--- /dev/null
+/*
+ * tree.h : tree manipulation macros and structures.
+ * (C) 2002 - Willy Tarreau - willy@ant-computing.com
+ *
+ */
+
+#ifndef __TREE_H__
+#define __TREE_H__
+
+#include <import/bitops.h>
+#include <common/memory.h>
+
+/* binary tree node : either 32 bits unsigned long int values, or
+ * 64 bits in two 32 bits unsigned long int values
+ */
+struct ultree {
+ unsigned long low; /* 32 bits low value of this node */
+ unsigned long high; /* 32 bits high value of this node, not used in 32 bits */
+ int level; /* bit level of this node */
+ void *data; /* carried data */
+ struct ultree *left, *right; /* children : left and right. NULL = leaf */
+ struct ultree *up; /* parent node. NULL = root */
+};
+
+/* binary tree node : 64 bits unsigned long long values */
+struct ulltree {
+ unsigned long long value; /* 64 bits value of this node */
+ int level; /* bit level of this node */
+ void *data; /* carried data */
+ struct ulltree *left, *right; /* children : left and right. NULL = leaf */
+ struct ulltree *up; /* parent node. NULL = root */
+};
+
+/* binary tree node : 64 bits in either one ull or two 32 bits unsigned long int values. This
+ * is the common type for all the above trees, which should be cast into it. This makes
+ * pool_free() far simpler since all types share a same pool.
+ */
+struct tree64 {
+ union {
+ struct {
+ unsigned long low; /* 32 bits low value of this node */
+ unsigned long high; /* 32 bits high value of this node */
+ } ul;
+ struct {
+ unsigned long long value; /* 64 bits value of this node */
+ } ull;
+ } value;
+ int level; /* bit level of this node */
+ void *data; /* carried data */
+ struct tree64 *left, *right; /* children : left and right. NULL = leaf */
+ struct tree64 *up; /* parent node. NULL = root */
+};
+
+#define sizeof_tree64 (sizeof (struct tree64))
+extern void **pool_tree64;
+
+static int node_right_lookup, node_lookup;
+
+#define ULTREE_HEAD(l) struct ultree (l) = { .left=NULL, .right=NULL, .up=NULL, .low=0, .level=LONGBITS, .data=NULL }
+#define ULTREE_INIT(l) { (l)->data = (l)->left = (l)->right = NULL; }
+#define ULTREE_INIT_ROOT(l) { (l)->left=(l)->right=(l)->up=(l)->data=NULL; (l)->low=0; (l)->level=LONGBITS; }
+
+#define ULLTREE_HEAD(l) struct ulltree (l) = { .left=NULL, .right=NULL, .up=NULL, .value=0, .level=LLONGBITS, .data=NULL }
+#define ULLTREE_INIT(l) { (l)->data = (l)->left = (l)->right = NULL; }
+#define ULLTREE_INIT_ROOT(l) { (l)->left=(l)->right=(l)->up=(l)->data=NULL; (l)->value=0; (l)->level=LLONGBITS; }
+
+#define UL2TREE_HEAD(l) struct ultree (l) = { .left=NULL, .right=NULL, .up=NULL, .high=0, .low=0, .level=LLONGBITS, .data=NULL }
+#define UL2TREE_INIT(l) { (l)->left = (l)->right = (l)->data = NULL; }
+#define UL2TREE_INIT_ROOT(l) { (l)->left=(l)->right=(l)->up=(l)->data=NULL; (l)->high=(l)->low=0; (l)->level=LLONGBITS; }
+
+/*
+ * inserts necessary nodes to reach <x> in tree starting at <root>. The node
+ * is not created if it exists. It is returned.
+ */
+inline static struct ulltree *__ulltree_insert(struct ulltree *root, unsigned long long x) {
+ int m;
+ struct ulltree *next, *new, *node;
+ struct ulltree **branch;
+ int ffs;
+
+ next = root;
+ ffs = ffs_fast64(x);
+
+ do {
+ root = next;
+
+ if (x == next->value) {
+ return next;
+ }
+
+ if (x & (1ULL << (next->level - 1))) { /* right branch */
+ branch = &next->right;
+ next = *branch;
+ } else {
+ branch = &next->left;
+ next = *branch;
+ }
+
+ if (next == NULL) {
+ /* we'll have to insert our node here */
+ *branch = new = (struct ulltree *)pool_alloc(tree64);
+ ULLTREE_INIT(new);
+ new->up = root;
+ new->value = x;
+ new->level = ffs;
+ return new;
+ }
+
+ /* we'll keep walking down as long as we have all bits in common */
+ } while ((x & ~((1ULL << next->level) - 1)) == next->value);
+
+
+ /* ok, now we know that we must insert between both. */
+
+ /* the new interconnect node */
+ *branch = node = (struct ulltree *)pool_alloc(tree64); /* was <next> */
+ ULLTREE_INIT(node);
+ node->up = root;
+ next->up = node;
+
+ /* we need the common higher bits between x and next->value. */
+
+ /* what differences are there between x and the node here ?
+ * NOTE that m is always < level(parent) because highest bit
+ * of x and next-value are identical here (else they would be
+ * on a different branch).
+ */
+ m = fls_fast64(x ^ next->value) + 1; /* m = lowest identical bit */
+ node->value = x & ~((1ULL << m) - 1); /* value of common bits */
+
+ if (node->value == x) { /* <x> is exactly on this node */
+ /* we must set its real position (eg: 8,10 => m=1 => val=8, m=3)*/
+ node->level = ffs;
+
+ if (next->value & (1ULL << (node->level - 1))) /* right branch */
+ node->right = next;
+ else
+ node->left = next;
+ return node;
+ }
+
+ /* the new leaf now */
+ node->level = m; /* set the level to the lowest common bit */
+ new = (struct ulltree *)pool_alloc(tree64);
+ ULLTREE_INIT(new);
+ new->value = x;
+ new->level = ffs;
+
+ if (x > next->value) {
+ node->left = next;
+ node->right = new;
+ }
+ else {
+ node->left = new;
+ node->right = next;
+ }
+ new->up = node;
+ return new;
+}
+
+/*
+ * inserts necessary nodes to reach <x> in tree starting at <root>. The node
+ * is not created if it exists. It is returned.
+ */
+inline static struct ultree *__ultree_insert(struct ultree *root, unsigned long x) {
+ int m;
+ struct ultree *next, *new, *node;
+ struct ultree **branch;
+ int ffs;
+
+ next = root;
+ ffs = ffs_fast32(x);
+
+ do {
+ root = next;
+
+ if (x == next->low) {
+ return next;
+ }
+
+ if ((x >> (next->level - 1)) & 1) { /* right branch */
+ branch = &next->right;
+ next = *branch;
+ } else {
+ branch = &next->left;
+ next = *branch;
+ }
+
+ if (next == NULL) {
+ /* we'll have to insert our node here */
+ *branch = new = (struct ultree *)pool_alloc(tree64);
+ ULTREE_INIT(new);
+ new->up = root;
+ new->low = x;
+ new->level = ffs;
+ return new;
+ }
+
+ /* we'll keep walking down as long as we have all bits in common */
+ } while ((x & ~((1 << next->level) - 1)) == next->low);
+
+ /* ok, now we know that we must insert between both. */
+
+ /* the new interconnect node */
+ *branch = node = (struct ultree *)pool_alloc(tree64); /* was <next> */
+ ULTREE_INIT(node);
+ node->up = root;
+ next->up = node;
+
+ /* we need the common higher bits between x and next->low. */
+
+ /* what differences are there between x and the node here ?
+ * NOTE that m is always < level(parent) because highest bit
+ * of x and next->low are identical here (else they would be
+ * on a different branch).
+ */
+ m = fls_fast32(x ^ next->low) + 1; /* m = lower identical bit */
+ node->low = x & ~((1 << m) - 1); /* value of common bits */
+
+ if (node->low == x) { /* <x> is exactly on this node */
+ /* we must set its real position (eg: 8,10 => m=1 => val=8, m=3)*/
+ node->level = ffs;
+
+ if (next->low & (1 << (node->level - 1))) /* right branch */
+ node->right = next;
+ else
+ node->left = next;
+ return node;
+ }
+
+ /* the new leaf now */
+ node->level = m; /* set the level to the lowest common bit */
+ new = (struct ultree *)pool_alloc(tree64);
+ ULTREE_INIT(new);
+ new->low = x;
+ new->level = ffs;
+
+ if (x > next->low) {
+ node->left = next;
+ node->right = new;
+ }
+ else {
+ node->left = new;
+ node->right = next;
+ }
+ new->up = node;
+ return new;
+}
+
+
+/*
+ * inserts necessary nodes to reach <h:l> in tree starting at <root>. The node
+ * is not created if it exists. It is returned.
+ */
+inline static struct ultree *__ul2tree_insert(struct ultree *root, unsigned long h, unsigned long l) {
+ int m;
+ struct ultree *next, *new, *node;
+ struct ultree **branch;
+
+ next = root;
+
+ do {
+ root = next;
+
+ if (h == next->high && l == next->low) {
+ return next;
+ }
+
+ branch = &next->left;
+ if (next->level >= 33) {
+ if ((h >> (next->level - 33)) & 1) { /* right branch */
+ branch = &next->right;
+ node_right_lookup++;
+ }
+ }
+ else {
+ if ((l >> (next->level - 1)) & 1) { /* right branch */
+ branch = &next->right;
+ node_right_lookup++;
+ }
+ }
+ next = *branch;
+
+ node_lookup++;
+ if (next == NULL) {
+ /* we'll have to insert our node here */
+ *branch = new =(struct ultree *)pool_alloc(tree64);
+ UL2TREE_INIT(new);
+ new->up = root;
+ new->high = h;
+ new->low = l;
+ if (l)
+ new->level = __ffs_fast32(l);
+ else
+ new->level = __ffs_fast32(h) + 32;
+
+ return new;
+ }
+
+ /* we'll keep walking down as long as we have all bits in common */
+ if (next->level >= 32) {
+ if ((h & ~((1 << (next->level-32)) - 1)) != next->high)
+ break;
+ }
+ else {
+ if (h != next->high)
+ break;
+ if ((l & ~((1 << next->level) - 1)) != next->low)
+ break;
+ }
+ } while (1);
+
+ /* ok, now we know that we must insert between both. */
+
+ /* the new interconnect node */
+ *branch = node = (struct ultree *)pool_alloc(tree64); /* was <next> */
+ UL2TREE_INIT(node);
+ node->up = root;
+ next->up = node;
+
+ /* we need the common higher bits between x and next->high:low. */
+
+ /* what differences are there between x and the node here ?
+ * NOTE that m is always < level(parent) because highest bit
+ * of x and next->high:low are identical here (else they would be
+ * on a different branch).
+ */
+ if (h != next->high) {
+ m = fls_fast32(h ^ next->high) + 1; /* m = lower identical bit */
+ node->high = h & ~((1 << m) - 1); /* value of common bits */
+ m += 32;
+ node->low = 0;
+ } else {
+ node->high = h;
+ m = fls_fast32(l ^ next->low) + 1; /* m = lower identical bit */
+ node->low = l & ~((1 << m) - 1); /* value of common bits */
+ }
+
+ if (node->high == h && node->low == l) { /* <h:l> is exactly on this node */
+ /* we must set its real position (eg: 8,10 => m=1 => val=8, m=3)*/
+ if (l) {
+ node->level = ffs_fast32(l);
+ if (next->low & (1 << (node->level - 1))) /* right branch */
+ node->right = next;
+ else
+ node->left = next;
+ }
+ else {
+ node->level = ffs_fast32(h) + 32;
+ if (next->high & (1 << (node->level - 33))) /* right branch */
+ node->right = next;
+ else
+ node->left = next;
+ }
+ return node;
+ }
+
+ /* the new leaf now */
+ node->level = m; /* set the level to the lowest common bit */
+ new = (struct ultree *)pool_alloc(tree64);
+ UL2TREE_INIT(new);
+ new->high = h;
+ new->low = l;
+ if (l)
+ new->level = __ffs_fast32(l);
+ else
+ new->level = __ffs_fast32(h) + 32;
+
+ if (h > next->high || (h == next->high && l > next->low)) {
+ node->left = next;
+ node->right = new;
+ }
+ else {
+ node->left = new;
+ node->right = next;
+ }
+ new->up = node;
+ return new;
+}
+
+
+/*
+ * finds a value in the tree <root>. If it cannot be found, NULL is returned.
+ */
+inline static struct ultree *__ultree_find(struct ultree *root, unsigned long x) {
+ do {
+ if (x == root->low)
+ return root;
+
+ if ((x >> (root->level - 1)) & 1)
+ root = root->right;
+ else
+ root = root->left;
+
+ if (root == NULL)
+ return NULL;
+
+ /* we'll keep walking down as long as we have all bits in common */
+ } while ((x & ~((1 << root->level) - 1)) == root->low);
+
+ /* should be there, but nothing. */
+ return NULL;
+}
+
+/*
+ * finds a value in the tree <root>. If it cannot be found, NULL is returned.
+ */
+inline static struct ulltree *__ulltree_find(struct ulltree *root, unsigned long long x) {
+ do {
+ if (x == root->value)
+ return root;
+
+ if ((x >> (root->level - 1)) & 1)
+ root = root->right;
+ else
+ root = root->left;
+
+ if (root == NULL)
+ return NULL;
+
+ /* we'll keep walking down as long as we have all bits in common */
+ } while ((x & ~((1ULL << root->level) - 1)) == root->value);
+
+ /* should be there, but nothing. */
+ return NULL;
+}
+
+
+/*
+ * walks down the tree <__root> and assigns each of its data to <__data>.
+ * <__stack> is an int array of at least N entries where N is the maximum number
+ * of levels of the tree. <__slen> is an integer variable used as a stack index.
+ * The instruction following the foreach statement is executed for each data,
+ * after the data has been unlinked from the tree.
+ * The nodes are deleted automatically, so it is illegal to manually delete a
+ * node within this loop.
+ */
+#define tree64_foreach_destructive(__root, __data, __stack, __slen) \
+ for (__slen = 0, __stack[0] = __root, __data = NULL; ({ \
+ __label__ __left, __right, __again, __end; \
+ typeof(__root) __ptr = __stack[__slen]; \
+__again: \
+ __data = __ptr->data; \
+ if (__data != NULL) { \
+ __ptr->data = NULL; \
+ goto __end; \
+ } \
+ else if (__ptr->left != NULL) { \
+ __stack[++__slen] = __ptr = __ptr->left; \
+ goto __again; \
+ } \
+ else \
+__left: \
+ if (__ptr->right != NULL) { \
+ __stack[++__slen] = __ptr = __ptr->right; \
+ goto __again; \
+ } \
+ else \
+__right: \
+ if (!__slen--) \
+ goto __end; /* nothing left, don't delete the root node */ \
+ else { \
+ typeof (__root) __old; \
+ pool_free(tree64, __ptr); \
+ __old = __ptr; \
+ __ptr = __stack[__slen]; \
+ if (__ptr->left == __old) { \
+ /* unlink this node from its parent */ \
+ __ptr->left = NULL; \
+ goto __left; \
+ } \
+ else { \
+ /* no need to unlink, the parent will also die */ \
+ goto __right; \
+ } \
+ } \
+__end: \
+ (__slen >= 0); /* nothing after loop */}); )
+
+
+/*
+ * walks down the tree <__root> of type <__type> and assigns each of its data
+ * to <__data>. <__stack> is an int array of at least N entries where N is the
+ * maximum number of levels of the tree. <__slen> is an integer variable used
+ * as a stack index. The instruction following the foreach statement is
+ * executed for each data, after the data has been unlinked from the tree.
+ */
+#define tree_foreach_destructive(__type, __root, __data, __stack, __slen) \
+ for (__slen = 0, __stack[0] = __root, __data = NULL; ({ \
+ __label__ __left, __right, __again, __end; \
+ typeof(__root) __ptr = __stack[__slen]; \
+__again: \
+ __data = __ptr->data; \
+ if (__data != NULL) { \
+ __ptr->data = NULL; \
+ goto __end; \
+ } \
+ else if (__ptr->left != NULL) { \
+ __stack[++__slen] = __ptr = __ptr->left; \
+ goto __again; \
+ } \
+ else \
+__left: \
+ if (__ptr->right != NULL) { \
+ __stack[++__slen] = __ptr = __ptr->right; \
+ goto __again; \
+ } \
+ else \
+__right: \
+ if (!__slen--) \
+ goto __end; /* nothing left, don't delete the root node */ \
+ else { \
+ typeof (__root) __old; \
+ pool_free(__type, __ptr); \
+ __old = __ptr; \
+ __ptr = __stack[__slen]; \
+ if (__ptr->left == __old) { \
+ /* unlink this node from its parent */ \
+ __ptr->left = NULL; \
+ goto __left; \
+ } \
+ else { \
+ /* no need to unlink, the parent will also die */ \
+ goto __right; \
+ } \
+ } \
+__end: \
+ (__slen >= 0); /* nothing after loop */}); )
+
+
+/*
+ * walks down the tree <__root> and assigns <__data> a pointer to each of its
+ * data pointers. <__stack> is an int array of at least N entries where N is the
+ * maximum number of levels of the tree. <__slen> is an integer variable used as
+ * a stack index. The instruction following the foreach statement is executed
+ * for each data.
+ * The tree will walk down only when the data field is empty (NULL), so it
+ * allows inner breaks, and will restart without losing items. The nodes data
+ * will be set to NULL after the inner code, or when the inner code does
+ * '__stack[__slen]->data = NULL';
+ * The nodes are deleted automatically, so it is illegal to manually delete a
+ * node within this loop.
+ */
+#define tree64_foreach(__root, __data, __stack, __slen) \
+ for (__slen = 0, __stack[0] = __root, __data = NULL; ({ \
+ __label__ __left, __right, __again, __end; \
+ typeof(__root) __ptr = __stack[__slen]; \
+__again: \
+ if (__ptr->data != NULL) { \
+ __data = __ptr->data; \
+ goto __end; \
+ } \
+ else if (__ptr->left != NULL) { \
+ __stack[++__slen] = __ptr = __ptr->left; \
+ goto __again; \
+ } \
+ else \
+__left: \
+ if (__ptr->right != NULL) { \
+ __stack[++__slen] = __ptr = __ptr->right; \
+ goto __again; \
+ } \
+ else \
+__right: \
+ if (!__slen--) \
+ goto __end; /* nothing left, don't delete the root node */ \
+ else { \
+ typeof (__root) __old; \
+ pool_free(tree64, __ptr); \
+ __old = __ptr; \
+ __ptr = __stack[__slen]; \
+ if (__ptr->left == __old) { \
+ /* unlink this node from its parent */ \
+ __ptr->left = NULL; \
+ goto __left; \
+ } \
+ else { \
+ /* no need to unlink, the parent will also die */ \
+ goto __right; \
+ } \
+ } \
+__end: \
+ (__slen >= 0); }); ((typeof(__root))__stack[__slen])->data = NULL)
+
+
+
+/*
+ * walks down the tree <__root> and assigns <__node> to each of its nodes.
+ * <__stack> is an int array of at least N entries where N is the
+ * maximum number of levels of the tree. <__slen> is an integer variable used as
+ * a stack index. The instruction following the foreach statement is executed
+ * for each node.
+ * The tree will walk down only when the data field is empty (NULL), so it
+ * allows inner breaks, and will restart without losing items. The nodes data
+ * will be set to NULL after the inner code, or when the inner code does
+ * '__node->data = NULL';
+ * The nodes are deleted automatically, so it is illegal to manually delete a
+ * node within this loop.
+ */
+#define tree64_foreach_node(__root, __node, __stack, __slen) \
+ for (__slen = 0, __stack[0] = __root; ({ \
+ __label__ __left, __right, __again, __end; \
+ typeof(__root) __ptr = __stack[__slen]; \
+__again: \
+ if (__ptr->data != NULL) { \
+ __node = __ptr; \
+ goto __end; \
+ } \
+ else if (__ptr->left != NULL) { \
+ __stack[++__slen] = __ptr = __ptr->left; \
+ goto __again; \
+ } \
+ else \
+__left: \
+ if (__ptr->right != NULL) { \
+ __stack[++__slen] = __ptr = __ptr->right; \
+ goto __again; \
+ } \
+ else \
+__right: \
+ if (!__slen--) \
+ goto __end; /* nothing left, don't delete the root node */ \
+ else { \
+ typeof (__root) __old; \
+ pool_free(tree64, __ptr); \
+ __old = __ptr; \
+ __ptr = __stack[__slen]; \
+ if (__ptr->left == __old) { \
+ /* unlink this node from its parent */ \
+ __ptr->left = NULL; \
+ goto __left; \
+ } \
+ else { \
+ /* no need to unlink, the parent will also die */ \
+ goto __right; \
+ } \
+ } \
+__end: \
+ (__slen >= 0); }); ((typeof(__root))__stack[__slen])->data = NULL)
+
+
+/*
+ * removes the current node if possible, and its parent if it doesn't handle
+ * data. A pointer to the parent or grandparent is returned (the parent of the
+ * last one deleted in fact). This function should be compatible with any
+ * tree struct because of the void types.
+ * WARNING : never call it from within a tree_foreach() because this last one
+ * uses a stack which will not be updated.
+ */
+
+inline static void *__tree_delete_only_one(void *firstnode) {
+ struct tree64 *down, **uplink;
+ struct tree64 *node = firstnode;
+
+ /* don't kill the root or a populated link */
+ if (node->data || node->up == NULL)
+ return node;
+ if (node->left && node->right)
+ return node;
+ /* since we know that at least left or right is null, we can do arithmetics on them */
+ down = (void *)((long)node->left | (long)node->right);
+ /* find where we are linked */
+ if (node == node->up->left)
+ uplink = &node->up->left;
+ else
+ uplink = &node->up->right;
+
+ *uplink = down; /* we relink the lower branch above us or simply cut it */
+ if (down) {
+ down->up = node->up;
+ /* we know that we cannot do more because we kept one branch */
+ }
+ else {
+ /* we'll redo this once for the node above us because there was no branch below us,
+ * so maybe it doesn't need to exist for only one branch
+ */
+ down = node;
+ node = node->up;
+ pool_free(tree64, down);
+ if (node->data || node->up == NULL)
+ return node;
+ /* now we're sure we were sharing this empty node with another branch, let's find it */
+ down = (void *)((long)node->left | (long)node->right);
+ if (node == node->up->left)
+ uplink = &node->up->left;
+ else
+ uplink = &node->up->right;
+ *uplink = down; /* we relink the lower branch above */
+ down->up = node->up;
+ }
+ /* free the last node */
+ pool_free(tree64, node);
+ return down->up;
+}
+
+/*
+ * removes the current node if possible, and all of its parents which do not
+ * carry data. A pointer to the parent of the last one deleted is returned.
+ * This function should be compatible with any tree struct because of the void
+ * types.
+ * WARNING : never call it from within a tree_foreach() because this last one
+ * uses a stack which will not be updated.
+ */
+
+inline static void *__tree_delete(void *firstnode) {
+ struct tree64 *down, **uplink, *up;
+ struct tree64 *node = firstnode;
+
+ while (1) {
+ /* don't kill the root or a populated link */
+ if (node->data || (up = node->up) == NULL)
+ return node;
+ if (node->left && node->right)
+ return node;
+ /* since we know that at least left or right is null, we can do arithmetics on them */
+ down = (void *)((long)node->left | (long)node->right);
+ /* find where we are linked */
+ if (node == up->left)
+ uplink = &up->left;
+ else
+ uplink = &up->right;
+
+ *uplink = down; /* we relink the lower branch above us or simply cut it */
+ pool_free(tree64, node);
+ node = up;
+ if (down)
+ down->up = node;
+ }
+}
+
+#endif /* __TREE_H__ */