lj_tab.h lj_ir.h lj_jit.h lj_iropt.h
lj_opt_narrow.o: lj_opt_narrow.c lj_obj.h lua.h luaconf.h lj_def.h \
lj_arch.h lj_str.h lj_bc.h lj_ir.h lj_jit.h lj_iropt.h lj_trace.h \
- lj_dispatch.h lj_traceerr.h
+ lj_dispatch.h lj_traceerr.h lj_vm.h
lj_opt_split.o: lj_opt_split.c lj_obj.h lua.h luaconf.h lj_def.h \
- lj_arch.h
+ lj_arch.h lj_err.h lj_errmsg.h lj_str.h lj_ir.h lj_jit.h lj_iropt.h \
+ lj_vm.h
lj_parse.o: lj_parse.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \
lj_gc.h lj_err.h lj_errmsg.h lj_str.h lj_tab.h lj_func.h lj_state.h \
lj_bc.h lj_ctype.h lj_lex.h lj_parse.h lj_vm.h lj_vmevent.h
lj_record.o: lj_record.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \
- lj_err.h lj_errmsg.h lj_str.h lj_tab.h lj_frame.h lj_bc.h lj_ff.h \
- lj_ffdef.h lj_ir.h lj_jit.h lj_iropt.h lj_trace.h lj_dispatch.h \
+ lj_err.h lj_errmsg.h lj_str.h lj_tab.h lj_meta.h lj_frame.h lj_bc.h \
+ lj_ff.h lj_ffdef.h lj_ir.h lj_jit.h lj_iropt.h lj_trace.h lj_dispatch.h \
lj_traceerr.h lj_record.h lj_ffrecord.h lj_snap.h lj_vm.h
lj_snap.o: lj_snap.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \
lj_state.h lj_frame.h lj_bc.h lj_ir.h lj_jit.h lj_iropt.h lj_trace.h \
} else {
emit_sjcc(as, CC_P, l_next);
emit_rmro(as, XO_UCOMISD, key, dest, offsetof(Node, key.n));
- emit_sjcc(as, CC_A, l_next);
+ emit_sjcc(as, CC_AE, l_next);
/* The type check avoids NaN penalties and complaints from Valgrind. */
#if LJ_64
emit_u32(as, LJ_TISNUM);
static void asm_ahuvload(ASMState *as, IRIns *ir)
{
- lua_assert(irt_isnum(ir->t) || irt_ispri(ir->t) || irt_isaddr(ir->t));
+ lua_assert(irt_isnum(ir->t) || irt_ispri(ir->t) || irt_isaddr(ir->t) ||
+ (LJ_DUALNUM && irt_isint(ir->t)));
#if LJ_64
if (irt_islightud(ir->t)) {
Reg dest = asm_load_lightud64(as, ir, 1);
}
/* Always do the type check, even if the load result is unused. */
as->mrm.ofs += 4;
- asm_guardcc(as, irt_isnum(ir->t) ? CC_A : CC_NE);
- if (LJ_64 && irt_isnum(ir->t)) {
+ asm_guardcc(as, irt_isnum(ir->t) ? CC_AE : CC_NE);
+ if (LJ_64 && irt_type(ir->t) >= IRT_NUM) {
+ lua_assert(irt_isinteger(ir->t) || irt_isnum(ir->t));
emit_u32(as, LJ_TISNUM);
emit_mrm(as, XO_ARITHi, XOg_CMP, RID_MRM);
} else {
if (ra_hasreg(src)) {
emit_mrm(as, XO_MOVto, src, RID_MRM);
} else if (!irt_ispri(irr->t)) {
- lua_assert(irt_isaddr(ir->t));
+ lua_assert(irt_isaddr(ir->t) || (LJ_DUALNUM && irt_isinteger(ir->t)));
emit_i32(as, irr->i);
emit_mrm(as, XO_MOVmi, 0, RID_MRM);
}
Reg base;
lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */
lua_assert(irt_isguard(t) || !(ir->op2 & IRSLOAD_TYPECHECK));
- lua_assert(!irt_isint(t) || (ir->op2 & (IRSLOAD_CONVERT|IRSLOAD_FRAME)));
- if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t)) {
+ lua_assert(LJ_DUALNUM ||
+ !irt_isint(t) || (ir->op2 & (IRSLOAD_CONVERT|IRSLOAD_FRAME)));
+ if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t) && irt_isint(t)) {
Reg left = ra_scratch(as, RSET_FPR);
asm_tointg(as, ir, left); /* Frees dest reg. Do this before base alloc. */
base = ra_alloc1(as, REF_BASE, RSET_GPR);
Reg dest = ra_dest(as, ir, allow);
base = ra_alloc1(as, REF_BASE, RSET_GPR);
lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t));
- if ((ir->op2 & IRSLOAD_CONVERT))
- emit_rmro(as, XO_CVTSD2SI, dest, base, ofs);
- else if (irt_isnum(t))
+ if ((ir->op2 & IRSLOAD_CONVERT)) {
+ t.irt = irt_isint(t) ? IRT_NUM : IRT_INT; /* Check for original type. */
+ emit_rmro(as, irt_isint(t) ? XO_CVTSI2SD : XO_CVTSD2SI, dest, base, ofs);
+ } else if (irt_isnum(t)) {
emit_rmro(as, XMM_MOVRM(as), dest, base, ofs);
- else
+ } else {
emit_rmro(as, XO_MOV, dest, base, ofs);
+ }
} else {
if (!(ir->op2 & IRSLOAD_TYPECHECK))
return; /* No type check: avoid base alloc. */
}
if ((ir->op2 & IRSLOAD_TYPECHECK)) {
/* Need type check, even if the load result is unused. */
- asm_guardcc(as, irt_isnum(t) ? CC_A : CC_NE);
- if (LJ_64 && irt_isnum(t)) {
+ asm_guardcc(as, irt_isnum(t) ? CC_AE : CC_NE);
+ if (LJ_64 && irt_type(t) >= IRT_NUM) {
+ lua_assert(irt_isinteger(t) || irt_isnum(t));
emit_u32(as, LJ_TISNUM);
emit_rmro(as, XO_ARITHi, XOg_CMP, base, ofs+4);
} else {
Reg src = ra_alloc1(as, ref, RSET_FPR);
emit_rmro(as, XO_MOVSDto, src, RID_BASE, ofs);
} else {
- lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t));
+ lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) ||
+ (LJ_DUALNUM && irt_isinteger(ir->t)));
if (!irref_isk(ref)) {
Reg src = ra_alloc1(as, ref, rset_exclude(RSET_GPR, RID_BASE));
emit_movtomro(as, REX_64IR(ir, src), RID_BASE, ofs);
(sinfo & CTF_UNSIGNED) ? 0 : IRCONV_SEXT);
else if (dsize < 8 && ssize == 8) /* Truncate from 64 bit integer. */
sp = emitconv(sp, dsize < 4 ? IRT_INT : dt, st, 0);
+ else if (ssize <= 4)
+ sp = lj_opt_narrow_toint(J, sp);
xstore:
if (dt == IRT_I64 || dt == IRT_U64) lj_needsplit(J);
if (dp == 0) return sp;
CType *s;
if (LJ_LIKELY(tref_isinteger(sp))) {
sid = CTID_INT32;
- svisnz = (void *)(intptr_t)(numV(sval) != 0);
+ svisnz = (void *)(intptr_t)(tvisint(sval)?(intV(sval)!=0):!tviszero(sval));
} else if (tref_isnum(sp)) {
sid = CTID_DOUBLE;
- svisnz = (void *)(intptr_t)(numV(sval) != 0);
+ svisnz = (void *)(intptr_t)(tvisint(sval)?(intV(sval)!=0):!tviszero(sval));
} else if (tref_isbool(sp)) {
sp = lj_ir_kint(J, tref_istrue(sp) ? 1 : 0);
sid = CTID_BOOL;
static TRef crec_reassoc_ofs(jit_State *J, TRef tr, ptrdiff_t *ofsp, MSize sz)
{
IRIns *ir = IR(tref_ref(tr));
- if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) &&
- ir->o == IR_ADD && irref_isk(ir->op2)) {
+ if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && irref_isk(ir->op2) &&
+ (ir->o == IR_ADD || ir->o == IR_ADDOV || ir->o == IR_SUBOV)) {
IRIns *irk = IR(ir->op2);
- tr = ir->op1;
-#if LJ_64
- if (irk->o == IR_KINT64)
- *ofsp += (ptrdiff_t)ir_kint64(irk)->u64 * sz;
+ ptrdiff_t k;
+ if (LJ_64 && irk->o == IR_KINT64)
+ k = (ptrdiff_t)ir_kint64(irk)->u64 * sz;
else
-#endif
- *ofsp += (ptrdiff_t)irk->i * sz;
+ k = (ptrdiff_t)irk->i * sz;
+ if (ir->o == IR_SUBOV) *ofsp -= k; else *ofsp += k;
+ tr = ir->op1; /* Not a TRef, but the caller doesn't care. */
}
return tr;
}
idx = J->base[1];
if (tref_isnumber(idx)) {
- /* The size of a ptrdiff_t is target-specific. */
-#if LJ_64
- if (tref_isnum(idx))
- idx = emitconv(idx, IRT_I64, IRT_NUM, IRCONV_TRUNC|IRCONV_ANY);
- else
- idx = emitconv(idx, IRT_I64, IRT_INT, IRCONV_SEXT);
-#else
- if (tref_isnum(idx))
- idx = emitconv(idx, IRT_INT, IRT_NUM, IRCONV_TRUNC|IRCONV_ANY);
-#endif
+ idx = lj_opt_narrow_cindex(J, idx);
integer_key:
if (ctype_ispointer(ct->info)) {
CTSize sz;
TRef sp, dp;
TValue tv;
TValue *sval = &tv;
- setnumV(&tv, 0);
+ setintV(&tv, 0);
if (!gcref(df->name)) continue; /* Ignore unnamed fields. */
dc = ctype_rawchild(cts, df); /* Field type. */
if (!(ctype_isnum(dc->info) || ctype_isptr(dc->info)))
/* Get runtime value of int argument. */
static int32_t argv2int(jit_State *J, TValue *o)
{
- if (!tvisnum(o) && !(tvisstr(o) && lj_str_tonum(strV(o), o)))
+ if (!tvisnumber(o) && !(tvisstr(o) && lj_str_tonumber(strV(o), o)))
lj_trace_err(J, LJ_TRERR_BADTYPE);
- return lj_num2bit(numV(o));
+ return tvisint(o) ? intV(o) : lj_num2int(numV(o));
}
/* Get runtime value of string argument. */
return strV(o);
} else {
GCstr *s;
- if (!tvisnum(o))
+ if (!tvisnumber(o))
lj_trace_err(J, LJ_TRERR_BADTYPE);
- s = lj_str_fromnum(J->L, &o->n);
+ if (tvisint(o))
+ s = lj_str_fromint(J->L, intV(o));
+ else
+ s = lj_str_fromnum(J->L, &o->n);
setstrV(J->L, o, s);
return s;
}
{
/* Arguments already specialized. Result is a constant string. Neat, huh? */
uint32_t t;
- if (tvisnum(&rd->argv[0]))
+ if (tvisnumber(&rd->argv[0]))
t = ~LJ_TNUMX;
else if (LJ_64 && tvislightud(&rd->argv[0]))
t = ~LJ_TLIGHTUD;
TRef tr = J->base[0];
TRef base = J->base[1];
if (tr && base) {
- base = lj_ir_toint(J, base);
+ base = lj_opt_narrow_toint(J, base);
if (!tref_isk(base) || IR(tref_ref(base))->i != 10)
recff_nyiu(J);
}
RecordIndex ix;
ix.tab = J->base[0];
if (tref_istab(ix.tab)) {
- if (!tvisnum(&rd->argv[1])) /* No support for string coercion. */
+ if (!tvisnumber(&rd->argv[1])) /* No support for string coercion. */
lj_trace_err(J, LJ_TRERR_BADTYPE);
- setnumV(&ix.keyv, numV(&rd->argv[1])+(lua_Number)1);
+ setintV(&ix.keyv, numberVint(&rd->argv[1])+1);
settabV(J->L, &ix.tabv, tabV(&rd->argv[0]));
ix.val = 0; ix.idxchain = 0;
- ix.key = lj_ir_toint(J, J->base[1]);
+ ix.key = lj_opt_narrow_toint(J, J->base[1]);
J->base[0] = ix.key = emitir(IRTI(IR_ADD), ix.key, lj_ir_kint(J, 1));
J->base[1] = lj_record_idx(J, &ix);
rd->nres = tref_isnil(J->base[1]) ? 0 : 2;
/* Record unary bit.tobit, bit.bnot, bit.bswap. */
static void LJ_FASTCALL recff_bit_unary(jit_State *J, RecordFFData *rd)
{
- TRef tr = lj_ir_tobit(J, J->base[0]);
+ TRef tr = lj_opt_narrow_tobit(J, J->base[0]);
J->base[0] = (rd->data == IR_TOBIT) ? tr : emitir(IRTI(rd->data), tr, 0);
}
/* Record N-ary bit.band, bit.bor, bit.bxor. */
static void LJ_FASTCALL recff_bit_nary(jit_State *J, RecordFFData *rd)
{
- TRef tr = lj_ir_tobit(J, J->base[0]);
+ TRef tr = lj_opt_narrow_tobit(J, J->base[0]);
uint32_t op = rd->data;
BCReg i;
for (i = 1; J->base[i] != 0; i++)
- tr = emitir(IRTI(op), tr, lj_ir_tobit(J, J->base[i]));
+ tr = emitir(IRTI(op), tr, lj_opt_narrow_tobit(J, J->base[i]));
J->base[0] = tr;
}
/* Record bit shifts. */
static void LJ_FASTCALL recff_bit_shift(jit_State *J, RecordFFData *rd)
{
- TRef tr = lj_ir_tobit(J, J->base[0]);
- TRef tsh = lj_ir_tobit(J, J->base[1]);
+ TRef tr = lj_opt_narrow_tobit(J, J->base[0]);
+ TRef tsh = lj_opt_narrow_tobit(J, J->base[1]);
if (!(rd->data < IR_BROL ? LJ_TARGET_MASKSHIFT : LJ_TARGET_MASKROT) &&
!tref_isk(tsh))
tsh = emitir(IRTI(IR_BAND), tsh, lj_ir_kint(J, 31));
int32_t start, end;
if (rd->data) { /* string.sub(str, start [,end]) */
start = argv2int(J, &rd->argv[1]);
- trstart = lj_ir_toint(J, J->base[1]);
+ trstart = lj_opt_narrow_toint(J, J->base[1]);
trend = J->base[2];
if (tref_isnil(trend)) {
trend = lj_ir_kint(J, -1);
end = -1;
} else {
- trend = lj_ir_toint(J, trend);
+ trend = lj_opt_narrow_toint(J, trend);
end = argv2int(J, &rd->argv[2]);
}
} else { /* string.byte(str, [,start [,end]]) */
if (J->base[1]) {
start = argv2int(J, &rd->argv[1]);
- trstart = lj_ir_toint(J, J->base[1]);
+ trstart = lj_opt_narrow_toint(J, J->base[1]);
trend = J->base[2];
if (tref_isnil(trend)) {
trend = trstart;
end = start;
} else {
- trend = lj_ir_toint(J, trend);
+ trend = lj_opt_narrow_toint(J, trend);
end = argv2int(J, &rd->argv[2]);
}
} else {
return tr;
}
-/* Convert from number or string to bitop operand (overflow wrapped). */
-TRef LJ_FASTCALL lj_ir_tobit(jit_State *J, TRef tr)
-{
- if (!tref_isinteger(tr)) {
- if (tref_isstr(tr))
- tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
- else if (!tref_isnum(tr))
- lj_trace_err(J, LJ_TRERR_BADTYPE);
- tr = emitir(IRTI(IR_TOBIT), tr, lj_ir_knum_tobit(J));
- }
- return tr;
-}
-
-/* Convert from number or string to integer (overflow undefined). */
-TRef LJ_FASTCALL lj_ir_toint(jit_State *J, TRef tr)
-{
- if (!tref_isinteger(tr)) {
- if (tref_isstr(tr))
- tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
- else if (!tref_isnum(tr))
- lj_trace_err(J, LJ_TRERR_BADTYPE);
- tr = emitir(IRTI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_ANY);
- }
- return tr;
-}
-
/* -- Miscellaneous IR ops ------------------------------------------------ */
/* Evaluate numeric comparison. */
_(XBAR, S , ___, ___) \
\
/* Type conversions. */ \
- _(CONV, N , ref, lit) \
+ _(CONV, NW, ref, lit) \
_(TOBIT, N , ref, ref) \
_(TOSTR, N , ref, ___) \
_(STRTO, N , ref, ___) \
#define IRM_AW (IRM_A|IRM_W)
#define IRM_LW (IRM_L|IRM_W)
-#define irm_op1(m) (cast(IRMode, (m)&3))
-#define irm_op2(m) (cast(IRMode, ((m)>>2)&3))
+#define irm_op1(m) ((IRMode)((m)&3))
+#define irm_op2(m) ((IRMode)(((m)>>2)&3))
#define irm_iscomm(m) ((m) & IRM_C)
#define irm_kind(m) ((m) & IRM_S)
#define IRTG(o, t) (IRT((o), IRT_GUARD|(t)))
#define IRTGI(o) (IRT((o), IRT_GUARD|IRT_INT))
-#define irt_t(t) (cast(IRType, (t).irt))
-#define irt_type(t) (cast(IRType, (t).irt & IRT_TYPE))
+#define irt_t(t) ((IRType)(t).irt)
+#define irt_type(t) ((IRType)((t).irt & IRT_TYPE))
#define irt_sametype(t1, t2) ((((t1).irt ^ (t2).irt) & IRT_TYPE) == 0)
#define irt_typerange(t, first, last) \
((uint32_t)((t).irt & IRT_TYPE) - (uint32_t)(first) <= (uint32_t)(last-first))
static LJ_AINLINE IRType itype2irt(const TValue *tv)
{
- if (tvisnum(tv))
+ if (tvisint(tv))
+ return IRT_INT;
+ else if (tvisnum(tv))
return IRT_NUM;
#if LJ_64
else if (tvislightud(tv))
return IRT_LIGHTUD;
#endif
else
- return cast(IRType, ~itype(tv));
+ return (IRType)~itype(tv);
}
-#define irt_toitype(t) \
- check_exp(!(LJ_64 && irt_islightud((t))), ~(uint32_t)irt_type((t)))
+static LJ_AINLINE uint32_t irt_toitype_(IRType t)
+{
+ lua_assert(!LJ_64 || t != IRT_LIGHTUD);
+ if (LJ_DUALNUM && t > IRT_NUM) {
+ return LJ_TISNUM;
+ } else {
+ lua_assert(t <= IRT_NUM);
+ return ~(uint32_t)t;
+ }
+}
+
+#define irt_toitype(t) irt_toitype_(irt_type((t)))
#define irt_isguard(t) ((t).irt & IRT_GUARD)
#define irt_ismarked(t) ((t).irt & IRT_MARK)
/* Convert IR operand types. */
LJ_FUNC TRef LJ_FASTCALL lj_ir_tonum(jit_State *J, TRef tr);
LJ_FUNC TRef LJ_FASTCALL lj_ir_tostr(jit_State *J, TRef tr);
-LJ_FUNC TRef LJ_FASTCALL lj_ir_tobit(jit_State *J, TRef tr);
-LJ_FUNC TRef LJ_FASTCALL lj_ir_toint(jit_State *J, TRef tr);
/* Miscellaneous IR ops. */
LJ_FUNC int lj_ir_numcmp(lua_Number a, lua_Number b, IROp op);
/* Narrowing. */
LJ_FUNC TRef LJ_FASTCALL lj_opt_narrow_convert(jit_State *J);
+LJ_FUNC TRef LJ_FASTCALL lj_opt_narrow_index(jit_State *J, TRef key);
+LJ_FUNC TRef LJ_FASTCALL lj_opt_narrow_toint(jit_State *J, TRef tr);
+LJ_FUNC TRef LJ_FASTCALL lj_opt_narrow_tobit(jit_State *J, TRef tr);
+#if LJ_HASFFI
+LJ_FUNC TRef LJ_FASTCALL lj_opt_narrow_cindex(jit_State *J, TRef key);
+#endif
+LJ_FUNC TRef lj_opt_narrow_arith(jit_State *J, TRef rb, TRef rc,
+ TValue *vb, TValue *vc, IROp op);
LJ_FUNC TRef lj_opt_narrow_mod(jit_State *J, TRef rb, TRef rc);
LJ_FUNC TRef lj_opt_narrow_pow(jit_State *J, TRef rb, TRef rc, TValue *vc);
-LJ_FUNC IRType lj_opt_narrow_forl(cTValue *forbase);
+LJ_FUNC IRType lj_opt_narrow_forl(jit_State *J, cTValue *forbase);
/* Optimization passes. */
LJ_FUNC void lj_opt_dce(jit_State *J);
lj_err_msg(L, LJ_ERR_FORLIM);
if (!(tvisnumber(o+2) || (tvisstr(o+2) && lj_str_tonumber(strV(o+2), o+2))))
lj_err_msg(L, LJ_ERR_FORSTEP);
-#if LJ_DUALNUM
- /* Ensure all slots are integers or all slots are numbers. */
- if (!(tvisint(o) && tvisint(o+1) && tvisint(o+2))) {
- if (tvisint(o)) setnumV(o, (lua_Number)intV(o));
- if (tvisint(o+1)) setnumV(o+1, (lua_Number)intV(o+1));
- if (tvisint(o+2)) setnumV(o+2, (lua_Number)intV(o+2));
+ if (LJ_DUALNUM) {
+ /* Ensure all slots are integers or all slots are numbers. */
+ int32_t k[3];
+ int nint = 0;
+ ptrdiff_t i;
+ for (i = 0; i <= 2; i++) {
+ if (tvisint(o+i)) {
+ k[i] = intV(o+i); nint++;
+ } else {
+ k[i] = lj_num2int(numV(o+i)); nint += ((lua_Number)k[i] == numV(o+i));
+ }
+ }
+ if (nint == 3) { /* Narrow to integers. */
+ setintV(o, k[0]);
+ setintV(o+1, k[1]);
+ setintV(o+2, k[2]);
+ } else if (nint != 0) { /* Widen to numbers. */
+ if (tvisint(o)) setnumV(o, (lua_Number)intV(o));
+ if (tvisint(o+1)) setnumV(o+1, (lua_Number)intV(o+1));
+ if (tvisint(o+2)) setnumV(o+2, (lua_Number)intV(o+2));
+ }
}
-#endif
}
LJ_FUNCA TValue * LJ_FASTCALL lj_meta_equal_cd(lua_State *L, BCIns ins);
LJ_FUNCA TValue *lj_meta_comp(lua_State *L, cTValue *o1, cTValue *o2, int op);
LJ_FUNCA void lj_meta_call(lua_State *L, TValue *func, TValue *top);
-LJ_FUNCA void LJ_FASTCALL lj_meta_for(lua_State *L, TValue *base);
+LJ_FUNCA void LJ_FASTCALL lj_meta_for(lua_State *L, TValue *o);
#endif
#define proto_kgc(pt, idx) \
check_exp((uintptr_t)(intptr_t)(idx) >= (uintptr_t)-(intptr_t)(pt)->sizekgc, \
gcref(mref((pt)->k, GCRef)[(idx)]))
-#define proto_knum(pt, idx) \
- check_exp((uintptr_t)(idx) < (pt)->sizekn, mref((pt)->k, lua_Number)[(idx)])
#define proto_knumtv(pt, idx) \
check_exp((uintptr_t)(idx) < (pt)->sizekn, &mref((pt)->k, TValue)[(idx)])
#define proto_bc(pt) ((BCIns *)((char *)(pt) + sizeof(GCproto)))
LJFOLD(CONV KINT IRCONV_U64_INT)
LJFOLDF(kfold_conv_kint_i64)
{
- return INT64FOLD((uint64_t)(int64_t)fleft->i);
+ if ((fins->op2 & IRCONV_SEXT))
+ return INT64FOLD((uint64_t)(int64_t)fleft->i);
+ else
+ return INT64FOLD((uint64_t)(int64_t)(uint32_t)fleft->i);
}
LJFOLD(CONV KINT64 IRCONV_NUM_I64)
}
/* Check all loop-carried dependencies for type instability. */
if (!irt_sametype(t, irr->t)) {
- if (irt_isnum(t) && irt_isinteger(irr->t)) /* Fix int->num case. */
+ if (irt_isnum(t) && irt_isinteger(irr->t)) /* Fix int->num. */
subst[ins] = tref_ref(emitir(IRTN(IR_CONV), ref, IRCONV_NUM_INT));
+ else if (irt_isnum(irr->t) && irt_isinteger(t)) /* Fix num->int. */
+ subst[ins] = tref_ref(emitir(IRTGI(IR_CONV), ref,
+ IRCONV_INT_NUM|IRCONV_CHECK));
else if (!(irt_isinteger(t) && irt_isinteger(irr->t)))
lj_trace_err(J, LJ_TRERR_TYPEINS);
}
int errcode = lj_vm_cpcall(J->L, NULL, J, cploop_opt);
if (LJ_UNLIKELY(errcode)) {
lua_State *L = J->L;
- if (errcode == LUA_ERRRUN && tvisnum(L->top-1)) { /* Trace error? */
- int32_t e = lj_num2int(numV(L->top-1));
+ if (errcode == LUA_ERRRUN && tvisnumber(L->top-1)) { /* Trace error? */
+ int32_t e = numberVint(L->top-1);
switch ((TraceError)e) {
case LJ_TRERR_TYPEINS: /* Type instability. */
case LJ_TRERR_GFAIL: /* Guard would always fail. */
/*
** NARROW: Narrowing of numbers to integers (double to int32_t).
+** STRIPOV: Stripping of overflow checks.
** Copyright (C) 2005-2011 Mike Pall. See Copyright Notice in luajit.h
*/
#include "lj_jit.h"
#include "lj_iropt.h"
#include "lj_trace.h"
+#include "lj_vm.h"
/* Rationale for narrowing optimizations:
**
**
** A better solution is to keep all numbers as FP values and only narrow
** when it's beneficial to do so. LuaJIT uses predictive narrowing for
-** induction variables and demand-driven narrowing for index expressions
-** and bit operations. Additionally it can eliminate or hoists most of the
-** resulting overflow checks. Regular arithmetic computations are never
-** narrowed to integers.
+** induction variables and demand-driven narrowing for index expressions,
+** integer arguments and bit operations. Additionally it can eliminate or
+** hoist most of the resulting overflow checks. Regular arithmetic
+** computations are never narrowed to integers.
**
** The integer type in the IR has convenient wrap-around semantics and
** ignores overflow. Extra operations have been added for
** overflow-checking arithmetic (ADDOV/SUBOV) instead of an extra type.
** Apart from reducing overall complexity of the compiler, this also
** nicely solves the problem where you want to apply algebraic
-** simplifications to ADD, but not to ADDOV. And the assembler can use lea
-** instead of an add for integer ADD, but not for ADDOV (lea does not
-** affect the flags, but it helps to avoid register moves).
+** simplifications to ADD, but not to ADDOV. And the x86/x64 assembler can
+** use lea instead of an add for integer ADD, but not for ADDOV (lea does
+** not affect the flags, but it helps to avoid register moves).
**
-** Note that all of the above has to be reconsidered if LuaJIT is to be
-** ported to architectures with slow FP operations or with no hardware FPU
-** at all. In the latter case an integer-only port may be the best overall
-** solution (if this still meets user demands).
+**
+** All of the above has to be reconsidered for architectures with slow FP
+** operations or without a hardware FPU. The dual-number mode of LuaJIT
+** addresses this issue. Arithmetic operations are performed on integers
+** as far as possible and overflow checks are added as needed.
+**
+** This implies that narrowing for integer arguments and bit operations
+** should also strip overflow checks, e.g. replace ADDOV with ADD. The
+** original overflow guards are weak and can be eliminated by DCE, if
+** there's no other use.
+**
+** A slight twist is that it's usually beneficial to use overflow-checked
+** integer arithmetics if all inputs are already integers. This is the only
+** change that affects the single-number mode, too.
*/
/* Some local macros to save typing. Undef'd at the end. */
** already takes care of eliminating simple redundant conversions like
** CONV.int.num(CONV.num.int(x)) ==> x.
**
-** But the surrounding code is FP-heavy and all arithmetic operations are
-** performed on FP numbers. Consider a common example such as 'x=t[i+1]',
-** with 'i' already an integer (due to induction variable narrowing). The
-** index expression would be recorded as
+** But the surrounding code is FP-heavy and arithmetic operations are
+** performed on FP numbers (for the single-number mode). Consider a common
+** example such as 'x=t[i+1]', with 'i' already an integer (due to induction
+** variable narrowing). The index expression would be recorded as
** CONV.int.num(ADD(CONV.num.int(i), 1))
** which is clearly suboptimal.
**
** FP ops remain in the IR and are eliminated by DCE since all references to
** them are gone.
**
+** [In dual-number mode the trace recorder already emits ADDOV etc., but
+** this can be further reduced. See below.]
+**
** Special care has to be taken to avoid narrowing across an operation
** which is potentially operating on non-integral operands. One obvious
** case is when an expression contains a non-integral constant, but ends
bp->mode = mode;
}
+/* Backpropagate overflow stripping. */
+static void narrow_stripov_backprop(NarrowConv *nc, IRRef ref, int depth)
+{
+ jit_State *J = nc->J;
+ IRIns *ir = IR(ref);
+ if (ir->o == IR_ADDOV || ir->o == IR_SUBOV ||
+ (ir->o == IR_MULOV && (nc->mode & IRCONV_CONVMASK) == IRCONV_ANY)) {
+ BPropEntry *bp = narrow_bpc_get(nc->J, ref, IRCONV_TOBIT);
+ if (bp) {
+ ref = bp->val;
+ } else if (++depth < NARROW_MAX_BACKPROP && nc->sp < nc->maxsp) {
+ narrow_stripov_backprop(nc, ir->op1, depth);
+ narrow_stripov_backprop(nc, ir->op2, depth);
+ *nc->sp++ = NARROWINS(IRT(ir->o - IR_ADDOV + IR_ADD, IRT_INT), ref);
+ return;
+ }
+ }
+ *nc->sp++ = NARROWINS(NARROW_REF, ref);
+}
+
/* Backpropagate narrowing conversion. Return number of needed conversions. */
static int narrow_conv_backprop(NarrowConv *nc, IRRef ref, int depth)
{
/* Check the easy cases first. */
if (ir->o == IR_CONV && (ir->op2 & IRCONV_SRCMASK) == IRT_INT) {
- if (nc->t == IRT_I64)
- *nc->sp++ = NARROWINS(NARROW_SEXT, ir->op1); /* Reduce to sign-ext. */
+ if ((nc->mode & IRCONV_CONVMASK) <= IRCONV_ANY)
+ narrow_stripov_backprop(nc, ir->op1, depth+1);
else
*nc->sp++ = NARROWINS(NARROW_REF, ir->op1); /* Undo conversion. */
+ if (nc->t == IRT_I64)
+ *nc->sp++ = NARROWINS(NARROW_SEXT, 0); /* Sign-extend integer. */
return 0;
} else if (ir->o == IR_KNUM) { /* Narrow FP constant. */
lua_Number n = ir_knum(ir)->n;
if ((nc->mode & IRCONV_CONVMASK) == IRCONV_TOBIT) {
/* Allows a wider range of constants. */
int64_t k64 = (int64_t)n;
- if (n == cast_num(k64)) { /* Only if constant doesn't lose precision. */
+ if (n == (lua_Number)k64) { /* Only if const doesn't lose precision. */
*nc->sp++ = NARROWINS(NARROW_INT, 0);
*nc->sp++ = (NarrowIns)k64; /* But always truncate to 32 bits. */
return 0;
}
} else {
int32_t k = lj_num2int(n);
- if (n == cast_num(k)) { /* Only if constant is really an integer. */
+ if (n == (lua_Number)k) { /* Only if constant is really an integer. */
*nc->sp++ = NARROWINS(NARROW_INT, 0);
*nc->sp++ = (NarrowIns)k;
return 0;
mode = (IRT_INT<<5)|IRT_NUM|IRCONV_INDEX;
bp = narrow_bpc_get(nc->J, (IRRef1)ref, mode);
if (bp) {
- *nc->sp++ = NARROWINS(NARROW_SEXT, bp->val);
+ *nc->sp++ = NARROWINS(NARROW_REF, bp->val);
+ *nc->sp++ = NARROWINS(NARROW_SEXT, 0);
return 0;
}
}
} else if (op == NARROW_CONV) {
*sp++ = emitir_raw(convot, ref, convop2); /* Raw emit avoids a loop. */
} else if (op == NARROW_SEXT) {
- *sp++ = emitir(IRT(IR_CONV, IRT_I64), ref,
- (IRT_I64<<5)|IRT_INT|IRCONV_SEXT);
+ lua_assert(sp >= nc->stack+1);
+ sp[-1] = emitir(IRT(IR_CONV, IRT_I64), sp[-1],
+ (IRT_I64<<5)|IRT_INT|IRCONV_SEXT);
} else if (op == NARROW_INT) {
lua_assert(next < last);
*sp++ = nc->t == IRT_I64 ?
/* Omit some overflow checks for array indexing. See comments above. */
if ((mode & IRCONV_CONVMASK) == IRCONV_INDEX) {
if (next == last && irref_isk(narrow_ref(sp[0])) &&
- (uint32_t)IR(narrow_ref(sp[0]))->i + 0x40000000 < 0x80000000)
+ (uint32_t)IR(narrow_ref(sp[0]))->i + 0x40000000u < 0x80000000u)
guardot = 0;
else /* Otherwise cache a stronger check. */
mode += IRCONV_CHECK-IRCONV_INDEX;
return NEXTFOLD;
}
+/* -- Narrowing of implicit conversions ----------------------------------- */
+
+/* Recursively strip overflow checks. */
+static TRef narrow_stripov(jit_State *J, TRef tr, int lastop, IRRef mode)
+{
+ IRRef ref = tref_ref(tr);
+ IRIns *ir = IR(ref);
+ int op = ir->o;
+ if (op >= IR_ADDOV && op <= lastop) {
+ BPropEntry *bp = narrow_bpc_get(J, ref, mode);
+ if (bp) {
+ return TREF(bp->val, irt_t(IR(bp->val)->t));
+ } else {
+ IRRef op1 = ir->op1, op2 = ir->op2; /* The IR may be reallocated. */
+ op1 = narrow_stripov(J, op1, lastop, mode);
+ op2 = narrow_stripov(J, op2, lastop, mode);
+ tr = emitir(IRT(op - IR_ADDOV + IR_ADD,
+ ((mode & IRCONV_DSTMASK) >> IRCONV_DSH)), op1, op2);
+ narrow_bpc_set(J, ref, tref_ref(tr), mode);
+ }
+ } else if (LJ_64 && (mode & IRCONV_SEXT) && !irt_is64(ir->t)) {
+ tr = emitir(IRT(IR_CONV, IRT_INTP), tr, mode);
+ }
+ return tr;
+}
+
+/* Narrow array index. */
+TRef LJ_FASTCALL lj_opt_narrow_index(jit_State *J, TRef tr)
+{
+ IRIns *ir;
+ lua_assert(tref_isnumber(tr));
+ if (tref_isnum(tr)) /* Conversion may be narrowed, too. See above. */
+ return emitir(IRTGI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_INDEX);
+ /* Omit some overflow checks for array indexing. See comments above. */
+ ir = IR(tref_ref(tr));
+ if ((ir->o == IR_ADDOV || ir->o == IR_SUBOV) && irref_isk(ir->op2) &&
+ (uint32_t)IR(ir->op2)->i + 0x40000000u < 0x80000000u)
+ return emitir(IRTI(ir->o - IR_ADDOV + IR_ADD), ir->op1, ir->op2);
+ return tr;
+}
+
+/* Narrow conversion to integer operand (overflow undefined). */
+TRef LJ_FASTCALL lj_opt_narrow_toint(jit_State *J, TRef tr)
+{
+ if (tref_isstr(tr))
+ tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
+ if (tref_isnum(tr)) /* Conversion may be narrowed, too. See above. */
+ return emitir(IRTI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_ANY);
+ if (!tref_isinteger(tr))
+ lj_trace_err(J, LJ_TRERR_BADTYPE);
+ /*
+ ** Undefined overflow semantics allow stripping of ADDOV, SUBOV and MULOV.
+ ** Use IRCONV_TOBIT for the cache entries, since the semantics are the same.
+ */
+ return narrow_stripov(J, tr, IR_MULOV, (IRT_INT<<5)|IRT_INT|IRCONV_TOBIT);
+}
+
+/* Narrow conversion to bitop operand (overflow wrapped). */
+TRef LJ_FASTCALL lj_opt_narrow_tobit(jit_State *J, TRef tr)
+{
+ if (tref_isstr(tr))
+ tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
+ if (tref_isnum(tr)) /* Conversion may be narrowed, too. See above. */
+ return emitir(IRTI(IR_TOBIT), tr, lj_ir_knum_tobit(J));
+ if (!tref_isinteger(tr))
+ lj_trace_err(J, LJ_TRERR_BADTYPE);
+ /*
+ ** Wrapped overflow semantics allow stripping of ADDOV and SUBOV.
+ ** MULOV cannot be stripped due to precision widening.
+ */
+ return narrow_stripov(J, tr, IR_SUBOV, (IRT_INT<<5)|IRT_INT|IRCONV_TOBIT);
+}
+
+#if LJ_HASFFI
+/* Narrow C array index (overflow undefined). */
+TRef LJ_FASTCALL lj_opt_narrow_cindex(jit_State *J, TRef tr)
+{
+ lua_assert(tref_isnumber(tr));
+ if (tref_isnum(tr))
+ return emitir(IRTI(IR_CONV), tr,
+ (IRT_INTP<<5)|IRT_NUM|IRCONV_TRUNC|IRCONV_ANY);
+ /* Undefined overflow semantics allow stripping of ADDOV, SUBOV and MULOV. */
+ return narrow_stripov(J, tr, IR_MULOV,
+ LJ_64 ? ((IRT_INTP<<5)|IRT_INT|IRCONV_SEXT) :
+ ((IRT_INTP<<5)|IRT_INT|IRCONV_TOBIT));
+}
+#endif
+
/* -- Narrowing of arithmetic operators ----------------------------------- */
/* Check whether a number fits into an int32_t (-0 is ok, too). */
static int numisint(lua_Number n)
{
- return (n == cast_num(lj_num2int(n)));
+ return (n == (lua_Number)lj_num2int(n));
+}
+
+/* Narrowing of arithmetic operations. */
+TRef lj_opt_narrow_arith(jit_State *J, TRef rb, TRef rc,
+ TValue *vb, TValue *vc, IROp op)
+{
+ if (tref_isstr(rb)) {
+ rb = emitir(IRTG(IR_STRTO, IRT_NUM), rb, 0);
+ lj_str_tonum(strV(vb), vb);
+ }
+ if (tref_isstr(rc)) {
+ rc = emitir(IRTG(IR_STRTO, IRT_NUM), rc, 0);
+ lj_str_tonum(strV(vc), vc);
+ }
+ /* Must not narrow MUL in non-DUALNUM variant, because it loses -0. */
+ if ((op >= IR_ADD && op <= (LJ_DUALNUM ? IR_MUL : IR_SUB)) &&
+ tref_isinteger(rb) && tref_isinteger(rc) &&
+ numisint(lj_vm_foldarith(numberVnum(vb), numberVnum(vc),
+ (int)op - (int)IR_ADD)))
+ return emitir(IRTGI((int)op - (int)IR_ADD + (int)IR_ADDOV), rb, rc);
+ if (!tref_isnum(rb)) rb = emitir(IRTN(IR_CONV), rb, IRCONV_NUM_INT);
+ if (!tref_isnum(rc)) rc = emitir(IRTN(IR_CONV), rc, IRCONV_NUM_INT);
+ return emitir(IRTN(op), rb, rc);
}
/* Narrowing of modulo operator. */
/* Narrowing of power operator or math.pow. */
TRef lj_opt_narrow_pow(jit_State *J, TRef rb, TRef rc, TValue *vc)
{
- lua_Number n;
if (tvisstr(vc) && !lj_str_tonum(strV(vc), vc))
lj_trace_err(J, LJ_TRERR_BADTYPE);
- n = numV(vc);
/* Narrowing must be unconditional to preserve (-x)^i semantics. */
- if (numisint(n)) {
+ if (tvisint(vc) || numisint(numV(vc))) {
int checkrange = 0;
/* Split pow is faster for bigger exponents. But do this only for (+k)^i. */
if (tref_isk(rb) && (int32_t)ir_knum(IR(tref_ref(rb)))->u32.hi >= 0) {
- if (!(n >= -65536.0 && n <= 65536.0)) goto split_pow;
+ int32_t k = numberVint(vc);
+ if (!(k >= -65536 && k <= 65536)) goto split_pow;
checkrange = 1;
}
if (!tref_isinteger(rc)) {
/* -- Predictive narrowing of induction variables ------------------------- */
+/* Narrow a single runtime value. */
+static int narrow_forl(jit_State *J, cTValue *o)
+{
+ if (tvisint(o)) return 1;
+ if (LJ_DUALNUM || (J->flags & JIT_F_OPT_NARROW)) return numisint(numV(o));
+ return 0;
+}
+
/* Narrow the FORL index type by looking at the runtime values. */
-IRType lj_opt_narrow_forl(cTValue *forbase)
+IRType lj_opt_narrow_forl(jit_State *J, cTValue *tv)
{
- lua_assert(tvisnum(&forbase[FORL_IDX]) &&
- tvisnum(&forbase[FORL_STOP]) &&
- tvisnum(&forbase[FORL_STEP]));
+ lua_assert(tvisnumber(&tv[FORL_IDX]) &&
+ tvisnumber(&tv[FORL_STOP]) &&
+ tvisnumber(&tv[FORL_STEP]));
/* Narrow only if the runtime values of start/stop/step are all integers. */
- if (numisint(numV(&forbase[FORL_IDX])) &&
- numisint(numV(&forbase[FORL_STOP])) &&
- numisint(numV(&forbase[FORL_STEP]))) {
+ if (narrow_forl(J, &tv[FORL_IDX]) &&
+ narrow_forl(J, &tv[FORL_STOP]) &&
+ narrow_forl(J, &tv[FORL_STEP])) {
/* And if the loop index can't possibly overflow. */
- lua_Number step = numV(&forbase[FORL_STEP]);
- lua_Number sum = numV(&forbase[FORL_STOP]) + step;
- if (0 <= step ? sum <= 2147483647.0 : sum >= -2147483648.0)
+ lua_Number step = numberVnum(&tv[FORL_STEP]);
+ lua_Number sum = numberVnum(&tv[FORL_STOP]) + step;
+ if (0 <= step ? (sum <= 2147483647.0) : (sum >= -2147483648.0))
return IRT_INT;
}
return IRT_NUM;
#include "lj_err.h"
#include "lj_str.h"
#include "lj_tab.h"
+#include "lj_meta.h"
#include "lj_frame.h"
#include "lj_bc.h"
#include "lj_ff.h"
lua_assert((J->slot[s+1] & TREF_FRAME));
depth++;
} else {
- if (tvisnum(tv))
+ if (tvisnumber(tv))
lua_assert(tref_isnumber(tr)); /* Could be IRT_INT etc., too. */
else
lua_assert(itype2irt(tv) == tref_type(tr));
static void canonicalize_slots(jit_State *J)
{
BCReg s;
+ if (LJ_DUALNUM) return;
for (s = J->baseslot+J->maxslot-1; s >= 1; s--) {
TRef tr = J->slot[s];
if (tref_isinteger(tr)) {
}
if (op == BC_KSHORT) {
int32_t k = (int32_t)(int16_t)bc_d(ins);
- return t == IRT_INT ? lj_ir_kint(J, k) : lj_ir_knum(J, cast_num(k));
+ return t == IRT_INT ? lj_ir_kint(J, k) : lj_ir_knum(J, (lua_Number)k);
} else {
- lua_Number n = proto_knum(J->pt, bc_d(ins));
+ cTValue *tv = proto_knumtv(J->pt, bc_d(ins));
if (t == IRT_INT) {
- int32_t k = lj_num2int(n);
- if (n == cast_num(k)) /* -0 is ok here. */
+ int32_t k = numberVint(tv);
+ if (tvisint(tv) || numV(tv) == (lua_Number)k) /* -0 is ok here. */
return lj_ir_kint(J, k);
return 0; /* Type mismatch. */
} else {
- return lj_ir_knum(J, n);
+ return lj_ir_knum(J, numberVnum(tv));
}
}
}
return 0; /* No assignment to this slot found? */
}
+/* Load and optionally convert a FORI argument from a slot. */
+static TRef fori_load(jit_State *J, BCReg slot, IRType t, int mode)
+{
+ int conv = (tvisint(&J->L->base[slot]) != (t==IRT_INT)) ? IRSLOAD_CONVERT : 0;
+ return sloadt(J, (int32_t)slot,
+ t + (((mode & IRSLOAD_TYPECHECK) ||
+ (conv && t == IRT_INT && !(mode >> 16))) ?
+ IRT_GUARD : 0),
+ mode + conv);
+}
+
/* Peek before FORI to find a const initializer. Otherwise load from slot. */
-static TRef fori_arg(jit_State *J, const BCIns *fori, BCReg slot, IRType t)
+static TRef fori_arg(jit_State *J, const BCIns *fori, BCReg slot,
+ IRType t, int mode)
{
TRef tr = J->base[slot];
if (!tr) {
tr = find_kinit(J, fori, slot, t);
if (!tr)
- tr = sloadt(J, (int32_t)slot,
- t == IRT_INT ? (IRT_INT|IRT_GUARD) : t,
- t == IRT_INT ? (IRSLOAD_CONVERT|IRSLOAD_READONLY|IRSLOAD_INHERIT) :
- (IRSLOAD_READONLY|IRSLOAD_INHERIT));
+ tr = fori_load(J, slot, t, mode);
}
return tr;
}
-/* In-place coercion of FORI arguments. */
-static lua_Number for_coerce(jit_State *J, TValue *o)
+/* Return the direction of the FOR loop iterator.
+** It's important to exactly reproduce the semantics of the interpreter.
+*/
+static int rec_for_direction(cTValue *o)
{
- if (!tvisnum(o) && !(tvisstr(o) && lj_str_tonum(strV(o), o)))
- lj_trace_err(J, LJ_TRERR_BADTYPE);
- return numV(o);
+ return (tvisint(o) ? intV(o) : (int32_t)o->u32.hi) >= 0;
}
-/* Simulate the runtime behavior of the FOR loop iterator.
-** It's important to exactly reproduce the semantics of the interpreter.
-*/
-static LoopEvent for_iter(jit_State *J, IROp *op, BCReg ra, int isforl)
+/* Simulate the runtime behavior of the FOR loop iterator. */
+static LoopEvent rec_for_iter(IROp *op, cTValue *o, int isforl)
{
- TValue *forbase = &J->L->base[ra];
- lua_Number stopv = for_coerce(J, &forbase[FORL_STOP]);
- lua_Number idxv = for_coerce(J, &forbase[FORL_IDX]);
- lua_Number stepv = for_coerce(J, &forbase[FORL_STEP]);
+ lua_Number stopv = numberVnum(&o[FORL_STOP]);
+ lua_Number idxv = numberVnum(&o[FORL_IDX]);
+ lua_Number stepv = numberVnum(&o[FORL_STEP]);
if (isforl)
idxv += stepv;
- if ((int32_t)forbase[FORL_STEP].u32.hi >= 0) {
+ if (rec_for_direction(&o[FORL_STEP])) {
if (idxv <= stopv) { *op = IR_LE; return LOOPEV_ENTER; }
*op = IR_GT; return LOOPEV_LEAVE;
} else {
}
}
+/* Record checks for FOR loop overflow and step direction. */
+static void rec_for_check(jit_State *J, IRType t, int dir, TRef stop, TRef step)
+{
+ if (!tref_isk(step)) {
+ /* Non-constant step: need a guard for the direction. */
+ TRef zero = (t == IRT_INT) ? lj_ir_kint(J, 0) : lj_ir_knum_zero(J);
+ emitir(IRTG(dir ? IR_GE : IR_LT, t), step, zero);
+ /* Add hoistable overflow checks for a narrowed FORL index. */
+ if (t == IRT_INT) {
+ if (tref_isk(stop)) {
+ /* Constant stop: optimize check away or to a range check for step. */
+ int32_t k = IR(tref_ref(stop))->i;
+ if (dir) {
+ if (k > 0)
+ emitir(IRTGI(IR_LE), step, lj_ir_kint(J, (int32_t)0x7fffffff-k));
+ } else {
+ if (k < 0)
+ emitir(IRTGI(IR_GE), step, lj_ir_kint(J, (int32_t)0x80000000-k));
+ }
+ } else {
+ /* Stop+step variable: need full overflow check. */
+ TRef tr = emitir(IRTGI(IR_ADDOV), step, stop);
+ emitir(IRTI(IR_USE), tr, 0); /* ADDOV is weak. Avoid dead result. */
+ }
+ }
+ } else if (t == IRT_INT && !tref_isk(stop)) {
+ /* Constant step: optimize overflow check to a range check for stop. */
+ int32_t k = IR(tref_ref(step))->i;
+ k = (int32_t)(dir ? 0x7fffffff : 0x80000000) - k;
+ emitir(IRTGI(dir ? IR_LE : IR_GE), stop, lj_ir_kint(J, k));
+ }
+}
+
+/* Record a FORL instruction. */
+static void rec_for_loop(jit_State *J, const BCIns *fori, ScEvEntry *scev,
+ int init)
+{
+ BCReg ra = bc_a(*fori);
+ cTValue *tv = &J->L->base[ra];
+ TRef idx = J->base[ra+FORL_IDX];
+ IRType t = idx ? tref_type(idx) :
+ (init || LJ_DUALNUM) ? lj_opt_narrow_forl(J, tv) : IRT_NUM;
+ int mode = IRSLOAD_INHERIT +
+ ((!LJ_DUALNUM || tvisint(tv) == (t == IRT_INT)) ? IRSLOAD_READONLY : 0);
+ TRef stop = fori_arg(J, fori, ra+FORL_STOP, t, mode);
+ TRef step = fori_arg(J, fori, ra+FORL_STEP, t, mode);
+ int tc, dir = rec_for_direction(&tv[FORL_STEP]);
+ lua_assert(bc_op(*fori) == BC_FORI || bc_op(*fori) == BC_JFORI);
+ scev->t.irt = t;
+ scev->dir = dir;
+ scev->stop = tref_ref(stop);
+ scev->step = tref_ref(step);
+ if (init)
+ rec_for_check(J, t, dir, stop, step);
+ scev->start = tref_ref(find_kinit(J, fori, ra+FORL_IDX, IRT_INT));
+ tc = (LJ_DUALNUM &&
+ !(scev->start && irref_isk(scev->stop) && irref_isk(scev->step))) ?
+ IRSLOAD_TYPECHECK : 0;
+ if (tc) {
+ J->base[ra+FORL_STOP] = stop;
+ J->base[ra+FORL_STEP] = step;
+ }
+ if (!idx)
+ idx = fori_load(J, ra+FORL_IDX, t,
+ IRSLOAD_INHERIT + tc + (J->scev.start << 16));
+ if (!init)
+ J->base[ra+FORL_IDX] = idx = emitir(IRT(IR_ADD, t), idx, step);
+ J->base[ra+FORL_EXT] = idx;
+ scev->idx = tref_ref(idx);
+ J->maxslot = ra+FORL_EXT+1;
+}
+
/* Record FORL/JFORL or FORI/JFORI. */
static LoopEvent rec_for(jit_State *J, const BCIns *fori, int isforl)
{
BCReg ra = bc_a(*fori);
- IROp op;
- LoopEvent ev = for_iter(J, &op, ra, isforl);
+ TValue *tv = &J->L->base[ra];
TRef *tr = &J->base[ra];
- TRef idx, stop;
+ IROp op;
+ LoopEvent ev;
+ TRef stop;
IRType t;
if (isforl) { /* Handle FORL/JFORL opcodes. */
- TRef step;
- idx = tr[FORL_IDX];
+ TRef idx = tr[FORL_IDX];
if (tref_ref(idx) == J->scev.idx) {
t = J->scev.t.irt;
stop = J->scev.stop;
- step = J->scev.step;
+ idx = emitir(IRT(IR_ADD, t), idx, J->scev.step);
+ tr[FORL_EXT] = tr[FORL_IDX] = idx;
} else {
- if (!idx) idx = sloadt(J, (int32_t)(ra+FORL_IDX), IRT_NUM, 0);
- t = tref_type(idx);
- stop = fori_arg(J, fori, ra+FORL_STOP, t);
- step = fori_arg(J, fori, ra+FORL_STEP, t);
+ ScEvEntry scev;
+ rec_for_loop(J, fori, &scev, 0);
+ t = scev.t.irt;
+ stop = scev.stop;
}
- tr[FORL_IDX] = idx = emitir(IRT(IR_ADD, t), idx, step);
} else { /* Handle FORI/JFORI opcodes. */
BCReg i;
- t = IRT_NUM;
+ lj_meta_for(J->L, tv);
+ t = lj_opt_narrow_forl(J, tv);
for (i = FORL_IDX; i <= FORL_STEP; i++) {
- lua_assert(J->base[ra+i] != 0); /* Assumes the slots are already set. */
- tr[i] = lj_ir_tonum(J, J->base[ra+i]);
+ lua_assert(tref_isnumber_str(tr[i]));
+ if (tref_isstr(tr[i]))
+ tr[i] = emitir(IRTG(IR_STRTO, IRT_NUM), tr[i], 0);
+ if (t == IRT_INT) {
+ if (!tref_isinteger(tr[i]))
+ tr[i] = emitir(IRTI(IR_CONV), tr[i], IRCONV_INT_NUM|IRCONV_CHECK);
+ } else {
+ if (!tref_isnum(tr[i]))
+ tr[i] = emitir(IRTN(IR_CONV), tr[i], IRCONV_NUM_INT);
+ }
}
- idx = tr[FORL_IDX];
+ tr[FORL_EXT] = tr[FORL_IDX];
stop = tr[FORL_STOP];
- if (!tref_isk(tr[FORL_STEP])) /* Non-const step: need direction guard. */
- emitir(IRTG(((op-IR_LT)>>1)+IR_LT, IRT_NUM),
- tr[FORL_STEP], lj_ir_knum_zero(J));
+ rec_for_check(J, t, rec_for_direction(&tv[FORL_STEP]), stop, tr[FORL_STEP]);
}
- tr[FORL_EXT] = idx;
+ ev = rec_for_iter(&op, tv, isforl);
if (ev == LOOPEV_LEAVE) {
J->maxslot = ra+FORL_EXT+1;
J->pc = fori+1;
}
lj_snap_add(J);
- emitir(IRTG(op, t), idx, stop);
+ emitir(IRTG(op, t), tr[FORL_IDX], stop);
if (ev == LOOPEV_LEAVE) {
J->maxslot = ra;
if (ref == J->scev.idx) {
int32_t stop;
lua_assert(irt_isint(J->scev.t) && ir->o == IR_SLOAD);
- stop = lj_num2int(numV(&(J->L->base - J->baseslot)[ir->op1 + FORL_STOP]));
+ stop = numberVint(&(J->L->base - J->baseslot)[ir->op1 + FORL_STOP]);
/* Runtime value for stop of loop is within bounds? */
if ((int64_t)stop + ofs < (int64_t)asize) {
/* Emit invariant bounds check for stop. */
/* Integer keys are looked up in the array part first. */
key = ix->key;
if (tref_isnumber(key)) {
- lua_Number n = numV(&ix->keyv);
- int32_t k = lj_num2int(n);
- lua_assert(tvisnum(&ix->keyv));
- /* Potential array key? */
- if ((MSize)k < LJ_MAX_ASIZE && n == cast_num(k)) {
- TRef asizeref, ikey = key;
- if (!tref_isinteger(ikey))
- ikey = emitir(IRTGI(IR_CONV), ikey, IRCONV_INT_NUM|IRCONV_INDEX);
- asizeref = emitir(IRTI(IR_FLOAD), ix->tab, IRFL_TAB_ASIZE);
+ int32_t k = numberVint(&ix->keyv);
+ if (!tvisint(&ix->keyv) && numV(&ix->keyv) != (lua_Number)k)
+ k = LJ_MAX_ASIZE;
+ if ((MSize)k < LJ_MAX_ASIZE) { /* Potential array key? */
+ TRef ikey = lj_opt_narrow_index(J, key);
+ TRef asizeref = emitir(IRTI(IR_FLOAD), ix->tab, IRFL_TAB_ASIZE);
if ((MSize)k < t->asize) { /* Currently an array key? */
TRef arrayref;
rec_idx_abc(J, asizeref, ikey, t->asize);
} else {
keybarrier = 0; /* Previous non-nil value kept the key alive. */
}
- if (tref_isinteger(ix->val)) /* Convert int to number before storing. */
+ /* Convert int to number before storing. */
+ if (!LJ_DUALNUM && tref_isinteger(ix->val))
ix->val = emitir(IRTN(IR_CONV), ix->val, IRCONV_NUM_INT);
emitir(IRT(loadop+IRDELTA_L2S, tref_type(ix->val)), xref, ix->val);
if (keybarrier || tref_isgcv(ix->val))
if (irtype_ispri(t)) res = TREF_PRI(t); /* Canonicalize primitive refs. */
return res;
} else { /* Upvalue store. */
- if (tref_isinteger(val)) /* Convert int to number before storing. */
+ /* Convert int to number before storing. */
+ if (!LJ_DUALNUM && tref_isinteger(val))
val = emitir(IRTN(IR_CONV), val, IRCONV_NUM_INT);
emitir(IRT(IR_USTORE, tref_type(val)), uref, val);
if (needbarrier && tref_isgcv(val))
case BCMnone: rb = 0; rc = bc_d(ins); break; /* Upgrade rc to 'rd'. */
case BCMvar:
copyTV(J->L, rbv, &lbase[rb]); ix.tab = rb = getslot(J, rb); break;
- case BCMnum: { lua_Number n = proto_knum(J->pt, rb);
- setnumV(rbv, n); ix.tab = rb = lj_ir_knumint(J, n); } break;
default: break; /* Handled later. */
}
switch (bcmode_c(op)) {
case BCMvar:
copyTV(J->L, rcv, &lbase[rc]); ix.key = rc = getslot(J, rc); break;
case BCMpri: setitype(rcv, ~rc); ix.key = rc = TREF_PRI(IRT_NIL+rc); break;
- case BCMnum: { lua_Number n = proto_knum(J->pt, rc);
- setnumV(rcv, n); ix.key = rc = lj_ir_knumint(J, n); } break;
+ case BCMnum: { cTValue *tv = proto_knumtv(J->pt, rc);
+ copyTV(J->L, rcv, tv); ix.key = rc = tvisint(tv) ? lj_ir_kint(J, intV(tv)) :
+ lj_ir_knumint(J, numV(tv)); } break;
case BCMstr: { GCstr *s = gco2str(proto_kgc(J->pt, ~(ptrdiff_t)rc));
setstrV(J->L, rcv, s); ix.key = rc = lj_ir_kstr(J, s); } break;
default: break; /* Handled later. */
irop = (int)op - (int)BC_ISLT + (int)IR_LT;
if (ta == IRT_NUM) {
if ((irop & 1)) irop ^= 4; /* ISGE/ISGT are unordered. */
- if (!lj_ir_numcmp(numV(rav), numV(rcv), (IROp)irop)) irop ^= 5;
+ if (!lj_ir_numcmp(numberVnum(rav), numberVnum(rcv), (IROp)irop))
+ irop ^= 5;
} else if (ta == IRT_INT) {
- if (!lj_ir_numcmp(numV(rav), numV(rcv), (IROp)irop)) irop ^= 1;
+ if (!lj_ir_numcmp(numberVnum(rav), numberVnum(rcv), (IROp)irop))
+ irop ^= 1;
} else if (ta == IRT_STR) {
if (!lj_ir_strcmp(strV(rav), strV(rcv), (IROp)irop)) irop ^= 1;
ra = lj_ir_call(J, IRCALL_lj_str_cmp, ra, rc);
case BC_ADDVN: case BC_SUBVN: case BC_MULVN: case BC_DIVVN:
case BC_ADDVV: case BC_SUBVV: case BC_MULVV: case BC_DIVVV: {
MMS mm = bcmode_mm(op);
- if (tref_isnumber_str(rb) && tref_isnumber_str(rc)) {
- rb = lj_ir_tonum(J, rb);
- rc = lj_ir_tonum(J, rc);
- rc = emitir(IRTN((int)mm - (int)MM_add + (int)IR_ADD), rb, rc);
- } else {
+ if (tref_isnumber_str(rb) && tref_isnumber_str(rc))
+ rc = lj_opt_narrow_arith(J, rb, rc, &ix.tabv, &ix.keyv,
+ (int)mm - (int)MM_add + (int)IR_ADD);
+ else
rc = rec_mm_arith(J, &ix, mm);
- }
break;
}
/* -- Recording setup ----------------------------------------------------- */
-/* Setup recording for a FORL loop. */
-static void rec_setup_forl(jit_State *J, const BCIns *fori)
-{
- BCReg ra = bc_a(*fori);
- cTValue *forbase = &J->L->base[ra];
- IRType t = (J->flags & JIT_F_OPT_NARROW) ? lj_opt_narrow_forl(forbase)
- : IRT_NUM;
- TRef start;
- TRef stop = fori_arg(J, fori, ra+FORL_STOP, t);
- TRef step = fori_arg(J, fori, ra+FORL_STEP, t);
- int dir = (0 <= numV(&forbase[FORL_STEP]));
- lua_assert(bc_op(*fori) == BC_FORI || bc_op(*fori) == BC_JFORI);
- J->scev.t.irt = t;
- J->scev.dir = dir;
- J->scev.stop = tref_ref(stop);
- J->scev.step = tref_ref(step);
- if (!tref_isk(step)) {
- /* Non-constant step: need a guard for the direction. */
- TRef zero = (t == IRT_INT) ? lj_ir_kint(J, 0) : lj_ir_knum_zero(J);
- emitir(IRTG(dir ? IR_GE : IR_LT, t), step, zero);
- /* Add hoistable overflow checks for a narrowed FORL index. */
- if (t == IRT_INT) {
- if (tref_isk(stop)) {
- /* Constant stop: optimize check away or to a range check for step. */
- int32_t k = IR(tref_ref(stop))->i;
- if (dir) {
- if (k > 0)
- emitir(IRTGI(IR_LE), step, lj_ir_kint(J, (int32_t)0x7fffffff-k));
- } else {
- if (k < 0)
- emitir(IRTGI(IR_GE), step, lj_ir_kint(J, (int32_t)0x80000000-k));
- }
- } else {
- /* Stop+step variable: need full overflow check. */
- TRef tr = emitir(IRTGI(IR_ADDOV), step, stop);
- emitir(IRTI(IR_USE), tr, 0); /* ADDOV is weak. Avoid dead result. */
- }
- }
- } else if (t == IRT_INT && !tref_isk(stop)) {
- /* Constant step: optimize overflow check to a range check for stop. */
- int32_t k = IR(tref_ref(step))->i;
- k = (int32_t)(dir ? 0x7fffffff : 0x80000000) - k;
- emitir(IRTGI(dir ? IR_LE : IR_GE), stop, lj_ir_kint(J, k));
- }
- J->scev.start = tref_ref(find_kinit(J, fori, ra+FORL_IDX, IRT_INT));
- start = sloadt(J, (int32_t)(ra+FORL_IDX),
- (t == IRT_INT && !J->scev.start) ? (IRT_INT|IRT_GUARD) : t,
- t == IRT_INT ? (IRSLOAD_CONVERT|IRSLOAD_INHERIT) : IRSLOAD_INHERIT);
- J->base[ra+FORL_EXT] = start;
- J->scev.idx = tref_ref(start);
- J->maxslot = ra+FORL_EXT+1;
-}
-
/* Setup recording for a root trace started by a hot loop. */
static const BCIns *rec_setup_root(jit_State *J)
{
if (J->pc > proto_bc(J->pt) && bc_op(J->pc[-1]) == BC_JFORI &&
bc_d(J->pc[bc_j(J->pc[-1])-1]) == root) {
lj_snap_add(J);
- rec_setup_forl(J, J->pc-1);
+ rec_for_loop(J, J->pc-1, &J->scev, 1);
goto sidecheck;
}
} else {
*/
lj_snap_add(J);
if (bc_op(J->cur.startins) == BC_FORL)
- rec_setup_forl(J, J->pc-1);
+ rec_for_loop(J, J->pc-1, &J->scev, 1);
if (1 + J->pt->framesize >= LJ_MAX_JSLOTS)
lj_trace_err(J, LJ_TRERR_STACKOV);
}
if (!(ir->op2 & IRSLOAD_INHERIT))
continue;
/* No need to restore readonly slots and unmodified non-parent slots. */
- if ((ir->op2 & (IRSLOAD_READONLY|IRSLOAD_PARENT)) != IRSLOAD_PARENT)
+ if (!(LJ_DUALNUM && (ir->op2 & IRSLOAD_CONVERT)) &&
+ (ir->op2 & (IRSLOAD_READONLY|IRSLOAD_PARENT)) != IRSLOAD_PARENT)
sn |= SNAP_NORESTORE;
}
map[n++] = sn;
J->postproc = LJ_POST_NONE;
lj_mcode_abort(J);
- if (tvisnum(L->top-1))
- e = (TraceError)lj_num2int(numV(L->top-1));
+ if (tvisnumber(L->top-1))
+ e = (TraceError)numberVint(L->top-1);
if (e == LJ_TRERR_MCODELM) {
J->state = LJ_TRACE_ASM;
return 1; /* Retry ASM with new MCode area. */
setintV(L->top++, J->exitno);
setintV(L->top++, RID_NUM_GPR);
setintV(L->top++, RID_NUM_FPR);
- for (i = 0; i < RID_NUM_GPR; i++)
- setnumV(L->top++, cast_num(ex->gpr[i]));
+ for (i = 0; i < RID_NUM_GPR; i++) {
+ if (sizeof(ex->gpr[i]) == sizeof(int32_t))
+ setintV(L->top++, (int32_t)ex->gpr[i]);
+ else
+ setnumV(L->top++, (lua_Number)ex->gpr[i]);
+ }
for (i = 0; i < RID_NUM_FPR; i++) {
setnumV(L->top, ex->fpr[i]);
if (LJ_UNLIKELY(tvisnan(L->top)))