static struct blk_crypto_profile *blk_crypto_fallback_profile;
static struct workqueue_struct *blk_crypto_wq;
static mempool_t *blk_crypto_bounce_page_pool;
-static struct bio_set crypto_bio_split;
+static struct bio_set enc_bio_set;
/*
* This is the key we set when evicting a keyslot. This *should* be the all 0's
mempool_free(enc_bio->bi_io_vec[i].bv_page,
blk_crypto_bounce_page_pool);
- src_bio->bi_status = enc_bio->bi_status;
+ if (enc_bio->bi_status)
+ cmpxchg(&src_bio->bi_status, 0, enc_bio->bi_status);
- bio_uninit(enc_bio);
- kfree(enc_bio);
+ bio_put(enc_bio);
bio_endio(src_bio);
}
-static struct bio *blk_crypto_fallback_clone_bio(struct bio *bio_src)
+static struct bio *blk_crypto_alloc_enc_bio(struct bio *bio_src,
+ unsigned int nr_segs)
{
- unsigned int nr_segs = bio_segments(bio_src);
- struct bvec_iter iter;
- struct bio_vec bv;
struct bio *bio;
- bio = bio_kmalloc(nr_segs, GFP_NOIO);
- if (!bio)
- return NULL;
- bio_init_inline(bio, bio_src->bi_bdev, nr_segs, bio_src->bi_opf);
+ bio = bio_alloc_bioset(bio_src->bi_bdev, nr_segs, bio_src->bi_opf,
+ GFP_NOIO, &enc_bio_set);
if (bio_flagged(bio_src, BIO_REMAPPED))
bio_set_flag(bio, BIO_REMAPPED);
+ bio->bi_private = bio_src;
+ bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
bio->bi_ioprio = bio_src->bi_ioprio;
bio->bi_write_hint = bio_src->bi_write_hint;
bio->bi_write_stream = bio_src->bi_write_stream;
bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
- bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
-
- bio_for_each_segment(bv, bio_src, iter)
- bio->bi_io_vec[bio->bi_vcnt++] = bv;
-
bio_clone_blkg_association(bio, bio_src);
-
return bio;
}
return true;
}
-static bool blk_crypto_fallback_split_bio_if_needed(struct bio **bio_ptr)
-{
- struct bio *bio = *bio_ptr;
- unsigned int i = 0;
- unsigned int num_sectors = 0;
- struct bio_vec bv;
- struct bvec_iter iter;
-
- bio_for_each_segment(bv, bio, iter) {
- num_sectors += bv.bv_len >> SECTOR_SHIFT;
- if (++i == BIO_MAX_VECS)
- break;
- }
-
- if (num_sectors < bio_sectors(bio)) {
- bio = bio_submit_split_bioset(bio, num_sectors,
- &crypto_bio_split);
- if (!bio)
- return false;
-
- *bio_ptr = bio;
- }
-
- return true;
-}
-
union blk_crypto_iv {
__le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
*/
static void blk_crypto_fallback_encrypt_bio(struct bio *src_bio)
{
- struct bio *enc_bio;
- struct bio_crypt_ctx *bc;
- struct blk_crypto_keyslot *slot;
- int data_unit_size;
+ struct bio_crypt_ctx *bc = src_bio->bi_crypt_context;
+ int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
struct skcipher_request *ciph_req = NULL;
+ struct blk_crypto_keyslot *slot;
DECLARE_CRYPTO_WAIT(wait);
u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
struct scatterlist src, dst;
union blk_crypto_iv iv;
- unsigned int i, j;
- blk_status_t blk_st;
-
- /* Split the bio if it's too big for single page bvec */
- if (!blk_crypto_fallback_split_bio_if_needed(&src_bio))
- goto out_endio;
-
- bc = src_bio->bi_crypt_context;
- data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
-
- /* Allocate bounce bio for encryption */
- enc_bio = blk_crypto_fallback_clone_bio(src_bio);
- if (!enc_bio) {
- src_bio->bi_status = BLK_STS_RESOURCE;
- goto out_endio;
- }
+ unsigned int nr_enc_pages, enc_idx;
+ struct bio *enc_bio;
+ blk_status_t status;
+ unsigned int i;
/*
* Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
* this bio's algorithm and key.
*/
- blk_st = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
+ status = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
bc->bc_key, &slot);
- if (blk_st != BLK_STS_OK) {
- src_bio->bi_status = blk_st;
- goto out_put_enc_bio;
+ if (status != BLK_STS_OK) {
+ src_bio->bi_status = status;
+ bio_endio(src_bio);
+ return;
}
/* and then allocate an skcipher_request for it */
if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
src_bio->bi_status = BLK_STS_RESOURCE;
+ bio_endio(src_bio);
goto out_release_keyslot;
}
skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
iv.bytes);
- /* Encrypt each page in the bounce bio */
- for (i = 0; i < enc_bio->bi_vcnt; i++) {
- struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
- struct page *plaintext_page = enc_bvec->bv_page;
- struct page *ciphertext_page =
- mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
-
- enc_bvec->bv_page = ciphertext_page;
-
- if (!ciphertext_page) {
- src_bio->bi_status = BLK_STS_RESOURCE;
- goto out_free_bounce_pages;
- }
-
- sg_set_page(&src, plaintext_page, data_unit_size,
- enc_bvec->bv_offset);
- sg_set_page(&dst, ciphertext_page, data_unit_size,
- enc_bvec->bv_offset);
-
- /* Encrypt each data unit in this page */
- for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
+ /*
+ * Encrypt each page in the source bio. Because the source bio could
+ * have bio_vecs that span more than a single page, but the encrypted
+ * bios are limited to a single page per bio_vec, this can generate
+ * more than a single encrypted bio per source bio.
+ */
+new_bio:
+ nr_enc_pages = min(bio_segments(src_bio), BIO_MAX_VECS);
+ enc_bio = blk_crypto_alloc_enc_bio(src_bio, nr_enc_pages);
+ enc_idx = 0;
+ for (;;) {
+ struct bio_vec src_bv =
+ bio_iter_iovec(src_bio, src_bio->bi_iter);
+ struct page *enc_page;
+
+ enc_page = mempool_alloc(blk_crypto_bounce_page_pool,
+ GFP_NOIO);
+ __bio_add_page(enc_bio, enc_page, src_bv.bv_len,
+ src_bv.bv_offset);
+
+ sg_set_page(&src, src_bv.bv_page, data_unit_size,
+ src_bv.bv_offset);
+ sg_set_page(&dst, enc_page, data_unit_size, src_bv.bv_offset);
+
+ /*
+ * Increment the index now that the encrypted page is added to
+ * the bio. This is important for the error unwind path.
+ */
+ enc_idx++;
+
+ /*
+ * Encrypt each data unit in this page.
+ */
+ for (i = 0; i < src_bv.bv_len; i += data_unit_size) {
blk_crypto_dun_to_iv(curr_dun, &iv);
if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
&wait)) {
- i++;
- src_bio->bi_status = BLK_STS_IOERR;
- goto out_free_bounce_pages;
+ bio_io_error(enc_bio);
+ goto out_free_request;
}
bio_crypt_dun_increment(curr_dun, 1);
src.offset += data_unit_size;
dst.offset += data_unit_size;
}
+
+ bio_advance_iter_single(src_bio, &src_bio->bi_iter,
+ src_bv.bv_len);
+ if (!src_bio->bi_iter.bi_size)
+ break;
+
+ if (enc_idx == nr_enc_pages) {
+ /*
+ * For each additional encrypted bio submitted,
+ * increment the source bio's remaining count. Each
+ * encrypted bio's completion handler calls bio_endio on
+ * the source bio, so this keeps the source bio from
+ * completing until the last encrypted bio does.
+ */
+ bio_inc_remaining(src_bio);
+ submit_bio(enc_bio);
+ goto new_bio;
+ }
}
- enc_bio->bi_private = src_bio;
- enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
- skcipher_request_free(ciph_req);
- blk_crypto_put_keyslot(slot);
submit_bio(enc_bio);
- return;
-
-out_free_bounce_pages:
- while (i > 0)
- mempool_free(enc_bio->bi_io_vec[--i].bv_page,
- blk_crypto_bounce_page_pool);
+out_free_request:
skcipher_request_free(ciph_req);
out_release_keyslot:
blk_crypto_put_keyslot(slot);
-out_put_enc_bio:
- bio_uninit(enc_bio);
- kfree(enc_bio);
-out_endio:
- bio_endio(src_bio);
}
/*
get_random_bytes(blank_key, sizeof(blank_key));
- err = bioset_init(&crypto_bio_split, 64, 0, 0);
+ err = bioset_init(&enc_bio_set, 64, 0, BIOSET_NEED_BVECS);
if (err)
goto out;
fail_free_profile:
kfree(blk_crypto_fallback_profile);
fail_free_bioset:
- bioset_exit(&crypto_bio_split);
+ bioset_exit(&enc_bio_set);
out:
return err;
}