======================= ===============================================================
:func:`mean` Arithmetic mean ("average") of data.
-:func:`fmean` Fast, floating point arithmetic mean.
+:func:`fmean` Fast, floating point arithmetic mean, with optional weighting.
:func:`geometric_mean` Geometric mean of data.
:func:`harmonic_mean` Harmonic mean of data.
:func:`median` Median (middle value) of data.
``mean(data)`` is equivalent to calculating the true population mean μ.
-.. function:: fmean(data)
+.. function:: fmean(data, weights=None)
Convert *data* to floats and compute the arithmetic mean.
>>> fmean([3.5, 4.0, 5.25])
4.25
+ Optional weighting is supported. For example, a professor assigns a
+ grade for a course by weighting quizzes at 20%, homework at 20%, a
+ midterm exam at 30%, and a final exam at 30%:
+
+ .. doctest::
+
+ >>> grades = [85, 92, 83, 91]
+ >>> weights = [0.20, 0.20, 0.30, 0.30]
+ >>> fmean(grades, weights)
+ 87.6
+
+ If *weights* is supplied, it must be the same length as the *data* or
+ a :exc:`ValueError` will be raised.
+
.. versionadded:: 3.8
+ .. versionchanged:: 3.11
+ Added support for *weights*.
+
.. function:: geometric_mean(data)
from itertools import groupby, repeat
from bisect import bisect_left, bisect_right
from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum
-from operator import itemgetter
+from operator import itemgetter, mul
from collections import Counter, namedtuple
# === Exceptions ===
return _convert(total / n, T)
-def fmean(data):
+def fmean(data, weights=None):
"""Convert data to floats and compute the arithmetic mean.
This runs faster than the mean() function and it always returns a float.
nonlocal n
for n, x in enumerate(iterable, start=1):
yield x
- total = fsum(count(data))
- else:
+ data = count(data)
+ if weights is None:
total = fsum(data)
- try:
+ if not n:
+ raise StatisticsError('fmean requires at least one data point')
return total / n
- except ZeroDivisionError:
- raise StatisticsError('fmean requires at least one data point') from None
+ try:
+ num_weights = len(weights)
+ except TypeError:
+ weights = list(weights)
+ num_weights = len(weights)
+ num = fsum(map(mul, data, weights))
+ if n != num_weights:
+ raise StatisticsError('data and weights must be the same length')
+ den = fsum(weights)
+ if not den:
+ raise StatisticsError('sum of weights must be non-zero')
+ return num / den
def geometric_mean(data):
with self.assertRaises(ValueError):
fmean([Inf, -Inf])
+ def test_weights(self):
+ fmean = statistics.fmean
+ StatisticsError = statistics.StatisticsError
+ self.assertEqual(
+ fmean([10, 10, 10, 50], [0.25] * 4),
+ fmean([10, 10, 10, 50]))
+ self.assertEqual(
+ fmean([10, 10, 20], [0.25, 0.25, 0.50]),
+ fmean([10, 10, 20, 20]))
+ self.assertEqual( # inputs are iterators
+ fmean(iter([10, 10, 20]), iter([0.25, 0.25, 0.50])),
+ fmean([10, 10, 20, 20]))
+ with self.assertRaises(StatisticsError):
+ fmean([10, 20, 30], [1, 2]) # unequal lengths
+ with self.assertRaises(StatisticsError):
+ fmean(iter([10, 20, 30]), iter([1, 2])) # unequal lengths
+ with self.assertRaises(StatisticsError):
+ fmean([10, 20], [-1, 1]) # sum of weights is zero
+ with self.assertRaises(StatisticsError):
+ fmean(iter([10, 20]), iter([-1, 1])) # sum of weights is zero
+
# === Tests for variances and standard deviations ===
--- /dev/null
+Add optional *weights* argument to statistics.fmean().