0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6, 0x0df2f2ff, 0xbd6b6bd6,
+ 0xb16f6fde, 0x54c5c591, 0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56,
+ 0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec, 0x45caca8f, 0x9d82821f,
+ 0x40c9c989, 0x877d7dfa, 0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb,
+ 0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45, 0xbf9c9c23, 0xf7a4a453,
+ 0x967272e4, 0x5bc0c09b, 0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c,
+ 0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83, 0x5c343468, 0xf4a5a551,
+ 0x34e5e5d1, 0x08f1f1f9, 0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a,
+ 0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d, 0x28181830, 0xa1969637,
+ 0x0f05050a, 0xb59a9a2f, 0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df,
+ 0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea, 0x1b090912, 0x9e83831d,
+ 0x742c2c58, 0x2e1a1a34, 0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b,
+ 0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d, 0x7b292952, 0x3ee3e3dd,
+ 0x712f2f5e, 0x97848413, 0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1,
+ 0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6, 0xbe6a6ad4, 0x46cbcb8d,
+ 0xd9bebe67, 0x4b393972, 0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85,
+ 0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed, 0xc5434386, 0xd74d4d9a,
+ 0x55333366, 0x94858511, 0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe,
+ 0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b, 0xf35151a2, 0xfea3a35d,
+ 0xc0404080, 0x8a8f8f05, 0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1,
+ 0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142, 0x30101020, 0x1affffe5,
+ 0x0ef3f3fd, 0x6dd2d2bf, 0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3,
+ 0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e, 0x57c4c493, 0xf2a7a755,
+ 0x827e7efc, 0x473d3d7a, 0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6,
+ 0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3, 0x66222244, 0x7e2a2a54,
+ 0xab90903b, 0x8388880b, 0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428,
+ 0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad, 0x3be0e0db, 0x56323264,
+ 0x4e3a3a74, 0x1e0a0a14, 0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8,
+ 0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4, 0xa8919139, 0xa4959531,
+ 0x37e4e4d3, 0x8b7979f2, 0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda,
+ 0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949, 0xb46c6cd8, 0xfa5656ac,
+ 0x07f4f4f3, 0x25eaeacf, 0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810,
+ 0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c, 0x241c1c38, 0xf1a6a657,
+ 0xc7b4b473, 0x51c6c697, 0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e,
+ 0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f, 0x907070e0, 0x423e3e7c,
+ 0xc4b5b571, 0xaa6666cc, 0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c,
+ 0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969, 0x91868617, 0x58c1c199,
+ 0x271d1d3a, 0xb99e9e27, 0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122,
+ 0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433, 0xb69b9b2d, 0x221e1e3c,
+ 0x92878715, 0x20e9e9c9, 0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5,
+ 0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a, 0xdabfbf65, 0x31e6e6d7,
+ 0xc6424284, 0xb86868d0, 0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e,
+ 0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c,
+};
+EXPORT_SYMBOL(aes_enc_tab);
+
+/* aes_dec_tab[i] contains InvMixColumn([InvSubByte(i), 0, 0, 0]). */
+const u32 ____cacheline_aligned aes_dec_tab[256] = {
+ 0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a, 0xcb6bab3b, 0xf1459d1f,
+ 0xab58faac, 0x9303e34b, 0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5,
+ 0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5, 0x495ab1de, 0x671bba25,
+ 0x980eea45, 0xe1c0fe5d, 0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b,
+ 0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295, 0x2d83bed4, 0xd3217458,
+ 0x2969e049, 0x44c8c98e, 0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927,
+ 0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d, 0x184adf63, 0x82311ae5,
+ 0x60335197, 0x457f5362, 0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9,
+ 0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52, 0x23d373ab, 0xe2024b72,
+ 0x578f1fe3, 0x2aab5566, 0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3,
+ 0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed, 0x2b1ccf8a, 0x92b479a7,
+ 0xf0f207f3, 0xa1e2694e, 0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4,
+ 0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4, 0x39ec830b, 0xaaef6040,
+ 0x069f715e, 0x51106ebd, 0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d,
+ 0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060, 0x24fb9819, 0x97e9bdd6,
+ 0xcc434089, 0x779ed967, 0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879,
+ 0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000, 0x83868009, 0x48ed2b32,
+ 0xac70111e, 0x4e725a6c, 0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36,
+ 0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624, 0xb1670a0c, 0x0fe75793,
+ 0xd296eeb4, 0x9e919b1b, 0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c,
+ 0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12, 0x0b0d090e, 0xadc78bf2,
+ 0xb9a8b62d, 0xc8a91e14, 0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3,
+ 0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b, 0x7629438b, 0xdcc623cb,
+ 0x68fcedb6, 0x63f1e4b8, 0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684,
+ 0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7, 0x4b2f9e1d, 0xf330b2dc,
+ 0xec52860d, 0xd0e3c177, 0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947,
+ 0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322, 0xc74e4987, 0xc1d138d9,
+ 0xfea2ca8c, 0x360bd498, 0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f,
+ 0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54, 0xc2138df6, 0xe8b8d890,
+ 0x5ef7392e, 0xf5afc382, 0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf,
+ 0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb, 0x097826cd, 0xf418596e,
+ 0x01b79aec, 0xa89a4f83, 0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef,
+ 0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029, 0xafb2a431, 0x31233f2a,
+ 0x3094a5c6, 0xc066a235, 0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733,
+ 0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117, 0x8dd64d76, 0x4db0ef43,
+ 0x544daacc, 0xdf0496e4, 0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546,
+ 0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb, 0x5a1d67b3, 0x52d2db92,
+ 0x335610e9, 0x1347d66d, 0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb,
+ 0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a, 0x59dfd29c, 0x3f73f255,
+ 0x79ce1418, 0xbf37c773, 0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478,
+ 0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2, 0x72c31d16, 0x0c25e2bc,
+ 0x8b493c28, 0x41950dff, 0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664,
+ 0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0,
+};
+EXPORT_SYMBOL(aes_dec_tab);
+
+/* Prefetch data into L1 cache. @mem should be cacheline-aligned. */
+static __always_inline void aes_prefetch(const void *mem, size_t len)
+{
+ for (size_t i = 0; i < len; i += L1_CACHE_BYTES)
+ *(volatile const u8 *)(mem + i);
+ barrier();
+}
+
static u32 mul_by_x(u32 w)
{
u32 x = w & 0x7f7f7f7f;
(aes_sbox[(in >> 24) & 0xff] << 24);
}
-/**
- * aes_expandkey - Expands the AES key as described in FIPS-197
- * @ctx: The location where the computed key will be stored.
- * @in_key: The supplied key.
- * @key_len: The length of the supplied key.
- *
- * Returns 0 on success. The function fails only if an invalid key size (or
- * pointer) is supplied.
- * The expanded key size is 240 bytes (max of 14 rounds with a unique 16 bytes
- * key schedule plus a 16 bytes key which is used before the first round).
- * The decryption key is prepared for the "Equivalent Inverse Cipher" as
- * described in FIPS-197. The first slot (16 bytes) of each key (enc or dec) is
- * for the initial combination, the second slot for the first round and so on.
- */
-int aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
- unsigned int key_len)
+static void aes_expandkey_generic(u32 rndkeys[], u32 *inv_rndkeys,
+ const u8 *in_key, int key_len)
{
u32 kwords = key_len / sizeof(u32);
u32 rc, i, j;
- int err;
-
- err = aes_check_keylen(key_len);
- if (err)
- return err;
-
- ctx->key_length = key_len;
for (i = 0; i < kwords; i++)
- ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32));
+ rndkeys[i] = get_unaligned_le32(&in_key[i * sizeof(u32)]);
for (i = 0, rc = 1; i < 10; i++, rc = mul_by_x(rc)) {
- u32 *rki = ctx->key_enc + (i * kwords);
+ u32 *rki = &rndkeys[i * kwords];
u32 *rko = rki + kwords;
rko[0] = ror32(subw(rki[kwords - 1]), 8) ^ rc ^ rki[0];
* the Inverse Mix Columns transformation to all but the first and
* the last one.
*/
- ctx->key_dec[0] = ctx->key_enc[key_len + 24];
- ctx->key_dec[1] = ctx->key_enc[key_len + 25];
- ctx->key_dec[2] = ctx->key_enc[key_len + 26];
- ctx->key_dec[3] = ctx->key_enc[key_len + 27];
-
- for (i = 4, j = key_len + 20; j > 0; i += 4, j -= 4) {
- ctx->key_dec[i] = inv_mix_columns(ctx->key_enc[j]);
- ctx->key_dec[i + 1] = inv_mix_columns(ctx->key_enc[j + 1]);
- ctx->key_dec[i + 2] = inv_mix_columns(ctx->key_enc[j + 2]);
- ctx->key_dec[i + 3] = inv_mix_columns(ctx->key_enc[j + 3]);
- }
+ if (inv_rndkeys) {
+ inv_rndkeys[0] = rndkeys[key_len + 24];
+ inv_rndkeys[1] = rndkeys[key_len + 25];
+ inv_rndkeys[2] = rndkeys[key_len + 26];
+ inv_rndkeys[3] = rndkeys[key_len + 27];
+
+ for (i = 4, j = key_len + 20; j > 0; i += 4, j -= 4) {
+ inv_rndkeys[i] = inv_mix_columns(rndkeys[j]);
+ inv_rndkeys[i + 1] = inv_mix_columns(rndkeys[j + 1]);
+ inv_rndkeys[i + 2] = inv_mix_columns(rndkeys[j + 2]);
+ inv_rndkeys[i + 3] = inv_mix_columns(rndkeys[j + 3]);
+ }
- ctx->key_dec[i] = ctx->key_enc[0];
- ctx->key_dec[i + 1] = ctx->key_enc[1];
- ctx->key_dec[i + 2] = ctx->key_enc[2];
- ctx->key_dec[i + 3] = ctx->key_enc[3];
+ inv_rndkeys[i] = rndkeys[0];
+ inv_rndkeys[i + 1] = rndkeys[1];
+ inv_rndkeys[i + 2] = rndkeys[2];
+ inv_rndkeys[i + 3] = rndkeys[3];
+ }
+}
+int aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
+ unsigned int key_len)
+{
+ if (aes_check_keylen(key_len) != 0)
+ return -EINVAL;
+ ctx->key_length = key_len;
+ aes_expandkey_generic(ctx->key_enc, ctx->key_dec, in_key, key_len);
return 0;
}
EXPORT_SYMBOL(aes_expandkey);
-/**
- * aes_encrypt - Encrypt a single AES block
- * @ctx: Context struct containing the key schedule
- * @out: Buffer to store the ciphertext
- * @in: Buffer containing the plaintext
- */
-void aes_encrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in)
+void aes_encrypt_old(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in)
{
const u32 *rkp = ctx->key_enc + 4;
int rounds = 6 + ctx->key_length / 4;
put_unaligned_le32(subshift(st1, 2) ^ rkp[6], out + 8);
put_unaligned_le32(subshift(st1, 3) ^ rkp[7], out + 12);
}
-EXPORT_SYMBOL(aes_encrypt);
+EXPORT_SYMBOL(aes_encrypt_old);
-/**
- * aes_decrypt - Decrypt a single AES block
- * @ctx: Context struct containing the key schedule
- * @out: Buffer to store the plaintext
- * @in: Buffer containing the ciphertext
- */
-void aes_decrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in)
+static __always_inline u32 enc_quarterround(const u32 w[4], int i, u32 rk)
+{
+ return rk ^ aes_enc_tab[(u8)w[i]] ^
+ rol32(aes_enc_tab[(u8)(w[(i + 1) % 4] >> 8)], 8) ^
+ rol32(aes_enc_tab[(u8)(w[(i + 2) % 4] >> 16)], 16) ^
+ rol32(aes_enc_tab[(u8)(w[(i + 3) % 4] >> 24)], 24);
+}
+
+static __always_inline u32 enclast_quarterround(const u32 w[4], int i, u32 rk)
+{
+ return rk ^ ((aes_enc_tab[(u8)w[i]] & 0x0000ff00) >> 8) ^
+ (aes_enc_tab[(u8)(w[(i + 1) % 4] >> 8)] & 0x0000ff00) ^
+ ((aes_enc_tab[(u8)(w[(i + 2) % 4] >> 16)] & 0x0000ff00) << 8) ^
+ ((aes_enc_tab[(u8)(w[(i + 3) % 4] >> 24)] & 0x0000ff00) << 16);
+}
+
+static void __maybe_unused aes_encrypt_generic(const u32 rndkeys[], int nrounds,
+ u8 out[AES_BLOCK_SIZE],
+ const u8 in[AES_BLOCK_SIZE])
+{
+ const u32 *rkp = rndkeys;
+ int n = nrounds - 1;
+ u32 w[4];
+
+ w[0] = get_unaligned_le32(&in[0]) ^ *rkp++;
+ w[1] = get_unaligned_le32(&in[4]) ^ *rkp++;
+ w[2] = get_unaligned_le32(&in[8]) ^ *rkp++;
+ w[3] = get_unaligned_le32(&in[12]) ^ *rkp++;
+
+ /*
+ * Prefetch the table before doing data and key-dependent loads from it.
+ *
+ * This is intended only as a basic constant-time hardening measure that
+ * avoids interfering with performance too much. Its effectiveness is
+ * not guaranteed. For proper constant-time AES, a CPU that supports
+ * AES instructions should be used instead.
+ */
+ aes_prefetch(aes_enc_tab, sizeof(aes_enc_tab));
+
+ do {
+ u32 w0 = enc_quarterround(w, 0, *rkp++);
+ u32 w1 = enc_quarterround(w, 1, *rkp++);
+ u32 w2 = enc_quarterround(w, 2, *rkp++);
+ u32 w3 = enc_quarterround(w, 3, *rkp++);
+
+ w[0] = w0;
+ w[1] = w1;
+ w[2] = w2;
+ w[3] = w3;
+ } while (--n);
+
+ put_unaligned_le32(enclast_quarterround(w, 0, *rkp++), &out[0]);
+ put_unaligned_le32(enclast_quarterround(w, 1, *rkp++), &out[4]);
+ put_unaligned_le32(enclast_quarterround(w, 2, *rkp++), &out[8]);
+ put_unaligned_le32(enclast_quarterround(w, 3, *rkp++), &out[12]);
+}
+
+static __always_inline u32 dec_quarterround(const u32 w[4], int i, u32 rk)
+{
+ return rk ^ aes_dec_tab[(u8)w[i]] ^
+ rol32(aes_dec_tab[(u8)(w[(i + 3) % 4] >> 8)], 8) ^
+ rol32(aes_dec_tab[(u8)(w[(i + 2) % 4] >> 16)], 16) ^
+ rol32(aes_dec_tab[(u8)(w[(i + 1) % 4] >> 24)], 24);
+}
+
+static __always_inline u32 declast_quarterround(const u32 w[4], int i, u32 rk)
+{
+ return rk ^ aes_inv_sbox[(u8)w[i]] ^
+ ((u32)aes_inv_sbox[(u8)(w[(i + 3) % 4] >> 8)] << 8) ^
+ ((u32)aes_inv_sbox[(u8)(w[(i + 2) % 4] >> 16)] << 16) ^
+ ((u32)aes_inv_sbox[(u8)(w[(i + 1) % 4] >> 24)] << 24);
+}
+
+static void __maybe_unused aes_decrypt_generic(const u32 inv_rndkeys[],
+ int nrounds,
+ u8 out[AES_BLOCK_SIZE],
+ const u8 in[AES_BLOCK_SIZE])
+{
+ const u32 *rkp = inv_rndkeys;
+ int n = nrounds - 1;
+ u32 w[4];
+
+ w[0] = get_unaligned_le32(&in[0]) ^ *rkp++;
+ w[1] = get_unaligned_le32(&in[4]) ^ *rkp++;
+ w[2] = get_unaligned_le32(&in[8]) ^ *rkp++;
+ w[3] = get_unaligned_le32(&in[12]) ^ *rkp++;
+
+ aes_prefetch(aes_dec_tab, sizeof(aes_dec_tab));
+
+ do {
+ u32 w0 = dec_quarterround(w, 0, *rkp++);
+ u32 w1 = dec_quarterround(w, 1, *rkp++);
+ u32 w2 = dec_quarterround(w, 2, *rkp++);
+ u32 w3 = dec_quarterround(w, 3, *rkp++);
+
+ w[0] = w0;
+ w[1] = w1;
+ w[2] = w2;
+ w[3] = w3;
+ } while (--n);
+
+ aes_prefetch((const void *)aes_inv_sbox, sizeof(aes_inv_sbox));
+ put_unaligned_le32(declast_quarterround(w, 0, *rkp++), &out[0]);
+ put_unaligned_le32(declast_quarterround(w, 1, *rkp++), &out[4]);
+ put_unaligned_le32(declast_quarterround(w, 2, *rkp++), &out[8]);
+ put_unaligned_le32(declast_quarterround(w, 3, *rkp++), &out[12]);
+}
+
+void aes_decrypt_old(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in)
{
const u32 *rkp = ctx->key_dec + 4;
int rounds = 6 + ctx->key_length / 4;
put_unaligned_le32(inv_subshift(st1, 2) ^ rkp[6], out + 8);
put_unaligned_le32(inv_subshift(st1, 3) ^ rkp[7], out + 12);
}
-EXPORT_SYMBOL(aes_decrypt);
+EXPORT_SYMBOL(aes_decrypt_old);
+
+/*
+ * Note: the aes_prepare*key_* names reflect the fact that the implementation
+ * might not actually expand the key. (The s390 code for example doesn't.)
+ * Where the key is expanded we use the more specific names aes_expandkey_*.
+ *
+ * aes_preparekey_arch() is passed an optional pointer 'inv_k' which points to
+ * the area to store the prepared decryption key. It will be NULL if the user
+ * is requesting encryption-only. aes_preparekey_arch() is also passed a valid
+ * 'key_len' and 'nrounds', corresponding to AES-128, AES-192, or AES-256.
+ */
+#ifdef CONFIG_CRYPTO_LIB_AES_ARCH
+/* An arch-specific implementation of AES is available. Include it. */
+#include "aes.h" /* $(SRCARCH)/aes.h */
+#else
+/* No arch-specific implementation of AES is available. Use generic code. */
+
+static void aes_preparekey_arch(union aes_enckey_arch *k,
+ union aes_invkey_arch *inv_k,
+ const u8 *in_key, int key_len, int nrounds)
+{
+ aes_expandkey_generic(k->rndkeys, inv_k ? inv_k->inv_rndkeys : NULL,
+ in_key, key_len);
+}
+
+static void aes_encrypt_arch(const struct aes_enckey *key,
+ u8 out[AES_BLOCK_SIZE],
+ const u8 in[AES_BLOCK_SIZE])
+{
+ aes_encrypt_generic(key->k.rndkeys, key->nrounds, out, in);
+}
+
+static void aes_decrypt_arch(const struct aes_key *key,
+ u8 out[AES_BLOCK_SIZE],
+ const u8 in[AES_BLOCK_SIZE])
+{
+ aes_decrypt_generic(key->inv_k.inv_rndkeys, key->nrounds, out, in);
+}
+#endif
+
+static int __aes_preparekey(struct aes_enckey *enc_key,
+ union aes_invkey_arch *inv_k,
+ const u8 *in_key, size_t key_len)
+{
+ if (aes_check_keylen(key_len) != 0)
+ return -EINVAL;
+ enc_key->len = key_len;
+ enc_key->nrounds = 6 + key_len / 4;
+ aes_preparekey_arch(&enc_key->k, inv_k, in_key, key_len,
+ enc_key->nrounds);
+ return 0;
+}
+
+int aes_preparekey(struct aes_key *key, const u8 *in_key, size_t key_len)
+{
+ return __aes_preparekey((struct aes_enckey *)key, &key->inv_k,
+ in_key, key_len);
+}
+EXPORT_SYMBOL(aes_preparekey);
+
+int aes_prepareenckey(struct aes_enckey *key, const u8 *in_key, size_t key_len)
+{
+ return __aes_preparekey(key, NULL, in_key, key_len);
+}
+EXPORT_SYMBOL(aes_prepareenckey);
+
+void aes_encrypt_new(aes_encrypt_arg key, u8 out[AES_BLOCK_SIZE],
+ const u8 in[AES_BLOCK_SIZE])
+{
+ aes_encrypt_arch(key.enc_key, out, in);
+}
+EXPORT_SYMBOL(aes_encrypt_new);
+
+void aes_decrypt_new(const struct aes_key *key, u8 out[AES_BLOCK_SIZE],
+ const u8 in[AES_BLOCK_SIZE])
+{
+ aes_decrypt_arch(key, out, in);
+}
+EXPORT_SYMBOL(aes_decrypt_new);
+
+#ifdef aes_mod_init_arch
+static int __init aes_mod_init(void)
+{
+ aes_mod_init_arch();
+ return 0;
+}
+subsys_initcall(aes_mod_init);
+
+static void __exit aes_mod_exit(void)
+{
+}
+module_exit(aes_mod_exit);
+#endif
-MODULE_DESCRIPTION("Generic AES library");
+MODULE_DESCRIPTION("AES block cipher");
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
+MODULE_AUTHOR("Eric Biggers <ebiggers@kernel.org>");
MODULE_LICENSE("GPL v2");