# if defined __GNUC__ && defined __GNUC_MINOR__
# define __GMP_GNUC_PREREQ(a, b) ((a) < __GNUC__ + ((b) <= __GNUC_MINOR__))
# else
-# define __GMP_GNUC_PREREQ(a, b) 0
+# define __GMP_GNUC_PREREQ(a, b) false
# endif
# endif
uuroom_t _u = u, _w = _u * (v); \
(w1) = _w >> W_TYPE_SIZE; \
(w0) = _w; \
- } while (0)
+ } while (false)
# endif
#endif
#ifndef umul_ppmm
\
(w1) = __x3 + __ll_highpart (__x1); \
(w0) = (__x1 << W_TYPE_SIZE / 2) + __ll_lowpart (__x0); \
- } while (0)
+ } while (false)
#endif
/* Set (q,r) to the quotient and remainder of dividing (n1,n0) by d. */
} \
(r) = __r0; \
(q) = __q; \
- } while (0)
+ } while (false)
#endif
/* Set (sh,sl) = (ah,al) + (bh,bl). Overflow wraps around. */
do { \
(rl) = ((ah) << (W_TYPE_SIZE - (cnt))) | ((al) >> (cnt)); \
(rh) = (ah) >> (cnt); \
- } while (0)
+ } while (false)
/* Set (rh,rl) = (ah,al) << cnt, where 0 < cnt < W_TYPE_SIZE.
Overflow wraps around. */
do { \
(rh) = ((ah) << cnt) | ((al) >> (W_TYPE_SIZE - (cnt))); \
(rl) = (al) << (cnt); \
- } while (0)
+ } while (false)
/* (ah,hl) < (bh,bl)? */
static bool
do { \
mp_limb_t _s, _t = -ckd_sub (&_s, a, b); \
(r) = ((n) & _t) + _s; \
- } while (0)
+ } while (false)
/* Set r = (a + b) mod n, where a < n & b <= n. */
#define addmod(r,a,b,n) \
add_ssaaaa (r1, r0, a1, a0, b1, b0); \
if (ge2 (r1, r0, n1, n0)) \
sub_ddmmss (r1, r0, r1, r0, n1, n0); \
- } while (0)
+ } while (false)
#define submod2(r1, r0, a1, a0, b1, b0, n1, n0) \
do { \
bool _v1 = ckd_sub (&(r1), a1, b1); \
mp_limb_t _v0 = ckd_sub (&(r0), a0, b0); \
if (_v1 | ckd_sub (&(r1), r1, _v0)) \
add_ssaaaa (r1, r0, r1, r0, n1, n0); \
- } while (0)
+ } while (false)
/* Return 0 if x < B/2, MP_LIMB_MAX otherwise. */
static mp_limb_t
(q0) = _q0; \
(q1) = 0; \
} \
- } while (0)
+ } while (false)
/* x B (mod n). */
#define redcify(r_prim, r, n) \
do { \
MAYBE_UNUSED mp_limb_t _redcify_q; \
udiv_qrnnd (_redcify_q, r_prim, r, 0, n); \
- } while (0)
+ } while (false)
/* x B^2 (mod n). Requires x > 0, n1 < B/2. */
#define redcify2(r1, r0, x, n1, n0) \
} \
(r1) = _r1; \
(r0) = _r0; \
- } while (0)
+ } while (false)
/* Modular two-word multiplication, r = a * b mod m, with mi = m^(-1) mod B.
Both a and b must be in redc form, the result will be in redc form too. */