- security status is copied when rdata is equal for rrsets.
- rrset id is updated to invalidate all the message cache entries
that refer to NSEC, NSEC3, DNAME rrsets that have changed.
+ - val_util work
6 August 2007: Wouter
- key cache for validator.
return NULL;
}
+struct ub_packed_rrset_key* reply_find_rrset_section_an(struct reply_info* rep,
+ uint8_t* name, size_t namelen, uint16_t type, uint16_t dclass)
+{
+ size_t i;
+ for(i=0; i<rep->an_numrrsets; i++) {
+ struct ub_packed_rrset_key* s = rep->rrsets[i];
+ if(ntohs(s->rk.type) == type &&
+ ntohs(s->rk.rrset_class) == dclass &&
+ namelen == s->rk.dname_len &&
+ query_dname_compare(name, s->rk.dname) == 0) {
+ return s;
+ }
+ }
+ return NULL;
+}
+
void
log_dns_msg(const char* str, struct query_info* qinfo, struct reply_info* rep)
{
struct ub_packed_rrset_key* reply_find_answer_rrset(struct query_info* qinfo,
struct reply_info* rep);
+/**
+ * Find rrset in reply, inside the answer section. Does not follow CNAMEs.
+ * @param rep: looks in answer section of this message.
+ * @param name: what to look for.
+ * @param namelen: length of name.
+ * @param type: looks for (host order).
+ * @param dclass: looks for (host order).
+ * @return: pointer to rrset, or NULL if not found.
+ */
+struct ub_packed_rrset_key* reply_find_rrset_section_an(struct reply_info* rep,
+ uint8_t* name, size_t namelen, uint16_t type, uint16_t dclass);
+
/**
* Debug send the query info and reply info to the log in readable form.
* @param str: descriptive string printed with packet content.
struct key_entry_data* d = (struct key_entry_data*)kkey->entry.data;
return (!d->isbad && d->rrset_data == NULL);
}
+
+int
+key_entry_isgood(struct key_entry_key* kkey)
+{
+ struct key_entry_data* d = (struct key_entry_data*)kkey->entry.data;
+ return (!d->isbad && d->rrset_data != NULL);
+}
+
+int
+key_entry_isbad(struct key_entry_key* kkey)
+{
+ struct key_entry_data* d = (struct key_entry_data*)kkey->entry.data;
+ return (int)(d->isbad);
+}
+
+/** setup key entry in region */
+static int
+key_entry_setup(struct region* region,
+ uint8_t* name, size_t namelen, uint16_t dclass,
+ struct key_entry_key** k, struct key_entry_data** d)
+{
+ *k = region_alloc(region, sizeof(**k));
+ if(!*k)
+ return 0;
+ memset(*k, 0, sizeof(**k));
+ (*k)->entry.key = *k;
+ (*k)->name = region_alloc_init(region, name, namelen);
+ if(!(*k)->name)
+ return 0;
+ (*k)->namelen = namelen;
+ (*k)->key_class = dclass;
+ *d = region_alloc(region, sizeof(**d));
+ if(!*d)
+ return 0;
+ (*k)->entry.data = d;
+ return 1;
+}
+
+struct key_entry_key*
+key_entry_create_null(struct region* region,
+ uint8_t* name, size_t namelen, uint16_t dclass, uint32_t ttl)
+{
+ struct key_entry_key* k;
+ struct key_entry_data* d;
+ if(!key_entry_setup(region, name, namelen, dclass, &k, &d))
+ return NULL;
+ d->ttl = ttl;
+ d->isbad = 0;
+ d->rrset_type = LDNS_RR_TYPE_DNSKEY;
+ d->rrset_data = NULL;
+ return k;
+}
+
+struct key_entry_key*
+key_entry_create_rrset(struct region* region,
+ uint8_t* name, size_t namelen, uint16_t dclass,
+ struct ub_packed_rrset_key* rrset)
+{
+ struct key_entry_key* k;
+ struct key_entry_data* d;
+ struct packed_rrset_data* rd = (struct packed_rrset_data*)
+ rrset->entry.data;
+ if(!key_entry_setup(region, name, namelen, dclass, &k, &d))
+ return NULL;
+ d->ttl = rd->ttl;
+ log_info("New key entry TTL is %d", (int)d->ttl);
+ d->isbad = 0;
+ d->rrset_type = ntohs(rrset->rk.type);
+ d->rrset_data = (struct packed_rrset_data*)region_alloc_init(region,
+ rd, packed_rrset_sizeof(rd));
+ if(!d->rrset_data)
+ return NULL;
+ packed_rrset_ptr_fixup(d->rrset_data);
+ return k;
+}
+
+struct key_entry_key*
+key_entry_create_bad(struct region* region,
+ uint8_t* name, size_t namelen, uint16_t dclass)
+{
+ struct key_entry_key* k;
+ struct key_entry_data* d;
+ if(!key_entry_setup(region, name, namelen, dclass, &k, &d))
+ return NULL;
+ d->ttl = 0;
+ d->isbad = 1;
+ d->rrset_type = LDNS_RR_TYPE_DNSKEY;
+ d->rrset_data = NULL;
+ return k;
+}
#define VALIDATOR_VAL_KENTRY_H
struct packed_rrset_data;
struct region;
+struct ub_packed_rrset_key;
#include "util/storage/lruhash.h"
/**
*/
int key_entry_isnull(struct key_entry_key* kkey);
+/**
+ * See if this entry is good. Does not do locking.
+ * @param kkey: must have data pointer set correctly
+ * @return true if it is good.
+ */
+int key_entry_isgood(struct key_entry_key* kkey);
+
+/**
+ * See if this entry is bad. Does not do locking.
+ * @param kkey: must have data pointer set correctly
+ * @return true if it is bad.
+ */
+int key_entry_isbad(struct key_entry_key* kkey);
+
+/**
+ * Create a null entry, in the given region.
+ * @param region: where to allocate
+ * @param name: the key name
+ * @param namelen: length of name
+ * @param dclass: class of key entry.
+ * @param ttl: what ttl should the key have.
+ * @return new key entry or NULL on alloc failure
+ */
+struct key_entry_key* key_entry_create_null(struct region* region,
+ uint8_t* name, size_t namelen, uint16_t dclass, uint32_t ttl);
+
+/**
+ * Create a key entry from an rrset, in the given region.
+ * @param region: where to allocate.
+ * @param name: the key name
+ * @param namelen: length of name
+ * @param dclass: class of key entry.
+ * @param rrset: data for key entry. This is copied to the region.
+ * @return new key entry or NULL on alloc failure
+ */
+struct key_entry_key* key_entry_create_rrset(struct region* region,
+ uint8_t* name, size_t namelen, uint16_t dclass,
+ struct ub_packed_rrset_key* rrset);
+
+/**
+ * Create a bad entry, in the given region.
+ * @param region: where to allocate
+ * @param name: the key name
+ * @param namelen: length of name
+ * @param dclass: class of key entry.
+ * @return new key entry or NULL on alloc failure
+ */
+struct key_entry_key* key_entry_create_bad(struct region* region,
+ uint8_t* name, size_t namelen, uint16_t dclass);
+
#endif /* VALIDATOR_VAL_KENTRY_H */
*/
#include "config.h"
#include "validator/val_utils.h"
+#include "validator/val_kentry.h"
#include "util/data/msgreply.h"
#include "util/data/packed_rrset.h"
#include "util/data/dname.h"
*signer_len = 0;
}
}
+
+/** return number of rrs in an rrset */
+static size_t
+rrset_get_count(struct ub_packed_rrset_key* rrset)
+{
+ struct packed_rrset_data* d = (struct packed_rrset_data*)
+ rrset->entry.data;
+ if(!d) return 0;
+ return d->count;
+}
+
+/** return TTL of rrset */
+static uint32_t
+rrset_get_ttl(struct ub_packed_rrset_key* rrset)
+{
+ struct packed_rrset_data* d = (struct packed_rrset_data*)
+ rrset->entry.data;
+ if(!d) return 0;
+ return d->ttl;
+}
+
+enum sec_status
+val_verify_rrset(struct module_env* env, struct val_env* ve,
+ struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* keys)
+{
+
+ return sec_status_bogus;
+}
+
+/** verify that a DS RR hashes to a key and that key signs the set */
+static enum sec_status
+verify_dnskeys_with_ds_rr(struct module_env* env, struct val_env* ve,
+ struct ub_packed_rrset_key* dnskey_rrset,
+ struct ub_packed_rrset_key* ds_rrset, size_t ds_idx)
+{
+ enum sec_status sec;
+ size_t i, num;
+ num = rrset_get_count(dnskey_rrset);
+ for(i=0; i<num; i++) {
+ /* Skip DNSKEYs that don't match the basic criteria. */
+ /* if (ds.getFootprint() != dnskey.getFootprint()
+ * || ds.getAlgorithm() != dnskey.getAlgorithm())
+ * {
+ * continue;
+ * }
+ */
+
+ /* Convert the candidate DNSKEY into a hash using the
+ * same DS hash algorithm. */
+ /* byte[] key_hash = calculateDSHash(dnskey, ds.getDigestID());
+ * byte[] ds_hash = ds.getDigest() */
+
+ /* if length or contents of the hash mismatch; continue */
+
+ /* Otherwise, we have a match! Make sure that the DNSKEY
+ * verifies *with this key* */
+ /*
+ sec = verify_rrset_key(env, ve, dnskey_rrset, dnskey_rrset, i);
+ */
+ if(sec == sec_status_secure) {
+ return sec;
+ }
+ /* If it didn't validate with the DNSKEY, try the next one! */
+ }
+ return sec_status_bogus;
+}
+
+struct key_entry_key*
+val_verify_new_DNSKEYs(struct region* region, struct module_env* env,
+ struct val_env* ve, struct ub_packed_rrset_key* dnskey_rrset,
+ struct ub_packed_rrset_key* ds_rrset)
+{
+ /* as long as this is false, we can consider this DS rrset to be
+ * equivalent to no DS rrset. */
+ int has_useful_ds = 0;
+ size_t i, num;
+ enum sec_status sec;
+
+ if(dnskey_rrset->rk.dname_len != ds_rrset->rk.dname_len ||
+ query_dname_compare(dnskey_rrset->rk.dname, ds_rrset->rk.dname)
+ != 0) {
+ verbose(VERB_ALGO, "DNSKEY RRset did not match DS RRset "
+ "by name");
+ return key_entry_create_bad(region, ds_rrset->rk.dname,
+ ds_rrset->rk.dname_len,
+ ntohs(ds_rrset->rk.rrset_class));
+ }
+
+ num = rrset_get_count(ds_rrset);
+ for(i=0; i<num; i++) {
+
+ /* Check to see if we can understand this DS. */
+ /* if (!supportsDigestID(ds.getDigestID())
+ * || !mVerifier.supportsAlgorithm(ds.getAlgorithm()))
+ * {
+ * continue;
+ * }
+ */
+
+ /* Once we see a single DS with a known digestID and
+ * algorithm, we cannot return INSECURE (with a
+ * "null" KeyEntry). */
+ has_useful_ds = true;
+
+ sec = verify_dnskeys_with_ds_rr(env, ve, dnskey_rrset,
+ ds_rrset, i);
+ if(sec == sec_status_secure) {
+ verbose(VERB_ALGO, "DS matched DNSKEY.");
+ /* TODO -- cannot, wrong region for prime */
+ /* update dnskey RRset status as secure */
+ return key_entry_create_rrset(region,
+ ds_rrset->rk.dname, ds_rrset->rk.dname_len,
+ ntohs(ds_rrset->rk.rrset_class), dnskey_rrset);
+ }
+ }
+
+ /* None of the DS's worked out. */
+
+ /* If no DSs were understandable, then this is OK. */
+ if(!has_useful_ds) {
+ verbose(VERB_ALGO, "No usable DS records were found -- "
+ "treating as insecure.");
+ return key_entry_create_null(region, ds_rrset->rk.dname,
+ ds_rrset->rk.dname_len,
+ ntohs(ds_rrset->rk.rrset_class),
+ rrset_get_ttl(ds_rrset));
+ }
+ /* If any were understandable, then it is bad. */
+ verbose(VERB_ALGO, "Failed to match any usable DS to a DNSKEY.");
+ return key_entry_create_bad(region, ds_rrset->rk.dname,
+ ds_rrset->rk.dname_len, ntohs(ds_rrset->rk.rrset_class));
+}
#define VALIDATOR_VAL_UTILS_H
struct query_info;
struct reply_info;
+struct val_env;
+struct module_env;
+struct ub_packed_rrset_key;
+struct region;
+enum sec_status;
/**
* Response classifications for the validator. The different types of proofs.
void val_find_signer(struct query_info* qinf, struct reply_info* rep,
uint8_t** signer_name, size_t* signer_len);
+/**
+ * Verify RRset with keys
+ * @param env: module environment (scratch buffer)
+ * @param ve: validator environment (verification settings)
+ * @param rrset: what to verify
+ * @param keys: dnskey rrset to verify with.
+ * @return security status of verification.
+ */
+enum sec_status val_verify_rrset(struct module_env* env, struct val_env* ve,
+ struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* keys);
+
+/**
+ * Verify new DNSKEYs with DS rrset. The DS contains hash values that should
+ * match the DNSKEY keys.
+ * match the DS to a DNSKEY and verify the DNSKEY rrset with that key.
+ *
+ * @param region: where to allocate key entry result.
+ * @param env: module environment (scratch buffer)
+ * @param ve: validator environment (verification settings)
+ * @param dnskey_rrset: DNSKEY rrset to verify
+ * @param ds_rrset: DS rrset to verify with.
+ * @return a KeyEntry. This will either contain the now trusted
+ * dnskey_rrset, a "null" key entry indicating that this DS
+ * rrset/DNSKEY pair indicate an secure end to the island of trust
+ * (i.e., unknown algorithms), or a "bad" KeyEntry if the dnskey
+ * rrset fails to verify. Note that the "null" response should
+ * generally only occur in a private algorithm scenario: normally
+ * this sort of thing is checked before fetching the matching DNSKEY
+ * rrset.
+ */
+struct key_entry_key* val_verify_new_DNSKEYs(struct region* region,
+ struct module_env* env, struct val_env* ve,
+ struct ub_packed_rrset_key* dnskey_rrset,
+ struct ub_packed_rrset_key* ds_rrset);
+
#endif /* VALIDATOR_VAL_UTILS_H */
/* response is under a null key, so we cannot validate
* However, we do set the status to INSECURE, since it is
* essentially proven insecure. */
- /* TODO
- vq->security_state = SEC_INSECURE;
- */
+ vq->chase_reply->security = sec_status_insecure;
vq->state = vq->final_state;
return 1;
}
primeResponseToKE(int rcode, struct dns_msg* msg, struct trust_anchor* ta,
struct module_qstate* qstate, int id)
{
+ struct val_env* ve = (struct val_env*)qstate->env->modinfo[id];
struct ub_packed_rrset_key* dnskey_rrset = NULL;
+ struct key_entry_key* kkey = NULL;
+ enum sec_status sec = sec_status_unchecked;
+
if(rcode == LDNS_RCODE_NOERROR) {
- dnskey_rrset = 0/*find answer */;
+ dnskey_rrset = reply_find_rrset_section_an(msg->rep,
+ ta->name, ta->namelen, LDNS_RR_TYPE_DNSKEY,
+ ta->dclass);
}
if(!dnskey_rrset) {
log_query_info(VERB_ALGO, "failed to prime trust anchor -- "
"could not fetch DNSKEY rrset", &msg->qinfo);
- /* create NULL key with NULL_KEY_TTL, store in cache. */
- return NULL;
+ kkey = key_entry_create_null(qstate->region, ta->name,
+ ta->namelen, ta->dclass, time(0)+NULL_KEY_TTL);
+ if(!kkey) {
+ log_err("out of memory: allocate null prime key");
+ return NULL;
+ }
+ key_cache_insert(ve->kcache, kkey);
+ return kkey;
+ }
+ /* attempt to verify with trust anchor DS and DNSKEY */
+ if(ta->ds_rrset) {
+ kkey = val_verify_new_DNSKEYs(qstate->region, qstate->env, ve,
+ dnskey_rrset, ta->ds_rrset);
+ if(!kkey) {
+ log_err("out of memory: verifying prime DS");
+ return NULL;
+ }
+ if(key_entry_isgood(kkey))
+ sec = sec_status_secure;
+ else
+ sec = sec_status_bogus;
+ }
+ if(sec != sec_status_secure && ta->dnskey_rrset) {
+ sec = val_verify_rrset(qstate->env, ve, dnskey_rrset,
+ ta->dnskey_rrset);
+ if(sec == sec_status_secure) {
+ kkey = key_entry_create_rrset(qstate->region,
+ ta->name, ta->namelen, ta->dclass,
+ dnskey_rrset);
+ if(!kkey) {
+ log_err("out of memory: allocate primed key");
+ return NULL;
+ }
+ }
}
- return NULL;
+
+ if(sec != sec_status_secure) {
+ log_query_info(VERB_ALGO, "failed to prime trust anchor -- "
+ "could not fetch DNSKEY rrset", &msg->qinfo);
+ /* NOTE: in this case, we should probably reject the trust
+ * anchor for longer, perhaps forever. */
+ kkey = key_entry_create_null(qstate->region, ta->name,
+ ta->namelen, ta->dclass, time(0)+NULL_KEY_TTL);
+ if(!kkey) {
+ log_err("out of memory: allocate null prime key");
+ return NULL;
+ }
+ key_cache_insert(ve->kcache, kkey);
+ return kkey;
+ }
+
+ log_query_info(VERB_ALGO, "Successfully primed trust anchor",
+ &msg->qinfo);
+ /* store the freshly primed entry in the cache */
+ key_cache_insert(ve->kcache, kkey);
+ return kkey;
}
/**
struct key_cache;
struct key_entry_key;
+/**
+ * This is the TTL to use when a trust anchor fails to prime. A trust anchor
+ * will be primed no more often than this interval.
+ */
+#define NULL_KEY_TTL 900 /* seconds */
+
/**
* Global state for the validator.
*/